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ABSTRACT

LEARNING TO SOLVE MARKOVIAN DECISION
PROCESSES
FEBRUARY 1994

SATINDER P. SINGH

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY NEW DELHI
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

This dissertation is about building learning control architectures for agents em-
bedded in finite, stationary, and Markovian environments. Such architectures give
embedded agents the ability to improve autonomously the efficiency with which
they can achieve goals. Machine learning researchers have developed reinforcement
learning (RL) algorithms based on dynamic programming (DP) that use the agent’s
experience in its environment to improve its decision policy incrementally. This is
achieved by adapting an evaluation function in such a way that the decision policy
that is “greedy” with respect to it improves with experience. This dissertation
focuses on finite, stationary and Markovian environments for two reasons: it allows
the development and use of a strong theory of RL, and there are many challenging
real-world RL tasks that fall into this category.

This dissertation establishes a novel connection between stochastic approximation
theory and RL that provides a uniform framework for understanding all the different
RL algorithms that have been proposed to date. It also highlights a dimension that
clearly separates all RL research from prior work on DP. Two other theoretical results
showing how approximations affect performance in RL provide partial justification
for the use of compact function approximators in RL. In addition, a new family of
“soft” DP algorithms is presented. These algorithms converge to solutions that are
more robust than the solutions found by classical DP algorithms.

Despite all of the theoretical progress, conventional RL architectures scale poorly
enough to make them impractical for many real-world problems. This dissertation
studies two aspects of the scaling issue: the need to accelerate RL, and the need to
build RL architectures that can learn to solve multiple tasks. It presents three RL
architectures, CQ-L, H-DYNA, and BB-RL, that accelerate learning by facilitating
transfer of training from simple to complex tasks. Each architecture uses a different

vi



method to achieve transfer of training; CQ-L uses the evaluation functions for simple
tasks as building blocks to construct the evaluation function for complex tasks, H-
DYNA uses the evaluation functions for simple tasks to build an abstract environment
model, and BB-RL uses the decision policies found for the simple tasks as the primitive
actions for the complex tasks. A mixture of theoretical and empirical results are
presented to support the new RL architectures developed in this dissertation.

vii
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CHAPTER 1
INTRODUCTION

This dissertation is about building learning control architectures for agents em-
bedded in finite, stationary, and Markovian environments. Such architectures give
embedded agents the ability to improve autonomously the efficiency with which
they can achieve goals. Machine learning researchers have developed architectures
based on reinforcement learning (RL) methods that use the agent’s experience in its
environment to improve its decision policy incrementally. This dissertation presents
a novel theory that provides a uniform framework for understanding and proving
convergence for all the different RL algorithms that have been proposed to date.
New theoretical results that lead to a better understanding of the strengths and
limitations of conventional RL architectures are also developed. In addition, this
dissertation presents new RL architectures that extend the range and complexity of
applications to which RL algorithms can be applied in practice. These architectures
use knowledge acquired in learning simple tasks to accelerate the learning of more
complex tasks. A mixture of theoretical and empirical results are provided to validate
the proposed architectures.

1.1 Learning and Autonomous Agents

An important long-term objective for artificial intelligence (Al) is to build intel-
ligent agents capable of autonomously achieving goals in complex environments. Re-
cently, some Al researchers have turned attention away from studying isolated aspects
of intelligence and towards studying intelligent behavior in complete agents embedded
in real-world environments (e.g., Agre (1], Brooks [24, 23], and Kaelbling [60]). Much
of this research on building embedded agents has followed the approach of hand-coding
the agent’s behavior (Maes [68]). The success of such agents has depended heavily on
their designers’ prior knowledge of the dynamics of the interaction between the agent
and its intended environment and on the careful choice of the agent’s repertoire of
behaviors. Such hand-coded agents lack flexibility and robustness.

To be able to deal autonomously with uncertainty due to the incompleteness of
the designer’s knowledge about complex environments, embedded agents will have to
be able to learn. In addition, learning agents can determine solutions to new tasks
more efficiently than hardwired agents, because the ability to learn can allow the
agent to take advantage of unanticipated regularities in the environment. Although
learning also becomes crucial if the environment changes over time, or if the agent’s
goals change over time, this dissertation will be focussed on the most basic advantage
that learning provides to embedded agents: the ability to improve performance over
time.



1.2 Why Finite, Stationary, and Markovian Environments?

This dissertation focuses on building learning control architectures for agents that
are embedded in environments that have the following characteristics:

Finite: An environment is called finite if the number of different “situations”
that the agent can encounter is finite. While many interesting tasks have infinite
environments, there are many challenging real-world tasks that do have finite envi-
ronments, e.g., games, many process control tasks, job scheduling. Besides, many
tasks with infinite environments can be modeled as having finite environments by
choosing an appropriate level of abstraction. The biggest advantage of focusing on
finite environments is that it becomes possible to derive and use a general and uniform
theory of learning for embedded agents. This dissertation presents such a theory
based on RL that extends and builds upon previous research. Learning architectures
developed for finite environments may also extend to infinite environments by the
use of sampling techniques and function approximation methods that generalize to
unsampled situations appropriately. Some empirical evidence for the last hypothesis
is presented in this dissertation.

Stationary: An environment is called stationary if its dynamics are independent
of time, i.e., if the outcome of executing an action in a particular situation is not a
function of time. Note that stationary does not mean static. Studying stationary
environments makes it possible to construct a general and simple theory of RL.
At the appropriate level of abstraction a large variety of real-world environments,
especially man-made environments, are stationary, or change very slowly over time.
It is hoped that if the rate of change in the environment is small then with very
minor modifications a RL architecture will be able to keep up with the changes in
the environment.

Markovian: An agent’s environment is Markovian if the information available
to the agent in its current situation makes the future behavior of the environment
independent of the past. The Markovian assumption plays a crucial role in all of
the theory and the learning architectures presented in this dissertation. For many
problem domains, specialists have already identified the minimal information that
an agent needs to receive to make its environment Markovian. Researchers building
learning control architectures for agents embedded in such environments can use
that knowledge. In domains where such knowledge is not available, some researchers
have used statistical estimation methods or other machine learning methods to con-
vert non-Markovian problems to Markovian problems. Nevertheless, the Markovian
assumption may be more limiting than the previous two assumptions, because RL
methods developed for finite, stationary, and Markovian environments degrade more
gracefully for small violations of the previous two assumptions relative to small
violations of the Markovian assumption.

1.3 Why Reinforcement Learning?

A set of training examples is required if a problem is to be formulated as a
supervised learning task (Duda and Hart [38]). For agents embedded in dynamic
environments, actions executed in the short term can impact the long term dynamics

=
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of the environment. This makes it difficult, and sometimes impossible, to acquire
even a small set of examples from the desired behavior of the agent without solving
the entire task in the first place. Therefore, problems involving agents embedded in
dynamic environments are difficult to formulate as supervised learning tasks.

On the other hand, it is often easy to evaluate the short term performance of the
agent to provide an approximate (and perhaps noisy) scalar feedback, called a payoff
or reinforcement signal. In the most difficult case, it can at least be determined if
the agent succeeded or failed at the task, thereby providing a binary failure/success
reinforcement signal. Therefore, tasks involving agents embedded in dynamic environ-
ments are naturally formulated as optimization tasks where the optimal behavior is
not known in advance, but is defined to be the behavior that maximizes (or minimizes)
some function of the agent’s behavior over time. Such tasks are called reinforcement
learning tasks.

The objective function maximized in RL tasks can incorporate many different
types of performance criteria, such as minimum time, minimum cost, and minimum
jerk. Therefore, a wide variety of tasks of interest in operations research, control
theory, robotics, Al, can be formulated as RL tasks. Researchers within these di-
verse fields have developed a number of different methods under different names
for solving RL tasks, e.g., dynamic programming (DP) algorithms (Bellman [16]),
classifier systems (Holland et al. [51]), and reinforcement learning algorithms (Barto
et al. [14], Werbos [121]).! The different algorithms assume different amounts of
domain knowledge and work under different constraints, but they can all solve RL
tasks and should perhaps all be called RL methods. However, for the purposes of
this dissertation, it will be useful to distinguish between classical DP algorithms
developed in the fields of operations research and control theory and the more recent
RL algorithms developed in Al

This dissertation studies two issues that arise when building autonomous agent
architectures based on RL methods: the differences between RL algorithms and
classical DP algorithms for solving RL tasks, and building RL architectures that
can learn complex tasks more efficiently than conventional RL architectures. These
issues are introduced briefly in the next two sections.

1.3.1 Reinforcement Learning Algorithms vis-a-vis Classical Dynamic Pro-
gramming Algorithms

The problem of determining the optimal behavior for agents embedded in finite,
stationary, and Markovian environments can be reduced to the problem of solving

!Combinatorial optimization methods, such as genetic algorithms (Goldberg [43]), can also be
used to solve RL tasks (Grefenstette [45]). However, unlike DP and RL algorithms that use the
agent’s experience to adapt directly its architecture, genetic algorithms have to evaluate the fitness
of a “population” of agents before making any changes to their architectures. Evaluating an agent
embedded in a dynamic environment is in general a computationally expensive operation and it seems
wasteful to ignore the “local” information acquired through that evaluation. This dissertation will
focus on DP and RL algorithms. Nevertheless, it should be noted that no definitive comparison has
yet been made between optimization methods based on genetic algorithms and RL or DP algorithms.
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a system of nonlinear recursive equations (Ross [87], Bertsekas [17]). Dynamic pro-
gramming (DP) is a set of iterative methods, developed in the classical literature on
control theory and operations research, that are capable of solving such equations
(Bellman [16]).2 Control architectures that use DP algorithms require a model of the
environment, either one that is known a priori, or one that is estimated on-line.

One of the main innovations in RL algorithms for solving problems traditionally
solved by DP is that they are model-free because they do not require a model of the
environment. Examples of such model-free RL algorithms are Sutton’s [106] temporal
differences (TD) algorithm and Watkins [118] Q-learning algorithm. RL algorithms
and classical DP algorithms are related methods because they solve the same system of
equations, and because RL algorithms estimate the same quantities that are computed
by DP algorithms (see Watkins [118], Barto et al. [14], and Werbos [123, 124]). More
recently, Barto [8] has identified the separate dimensions along which the different RL
algorithms have weakened the strong constraints required by classical DP algorithms
(see also Sutton [108]).

Despite all the progress in connecting DP and RL algorithms, the following
question was unanswered: can TD and Q-learning be derived by the straightforward
application of some classical method for solving systems of equations? Recently this
author and others (Singh et al. [102], Jaakkola et al. [53], and Tsitsiklis [115]) have
answered that question. In this dissertation it is shown that RL algorithms, such as
TD and Q-learning, are instances of asynchronous stochastic approximation methods
for solving the recursive system of equations associated with RL tasks. The stochastic
approximation framework is also used to delineate the specific contributions made
by RL algorithms, and to provide conditions under which RL architectures may
be more efficient than architectures that use classical DP algorithms. Simulation
studies are used to validate these conditions. The stochastic approximation framework
leaves open several theoretical questions and this dissertation identifies and partially
addresses some of them.

1.3.2 Learning Multiple Reinforcement Learning Tasks

Despite possessing several attractive properties, as outlined in Sections 1.3 and 1.3.1,
RL algorithms have not been applied on-line to solve many complex problems.? One
of the reasons is the widely held belief that RL algorithms are unacceptably slow for
complex tasks. In fact, the common view is that RL algorithms can only be used as
weak learning algorithms in the Al sense, i.e., they can use little domain knowledge,
and hence like all weak learning algorithms are doomed to scale poorly to complex
tasks (e.g., Mataric [72]).

2Within theoretical computer science, the term DP is applied to a general class of methods for
efficiently solving recursive systems of equations for many different kinds of structured optimization
problems (e.g., Cormen et al. [32]), not just the recursive equations derived for agents controlling
external environments. In this dissertation, however, the term DP will be used exclusively to refer
to algorithms for solving optimal control problems.

3While Tesauro’s [112] backgammon player is certainly a complex application, it is not an on-line
RL system.
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However, the common view is misleading in two respects. The first misconception,
as pointed out by Barto [8], is that while RL algorithms are indeed slow, there is little
evidence that they are slower than any other method that can be applied with the
same generality and under similar constraints. Indeed, there is some evidence that
RL algorithms may be faster than their only known competitor that is applicable with
the same level of generality, namely classical DP methods (Barto and Singh [12, 11],
Moore and Atkeson [79], Gullapalli [48]).

The second misconception is the view that RL algorithms can only be used as
weak methods. This misconception was perhaps generated inadvertently by the early
developmental work on RL that used as illustrations applications with very little
domain knowledge (Barto et.al. [13], Sutton [106]). However, RL architectures can
easily incorporate many different kinds of domain knowledge. Indeed, a significant
proportion of the current research on RL is about incorporating domain knowledge
into RL architectures to alleviate some of their problems (Singh [99], Yee et al. [129],
Mitchell and Thrun [75], Whitehead [125], Lin [66], Clouse and Utgoff [28]).

Despite the fact that under certain conditions RL algorithms may be the best
available methods, conventional RL architectures are slow enough to make them
impractical for many real-world problems. While some researchers are looking for
faster learning algorithms, and others are investigating ways to improve computing
technology in order to solve more complex tasks, this dissertation focuses on a fun-
damentally different way of tackling the scaling problem. This dissertation studies
transfer of training in agents that have to solve multiple structured tasks. It presents
RL architectures that use knowledge acquired in learning to solve simple tasks to
accelerate the learning of solutions to more complex tasks.

Achieving transfer of training across an arbitrary set of tasks may be difficult,
or even impossible. This dissertation explores three different ways of accelerating
learning by transfer of training in a class of hierarchically-structured RL tasks. Chap-
ter 6 presents a modular learning architecture that uses solutions for the simple
tasks as building blocks for efficiently constructing solutions for more complex tasks.
Chapter 7 presents a RL architecture that uses the solutions for the simple tasks
to build abstract environment models. The abstract environment models accelerate
the learning of solutions for complex tasks because they allow the agent to ignore
unnecessary temporal detail. Finally, Chapter 8 presents a RL architecture that uses
the solutions to the simple tasks to constrain the solution space for more complex
tasks. Both theoretical and empirical support are provided for each of the three new
RL architectures.

Transfer of training across tasks must play a crucial role in building autonomous
embedded agents for complex real-world applications. Although studying architec-
tures that solve multiple tasks is not a new idea (e.g. Korf [64], Jacobs [55]), achieving
transfer of training within the RL framework requires the formulation of, and the
solution to, several unique issues. To the best of my knowledge, this dissertation
presents the first attempt to study transfer of training across tasks within the RL
framework.



1.4 Organization

Chapter 2 presents the Markovian decision task (MDT) framework for formulating
RL tasks. It also compares and contrasts the MDT framework for control with the
Al state-space search framework for problem solving. The complementary aspects
of the research in Al and control theory are emphasized. Chapter 2 concludes by
formulating the two mathematical questions of prediction and control for embedded
agents that will be addressed in this dissertation.

Chapter 3 presents the abstract framework of iterative relaxation algorithms that
is common to both DP and RL. It presents a brief survey of classical DP algorithms
for solving RL tasks. A new asynchronous DP algorithm is presented along with a
proof of convergence. Chapter 4 presents RL algorithms as stochastic approximation
algorithms for solving the problems of prediction and control in finite-state MDTs.
Conditions under which RL algorithms may be more efficient than DP algorithms
are derived and tested empirically. Several other smaller theoretical questions are
identified and partially addressed. Detailed proofs of the theorems presented in
Chapters 3 and 4 are presented in Appendices A and B.

Chapter 5 uses the abstract mathematical framework developed in the previous
chapters to review prior work on scaling RL algorithms. The different approaches are
divided into five abstract classes based on the particular aspect of the scaling problem
that is central to each approach. Chapter 6 formulates the class of compositionally-
structured MDT's in which complex MDTs are formed by sequencing a number of
simpler MDTs. It presents a hierarchical, modular, connectionist architecture that
addresses the scaling issue by achieving transfer of training across compositionally-
structured MDTs. The modular architecture is tested empirically on a set of discrete
navigation tasks, as well as on a set of more difficult, continuous-state, image-based
navigation tasks. Theoretical support for the learning architecture is provided in
Appendix D. Chapter 7 presents a RL architecture that builds a hierarchy of abstract
environment models. It is also tested on compositionally-structured MDTs.

Chapter 8 focuses on a different aspect of the scaling problem for on-line RL ar-
chitectures; that of maintaining acceptable performance while learning. This chapter
is focused on solving motion planning problems. It presents a RL architecture that
not only maintains an acceptable level of performance while solving motion planning
problems, but is also more efficient than conventional RL architectures. The new
architecture’s departure from conventional RL architectures for solving motion plan-
ning problems is emphasized. Empirical results from two complex,.continuous state,
motion planning problems are presented. Finally, Chapter 9 presents a summary of
the contributions of this dissertation to the theory and practice of building learning
control architectures for agents embedded in dynamic environments.

]
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CHAPTER 2
LEARNING FRAMEWORK

This chapter presents a formal framework for formulating tasks involving embed-
ded agents. Embedded agents are being studied in a number of different disciplines,
such as Al, robotics, systems engineering, control engineering, and theoretical com-
puter science. This dissertation is focussed on embedded agents that use repeated
experience at solving a task to become more skilled at that task. Accordingly,
the framework adopted here abstracts the task to that of learning a behavior that
approximates optimization of a preset objective functional defined over the space of
possible behaviors of the agent. The framework presented here closely follows the
work of Barto et al. [14, 10] and Sutton [108, 110].

2.1 Controlling Dynamic Environments

In general, the environment in which an agent is embedded can be dynamic, that
is, can undergo transformations over time. An assumption and idealization that is
often made by dynamical system theorists as well as by Al researchers is that all the
information that is of interest about the environment depends only on a finite set
of variables that are functions of time z1(t), z2(t), z3(t),...,za(t). These variables
are often called state variables and form the components of the n-dimensional state
vector z(t). Mathematical models of the transformation process, i.e., models of the
dynamics of the environment, relate the time course of changes in the environment
to the state of the environment.

If the agent has no control over the dynamics of the environment, the funda-
mental problem of interest is that of prediction. Solving the prediction problem
requires ascertaining an approximation to the sequence {z(t)}, or more generally an
approximation of some given function of {z(¢)}. A more interesting situation arises
when the agent can influence the environment’s transformation over time. In such a
case, the fundamental problem becomes that of prescription or control, the solution
to which prescribes the actions that the agent should execute in order to bring about
the desired transformations in the environment. We will return to these two issues of
prediction and control throughout this dissertation.

For several decades control engineers have been designing controllers that are able
to transform a variety of dynamical systems to a desired goal state or that can track a
desired state trajectory over time (e.g., Goodwin and Sin [44]). Such tasks are called
regulation and tracking tasks respectively. Similarly researchers in Al have developed
problem solving methods for finding sequences of operators that will transform an
initial problem (system) state into a desired problem state, often called a ‘goal’ state.



2.2 Problem Solving and Control

Despite underlying commonalities, the separate development of the theory of
problem solving in AI and the theory of regulation and tracking in control engineering
led to differences in terminology. For example, the transformation to be applied to
the environment is variously called an operator, an action, or a control. The external
system to be controlled is called an environment, a process, or a plant. In addition,
in control engineering the agent is called a controller. The terms agent, action, and
environment will be used in this dissertation.

There are also differences in the algorithms developed by the two communities
because of the differing characteristics of the class of environments chosen for study.
Traditionally, Al has focussed almost exclusively on deterministic, discrete state
and time problems, whereas control theorists have embraced stochasticity and have
included continuous state and time problems in their earliest efforts. Consequently,
the emphasis in Al has been on search control with the aim of reducing the average
proportion of states that have to be searched before finding a goal state, while in
control theory the emphasis has been on ensuring stability by dealing robustly with
disturbances and stochasticity.

The focus on deterministic environments within Al has led to the development of
planning and heuristic search techniques that develop open-loop solutions, or plans.
An open-loop solution is a sequence of actions that is executed without reference to
the ensuing states of the environment. Any uncertainty or model mismatch can cause
plan failure, which is usually handled by replanning.! On the other hand, most control
design procedures within control theory have been developed to explicitly handle
stochasticity and consequently compute a closed-loop solution that prescribes actions
as a function of the environment’s state and possibly of time. Note that forming
closed-loop solutions confers no advantage in purely deterministic tasks, because for
every start state the sequence of actions executed under the closed-loop solution is
an open-loop solution for that start state.

A common feature of most of the early research in Al and in control theory
was their focus on off-line design of solutions using environment models. Later,
control theorists developed indirect and direct adaptive control methods for dealing
with problems in which a model was unavailable (e.g., Astrom and Wittenmark [3]).
Indirect methods estimate a model of the environment incrementally and use the
estimated model to design a solution. The same interleaving procedure of system
identification and off-line design can be followed in Al problem solving. Direct
methods on the other hand directly estimate the parameters of a single, known,
parametrized control solution without explicitly estimating a model. As stated before,
part of the motivation for RL researchers has been to develop direct methods for
solving learning tasks involving embedded agents.

Some of the recent work on planning produces closed-loop plans by performing a cycle of sensing
and open-loop planning (e.g., McDermott [74]).
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2.3 Learning and Optimal Control

Of more relevance to the theory of learning agents embedded in dynamic envi-
ronments is a class of control problems studied by optimal control theorists in which
the desired state trajectory is not known in advance but is part of the solution to
be determined by the control design process.? The desired trajectory is one that
extremizes some external performance criteria, or some objective function, defined
over the space of possible solutions. Such control problems are called optimal control
problems and have also been studied for several decades. The optimal control per-
spective provides a suitable framework for learning tasks in which an embedded agent
repeatedly tries to solve a task, caching the partial solution and other information
garnered in such attempts, and reuses such information in subsequent attempts to
improve performance with respect to the performance criteria.

This perspective of optimal control as search is the important common link to
the view of problem solving as search developed within the AI community. For
some optimal control problems, gradient-based search techniques, such as calculus
of variations (e.g., Kirk [62]), can be used for finding the extrema. For other optimal
control problems, where non-linearities or stochasticity make gradient-based search
difficult, dynamic programming (DP) is the only known general class of algorithms
for finding an optimal solution.

The current focus on embedded agents in AI has fortunately come at a time
when a confluence of ideas from artificial intelligence, machine learning, robotics,
and control engineering is taking place (Werbos [124], Barto [7], Barto et al [10],
Sutton et al [108, 110], Dean and Wellman [36]). Part of the motivation behind this
current research is to combine the complementary strengths of research on planning
and problem solving in Al and of research on DP in optimal control to get the best
of both worlds (e.g., Sutton [108], Barto et al. [10], and Moore and Atkeson [79]).
For example, techniques for dealing with uncertainty and stochasticity developed in
control theory are now of interest to Al researchers developing architectures for agents
embedded in real-world environments. At the same time, techniques for reducing
search in Al problem solving can play a role in making optimal control algorithms
more efficient in their exploration of the solution space (Moore [77]).

Another feature of Al problem solving algorithms, e.g., A* (Hart et al. [50],
Nilsson [80]), that should be incorporated into optimal control algorithms is that of
determining solutions only in parts of the problem space that matter. Algorithms from
optimal control theory, such as DP, find complete optimal solutions that prescribe
optimal actions to every possible state of the environment. At least in theory, there
is no need to find optimal actions for states that are not on the set of optimal paths
from the set of possible start states (see Korf [65], and Barto et al. [10]).

Following Sutton et al. [110] and Barto et al. [14], in this dissertation the adaptive
optimal control framework is used to formulate tasks faced by autonomous embedded
agents. The next section presents the specific formulation of optimal control tasks
that is commonly used in machine learning research on building learning control
architectures for embedded agents.

2Regulation and tracking tasks can also be defined using the optimal control framework.
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2.4 Markovian Decision Tasks

Figure 2.1 shows a block diagram representation of a general class of tasks faced
by embedded agents.® It shows an agent interacting with an external environment
in a discrete time perception-action cycle. At each time step, the agent perceives
its environment, executes an action and receives a payoff in return. Such tasks
are called multi-stage decision tasks, or sequential decision tasks, in control theory
and operations research. A simplifying assumption often made is that the task is
Markovian which requires that at each time step the agent’s immediate perception

returns the state of the environment, i.e., provides all the information necessary to -

make the future perceptions and payoffs independent of the past perceptions. The
action executed by the agent and the external disturbances determine the next state
of the environment. Such multi-stage decision tasks are called Markovian decision
tasks (MDTs).

Disturbances

Environment
(System) | State

Payoft

Action

Agent
(Controller)

Figure 2.1 Markovian Decision Task. This figure shows a block diagram represen-
tation of an MDT. It shows an agent interacting with an external environment in a
perception-action cycle. The agent perceives the state of the environment, executes
an action, and gets a payoff in return. The action executed by the agent and the
external disturbances change the state of the environment.

MDTs are discrete time tasks in which at each of a finite, or countably infinite,
number of time steps the agent can choose an action to apply to the environment. Let
X be the finite set of environmental states and A be the finite set of actions available
to the agent. At time step ¢, the agent observes the environment’s current state,
denoted z; € X, and executes action a; € A. As a result the environment makes

3Note that Figure 2.1 is just one possible block diagram representation; other researchers have
used more complex block diagrams to capture some of the more subtle intricacies of tasks faced by
embedded agents (e.g., Whitehead [125], Kaelbling [60]).

“For ease of exposition it is assumed that the same set of actions are available to the agent in
each state of the environment. The extension to the case where different sets of actions are available
in different states is straightforward.

fﬂ
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a transition to state z,4; € X with probability P*(z;,2:41), and the agent receives
an expected payoff® R*(z;) € R. The process {z,} is called a Markovian decision
process (MDP) in the operations research literature. The terms MDP and MDT will
be used interchangeably throughout this dissertation.

The agent’s task is to determine a policy for selecting actions that maximizes
some cumulative measure of the payoffs received over time. Such a policy is called
an optimal policy. The number of time steps over which the cumulative payoff is
determined is called the horizon of the MDT. One commonly used measure for policies
is the expected value of the discounted sum of payoffs over the time horizon of the
agent as a function of the start state (see Barto et al [14]). ® This dissertation
focuses on agents that have infinite life-times and therefore will have infinite horizons.
Fortunately, infinite-horizon MDTs are simpler to solve than finite-horizon MDTs
because with an infinite horizon there always exists a policy that is independent of
time, called a stationary policy, that is optimal (see Ross [87]). Therefore, throughout
this dissertation one need only consider stationary policies 7 : X — A that assign an
action to each state. Mathematically, the measure for policy 7 as a function of the
start state zg is

Vi(e) = E [Z v*RﬂM(zo] , (21)
t=0

where E indicates expected value, and 7(z;) is the action prescribed by policy = for
state z;. The discount factor v, where 0 < v < 1, allows the payoffs distant in time
to be weighted less than more immediate payoffs. The function V™ : X — R is called
the value function for policy 7. The symbol V™ is used to denote both the value
function and the vector of values of size | X|. An optimal control policy, denoted 7=,
maximizes the value of every state.

For MDTs that have a horizon of one, called single-stage MDTs, the search for
an optimal policy can be conducted independently for each state because an optimal
action in any state is simply an action that leads to the highest immediate payoff,
ie.,

7"(z) = argmax, 4 R*(z) (2.2)
MDTs with a horizon greater than one, or multi-stage MDTs, face a difficult temporal
credit assignment problem (Sutton [105]) because actions executed in the short-term
can have long-term consequences on the payoffs received by the agent. Hence, to
search for an optimal action in a state it may be necessary to examine the conse-
quences of all action sequences of length equal to the horizon of the MDT.

Most physical environments have infinite state sets and are continuous time sys-
tems. However, tasks faced by agents embedded in such environments can frequently

SAll of the theory and the architectures developed in this dissertation extend to the formulation
of MDTs in which payoffs are also a function of the next state, and are denoted r%(z¢, 2¢41). In
such a case, R%(z;) = E{r®(z¢,z¢41)}-

6The average payoff per time step received by an agent is another measure for policies that is used
in the classical DP literature (Bertsekas [17]), and more recently in the RL literature (Schwartz [94],
Singh [100]). This dissertation will only deal with the discounted measure for policies.
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be modeled as MDTs by discretizing the state space and choosing actions at some
fixed frequency. However, it is important to keep in mind that an MDT is only
an abstraction of the physical task. Indeed, it may be possible to represent the
same underlying physical task by several different MDTs, simply by varying the
resolution of the state space and/or by varying the frequency of choosing actions.
The choices made can impact the difficulty of solving the task. In general, the coarser
the resolution in space and time, the easier it should be to find a solution. But at
the same time better solutions may be found at finer resolutions. This tradeoff is a
separate topic of research (e.g., Bertsekas [17]) and will only be partially addressed
in this dissertation (see Chapter 8). '

The MDT framework for control tasks is a natural extension to stochastic envi-
ronments of the Al state-space search framework for problem solving tasks. A rich
variety of learning tasks from diverse fields such as AI, robotics, control engineering,
and operations research can be formulated as MDTs. However, some care has to be
taken in applying the MDT framework because it makes the strong assumption that
the agent’s perception returns the state of the environment, an assumption that may
not be satisfied in some real-world tasks with embedded agents (Chapter 9 discusses
this is greater detail).

Policy Evaluation

<

Policy Space | Value Function
Space

Figure 2.2 The policy evaluation problem. This figure shows the two spaces of
interest in solving MDTs: the policy space and the value function space. Evaluating
a policy m maps it into a vector of real numbers V". Each component of V'~ is the
infinite-horizon discounted sum of payoffs received by an agent when it follows that
policy and starts in the state associated with that component.

3
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greedy policy derivation
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Figure 2.3 The Optimal Control Problem. Solving the optimal control problem
requires finding a policy 7* that when evaluated maps onto a value function V* that
is componentwise larger than the value function of any other policy. The optimal
policies are the only stationary policies that are greedy with respect to the unique
optimal value function V*.

2.4.1 Prediction and Control

For infinite-horizon MDTs the two fundamental questions of prediction and con-
trol can be reduced to that of solving fixed-point equations.

e Policy Evaluation: The prediction problem for an MDT, shown in Figure 2.2,
is called policy evaluation and requires computing the vector V™ for a fixed policy
7. Let R™ be the vector of payoffs under policy 7 and let [P]™ be the transition
probability matrix under policy x. It can be shown that the following system of
linear fixed-point equations of size | X|, written in vector form:

V = R +4[P]'V (2.3)

always has a unique solution, and that the solution is V*, under the assumption
that R is finite (Ross [87]).

e Optimal Control: The control problem for an MDT, shown in Figure 2.3, is
that of finding an optimal control policy #*. The search for an optimal policy
has to be conducted only in the set of stationary policies, denoted P, that is
of size |A|X|. The value function for an optimal policy 7* is called the optimal
value function and is denoted V*. There may be more than one optimal policy,
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but the optimal value function is always unique (Ross [87]). It is known that the
following system of nonlinear fixed-point equations, Vz € X:

V(z) = max(R'(z)+7 X;{ P*(z,y)V(y)), (2.4)
yE

of dimension |X| always has a unique solution, and that the solution is V~,
under the assumption that all the payoff vectors are finite. The set of recurrence
relations, Vz € X,

Vi(z) = max(R'(z)+7 X):{ P*(z,y)V*(y)),
y€

is known in the DP literature as the Bellman equation for infinite-horizon MDT's
(Bellman [16]).

A policy 7 is greedy with respect to any finite value function V if it prescribes
to each state an action that maximizes the sum of the immediate payoft and the
discounted expected value of the next state as determined by the value function
V. Formally, 7 is greedy with respect to V iff Vz € X, and Va € A:

R®(z)+7 Y PP(z,y) 2 R(2)+7 Y P(=,4)V(y).
yeX yeX

Any policy that is greedy with respect to the optimal value function is optimal
(see Figure 2.3). Therefore, once the optimal value function is known, an optimal
policy for infinite-horizon MDTs can be determined by the following relatively
straightforward computation:”

(@) = agmaxes |R'@)+7 T Paa)V )| (2.5)
13

In fact, solving the optimal control problem has come to mean solving for V*
with the implicit assumption that 7* is derived by using Equation 2.5.

2.5 Conclusion

The MDT framework offers many attractions for formulating learning tasks faced
by embedded agents. It deals naturally with the perception-action cycle of embedded
agents, it requires very little prior knowledge about an optimal solution, it can be
used for stochastic and non-linear environments, and most importantly it comes with
a great deal of theoretical and empirical results developed in the fields of control
theory and operations research. Therefore, the MDT framework incorporates many,
but not all, of the concerns of Al researchers as their emphasis shifts towards studying

"The problem of determining the optimal policy given V* is a single-stage MDT with (R™ +
7[P]*V*) playing the role of the immediate payoff function R* (cf. Equation 2.2). If the size of the
action set A is large, finding the best action in a state can itself become computationally expensive
and is the subject of current research (e.g., Gullapalli [48]).
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complete agents in real-life environments. This dissertation will deal exclusively with
learning tasks that can be formulated as MDTs. In particular, the next two chapters
will present theoretical results about the application of DP and RL algorithms to
abstract MDTs without reference to any real application. Subsequent chapters will
use applications to test new RL architectures that address more practical concerns.



CHAPTER 3

SOLVING MARKOVIAN DECISION TASKS:
DYNAMIC PROGRAMMING

This chapter serves multiple purposes: it presents a framework for describing algo-
rithms that solve Markovian decision tasks (MDTs), it uses that framework to survey
classical dynamic programming (DP) algorithms, it presents a new asynchronous
DP algorithm that is based on policy iteration, and it presents a new family of
DP algorithms that find solutions that are more robust than the solutions found
by conventional DP algorithms. Convergence proofs are also presented for the new
DP algorithms. The framework developed in this chapter is also used in the next
chapter to describe reinforcement learning (RL) algorithms and serves as a vehicle
for highlighting the similarities and the differences between DP and RL. Section 3.2 is
solely a review while Sections 3.3 and 3.4 present new algorithms and results obtained
by this author.

3.1 Iterative Relaxation Algorithms

In Chapter 2 it was shown that the prediction and control problems for embedded
agents can be reduced to the problem of solving the following systems of fixed-point
equations, Vz € X:

Policy Evaluation (7):  V(z) = R™(z)++v ) P"@(z,y)V(y) (3.1)

veX
Optimal Control:  V(z) = mea;z((Ra(a:) +7 Y Pz, y)V(y)) (3.2)
¢ veX

This chapter and the next focuses on algorithms that produce sequences of approxi-
mations to the solution value function — V™ for Equation 3.1 and V* for Equation 3.2
— by iterating an “update” equation that takes the following general form:

new approzimation = old approzimation + rate parameter ( new estimate
—old approzimation ), (3.3)

where the rate parameter defines the proportion in which a new estimate of the
solution value function and the old approzimation are mixed together to produce
a new approrimation. This new approximation becomes the old approximation at the
next iteration of the update equation. Such algorithms are called iterative relazation
algorithms.

=
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The sequence of value functions produced by iterating Equation 3.3 is indexed
by the iteration number and denoted {V;}. Therefore the update equation can be
written as follows:

Vi = Vi+p(U(Vi) - Vi) (3.4)

where p; is a relaxation parameter, V; is the approximation of the solution value
function after the (i — 1)* iteration, and U : V; — R*lis an operator that produces a
new estimate of the solution value function by using the approximate value function
V;.! In general, the value function is a vector, and at each iteration an arbitrary

* subset of its components can be updated. Therefore, it is useful to write down each

component of the update equation as a function of the state associated with that
component of the vector. Let the component of the operator U corresponding to
state z be denoted U, : V; — R. The update equation for state z is

Vir(2) = Vi(z) + pi(2)(U=(Vi) - Vi(2)) (3.5)
where the relaxation parameter is now a function of z. .

In this chapter classical DP algorithms are derived as special cases of Equation 3.5.
In the next chapter RL algorithms, such as Sutton’s temporal differences (TD) and
Watkins’ Q-learning, will also be derived as special cases of Equation 3.5. The
differences among the various iterative algorithms for solving MDTs are: 1) the
definition of the operator U, and 2) the order in which the state-update equation
is applied to the states of the MDT.

Following Barto [8], it is convenient to represent MDTs, both conceptually and
pictorially, as directed stochastic graphs. Figure 3.1 shows the outgoing transitions
for an arbitrary state z from a stochastic graph representation of an MDT that in turn
is an abstraction of some real-world environment. The nodes represent states and the
transitions represent possible outcomes of executing actions in a state. A transition
is directed from a predecessor state, e.g., 7, to a successor state, e.g., y (Figure 3.1).
Because the problem can be stochastic, a set of outgoing transitions from a state can
have the same action label. Each transition has a payoff and a probability attached
to it (not shown in Figure 3.1). For any state-action pair the probabilities across all
possible transitions sum to one. Figure 3.1 shows that there can be more than one
transition between any two states.

In this chapter and the next, stochastic graphs resembling Figure 3.1 will be used
to help describe the update equations, and in particular to describe the computation
performed by the operator U. A common feature of all the algorithms presented in
this dissertation is that the operator U is local, in that it produces a new estimate of

the value of a state z by accessing information only about states that can be reached
from z in one transition.?

More generally the operator U could itself be a function of the iteration number 3. However, for
the algorithms discussed in this dissertation, U is assumed fixed for all iterations.

20ne can define both DP and RL algorithms that use operators that do more than a one-step
search and access information about states that are not one-step neighbors, e.g., the multi-step
Q-learning of Watkins [118]. Most of the theoretical results stated in this dissertation will also hold
for algorithms with multi-step operators.
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predecessor
state

successor ;
states 4

Figure 3.1 Directed Stochastic Graph Representation of an MDT. This figure shows
a fragment of an MDT. The nodes represent states and the arcs represent transitions
that are labeled with actions.

3.1.1 Terminology

This section presents terminology that will be used throughout this dissertation
to describe iterative relaxation algorithms for solving MDTs. The state transition
probabilities and the payoff function constitute a model of the environment.

e Synchronous: An algorithm is termed synchronous if in every k| X | applications
of the state-update equation the value of every state in set X is updated exactly
k times. If the values of all the states are updated simultaneously, called Jacobi
iteration, the algorithm given in Equation 3.5 can be written in the vector form
of Equation 3.4. If the states are updated in some fixed order and the operator U
always uses the most recent approximation to the value function, the algorithm
is said to perform a Gauss-Sidel iteration.

e Asynchronous: Different researchers have used different models of asynchrony
in iterative algorithms (e.g., Bertsekas and Tsitsiklis [18]). In this dissertation
the term asynchronous is used for algorithms that place no constraints on the
order in which the state-update equation is applied, except that in the limit
the value of each state will be updated infinitely often. The set of states whose
values are updated at iteration 7 is denoted S; (as in Barto et al. [10]).

e On-line An on-line algorithm is one that not only learns a value function but
also simultaneously controls a real environment. An on-line algorithm faces the
tradeoff between ezploration and exploitation because it has to choose between
executing actions that allow it to improve its estimate of the value function and
executing actions that return high payoffs.
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o Off-line The term off-line implies that the algorithm is using simulated expe-
rience with a model of the environment. Off-line algorithms do not face the
exploration versus exploitation tradeoff because they design the control solution
before applying it to the real environment.

e Model-Based A model-based algorithm uses a model of the environment to
update the value function, either a model that is given a priori, or one that is
estimated on-line using a system identification procedure. Note that the model
does not have to be correct, or complete. A model-based algorithm can select
states in the model in ways that need not be constrained by the dynamics of the
environment, or the actions of the agent in the real environment. Algorithms that
estimate a model on-line and do model-based control design on the estimated
model are also called indirect algorithms (see, e.g., Astrom and Wittenmark [3],
and Barto et al. [14]).

o Model-Free A model-free algorithm does not use a model of the environment
and therefore does not have access to the state transition matrices or the payoff
function for the different policies. A model-free algorithm is limited to applying
the state-update equation to the state of the real environment. Model-free
algorithms for learning control are also referred to as direct algorithms.

It is not possible to devise algorithms that satisfy an arbitrary selection of the
above characteristics; the constraints listed in Table 3.1 apply. For on-line algorithms

Table 3.1 Constraints on Iterative Relaxation Algorithms

Algorithm Type Characteristics

off-line = | model-based

synchronous = | off-line, and therefore model-based
on-line = | asynchronous

model-free = | on-line, and therefore asynchronous

that are model-free it may be difficult to satisfy the conditions required for conver-
gence of asynchronous algorithms because it may be difficult, or even impossible,
to ensure that every state is visited infinitely often. In practice, either restrictive
assumptions are placed on the nature of the MDT, such as ergodicity, or appropriate
constraints are imposed on the control policy followed while learning, such as using
probabilistic policies (Sutton [107]). A model-based relaxation algorithm can be either
synchronous or asynchronous. An algorithm that does not require a model of the
environment can always be applied to a task in which a model is available simply
by using the model to simulate the real environment. In general, an algorithm that
needs knowledge of the transition probabilities cannot be applied without a model of
the environment.



3.2 Dynamic Programming

DP is a collection of algorithms based on Bellman’s [16] powerful principle of
optimality which states that “an optimal policy has the property that whatever
the initial state and action are, the remaining actions must constitute an optimal
policy with regard to the state resulting from the first action.” The optimal control
equation 3.2 can be derived directly from Bellman’s principle. Part of the motivation
for this section is to develop a systematic “recipe-like” format for describing DP-based
algorithms, and the reader will notice its repeated use throughout this dissertation
to describe both old and novel algorithms.

3.2.1 Policy Evaluation

As shown by Equation 3.1, evaluating a fixed stationary policy 7 requires solving
a linear system of equations. Define the successive approximation backup operator,
BT, in vector form as follows:

B™(V) = R"+~+[P]"V. (3.6)
From Equation 3.1, V7 is the unique solution to the following vector-equation
V = BF(V) (3.7)
The backup operator for state z is
Bi(V) = R™(2)+~ ZA P™®) (2, y)V(y). (3.8)
yeX

Operator B is called a backup operator because it “backs up” the value of the
successor states (y’s) to produce a new estimate of the value of the predecessor state
x. Operator B™ requires a model because it requires knowledge of the state transition
probabilities.

The computation involved in B] can be explained with the help of Figure 3.2
which only shows the transitions for action #(z) = a; from state x. Operator B
involves adding the immediate payoff to the expected value of the next state that can
result from executing action 7(z) is state x. Operator B™ is a full backup operator
because computing the expected value of the next state involves accessing information
about all of the possible next states for state-action pair (z,7(z)). Operator B™ can
be applied synchronously or asynchronously to yield the following algorithms:

(Jacobi) Synchronous successive approximation:

Vi = B"(W), and
Asynchronous successive approximation:
_ il uBaee) Vz € S;. ‘
Vel { Vi(z) Ve € (X = S5). (3-9)

Equation 3.9 takes the form of the general iterative relaxation equation 3.5 with
pz=1and U, = BI.
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Figure 3.2 Full Policy Evaluation Backup. This figure shows the state transitions

on executing action 7(z) in state 2. Doing a full backup requires knowledge of the
transition probabilities.

Convergence: If v < 1, the operator B™ is a contraction operator because
YV € R¥L|IB™(V) = Vloo < IV — V™||oo, where |].||oo is the lo or max norm.
Therefore, the synchronous successive approximation algorithm converges to V'™ by
the application of the contraction mapping theorem (see, e.g., Bertsekas and Tsit-
sklis [18]). Convergence can be proven for asynchronous successive approximation by
applying the asynchronous convergence theorem of Bertsekas and Tsitsiklis [18].

3.2.2 Optimal Control

Determining the optimal value function requires solving the nonlinear system of
equations 3.2. Define the nonlinear value iteration backup operator, B, in vector-form
as:

B(V) = rpeaﬁ((R”+‘y[P]"‘»"), (3.10)

where throughout this dissertation the max over a set of vectors is defined to be the
vector that results from a componentwise max. From Equation 3.2, the optimal value
function V* is the unique solution to the equation V = B(V)). The z-component of
B is written as follows:

B.(V) = max(F(e) +7 % P(z,)V(w)) (3.11)
y€

Operator B also requires a model because it assumes knowledge of the state transition
probabilities.

The computation involved in operator B can be explained with the help of
Figure 3.3 which shows state z and its one-step neighbors. Operator B involves
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Figure 3.3 Full Value Iteration Backup. This figure shows all the actions in state
z. Doing a full backup requires knowledge of the state transition probabilities.

computing the maximum value over all actions of the sum of the immediate payoff
and the expected value of the next state for each action. Operator B, is a full
backup operator because it involves accessing all of the possible next states for all
actions in state z. As in the policy evaluation case, the operator itself can be applied
synchronously or asynchronously to yield the following two algorithms:

(Jacobi) Synchronous Value Iteration:

Vi = B(W), and
Asynchronous Value Iteration:
. _ | B(V}) Vz € S;, 219
Vini(z) = { Vi(z) Vz € (X = S). (3.12)

Equation 3.12 takes the form of the general iterative relaxation equation 3.5 with
pz =1 and U, = B,. The asynchronous value iteration algorithm allows the agent to
sample the state space by randomly selecting the state to which the update equation
is applied.

Convergence: For v < 1, B is a contraction operator because YV € RIXI,
IB(V)=V*|lc £ 7|IV = V*||eo. Therefore, the synchronous value iteration algorithm
can be proven to converge to V* by the application of the contraction mapping
theorem. Convergence can be proven for asynchronous value iteration with 7 <1
by applying the asynchronous convergence theorem of Bertsekas and Tsitsiklis (18].
The rate of convergence is governed by v and the second largest eigenvalue, \;, of the
transition probability matrix for the optimal policy. The smaller the value of v and
the smaller the value of A;, the faster the convergence.
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Stopping Conditions: For Jacobi value iteration, Viy, = B(V;), it is possible
to define the following error bounds (Bertsekas [17]):

hi = 1= miplB(V) - Vi(o)],

o= 1 max(B.(V) - Vi(2)]

such that Vz € X, B:(Vi) + hi < V*(z) < B.(V;) + h;. The maximum and the
minimum change in the value function at the i** iteration bounds the max-norm
distance between V; and V*. For asynchronous value iteration, these error bounds
can be computed using the last visit to each state. Ensuring convergence to V* may
require an infinite number of iterations. In practice, value iteration can be terminated
when (h; — h;) is small enough.

3.2.3 Discussion

This section presented a review of classical DP algorithms by casting them as
iterative relaxation algorithms in a framework that allowed us to highlight the two
aspects that differ across the various algorithms: the nature of the backup operator
and the order in which it is applied to the states in the environment. The main
difference between solving the policy evaluation and the optimal control problems
is that in the first case a linear backup operator is employed while in the second
a nonlinear backup operator is needed. In both problems the advantage of moving
from synchronous to asynchronous is that the asynchronous algorithm can sample
in predecessor-state space. The subject of the next section is a novel algorithm
for solving the optimal control problem that is more finely asynchronous than the
algorithms reviewed in this section because it can sample both in predecessor-state
space and in action space.

3.3 A New Asynchronous Policy Iteration Algorithm

An alternative classical DP method for solving the optimal control problem that
converges in a finite number of iterations is Howard's [52] policy iteration method.?
In policy iteration one computes a sequence of control policies and value functions as
follows:

PE

d
T — Vﬂ'l grg?dy 9 P_F;: Vq-r? e Th P_E); V’rn gl’_e_e y -

7Tn+1,
were PE is the policy evaluation operator that solves Equation 3.1 for the policy on

the left-hand side of the operator. Notice that the PE operator is not by itself a local
operator, even though it can be solved by repeated application of local operators as

3Puterman and Brumelle [83] have shown that policy iteration is a Newton-Raphson method for
solving for the Bellman equation.
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d . . .
shown in Section 3.2.1. The operator gRy computes the policy that is greedy with

respect to the value function on the left-hand side.

Stopping Condition: The stopping condition for policy iteration is as follows: if
at stage i, ;-1 = m;, then 7;_y = m; = 7*, and V™~ = V*, and no further iterations
are required. The stopping condition assumes that in computing a new greedy policy
ties are broken in favor of retaining the actions of the previous greedy policy.

3.3.1 Modified Policy Iteration

Despite the fact that policy iteration converges in a finite number of iterations,
it is not suited to problems with large state spaces because each iteration requires
evaluating a policy completely. Puterman and Shin [84] have shown that it is more
appropriate to think of the two classical methods of policy iteration and value iteration
as two extremes of a continuation of iterative methods, which they called modified
policy iteration (M-PI). Like policy iteration, k-step M-Pl is a synchronous algorithm
but the crucial difference is that one evaluates a policy for only k steps before applying
the greedy policy derivation operator. With k& = 0, k-step M-PI becomes value
iteration and with k = oo it becomes policy iteration. While both policy iteration
and value iteration converge if the initial value function is finite, Puterman and Shin
had to place strong restrictions on the initial value function to prove convergence of
synchronous k-step M-PI (see Section 3.3.4). ;

The motivation behind this section is to derive an asynchronous version of k-step
M-PI that can sample both in predecessor-state and action spaces, and at the same
time converge under a set of initial conditions that are weaker than those required by
k-step M-P1. The algorithm presented here is closely related to a set of asynchronous

algorithms presented by Williams and Baird [127] that were later shown by Barto 6]
to be a form of k-step M-PI.

3.3.2 Asynchronous Update Operators

For ease of exposition, let us denote the one-step backed-up value for state .
under action a, given a value function V, by Q(z,a). That is,

Q"(z,a) = R*(z) +7 Y P(z,y)V(y)- (3.13)
yeX

The asynchronous policy iteration algorithm defined in this section takes the following
general form:

(Vi1 Teg1) = Ue(Vi, i)

. where (Vi,m) is the k** estimate of (V*,7"), and Uy is the asynchronous update
operator applied at iteration k. A significant difference between the algorithms
based on value iteration defined in the previous section and the algorithms based on
policy iteration presented in this section is the following: algorithms based on value
iteration only estimate and update a value function; the optimal policy is derived

.
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after convergence of the value function, while algorithms based on policy iteration
explicitly estimate and update a policy in addition to the value function.

Define the following asynchronous update operators (cf. Williams and Baird [127)):

1. A single-sided policy evaluation operator T,(Vi,7:), that takes the current value

function V; and the current policy 7 and does one step of policy evaluation for
state z. Formally, if Uy = T,

_ [ max(Q%(y, m(y)), Valy)) ify==2
Vnly) = { Vi(y) otherwise, and
T+l = Tk

The policy evaluation operator T; is called single-sided because it never causes
the value of a state to decrease.

o

A single-action policy improvement operator L2(Vi,m), that takes the current
value function V; and the current policy 7 and affects them as follows:

‘/k+1 = Vi,and
{ a  ify=cand Q%(y,a) > Q(y, m(y))

Ter(y) = mr(y) otherwise.

The policy improvement operator L2 is termed single-action because it only
considers one action, a, in updating the policy for state z.

3. A greedy policy improvement operator L.(Vi, i) that corresponds to the sequen-
tial application of the operators {L3'L%, ..., L:'"'}. Therefore, (Viy1, Trs1) =
L;(Vk, mi) implies that

‘/k+l = ‘/k, and
| mly) ify # z,
7rk+1 (y) - { argmaxaeAQVk (.’L‘, a) OtherWise-

The operator L.(V,r) updates m(z) to be the greedy action with respect to V.

3.3.3 Convergence Results

Initial Conditions: Let V, be the set of non-overestimating value functions, {V €
RIXI|V < V*}. The analysis of the algorithm presented in this section will be based
on the assumption that the initial value-policy pair (Vo,7) € (Vu x P), where as
before P is the set of stationary policies.

The Single-Sided Asynchronous Policy Iteration (SS-API) algorithm is
defined as follows:

(Vk+1,7fk+1) = Uk+1(V}=, ﬂ'k)a

where Uiy € {T: |z € X}U{L% |z € X,a € A}.



Lemma 1: Yk Vi > Vi .
Proof: By the definitions of operators T, and L%, the value of a state is never
decreased.
Lemma 2: If (Vg, mo) is such that Vo € V,, then Yk V). € V.. :
Lemma 2 implies that if the initial value function is non-overestimating, the sequence
{Vi} will be non-overestimating for all operator sequences {Uy}.
Proof: Lemma 2 is proved by induction. Given V4 € V,, assume that Vi < m,
Vi € V. There are only two possibilities for iteration m + 1:

1. Operator U,, = L2 for some arbitrary state-action pair in X x A. Then, V.4, =
Vin S V™.

2. Operator U,, = T}, for some arbitrary state z € X. Then U, will only impact
Vm+1 (’E)
Vati(z) = max(Q'"(z,mm(2)), Vm())
= max([R™(z) + 7)Y P (z,y)Va(y)], Vin(2))

yeX

< max([R™(z) +7 Y P (z,y)V*(y)], Vi(z))
yeX

< max([R™®(z) +7 Y P (2,y)V*(y)], V()
yeX

W)

Hence V41 € V,.

Q.E.D.

Theorem 1: Given a starting value-policy pair (Vp,mo), such that Vo € Vy, the
SS-API algorithm (Viy1, Tk41) = Uk(Vi, mi) converges to (V=, 7*) under the following
conditions:

Al) Vz € X, T, appears in {Uy} infinitely often, and

A2) V(z,a) € (X x A), L? appears in {U,} infinitely often.

Proof: It is possible to partition the sequence {Uyx} into disjoint subsequences

of finite length in such a way that each partition itself contains a subsequence for
each state that applies the local policy improvement operator for each action followed
by the policy evaluation operator. Each such subsequence leads to a contraction
in the max-norm of the error in the approximation to V*. There are an infinity
of such subsequences and that fact coupled with Lemma 2 and the contraction
mapping theorem constitutes an informal proof. See Appendix A for a formal proof
of convergence.
Corollary 1A: Given a starting value-policy pair (Vp, 7o), such that V; € Vu, the
iterative algorithm (Viyr, mx41) = Ur(Vi, 7i) where Uy € {Ty | 2 € X}U{L. | 2 €
X}, converges to (V*,7*) provided for each z € X, T and L, appear infinitely often
in the sequence {U}.

Proof: Each L, can be replaced by a string of operators L L2 ... Ly, Then
Theorem 1 applies.

Q.E.D.
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Corollary 1B: Define the operator T = {Txsz'z...Txlx'} and the operator [ =
{LzyLz, ... Ly, ). Let the sequence {Uy} = (T™L)* consist of infinite repetitions of
m 2> 2 applications of T operators followed by an L operator. Then, given a starting
value-policy pair (Vp, 7o), such that Vy € Vy, the iterative algorithm (Viyq, miyr) =
Ui(Vk, 7x) converges to (V*, 7).

Proof: Each T operator can be replaced by a string of operators T;, T, ... T
and each L operator by the string L, L., ... L;,,,- Then Corollary 1A applies.

The algorithm presented in Corollary 1B does m steps of greedy policy evaluation
followed by one step of single-sided policy improvement. It is virtually identical to
m-step Gauss-Sidel M-PI except in that each component of the value function is
updated only if it is increased as a result.

3.3.4 Discussion

While SS-API is as easily implemented as the M-PI algorithm of Puterman and
Shin, it converges under a larger set of initial value functions and with no constraints
on the initial policy. Modified policy iteration of Puterman and Shin requires that
(Vo, 7o) be such that Vo € {V € R¥l|max,(R™ + ~[P]"V) > 0}, which is a strict
subset of V,. Similarly the initial condition required by Williams and Baird is that
Vz € X, Q% (z,mo(z)) > Vo(z), which is again a proper subset of (V, x P).

The SS-API algorithm is more “finely” asynchronous than conventional asyn-
chronous DP algorithms e.g., asynchronous value iteration (AVI), in two ways:

1. SS-API allows arbitrary sequences of policy evaluation and policy improvement
operators as long as they satisfy the conditions stated in Theorem 1. AVI, on the
other hand, is more coarsely asynchronous because it does not separate the two
functions of policy improvement and policy evaluation. In effect AV'I iterates
a single operator that does greedy policy improvement followed immediately by
one step of policy evaluation. Of course, the policy evaluation operator used by
AV is not single-sided.

2. Because AV uses the greedy policy improvement operator, it has to consider
all actions in the state being updated. SS-API on the other hand can sample a
single action in each state to do a policy improvement step.

The policy evaluation and the policy improvement operators, T, and L%, were
developed with the knowledge that- Vo would be non-overestimating. However, if V4
is known to be non-underestimating, then it is easy to define analogous operators so
that all of the results presented in this section still hold. The only difference for the
non-underestimating case is that the max function in the definition of the single-sided
policy evaluation operator T (see Section 3.3.2) is replaced by the min function.

Theorem 1 shows that if you start with a single-sided error in the estimated value
function, then any arbitrary application of the single-sided policy evaluation and the
single-action policy improvement operators defined in Section 3.3.2, with the only
constraint that each be applied to all states infinitely often, will result in convergence
to the optimal value function and an optimal policy.
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3.4 Robust Dynamic Programming

In many optimal control problems, the optimal solution may be brittle in that
it may not leave the controller any room for even the slightest non-stationarity or
model-mismatch. For example, the minimum time solution in a navigation problem
may take an expensive robot over a narrow ridge where the slightest error in executing
the optimal action can lead to disaster. This section presents new DP algorithms
that find solutions in which states that have many “good” actions to choose from are
preferred over states that have a single good action choice. This robustness is achieved
by potentially sacrificing optimality. Robustness can be particularly important if the
there is mismatch between the model and the real physical system, or if the real
system is non-stationary, or if availability of control actions varies with time.

In searching for the optimal control policy, DP-based algorithms employ the maz
operator that is a “hard” operator because it only considers the consequences of
executing the best action in a state and ignores the fact that all the other actions
could be disastrous (see Equation 3.12). This section introduces a family of iterative
approximation algorithms constructed by replacing the hard max operator in DP-
based algorithms by “soft” generalized means [49] of order p (e.g., a non-linearly
weighted [, norm). These soft DP algorithms converge to solutions that are more
robust than those of classical DP. For each index p > 1, the corresponding iterative
algorithm converges to a unique fixed point, and the approximation gets uniformly
better as the index p is increased, converging in the limit (p — o) to the DP solution.
The main contribution of this section is the new family of approximation algorithms
and their convergence results. The implications for neural network researchers are
also discussed.

3.4.1 Some Facts about Generalized Means

This section defines generalized means and lists some of their properties that are
useful in the convergence proofs for the soft DP algorithms that follow. Let A =
{a1,09,...,0a,}, and A’ = {a},d)},...,a’}. Define A(max) = max {a1,az,....a,}.
ar}d ||Allc = max {|a, |az],...,|as|}. Define A(p) = [L Z};l(a;)”]%, called a gener-
alized mean of order p. The following facts are proved in Hardy et al. [49] under the
conditions that a;,a! € R* for alli, 1 < i < n.

Fact 1. (Convergence) lim,_o, A(p) = A(max).

Fact 2. (Differentiability) While a—'%%"l is not defined, a_ga@ = '71:[}1_?;5 P=1 for 0 <
p < oo. '

Fa'\cF 3. (Uniform Improvement) 0 < p < ¢ = A(p) < A(q) < A(max); further if
34,4, s.t. a; # aj, then 0 < p < g = A(p) < A(q) < A(max).

Fact 4. (Monotonicity) if Vi,a; < af, then A(p) < A’(p). In addition, if i, s.t.
a; < a}, then A(p) < A'(p).

Fact 5. (Boundedness) If p > 1, and if ||A — A||]c < M, i.e., the two different

sequences of n numbers differ at most by M, then |A(p) — A'(p)| < M. In addition,
if p>1,and A# A, then ||A - A||c < M = |A(p) — A'(p)| < M.

3
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3.4.2 Soft Iterative Dynamic Programming

A family of iterative improvement algorithms, indexed by a scalar parameter p,

can ll)x’?l defined as Viy1 = B(p)(V;), where the backup operator B(p) : (RHX -
(RF)EL: ‘

B.(p)(Vi) ¥ {ILAI PIACETDY P“(rv,y)Vt(y)]”}P : (3.14)

a€A yeX

3.4.2.1 Convergence Results

Fact 7. By the “Convergence” (Fact 1) property of the generalized mean operator,
limp—., B(p) = B(max) = B, where B is the value iteration backup operator defined

Fact 8. For a discrete MDT the finite set of stationary policies form a partial order
under the relation >: 7 > 7' = Vz € X, V™(z) > V™ (). If 0 < v < 1, and a finite
constant A € R is added uniformly to all the payoffs, the partial order of the policies
does not change.

The development of the convergence proofs closely follows Bertsekas and Tsitsik-
lis [18).
Condition 1. 0 <y <1

Condition 2. Vz € X,Va € A, R*(z) > 0. This is not a restriction for MDTs with
0 < v <1, because of Fact 8.

Throughout this section Conditions 1 and 2 are assumed true. Note that condition
2 guarantees that the optimal value function will be non-negative.

Proposition 1. For all p > 1, the following hold for the operator B(p):
(a) (Monotonicity) B(p) is monotone in the sense that ¥V V, V' € (R*)IX1:

V<V = B(p)(V) < B(p)(V),

Proof: Follows trivially from the monotonicity of the generalized mean (Fact 4).
(b) (Contraction Mapping) For all finite V, V' € (R+)X],

1B(e)(V) = B(p)(VI)llo < allV = V||,

for some a < 1.
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Proof: Clearly, 3M such that 0 < M < oo and ||V = V'||c < M. Tht?n Vze X,
—M < (V(z) = V'(z)) < M. Substituting V'(y) + M for V(y) in Equation 3.14, we
get

B:(p)(V) < {|A|Z[R“ +7ZP“(z,y)(V'(y)+M)]’°} ,

a€A yeX
and using the fact that P is a stochastic matrix,

B:(p)(V) < { SR+ M + 7 ) Pi(z,y) V’(y)]”}p (3.15)
IAl e€A yeX

By symmetry, it is also true that:
1

B:(p)(V') < {|A| Z[Rﬂ )+ M + 9 Z P(z y)V(y)]P} . (3.16)

a€A yeX

Using the boundedness of the generalized mean (Fact 5), Equations 3.15 and 3.16
imply that V2 € X, B:(p)(V) £ Bz(p)(V') +vM, and that B(p)(V’') < B:(p)(V) +
yM.

Q.E.D.
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