O(N?) Algorithm for Bisimulation Equivalence
w.r.t ('TL" without the Next-Time Operator
between Kripke Structures

Mahesh Girkar — Robert Moll
Department of Compulcr Scicuce
Uneversdy of Massachusscits
Ambhcrst MA 01003

CMPSCT Technical Report 93-79
October 1993

Abstract

Concurrent systems are often modeled by labeled state-transition graphs called Kripke Struc-
tures [5]. Toreason about such systems. one standard approach is to provide a temporal semantic
for the structure. Properties of interest regarding concurrency can then be expressed using a tem-
poral logic formula. In this paper we conisider the following problem: Given a KRripke structure,
determine for all pairs of states s and s’ whether they are eyuivalent with respect to CTL®/X
(i.c. s and s’ model the same set of formulas in CTL*/X). C'TL* [3). 2 new logic. incorporates
the features of both Linear Temporal Logic and Branching Temporal Logic. In Logic C'TL*/X.
the nexttime operator is discarded. since if this operator is used indiscriminately. it can lead
to a “misleading™ specification of a concurrent property [6. 5). In [3). an O(.N°) algorithm
is presented for the all state pairs equivalence problem. where N the number of states in the
structure. The primary contribution of this paper is an O(A?) algorithm for the same problem.

Concurrent systems are often modeled by labeled state-transition graphs called Kripke Struc-
tures [3]. To reason about such systems. one standard approach is to provide a temporal setnantic for
the structure. Properties of interest regarding concurrency can then be expressed using a teniporal
logic formula.

Linear-Time Temporal Logic (LT L) and Branching-Time Temporal Logic (BT L) are two widely
used logics for expressing properties of a Kripke structure. In [3] a new logic. (‘T L". was introduced
which incorporates the features of both LTL and BTL. This logic has both hranching-time and
linear-time operators: a path quantifier. either A (“for all paths™) or E (“for some paths™) can prefix
an assertion composed of arbitrary combinations of the usual linear-time operators G (“always™). F
(sometimes™). X (“nexttime™). and U (until™).

However. in reasoning about concurrent systems. the use of the nexttime operator may he dan-
gerous. since it refers to the “global™ next state as opposed to the "local™ next state within a process
[6. 3). The use of this operator essentially allows one to write a formula that can count the number
of transition steps in a structure. Such a powerful operator is often not needed to express most prop-
erties of interest. such as reachability of a state within a structure. ahsence of deadlock. etc. Indeed.
if this operator is used indiscriminately. it can lead to a “misleading™ specification of a concurrent
property [6]. Thus. analyzing properties of Kripke structures which are expressed without the usage
of this operator is an important research topic in concurrent systems (7. 4. 3).

In this paper we consider the following problem: Given a Kripke structure. determine for all pairs
of states s and ' whether they are equivalent with respect to C'TL"/X (i.e. s and s’ model the
same set of formulas in C'TL* without the nexttime operator X). In [3]. an O(.\'?) algorithm is
presented. where .\ the number of states in the structure. The primary contribution of this paper
is an O(.\'3) algorithm for the same problem. Both algorithms can also be used to determine the
equivalence for all pairs of states s and s’ in two different Kripke structures My and s with respect
to C'TL*/X by applying them to a new Kripke structure obtained by taking a disjoint union of A/,
and AM>. Here we present our algorithm for the all pairs equivalence problem within a single Kripke
structure.

Section 1 discusses some of the preliminary definitions needed to formally describe the bisimula-
tion problem. In Section 2. we present the O(\'®) algorithm. This is followed in Section 3 and 4 by
the O(N3) algorithm.

1 Preliminary Definitions

1.1 The logic CTL*/X

In this section we describe formulas in C'TL*/X. Whenever possible, we use the notation developed
in [5].

Let AP be a set of atomic proposition names. A formulain CTL*/X is either a stafe formula
or a path formula. A state formula is any formula obtained using the following rules:

1. 4 is a state formula if 4 € AP:
2. if f and g are state formulas. then =f and f V g are state formulas:
3. if f is path formula, the E(f) is a state formula.
A path formula is either
1. a state formula;
2. if f and g are path formulas. then =f. f v 4, and fUy are path formulas.

CTL" /X is the set of state formulas generated by the above rules.

1.2 Kripke Structure and Validity of a Formula
A Kripke Structure is a triplet M =< S.R. £ > where
1. Sis a finite set of states:

2. RC 5 x Sis the transition relation, which must be total; and

3. £L:5 = P(AP). where P(AP) represents the power set of AP.

The labeling function £ associates with each state a (possibly empty) subset of AP. Intuitively,
such a subset indicates exactly those propositions that ~“hold™ in that state. If it is empty. then we
say that the constant True holds in that state.

Let there be N states in M denoted by sy.sa....sx5. We use symbols s. s/, etc. to refer to any of
these states. Note that A is essentially a directed graph. where the vertices correspond to the states
and edges are provided by the relation R. The labeling function £ imposes an additional semantic
to this graph. We use standard graph terminology to refer to the transition relation in the Kripke
structure. Thus, s; = s; indicates that (s;.s2) € R.

A path from a state s in Al is a sequence of states. & = {o.¢;.... such that {; = s. and for every
i>0.t; = tiz1. @ will denote the suffix of 7 starting at state #;. M.s = f means that f holds at
state s in the structure M. Similarly. if f is a path formula. M. 7 = f means that f holds along
path = in M. When the Kripke structure is clear from context. we write s |= f (7 |= f) instead of
MsEf(MrE/[).

Assuming below that fi and fo are state formulas and g, and g+ are path formulas. the relation
= is inductively defined as follows:

l.spdAe A€ AP.
2. sE-fiesE .
J.sEHAVoesEHosE f.

4. s | E(g;) © there exists a path 7 starting with s such that 7 | ¢.

(1]

7 | fi © s is the first state of 7 and s = f).
6. Ty & 7.

.aEnVgersEgoTEy.

-1

s

. 7= ¢1Uya & there exists a k > 0 such that 7" |= ¢go and for all 0 < j < k.77 = g5.
Note that f A g = —(=fV ~g). F(f) = True Uf, A(f) = -E(~f). and G(f) = -F(~f).

We now describe formally when two states are equivalent. Intuitively, two states are equivalent if
and only if they model the same subset of formulas. The all pairs equivalence problem is the problem
of determining for all pairs of states, if they are equivalent.

Definition 1 Given a Kripke structure M, two stales sy and sa of M are equivalent with respect to
CTL"/X ifl for all state formulas f € CTL* /X, siEfeosEf.

2 The Existing O(\”) Algorithm
In this section we describe the algorithm presented in [5] for the all pairs equivalence problem within
a single Kripke structure. This algorithm uses the following relation (' defined on 5 x S.
Definition 2 C'=(;5,C; where

1. Co ={(s.5")|L(s) = L(s')}:

2. Before defining C'j41 let

(a) STj41(s) =Ud20 .S'Tjil(s). where
i STju(s)={s}. and
ii. ST;Ns) = ST;4(s) U
{s'| s & .S'Tj‘_il(s) A 35" € .S'Tj‘il(s) such that s" = s' N\ §'Cjs}

(b) NEXTjpi(s)={s"|s & STj4i1(s) A Is" € STjq1(s) such that 5" — '},

(c)

LOOP; 41 (s) = l if thu'(~ i1s a cycle conlaining only stales in ._5"7'j+1[s).
s 0 othcrwise

Then.

(.‘j.}.] = {(S.S')I I.OOPj+|(S)= LOOPj.*.x(S’) /\
sCs!
Vs1 € NEXT 41(s) 351" € NEXNT;41(5') such that 5;Cs A
Vs)' € NEXT;1(s') 35y € NEXTj4(5) such that $1Cj51"}

If 5" € STj41(s), then the following two conditions hold: (a) sC';s’: and (b) there exists a path
from s to s’ (using the transition relation R) such that for any state s” on this path. s"Cjs. An
alternative way of interpreting ST;41(s) is as follows: Viewing the Kripke structure as a graph (states
are vertices and transitions are edges), consider its subgraph consisting of states that are (j related
to s. Then ST;4 (s) is the set of states that can be reached from s in llu subgraph.

State s € VEXTj41(s) when the following two conditions hold: (a) s’ is not (' related to s: and
(b) ' is exactly one transition (step) away from from sonie stale in STj41(s). Thus, NEXTj4q(s) is
a “frontier” of states .: " such that there is a path from s to s’ with the following property: All states
on this path except s’ are C related to each other. We write sC;s if and only if s and s’ are not ('
related. The following result is proved in [3]):

Theorem 1 Let A be Rripke structure with N states. Then for any two states s and s’ in M.
sCys' ffVFECTL /X skEfosdEf.

Thus. one approach to solve the all pairs equivalence problem is to compute relation 'y for all
pairs of states. In [3] the algorithm that computes C'v performs exactly the steps outlined in the
definition of C'v above. Essentially, computing ST;(s). and hence YEXT;(s) requires time O(\'3).
Computing (,.H from Cj reqmres time O(.V 4) since at most .N'? pairs of states needs to be checked
and each pair requires O(.\') time to check. Computing Cy requires at most .V’ outermost iterations.
Thus, the algorithm takes O(N3) time.

3 The O(N\3) algorithm

The algorithm presented in this paper also performs the outermost .V iterations as in the previous
algorithm. However. these iterations are performed on a “reduced” graph (denoted by Q’renluced)
"1educed is obtained from the original Kripke graph (denoted by "ouvmal) by “collapsing™ certain
states in L’onomal into a “node” of G o yced-

We deﬁne sets STR;(n). NEXTR;(n). boolean array LOOPR;(n). and relation C'R; for nodes of
Greduced (the (leﬁumous of these sets is similar to Definition 2 which described ST; (4») NEXT;(s).
LOOP;(s). and C; for states Ofgon"mal) and establish a correspondence between pairs of equiv alt>nt
nodes of G .o qyced 20d pairs of equnalem states of "ouﬂmal Using certain properties of these sets,
we show that updatlno the sets described above can be perfonned “incrementally™ at each outermost
Jjth iteration in O(.V?) time.

We begin with a description of the steps performed initially to collapse states into nodes.

3.1 Constructing greduced

| 3 T o .‘ 2y NG
The procedure used to construct Greduced Performs the following steps:

Procedure Construct_ Reduced_Graph

Begin
(1) Partition states of 5’0r1gnml into equivalence classes
using equivalence relation (5. Let there he a total of & classes.
Denote the ith equivalence class by &.1<i < h.

AP={A, B, C}

Figure 1: A Kripke Structure (13 states) with Propositional Symbols A. B. and C

(2) For each equivalence class &;:
(2a) Obtain the subgraph of gorigi“a,(s,-) induced by &;.
(2b) Find the maximal strongly connected components of goriginal(‘q")'
Let 8, ninal(&i) denote the set consisting of these components.
original 4 P
endfor

(3) Let S_reduced = {J,¢;< Soriginal(g")' Let there be A" elements in S_reduced and
let us denote the ith element by §;. greduced has R vertices.
The ith vertex. n;.1 <i < K corresponds to &;.

(4) There is an edge from vertex n; to a vertex n; if and only if
(a) n; # n;: and (b) there exists states s € ;. s’ € §; such that s — s'.
J j
endProcedure

Figure 1 shows a Kripke structure with 13 states over a propositional alphabet consisting of 3
symbols — A. B. and C. The labeling function £ is a singleton set for each node and is shown within
the circle representing the state.

Figure 2 shows G qyceq for the example in Figure 1. It has a total of & nodes corresponding to
the & strongly connected components of the original graph. Notice that intra—state edges within a
component have been eliminated from the original graph.

Let us assume that the adjacency list representation of goriginal and a 2-d matrix representing
the ('y relation between states are provided as input.

Proposition 1 The adjacency lisi/matrir representation of G pyccd can be constructed in O(N3)
fime.

Proof: The equivalence classes can be obtained easily in O(\N'?) time. Each state can be labeled
with an integer such that all states labeled with the same integer belong to the same equivalence class
(in other words. these states are (' related to each other). Using this labeling. and. by traversing

AP = {A, B, C}

nB
QT
R
/
i
H
i
$
H
H
H
3
3
%
%,

Loops within components have been deleted

Figure 2: Reduced Graph

all the edges in the adjacency list representation of goriginal' it is straightforward to construct the

adjacency list representation of the subgraph induced by vertices in any equivalence class in O(.\'?)
time. Also, the standard algorithm for finding strongly connected components of a graph with .V
vertices takes O(A?) time [2). Since there are a total of at most .\ equivalence classes. it will take
O(XN3) time to find all the vertices of Ureduced- Each vertex of Gloquced is essentially a strongly
connected component consisting of states of go,igiuaj which are Cj related to each other. Each state
can be labeled with an integer / such that all states with label i belong to the component (vertex)
Si. Now. by using this labeling, and by traversing all the edges in the adjacency list representation
of gorigiua]. the adjacency matrix representation of Greduced €an be obtained in O(.N'?) time. Using
this matrix. in O(.\'?) time. we can construct the adjacency list representation of greduced' Thus.
the total time is O(N'3). O

The following proposition makes two observations: (1) states within a strongly connected com-
ponent are equivalent: and (2) if two states s and &' are equivalent, then every pair of states s; and
sa are equivalent. where s; and s belong to component 8;. and s» and s’ belong to component §; (i
and j can be equal).

Proposition 2 Lef s.s" be any two distinct states in §;,1 < i < K. Then. ¥j.sCjs'. Further.
suppose for some pair (s.s') € S; x Sj. sCjs'. Then. for all pairs (s.s') € S; x . sCs'.

Proof: \We prove the first part by induction. By construction of Greduced- if 5.8 € &;. then
sCos’. Suppose sC'hs' for some & > 0. Since &; is st rongly connected, the sets STi4y. VEX Thy . and
LOOP; 4, are identical for all states in &;. Therefore. for all 5.5’ € S;. sCr418" (by Definition 2).

To prove the second part of the proposition. note that ¥i.(; is an equivalence relation [3]. Using
this fact. and from the first part of this proposition, we get the required result. 0.

-t

3.2 Relation CR; for nodes

We now define the relation C'R; for nodes of "reduced Recall that each node n; represents a set
of states, denoted by &;. such lhat states in 8§ are () related to each other and §; is a stongly
connected component. Recall also lhal there are a total of .\ states in L’Ollbln'll and N nodes in

"wduced We use the symbols 5. ', 5", etc. to refer to states. n.n’, n”, ete. to refer to any one node,
and 8.8 8" ete. to refer to any one ..‘o,.

Definition 3 Two nodes n; and nj are CRy related iff 3s € §; and 3s' € S; such that sCys'.

Since all states in any &; are Cy related to each other (Proposition 2). it follows that if n; CRyn; then

for all pairs of states (s.s') € 8; x 8. sCps’. In Figure 2. nodes ny.na. nz. and n; are CRy related
to each other. So are nodes ng. ng. n1g. and ny4. n3. ngs.

Reasoning about equivalence between nodes in Gojquced 1§ closely related to the equivalence

problem between states in ‘-"ou«mal This is partially hinted at in Proposition 2. Greduced 1§

“nicer” than (Ion,,."lal because it does not have self-loops. In addition. the edges within a strongly

connected com)ouent of ¢ are not represented. However. since loops play an important role

original

in the definition of C". we must keep track of loop structure. We do this by using the sizes of the
strongly connected component.

Definition 4 A4 strong connectcd component 8 has an =inhcrent” loop iff either
(a) |S| =1 and the state in & has a sclf loop in Q’ongmal OR

(b)) if|S] > 1.

In Figure 2. 8;. 84, 8o. S10. 83 have inherent loops, where as the rest do not. \We next define the
relation ('R between strongly connected components.

Definition 5 CR =[);5, CR; where
1. CRg = {(n.n")|3s.6'.i.j. such that n = nj.n =nj.s € §;.5' €8;. and sCys'}:
2. Before defining CRj4y let

(a) STRj41(n) =Uaso STR~il(n). where
i. STR; +1(n)_{n} and
ii. STR;{'(n)= STR%,(m)U
(o' | n' ¢ s‘TRjil(n) A
In" € STR; +l(n) such that n" = ' A
n’ CR; n}

(b) NEXTRj4r(n) = {n'[n" & STRj41(n) A
In" € STR;41(n) such that n” — n'}.

(c)
1 iff either the strong component represented by n
has an inherent loop: or
LOOPR;41(n) for some node ' € STRj;1(n).
" has an inherent loop.
0 otherwise
Then,

CRj41 = {(n.n")] LOOPRj41(n) = LOOPRj 11 (n") A

n CRjn' A

V' € NEXTRj41(m)An'" € NEXTRj41(n') such that 0" CR; 0" A
"' € NEXTR;4\(n")3n" € NEXTRj4y(n) such that 0" CRj n"'}

6

We write nCR;n’ when n and »’ are not CR; related.

Essentially. STR;41(n) is the set of nodes that can be reached from n in the subgraph of Grodneed
induced by nodes that are C'R; related to n. Thus, if n' € STRj4 (n). then there exists a path from
nto n’' in Groqueed Stch that all nodes on this path are ('R; related 1o each other.

If ' € NEXTR; 4 (n). then the following two conditions hold: (a) n’ is not CR; related to n:
and (b) there exists a path from n to »' with the following property: All states on this path except
n’ are C'R; related to each other.

Proposition 3 CR; is an cquivalence relation for all j > 0. Further. CRj4) € CR;.

Proof: By Definition 3 C'Ry is an equivalence relation. By Definition 3. if CR; is an equivalence
relation. then so is CRj4). Using the same definition. it follows that CRj4; € CR;. O

Thus. CRj4 is essentially a “refinement” of ('R;. The proposition below clarifies the correspon-
dence between the sets in Definition 2 and those in Definition 5. The index j in this proposition
corresponds to the index j used in Definitions 2 and 3. Indices i and p are used to refer to any two
nodes n; and nj, respectively.

Proposition 4 Lef state s € S (rceall that ny is the node that corresponds 1o component S;). Then
the following conditions hold:

LVj2 1 STits) = Use STR,in) S
2 Vj> 1. LOOP)(>) = LOOPR)'(I),').

3. Forany j 2 1. let s' € NEXTj(s). Then there erists np such that np € NEXTR;(n;) and
s' € Sp. Similarly. if ny € NEXTR;(n;). then 3s' such that s' € NEXTj(s) and ' € S,..

-~

If niCRjnp. then for all pairs (s.s') € 8 x Sp. sCjs’. Further. if two states s.s' contained in
distinct components S;. 8, respectively are such that sCs'. then n;CRjnp.

Proof: (4) holds for the case when j = 0 (Definitions 2, 5. and 3). Using this fact, we will first
prove that (1), (2). and (3) hold when j = 1.

To prove (1). suppose s’ € 5T (s). Then there is a path t,12...¢, where {; = s.t, = s’ and for
0< e <uv.t,Cotryy. From the construction of Greduced it should be clear that this path can he
partitioned into w > 0 segments such that (i) each segment is a path consisting of states all of which
are contained in a node of G o, ced and: (ii) the edge connecting two consecutive segments connects
states in two different nodes. Let ry.ra,...r, be the nodes representing the w segments. Clearly,
there is a path ryra...ry in Greduced Where ry = n;. Also. each of ry....r, belong to STRy(n;) and
for 0 < »r < w.ry CRo rrq1 (Definitions 3 and 3). Let & be the set of states in node r,. Obviously.
t. €8 Thus.s' € USe.S'TR.(n.)S' In a similar fashion we can show that UsgSTR,m,)S C STy (s).

To prove (2). suppose LOOP;(s) = 1. Thus there is a path from state s such that contiguous
states are (g related to each other and the path contains a loop. The states involved in the loop must
belong to some node of G . jyced- From arguments similar to those presented above. this node must
belong to STRy(n;) and it must have an “inherent” loop (see Definition 4). Thus LOOPRy(n;) = 1.
The other direction follows in a similar fashion. (3) can also be proved using arguments similar to
those used in proving (1) and (2).

Since (1). (2). and (3) hold. (4) holds for j = | (from Definitions 2, and 5). Finally. by repeating
all of the above arguments for the case when j = 2,3..... we can now show that (1). (2) and (3)
hold for those cases. O

We occasionally use an alternate notation to indicate the containment conditions for the sets
STR and NEXTR.

Definition 6 e write n 2 n' if and only if there is a path from n to n’ such that all nodes on this
path are CR;j related to cach other (or in other words. n' € STRj41(n)). We write n == 0" = n' if
and only if n = 0" 0" = 0’ and 0’ is not CRj related 1o cithar n or n”. Nole that if n & 0" — n'

then n' € NEXTRj41(n) and ifn' € NEXTR;41(n) then there exists node n' such that n %= 0" — n'.

3.3 Updating STR, and NEXTR,;

The proposition helow is eritical. because it justifies an efficient “incremental™ update procedure for
the set. STR; 4y from STR; and relation C'R;.

Proposition 5 For any j > 1.
1. ifnp € STRj(n;) then

(a) STRj(np) C STRj(n;):
(h) NEXTRj(n,) C NEXTRj(n;): and
(¢) If LOOPRj(n,) = 1. then LOOPRj(n;) =1.

2. STRj41(ni) € STRj(n;).

3. Let ryra...ry be any path in G dueed where ry = n;. and suppose all nodes on this patlh arc
CR; related to cach other. If vy and ry are CRj4y rdated then ry.rars. ry—1 are CRj41
lo each other.

4. STRjz1(ni) ={njn CR; n; A ne€ STRj(n;)}.

Proof: (1) is easy to prove. To prove (2). suppose n € STRj4+1(n;). Then there is a path from n;
to n such that contiguous nodes are C'R; related to each other. By Definition 5. these nodes are also
CR;-, related to each other. Therefore. n € STR;(n;).

To prove (3). we need to show that for any node pair (r1.1,).2 < p < y. the following observa-
tions (see Definition 3) hold: (i) : ryCR;rp: (if) : LOOPR;41(r1) = LOOPR 41 (rp): (Fid) : V0" €

NEXTR;41(r1)3n"” € NEXTRj41(rp) such that n”CRjn"":and (iv) : Vo' € NEXTRj41(rp)3n" €
NEXTR;+1(r1) such that »”’CR;n".

Since ry and ry are CR;4 related (given), the above observations hold for the node pair (ry. ry).
Observation (/) holds (follows trivially from the “antecedent™ part of statement (3)). By 1(b) above.
forall p.1 < p < y. NEXTRj41(rp41) € NEXTR;41(rp). Since Observations (iii) and (ir) hold for
node pair (r,7y). and since for all p.1 < p < y, NEXTR; 41 (rp41) © NEXTR;41(rp). it follows that
for any node pair (ry.7,).2 < p < y. Observations (iii) and (i) hold. In a similar fashion. using
1(c) above, we can show that Observation (i) holds.

Finally. from (2) and (3) above, (4) holds. O

The above proposition is important because it tells us that we need not recompute
STRj+1(n) set from scratch. Instead. STR;j;1(n) can be computed from STR;(n) by discarding
from it those nodes that are not CR; related to n. This proposition also provides intuition into the
“refinement” process for the set of nodes STR;(n) in Gioquced- The proposition below formalizes
this intuition. (Recall that a DAG is a directed acyclic graph.)

Proposition 6 1. The subgraph of G, g, ced induced by nodes in some equivalence class oblained
using the CR; relation (j > 0) is a DAG.

2. For any node n and for all j > 1. the subgraph induced by nodes in the set. STRj(n) is a« DAG.
Further. the undirected version of this subgraph is connecied.

Proof: For (1). when j = 0 the proof follows from the construction of Graquced- When j > 1. note
that if two nodes are not CR; related then they cannot be C'R;4; related (Definition 5). Finally.
note that the subgraph of a DAG induced by any subset of its vertices is a DAG.

Similarly, to prove (2). note that for any node n. the subgraph induced by nodes in the set
STRy(n) is a DAG (otherwise, the nodes involved in the cycle can be collapsed into a larger node.
contradicting the fact that nodes are a maximal strongly connected set of states that are (y related
to each other). Thus. the first part of statement (2) follows from statement (2) in Proposition 5.
The second part above follows from statement (3) in Proposition 5. O

As an example, consider Figure 3. The set STR;(n;) is shown as a DAG. All the nodes in this
DAG are C'Rj—, related to each other. Suppose now that node r, is CR; related to nj. Then all nodes
inside the dashed lines are also C'R; related to n;. These nodes are ancestors of rp and descendants
of n;. In this case, the set STR;41(n;) will contain all of these nodes along with r,.

The next proposition provides insight into the set NEXTR(n).

POYTIT TN
o (N

Figure 3: Updating STR;(n;)

Proposition 7 For any j > 1. the following conditions hold:
1. Suppose n, € NEXTR;(n;) but n, @ NEXTR;41(n;). Then forallg> 1. n, ¢ NEXTRj4q(n;).

2. Suppose n. € NEXTR;(n;) and n, € NEXTRj41(n;). Then for any node ny. where n; <=
ny = n,. il follows that n; iz ny = ny.

Suppose n. @ NEXTR;(n;) and n, € NEXTR;41(n;). Then it must be the case that (a)
n, € STR;(ni): (b) n. @ STRj4+1(n;): and (c) there exists np such that n; L np = ny.
Stmilarly. if n. € STRj(n;). n, € STRj41(n;) and there erists n, such that n; L Ny =N,
then n. @ NEXTRj(n;) but n, € NEXTRj41(n;).

Proof: Statement (1) in the above proposition essentially says that once n,. fails to appear n;'s
frontier list VEXTR;41(n;) after appearing in that list for the previous iteration (set VEX TR;(n;)).
then it never appears in n;’s frontier list for any iteration number j + 1 or greater. This follows from
statement (2) of Proposition 5. Statement (2) follows from the fact that CRj4+1 C CR;. To prove (3).
suppose n. € NEXTR;(n;) and n, € NEXTR;j41(n;). Since n. € NEXTR;41(n;). there is a node n
such that n; % ny — ny. Since C'R; is a refinement of CR;_y. n; iz my. Since n. @ NEXTR;(n;). it
must be the case that n. € STR;(n;). Since n, € NEXTR;j41(n;). it follows that n, ¢ STRj 41(n;).

and that there exists n, such that n; & np, = n.. The proof of (3) in the reverse direction is similar.

a

We next provide an “implicit™ way of computing the sets NEXTR.

Definition 7 WITNESS_NEXTR; 4y(ni.n,) is the sct oblained as follows:
If n. @ NEXTR;41(n;). then WITNESS.NEXTRj1(niony) is cmply: otherwise.

n, € WITNESS.NEXTRj 41(ni.n,) if and only if n; >y =,

9

The following proposition provides the correspondence between the sets WITNESS.NENTR and
NEXNTR. It also provides a method for updating WITNESS_NEXNTR (stateinent (2) in the proposi-
tion bhelow).

Proposition 8 The following statemcnts hold:
1. Forany j 2 1. WITNESS_.NEXTR;(n;.n.) is not emply if and only if n, € NEXTR;(n;).

2. Forany j2 1. iof WITNESS_.NEXTRj(n;.n.) is not anply. then
WITNESS_NEXTR 4\ (nj.ny) C WITNESS_NEXTRj(nj.n.). In this case.
WITNESS_.NEXTR;j41(nj.n.) = {my|n, € WITNESS_NEXTRj(n;.n.) A\
ny, € STRj41(ni)}. ’

3. Forany j 2 1. if WITNESS_NEXTR;(n;.n;) is empty, and \WITNESS_.NEXTR; 4 ((nj.n,) is
not empty. then n. € STRj(n;). In this case.
WITNESS_.NEXTRj41(ni.n.) = {ny|m, € STRj41(ni) Any = n.}.

Proof: (1) istrivial. The first part of statement (2) above follows from statement {2) of Proposition 7.
To prove the second part of (2). consider first any node n, € WITNESS_NEXTR; 4 (n;.n,). From

the first part of (2). my € WITNESS_NEXTR;(n;.n.). By Definition 7. n; 0, = n,. and

n; iz ny = n,. This implies that n, € STR;(n;) and ny, € STR;41(n;) (Definition 6). In the reverse
direction. for the second part of statement (2). the proof is straightforward. The proof for the first
part of statement (3) follows from statement (3} of Proposition 7. The proof for the second part of
statement (3) is straightforward. O

From statement (1) in the above proposition we can ascertain n, € NEXNTR;(n;) using the
cardinality of the set ITTTNESS_NEXTR;j(n;.n.). Statements (2) and (3) provide insight into the
update procedure for the IWITNESS_NEXTR;. The algorithm to follow keeps track of the cardinality
of the set IWITNESS.VEXTR at every iteration.

In summary. the relation CR; 4, is a “refinement” of relation ('R;. Further. the refinement process
preserves certain important properties of the graph Gooquced. One crucial property preserved is
the following: The subgraph induced by nodes in STR;(n) for any node n is a DAG: Further.
the undirected version of this DAG is connected (Proposition 6). Since STRj41(n) C STR;(n)
(Proposition 3). it follows that the DAG representing the set STR;;1(n) is a subgraph of the DAG
representing the set of nodes STR;(n): further the undirected version of the DAG representing
the set STRj41(n) is connected. Finally, the sets needed in computing CR;4,. namely. LOOP; ;.
NEXTRj41. and STRj4;. can be computed “incrementally™ as suggested by Propositions 5 and &.

4 Data Structures by the Algorithm

We are now ready to describe the algorithm. It performs A outermost iterations (A is the number
of nodes in G qyceq) in @ fashion similar to the .\ outermost iterations in the O(N'?) algorithm of
Section 2. However. as we will see subsequently. the new algorithm takes at most O(.\'*) time for
each of these iterations.

We assume that the initial input to the algorithm is the relation ('Rg between nodes (provided as
a 2-d binary array) and an adjacency list as well as an adjacency matrix representation of Godyced -
Throughout the description of the algorithm. the letter j is used to refer to the iteration number of
the algorithm. Thus j ranges from 1 to K".

The first part (initialization steps) of the algorithm computes sets STR; and NEXTR,. (refer to
Definition 5). Then. at the (j + 1)th iteration (0 < j < K —1), it first computes LOOPR; 4. and by
using CRj. STRj41. NEXTRj41. and LOOPRj4,. it computes ('Rj,. Before performing the next
iteration. it computes STR; 2 and NEXTR; 2.

We use several arrays and lists to represent the sets described in the previous sections, and these
are not calculated in the manner hinted at in Definition 5 (if we performed steps as suggested by
Definition 3. then at any (j + 1)st iteration. using C'R; we will compute STR; 4. NENTR; 4 and
LOOPR; 4y and then CRj41). With the above description. we hope to have provided the reader with
the sequence of steps that are performed hy the algorithin to update the sets.

We first describe the arrays used by the algorithm and provide a brief interpretation of their
entries. \We also provide the names of the procedures that change or set the entries in these arrays.

10

In the next section. we will describe these procedures in detail. At that time we will describe certain
invariant properties that hold for the entries in the arrays and establish the correspondence hetween
these entries and the sets in Definition 3.

We use both I-dimensional and 2-dimensional arrays. The indices of these arrays either refer to
the nodes or their equivalence class number (Recall that for all j > 0. CR; is an equivalence relation
(Proposition 3)). For any CRj. the maximum number of equivalence classes cannot exceed K. the
total number of nodes. We use this fact and assign equivalence class numbers to nodes so that these
do not exceed K.

For some of the arrays. we need to keep track of their values one iteration prior to the current
iteration of the algorithm. We will use the convention that the letters “Prev™ at the beginning of the
name will be attached to the name of the array which contains the relevant values one iteration prior
to the current outermost iteration. Similarly. the letters “Current™ will be attached to the name of
the array which contains the values for the current iteration.

e Inhereni_Loop[l..K] : This is a binary array that realizes Definition 4. We will use this array
to compute the array Loop (described below). The indices of this array represent nodes. The array
is initialized as follows:

. 1 if component §; for node n; has an inherent loop
Inherent_Loop[i] = 0 otherwise

This array is set once at the beginning and is never changed.

o Algo_CR[1..K][1..K]: Algo.CR is a binary 2-d array whose indices in both dimensions represent
nodes. The entries are used to store the C'R; relation between nodes. Initially. the values in 4lgo_C'R
store the C'Rg relation.

0 otherwise

.4,!]0-(.3[]][})] = { 1 lf n; (R() "p
Algo_CR is updated by Procedure [pdate_CR.

e Equir.No[l..K] : Equir_No is a 1-d array whose indices represent nodes and whose entries
contain equivalence class numbers for nodes. Equir_No is set by procedure Sei_Equiv_No using the
array Algo_CR.

o Current_STR[1..K][1..K}. PrevSTR[1..K][1..K]: These are binary 2—d arrays whose indices in
both dimensions represent nodes. Their entries keep track of the STR sets (see Definition 5) for the
current and the previous outermost iterations. Entries in Curreni_STR are set initially as follows:

.) 1 if n, € STR(n;)
wrrent.S)] = P, !
Current_STR[i][p) { 0 otherwise

This initialization can be performed in O(\'3) time (see Proposition 9 below). Curreni_STR is up-
dated by Procedure ['pdate.Current_STR.

eLoop[l..K] : Loop is a 1-d binary array whose indices represent nodes. Its values represent
the values of the set LZOOPR in Definition 5 for the current iteration. Loop is set by Procedure
Sel_Loop.Reduced at every iteration using the values in arrays Current_STR and Inhere ni_Loop.

eNert_Edge_Couni[l..K][1..K]: Entries in this array represent the cardinality of the set WITNESS.VEXTR
for a pair of nodes (see Definition 7). Next_Edge_Count is initialized as follows:

q if there are ¢ nodes n; . n;, ... n;, such that
Nert_Edge_Count[i][r] = forall p.1 < p<qy.n; N ni, = n.
0 otherwise

As discussed earlier. initial values for entries of Current_STR are a representation of the set. STR).
and those of Alyo_C'R are a representation of the relation CRy. Thus. the initial value of the entry
Nerl_Edge_Count[i][r] is non-zero if and only if n, € NEXTR{(n;). In that case. this entry has a

...,..n-“"muu-...ﬁ.
s e,
o 0,

- %,
o STR (n‘) ",

N, belongs to
NEXT ("r)

Lessessesrnsestanan,
*o,
o,
3
.,
%o,

o'
o
-""‘“

o
o

o,

oo, Wi
Seo0ecrennnenese®®”

Figure 4: lllustration for entry in Nert_Edge_Count

value equal to the number of nodes n € STRy(n;) with the property that n = n,. This array is
updated by Procedure Update_Neri_Edge.Count.

As an example, consider the scenario shown in Figure 4 at the first iteration. In this figure. we
have shown the nodes in STR;(n;) as a DAG (recall Proposition 6). Node n, € NEXTR,(n;). The
entry Next_Edge_Couni[i][r] will be 3 since there are 3 nodes in STR(n;) which have direct edges to
node n,.

e Externalll..K]. Internafl..K]: The indices of these two 1-d arrays correspond to nodes. Each
entry. unlike the entries of the previous arrays. points to a linked list of indices. The initial linked
list of indices for Internal[i] is as follows: index p belongs to list Internalli] if and only if n; — np
and n; CRo np. The initial linked list of indices for External[i] is as follows: index p belongs to
list External[i] if and only if n; = n, and n; CRg np. These two arrays are updated by Procedure
Update_Internal_Exiernal.

eFor.Next_CR[1..K)[2K + 1] : This binary array determines C'R; 4, from CR;. LOOPRj,. and
NEXTRj 4, (see Definition 5). It stores information from arrays CRj. LOOPR;j4,. and NEXTR; 4,
in binary form. The rows represent the nodes. Suppose the current iteration is j. and consider
row /. corresponding to node n;. Then. the first column of For_Next_.C'R is a copy of the LOOPR;
array (stored in our algorithm by the Loop array). The next K columns are used to represent
the equivalence class numbers (array Equir_No in our algorithin) assigned to the nodes. Since
the number of equivalence classes for any C'Rj4; relation will always be less than A'. K columns
are sufficient. If node n; has equivalence class number p. then the (i.p + 1)th entry is set to I:
otherwise, it is set to 0. The last K” columns are used to represent the NEXTR; set for a node as
follows: If n, € NEXTR; (n;), then the (i.p + 1+ R)th entry is set to 1: otherwise, it is set to 0.
This representation can be obtained from array Neri_Edge.Count in our algorithm. The entries of
For_XNexi_C'R are set by Procedure Sef_For_Neri_(C'R.

Once For_Nert.(C'R is constructed. it follows that if two rows in
For_Nexrt_(C'R are identical. then the corresponding nodes are ('R;j4, related (see Property 3 in the
next section). To find rows that are identical. it suffices to “bucket™ sort them and then compare
entries in row i/ and row (i + 1) for all i, 1 < i < K — 1. With some additional bookkeeping. it is
then straightforward to find sets of nodes (equivalence classes for the next iteration) that are C'Rj4y
related to each other.

o Nexi_Equiv_Node_List[1..N'] : Each entry in this array points to a list of nodes (possibly empty).
If not empty. such a list contains nodes whose corresponding rows in the array For_Ncri_C'R are iden-
tical. Procedure Bucket_Sori_For.Neri_C'R constructs the lists for the entries of this array. Using
these lists. we can obtain Algo_C'R (or the ('R relation) for the next iteration easily (see Procedure

12

Sel_Nexrt.CR).

Figure 5 shows the values of those arrays whose initial values were defined (in their description
above) for the reduced graph in Figure 2. The values shown in array
Equiv.No are the ones obtained by applying procedure Sci_Equiv_No (described in the next section).

Proposition 9 Inilial ralues for Inhcreni_Loop. Current.STR. Nert.Edge_Count. Algo_C'R. and
construcling the lists Erternal. and Internal can be performed in O(N3) time.

Proof: Inhereni_Loop can be initialized in O(.\') time. Algo.C'R can be initialized in O(N'?) time
(recall that C'Rg is provided as input in the form of a binary 2-d array - Algo.CR is initially identical
to C'Ro). Current_STR(i) can be computed by performing a depth first search from n; in the reduced
graph. This takes at most O(A\?) time: hence for all nodes. Curreni_STR can be computed in O(\N3)
time. For each index /. its External and Internal list of edges can be computed in O(.\) time (we
use the adjacency list representation of the graph. and the initial contents of array Algo_C'R). Thus.
for all nodes. this takes O(\'?) time.

Nert_Edge_Count can be computed from Curreni_Stand Erternal as follows: Initialize Neri.Edge_Count[y)[h] :=
0.1<9.h < K. Then. for each ordered pair (i.p) (1 <i.p < K). check if Current STR[i][p) = 1. If
so. do the following: For each index r € Ertcrnallp]. increment Next_.Edge_Count[i][r] by 1. Clearly.
this algorithm takes at most O(.\'3) time. O

4.1 The Main Steps of the Algorithm

We now describe the steps performed by the algorithm (Procedure Compute_C'R_Relation helow) for
each j'th iteration. Most steps are calls to procedures. some of which were mentioned in the previous
section. For each procedure. we write the array(s) that it “uses” (or reads as input) and the array(s)
that it modifies (or sets). Also. we write down a reference to an invariant property for the entries in
the arrays (if one exists) after each of the steps. These properties will be stated later in the paper
and they help in establishing the correspondence hetween entries of the arrays and the sets described
in Definition 3.

Procedure Compute_.(C'R_Relation:
Begin
For j1<j<K
(1) Do Procedure Set_Equiv_No
Uses: Algo_.CR Sets:Equir_No
Property 1 holds.

(2) Do Procedure Sei.Loop.Reduced
Uses: Current_STR. Inhereni_Loop Sets:Loop
Property 2 holds.

(3) Do Procedure Set.For_Nert_.C'R
Uses: Loop. Equiv_No. Nexi_Edge.Count Sets:For.Neri_C'R
Property 3 holds.

(4) Do Procedure Bucket.Sort_For_Neri.C'R

Uses: For_Nert.C'R Sets: Nert_Equiv.Node_List
Property 4.

(3) Save Current . STR in Previous.STR

(6) Do Procedure Sci_Neri_C'R

Uses: Nert_Equiv.Node_List Sets: Algo_CR

Property 5 holds.

(7) Do Procdeure I'pdate Current STR

Uses: Equiv_No. Prcvious.STR Updates: Current_STR

13

[1..8[1..8]

Current_STR

CR[1..8][1..8]

10

0

o100 ™ P~ P=) o
- - -
o ojlo|ojo o
o) o
@© o|lolo|jo o
©® ® ©
~ o|lo|lo]eo o
~ ~ ~
]
© o|lo|]o|o (-} «Q
- 0. 7.} ©
— —~
7 olo|r~]|w o 3)
S W - P - 0
~ < Iy
< olo|~]|o o o : No
S <« =, o« ;T
2 a >
[o|l~|o]o o g 8 3
«@ Q ™ (]
£ - u)
N -0 o
o~ ~N o~
- o|lojlo|eo o
- A o -
N[oo|e]|w ©
-
© ©
- Qlojlojo - - o] o - | - o
o o|lo|lo]e - o o|o ol ~ o
© o|lo|vr]|w ©) o| o oo o
~ -l=--lO]O o ~ Q| v [~ 2 B) o
© o|le|]o|o 1.&6 o|leo olo o
-
w olo|r|~ o| ~ o olo oo -]
-~
X
< Olo|v]| o|] & = o | o oo o
T
© ~|~{o]|o ol 3 o o|o ol|o o
C_
o~ -lwlo]|lo o| © o ol o o] o ()
o
&
- |~]Oo]o (=] [o|le ol o o
3
N|o]|<]|w ol < ™| < ~| @ o
- -

External [1..8]

Internal [1..8]

10

10

7

10

10

5

2|3 |4

4aa|E|7]|3

10

10

5

21314

E|2]|5

2

E: indicates an empty list

v

[nitial Values of Arrayvs and Matrices

Figure 5:

14

Property 6 holds.

(8) Do Procedure ['pdale_ Neri_Edge Count

Uses: Nearl_Edge Count. Curreni_STR. Prcvious.STR. Ertcrnal Updates: Nert_Edge_Count
Property 7 holds.

(9) Do Procedure Update_Exrternal_Internal
Uses: Internal. External. Algo.C'R Updates: Internal, Extcrnal.
Property & holds.

endfor
endProcedure

We now describe the steps for each of the procedures at steps (1)...(4) and (6)...(9) above. At
the end of each description. we state invariant properties of the arrays with respect to the sets in
Definition 5 that hold after the procedure is executed. Each property is stated for any j. 1 < j < K.
In each case. the proof follows from earlier results and properties previously established.

The first procedure below sets the array Equir.Ne using the array Algo_CR.

Procedure Sei_Equiv_No
Variable class_no initialized to 1. and variable count
Array Mark{i).1 <i < K initialized to 0.
Begin
Fori.l<i<NK
if Mark[i] =0 then
Mark[i] =1
Equiv_No[i] := class_no
count ;=1
Forp.l<p< K.p#i
if Algo_CR[i][p] = 1 then
Mark[p) =1
Equiv_No[p] := class_no
count := count + 1
endif
endfor
class_no := class.no + count
endif
endfor
endProcedure

Property 1 Suppose that Algo.CR[i)[p) = 1 if and only if n; CRj_y n, prior to executing step
(1) (Procedure Set_Equir_No) of procedure Compute .CR_Relation. Then. after erecuting step (1)
Equiv-No[i] = Equic_No[p] if and only if Algo_CR[il[p] = 1: further. Equic.No[i}) < K for all i.1 <
J<K.

The next procedure sets the Loop array.

Procedure Set_Loop_Reduced
Begin
(1) Fori.1 <i< K
Loop[i] := 0
if Inhercni_Loop[i] = 1 then
Loop[i] :=1
goto uext 7 at step (1)
endif
forpl<p<NK
il Current STR(i)[p] = 1 and Inhereni_Loop[p] = 1
Loop(i) :=1
goto next i at step (1)

endhif
endflor
endProcedure

Property 2 Priorilo crecating step (2) (Procedure Sei-Loop_Reduced) of procedure Computc .CR_Relation.
suppose that Currend STR[i)[p) = 1 if and only of n, STRj(n;). Then. after erccuting step (2) of
procedure Compute_CR_Rclation. Loop[i) = 1 if and only if LOOPRj(n;) = 1.

Procedure Set_For_N¢ri_('R sets entries in the array For_Neri_(C'R to reflect the information in
the arrays Loop. Equiv_No, and Nert_Edge_C'ount. The first column is used to store the array Loop.
Columns 2.3....K + 1 represent the equivalence class numbers assigned to nodes. If node n; has
a equivalence class number p. then we set For_Nexi-CR[{][p + 1] to 1: otherwise. entries in columns
2.3....K + | other than p for row i are set to 0. The last A" +.1 columns represent (in a binary
form) the equivalence class number of nodes in set NEXTR;(n;) (see Definition 5). In our algorithm.

NEXTRj(n;) is represented implicitly by the array Nexf.Edge_Count.

Procedure Sei_For_Nert.C'R
Begin
Set all entries in For_Nert_C'R to 0.

Fori.1<i< K
For_Next_CR[i[1] := Loop|i]
endfor

Fori.l1<i<Kk
Forp.l1<p< K
if Equit_No[i] = p then
For_ Nert_CR[i][p+ 1] :=1
~ endif
endfor
endfor

Fori1<i<RK
Forp.1<p< Rk
if Nexi_Edge_Count[i][p] > 0 then
For_Next_CR[/][K + 1 4+ Equiv_No[p]} :=1
endif
endfor
endfor
endProcedure

Property 3 Suppose that priorto crecuting step (3) (Procedure Set_For_Nexti_(C'R) of Compute .CR_Relation.

Algo_CR[)[p] = 1 if and only if n; CRj_y np. Loop[i] = 1 if and only if LOOPR;(n;) = L. and
Next_Edge_Count[il[p] > 0 if and only if n, € NEXTRj(n;). Then. after executing step (3) of
Compute.CR_Relation. for all m.1 < m < 2K + 1. For.Nert.CR[i][m] = For.Next.CR[{][m] (i.e.
rows i and t have identical entries in their corresponding columns in array For.Next_C'R) if and only

ifni CRj ny.

Figure 6 shows the For_Nert_CR matrix for the first iteration in our example. The only two rows
that are identical are rows 2 and 3. Thus. nodes na and nz are CR; related.

Bucket_Sort_For_Next_C'R performs the regular bucket sort procedure (see [2]) on the rows of
the array For.Next_C'R. The sorted permutation of row indices is stored in array Sorfed_Row_No.
Using this array. the lists for entries in neri_Equiv_Node_List are set as described below. Briefly. each
non—empty list of indices for any entry in nexi_Equir_Node_List vepresents one equivalence class of
nodes for the next iteration of the algorithm. Bucket Sort (step (1) of the procedure below) can
be performed in O(N?) time. Creating the lists for entries in Nert_Equiv_Node_List can also he
performed in O(N'?) time,

16

[.81[1.21]

For_Next_CR

1

13| 14| 15] 16] 17| 18] 19 20 21

12

ojo|o

10| 11

9

ojojo

c|jo0jo0|0

0

10

Loop

e_Count

9
representation in a 1/0 form

Next_Ed,

Equiv_No representation

ina 10 form

trices

-

Figure 6: Initial Values of Arrays and Ma

Procedure Buckct_Sort_For_Nert_CR
Variable Sortcd_-Row_No[l ... K).
Begin
(1) Bucket sort the rows in For_Neri_C'R (see [2]).
Let Sortcd_-Row-No[l ... K] be the sorted permutation of row indices I... K.
Thus. Sorted_-Row.No[p] represents the row index
which is pth in the sorted list of rows.

(2) Fori.1<i< K
Initialize Next_Equir_Node_Lis{[i] to the empty list.
endfor

(3) Using Sorfed-Row_No array. construct the lists for entries of
Nert.Equir_Node_List as follows:
o The first series of contiguous row indices in Sorfed_Row.No
representing identical rows are collected in a list.
The pointer to be beginning of this list is stored in Nert_Equiv_Node_Lis([1].
o Similarly. the second series of contiguous row indices in Sorfed-Row-No
representing identical rows are collected in a list.
The pointer to be beginning of this list is stored in Next_Equir_Node.List[2]. and so on.
o The latter entries in Next_Equiv_Node_List may point to empty lists.
endProcedure

Property 4 Afterexecuting step (4) (Procedure Buckei_Sort_For_Next_C'R). if Next_Equiv_Node_List[i].
1 <i< K. is not empty. then the nodes in that list are CR;j related 1o each other and they belong to
one equivalence class of that relation.

Procedure Sef_Nexl.CR:
Begin
Set all entries of Algo.C'R to 0.

Fori.l<i<K
Algo_CR[g][r] = 1 for each ordered pair (g.r)
where ¢.r € Nexi_Equiv_Node_List[i]

endfor :

endProcedure

Property 5 After executing step (6) of procedure Compuie.CR_Relation (Procedure Sei_Nert_C'R).
Algo_CR[g][r) =1 if and only if ny CR; n,.

Procedure Update.Current_.STR
Begin
Fori.l1<i<K
Forp.l1<p< K
if Algo_CR[i][p] = 1 and Previous-STR[i}[p] = 1 then
Current_ STR[i|[p] = 1
else
Current_STR[i][p} =0
endif ,
endfor
endfor
endProcedure

The proof of the following property follows from Proposition 5.

Property 6 After cxccuting step (7) (Procedure Update.Current_STR). Curvent STR[i|[p] = 1 if
and only if n, € STRj41(n;).

18

Procedure ['pdatc_Neri_Edge.Count
Begin
Forp. l<p< K
Build list of indices (pointed 1o by) Inrcrse_Current STR[p] such that
i helongs to the list Inecrse_Currcnt STR[p) if and only if
Current _STR[{][p] = |

endfor

Fori.1<i<NK
Forp.i+1<p< Kk
Case I: Previous STR[{][p)=1 A Current STR[/][p] = 0
For each node 7 in External[p]
Decrement Next_Neighhor_Edge_Count[i][t] by 1
endfor
if n; = n, then
for each node ¢ in list Inrerse_Curreni_STR([i]
Increment Next_Neighbor_Edge_Count[f][j] by 1.
endfor
endif
Case 2: Previous STR[p)[i]]=1 A Current_STR[p][/] =0
("ase handled as in C'ase 1 above with i and p interchanged
Otherwise:
do nothing
endCase
endfor
endfor
endProcedure

The proof of the following property follows from the arguments presented for Proposition &.

Property 7 After executing step (8) (Procedure Update_Nexi_Edge.Count). the following condition
is frue:

q(q > 0) if there are q nodes njy . ny,n;_ such that

Nov a1 Jor allp.1 < p<q.on;, € STRj41(n;).
Next_Edge_Count[i][r] = n. € N'EXTR_,‘.,.;(n;).Fand ni, = n,
0 otherwise

Procedure [pdate_External_Intcrnal
Begin
Fori.l1<i<Kk
For each p in list Intcrnalli)
if Algo CR[i][p)=0
Remove p from Internalfi)
Add p to Erternalli]
endif
endfor
endfor
endProcedure

Property 8 Aftererecuting step (9) of proccdure Compute_C'R_Rclation (Proccdure Update_Eriernal_Intcrnal)
¢ belongs 1o list Externalli)(Intcrnalli]). if and only if n; = ny and n; CR;(CRj)n,.

Proposition 10 Procedure Compuie .C'R_Reclalion is correel.

Proof: From Properties 1 thru &. O

19

4.2° Analysis of Procedure Compute_.CR_Relation
Proposition 11 All the procedures crcept Update _Nert_Edge Cound take at most O(N?) time.

It seems as if Procedure Update_Next_Neighbor_.Edge_Count will take O(\'3) time. since it has
potentially 3 loops. one inside the other, each performing at most N iterations. However. we will
show that the total time spent over the entire duration of the algorithin in performing steps outlined
for C'ase 1 and Case 2 of that procedure does not exceed O(N?3).

Proposition 12 Procedure Updale_Ncxi_Edge_Count take at most O(N3) time over the cntive du-
ration of (or. over all the outermost iterations of) Procedure Compute .CR_Relation.

Proof: We keep track of the total number of increments or decrements that are performed
over all entries of Next_Neighbor.Edge_Count (the steps performed for C'ase 1 and 2 in Proce-
dure Update.Next_Neighbor_Edge_Count). Note that using the adjacency matrix representation
for Greduced- Conditions for Case 1. and 2 in Update_Next_Edge_Count. as well as the condition
n; = nj for any two nodes can be done in constant time. Now consider a fictitious 3-d matrix
Nert_Edge_Map[l...K][1...K][L...K] with boolean entries such that for any jth iteration of the
outermost loop.

Nert_Edge_Map[i)[pl[r] = 1 if n; Zha p = n.. Now. over the entire duration of the algorithm. one
of two things can happen: (a) an entry Next_Edge_Map[i][p](r] turns from 0 to 1. or it turns from
1 to 0. Each time the entry Neri_Edge_Map[i][p][r] turns from 0 to 1. entry

Nert.Edge_Couni[i][r] is incremented by 1. If that entry turns from 1 to 0. then entry
Next_Edge_Count[i][r] is decremented by 1. Note that when an entry changes from 1 to 0. it cannot
change back to 1. This is because. when node n, is removed from STR;(n;)’s set. it cannot become a
member of STR(n;)'s set for any of the subsequent outer iterations. by Proposition 3. This implies
that the total number of increment and decrement operations that can be performed within the 2
cases in Procedure Update.Next_Neighbor_Edge.Count cannot exceed O(.\'3). O

Theorem 2 Procedure Compute.C'R_Relation runs in O(N3) time. It computes the relation CR
correctly.

Proof: From Propositions 10. 11.and 12.0

5 Conclusion

We have shown an O(\'3) algorithm for determining the all pairs equivalence problem for a Kripke
structure with respect to nexttime-less concurrent tree logic (C'TL*/ X). Clearly. this algorithm can
also be used to determine the equivalence problem for pairs of states in two distinct Kripke structures
by creating one Kripke structure from a disjoint union of these two.

References

[l] Antii Valmari and Matthew Clegg. Reduced Labelled Transition Systems Save Verification Effort.
CONCUR, 1991. '

[2] Corman. Liecerson, and Rivest. Introduction to Algorithms. 1990.

(3] E. M. Clarke. Emerson. and Sistla. Automatic Verification Of Finite-state Concurrent Systems
Using Temporal Logic Specifications. 10th ACM Symposium on Principles of Programming Lan-
guages. 1983.

[4] M. C. Browne. E. M. Clarke. and O. Grumberg. Characterizing Kripke Structures in Temporal
Logic. TAPSOFT 87. LNCS 249. Volume 1, 1987.

(5] M. C. Browne. E. M. Clarke. and O. Grumberg. Characterizing Finite Kripke Structures in
Propositional Temporal Logic. Theorctical Computer Scicnce. 1988,

[6] M. Lamport. What good is Temporal Logic ? Proc. Iniernational Federation for Information
Processing. 1983,

[7] R. Kaivolaand A. Valmari. Using Truth-Preserving Reductions to Improve the Clarity of Kripke-
models. CONCUR. 1991.

[8] R. Kaivola and A. Valmari. The Weakest Clompositional Semantic Equivalence Preserving
Nexttime-less Linear Temporal Logic. CONCUR. 1992.

21

