Balancing Communication in
Ring-Structured Networks

Ami Litman & Arnold L. Rosenberg

CMPSCI Technical Report 93-80
November, 1993



Balancing Communication in Ring-Structured
Networks

Ami Litman Arnold L. Rosenberg
Department of Computer Science Department of Computer Science

The Technion University of Massachusetts

Haifa, Israel Ambherst, Mass., USA

Abstract. We present a polynomial-time algorithm for finding an almost optimal solution
to the following combinatorial problem, which is motivated by the problem of balancing
communication in networks having the structure of rings. Input: a circle and a multiset of
c chords, having n distinct endpoints, representing desired point-to-point communications;
c’ of the chords are distinct. The task: to map each chord to an arc having the same
endpoints, in a way that minimizes the maximum number of arcs crossing any normal to
the circle. Our algorithm operates in time O(n?c) and uses O(n + ¢') words of storage; it
finds a mapping that is within +1 of optimal.

1 Introduction

1.1 Motivation

We study a combinatorial problem related to the task of balancing communication in
networks having the structure of a ring of nodes. Such networks arise in at least two
situations. In one scenario, the ring represents a multiprocessor network with a recon-
figurable multi-line bus interconnecting the processors (which are the nodes of the ring);
see, e.g., [3, 5, 7). In another scenario, the nodes of the ring are transceivers, and the ring
structure arises from the connection pattern of the point-to-point transmission “cables”
(say, using fiber-optic technology); see, e.g., [2]. In either of these scenarios, the ring
structure carries with it several benefits. First, ring structures are biconnected: there
are two distinct paths connecting any two nodes; this property lends a measure of fault
tolerance to the network, as well as avoiding the bottlenecks caused by unique paths.
Biconnectivity gives the ring a distinct advantage over tree structures. Second, the ring
structure is easily clustered in a variety of ways; this enhances both the ease of packaging
the ring (which is particularly useful in the multiprocessor metaphor where one might
seek scalable multi-chip realizations of large rings) and creates the possibility of endowing
the ring with “shortcuts;” both of these measures enhance the efficiency of the structure;



cf. (1, 8]. Finally, ring structures are sparse and planar, allowing them to share with tree
structures efficiency of construction.

Our combinatorial problem takes the following form. We are given a ring of nodes,
together with a set of chords in the ring that represent point-to-point connections that
are to be established. Our task is to transform each of the given chords into an arc of
the ring having the same endpoints as the chord. Our goal is to accomplish this in a
way that minimizes the width of the resulting configuration, namely, the largest number
of arcs that cross above any part of the ring (i.e., that are cut by a line normal to the
ring). This cost measure corresponds to the number of lines that the ring’s bus must
support in the multiprocessor scenario or the number of frequencies that the cable must
carry in the communication network scenario. Note that we are assuming that only the
number of tracks or frequencies is essential, not specifically which ones; this means that
we are assuming that message packets can changes tracks (in the multiprocessor scenario)
or frequencies (in the communication network scenario) in transit, as the packets pass
through ring nodes. We show here that this combinatorial problem can be solved to
within an error of +1 in low-degree polynomial time in the sizes of the network and the
message set. Our algorithm could be of interest in situations where there is a repertoire

of communication patterns that can be precomputed; such situations abound in the
literature; cf. [6, 10, 11].

1.2 The Formal Problem

Ring Structures. An n-node ring structure R is a graph-theoretic object having the
following components. R has:

o n regqular nodes, ro,71,...,7n_1;
e n auziliary nodes (z-nodes, for short), zo, z1,...,Tn-1;
e 2n spine edges that connect each regular node r; to x-nodes z;_, and z;;’

¢ a multiset of interval hyperedges (i-hyperedges, for short) M(R), each i-hyperedge
being a simple set? of the form

{riv Tis Titls Litly Tit2y Tig2y - - -3 Tj-1, r.‘i}*

We denote each such i-hyperedge by the ordered pair of regular nodes (r;,r;) that
are its endpoints when it is traversed in clockwise order.?

1Here, and in the sequel, all arithmetic on node indices is modulo n.
2The simplicity of these sets precludes i-hyperedges that “wrap around on themselves.”
30ur ring structures generalize to ring-spines the interval hypergraphs of [9].



Remarks. Every x-node of a ring structure is an endpoint of two spine edges; no x-node
is an endpoint of an i-hyperedge. The regular nodes of a ring structure represent the
processors (in the multiprocessor scenario) or the transceivers (in the communication net-
work scenario); the x-nodes are purely a technical device that facilitates the development
of our study.

The width of ring structure R at z-node z, denoted W(R,z), is the number of i-
hyperedges that contain z (as sets). The width of ring structure R, denoted W(R), is
the largest width of R at any of its x-nodes:

W(R) = max{W(R,z) : z is an x-node of R}.
An x-node z is critical for R if W(R,z) = W(R).

Communication Patterns. An n-node communication pattern P is a circle, together
with a multiset of chords having at most n distinct endpoints. (The fact that we have
a multiset of chords means that we allow several “messages” between the same pair of
nodes.)

Realizing Communication Patterns. A realization of the n-node communication
pattern P is an n-node ring structure R(P), together with two one-to-one maps: there
is a one-to-one association u of regular nodes of R(P) with endpoints of chords of P;
there is a one-to-one association € of chords of P with i-hyperedges of R(P). These
two maps are chosen so that, for each chord x of P, the endpoints of the i-hyperedge
€(x) € M(R(P)) are associated (via u) with the endpoints of x.

The Problem. Since we use a ring structure R(P) to realize a communication pattern
P, we can talk unambiguously about the width of a realization of communication pattern
P, namely the width W(R(P)) of the ring structure R(P). We can build on this to
talk about the width of a communication pattern P, denoted W(P), namely, the smallest
width of any realization of pattern P:

W(P) = min{W(R(P)) : R(P) is a realization of P}.

Our goal is an efficient algorithm that finds, for any given communication pattern P, a
realization R(P) whose width is (close to) W(P). We achieve this goal, to within an error
of 41, in the following sense. For the duration of the paper, say that the communication
pattern P comprises ¢ chords with n distinct endpoints and that ¢’ of the chords are
distinct.

Theorem 1 There is a polynomial-time algorithm that produces, for any given commu-
nication pattern P, a realization R(P) such that W(R(P)) < W(P) + 1. In particular,
the algorithm operates in time O(n%c) and uses O(n + ¢') words of storage.



The remainder of this note is devoted to proving the Theorem, by presenting such an
algorithm.

Remark. If we attempt to produce, for an arbitrary given communication pattern P,
a realization R(P) with minimal chromatic number — defined by coloring i-hyperedges
so that intersecting ones get distinct colors — then we encounter a problem that is NP-
complete. This coloring problem corresponds to eliminating our assumption that message
packets can change tracks (or frequencies) in transit. The classical ARC COLORING
problem [4] is reducible to this coloring problem.

2 On Realizing Communication Patterns

The algorithm that is the main contribution of this note is a relaxation algorithm that
starts with any “almost arbitrary” realization Ro(P) of an input communication pattern
P and produces a sequence Ro(P), R1(P), Rz(P),. .. of successively “better” realizations
of P, ending with a realization R*(P) whose width is no greater than W(P) + 1. By
“almost arbitrary,” we mean that Ro(P) can be any realization of P whose width at some
x-point is 0; i.e., Ro(P) contains an x-node that is not a member of any i-hyperedge. We
indicate later why requiring such a starting point makes our algorithm more efficient. Qur
notion of a “better realization” depends on the successive reduction of (at least one of)
two measures of the cost of a realization R(P): the width W(R(P)) of R(P), as defined
earlier, and the width-density WD(R(P)) of R(P), which is the number of x-nodes z at
which R(P) has maximal width, i.e., such that W(R(P),z) = W(R(P)). That is, for
each pair of successive realizations of P produced by our algorithm — say, R;(P) and
Riy1(P) — either W(Ri41(P)) < W(Ri(P)), or both W(Ri+1(P)) = W(Ri(P)) and
WD(Ris1(P)) < WD(R:(P)).

2.1 Preliminaries

In this Section, we simplify our algorithm by verifying that only one type of relaxation
device needs be considered when seeking to improve the quality of a given realization
according to the width and width-density cost measures.

Simple vs. nonsimple i-hyperedges. The first — and easiest — observation about
our problem is that replacing any nonsimple (i-e., self-overlapping) i-hyperedge of a ring
structure R by the simple i-hyperedge having the same endpoints always decreases the
width of R. Fig. 1 verifies the following obvious lemma which Justifies our restricting
attention henceforth to realizations that use only simple i-hyperedges.




Region I

Region 1

; Region II
Region II

Figure 1: Simple arcs always decrease width.

Lemma 1 The minimal-width realization of any communication pattern contains only
simple 1-hyperedges.

We now define the basic operation that our algorithm uses to improve realizations,
the act of flipping i-hyperedges. One flips the i-hyperedge

<T‘,’,T'j) = {riymi)ri+1ymi+11 v ':mj—larj}'

that proceeds clockwise from regular node r; to regular node r; in a ring structure by
replacing that i-hyperedge by the complementary one

(T'j,'l",‘) = {Tj, TiyTi41; L5415+, :ci—l;ri}-

that proceeds clockwise from r; to 7;. The successive realizations our algorithm produces
result from flipping pairs of i-hyperedges.

Type-A flips: Doubly overlapping pairs of i-hyperedges. While one must gener-
ally be careful when choosing a pair of i-hyperedges to flip, in order to ensure that the
flip does not increase the cost of the current realization (by increasing either its width or
its width-density), there is one class of pair-flips that is guaranteed never to be harmful.
A pair of i-hyperedges in a ring structure R, call them (r; ,7;,), (ry,,7;), have double
overlap if:

e the i-hyperedges do not share an endpoint;



Region 1

Region III

Figure 2: Type-A flips never increase width.

e there is a simple clockwise path in R that encounters the nodes TiysPia, iy, T, IR
that order;

see Fig. 2. One easily notes in the figure that flipping a pair of i-hyperedges that have
double overlap — which action we term a Type-A flip — reduces the width of R in
Regions I and III while leaving the width unchanged in Regions II and IV; hence, a
Type-A flip can never increase the cost of a realization. More importantly, a Type-A flip
can often improve the quality of a realization. To wit, if the ring structure R contains
a critical x-node that lies in either Region I or Region III of a doubly overlapping pair
of i-hyperedges, then the ring structure R’ obtained by Type-A flipping this pair of i-
hyperedges has either smaller width or smaller width-density than R. We thus have the
following.

Lemma 2 Every communication pattern has a minimal-width realization that has no
doubly overlapping i-hyperedges.

Lemma 2 asserts that one never increases the cost of a realization by eliminating a
pair doubly overlapping i-hyperedges via a Type-A flip; however, such flips do increase
the cost (i.e., the time) of our algorithm; moreover, some of this extra time is wasted,
because some Type-A flips do not affect any critical x-node, hence do not decrease the




cost of a realization. Fortunately, we are able to avoid doubly overlapping i-hyperedges
altogether, at no algorithmic cost, as follows. First, we ensure that our initial realization
does not have any doubly overlapping i-hyperedges, hence requires no Type-A flips.
Then, we proceed from realization to realization using only a genre of pair-flip that cannot
mtroduce any doubly overlapping i-hyperedges. The first of these goals is achieved simply
by insisting that some x-point in the initial realization be ezposed, in the sense of not
belonging to any i-hyperedge. The second of these goals is achieved automatically, by
the nature of the Type-B flips that will be our tool for improving realizations. (This
assertion is proved in Lemma 6.) These Type-B flips are described next.

Type-B flips: Singly overlapping pairs of i-hyperedges. A pair of i-hyperedges in
a ring structure R, call them (r; ,r;) and (r;,,r;,), have single overlap if

T F Thi

o there is a simple clockwise path in R that encounters the nodes r;,7;,,7;,7, in
that order;

see Fig. 3. One easily notes in the figure that flipping a pair of i-hyperedges that have
single overlap — which action we term a Type-B flip — reduces the width of R in Region
I, increases the width in Region III, and leaves the width unchanged in Regions II and
IV. What this means is that one must exercise care in deciding which singly overlapping
pairs of i-hyperedges to flip and which to leave alone. This determination is a major
component of our algorithm.

Type-C flips: Degenerate Type-B flips. Our algorithm chooses pairs of i-hyperedges
for Type-B flipping based on the clockwise and counterclockwise extreme nodes of the
set of i-hyperedges that contain a selected x-node. On occasion, the selected pair will be
degenerate, in the sense that a single i-hyperedge will have both the extreme clockwise
node and the extreme counterclockwise node. (The import of the previous sentences will
be clearer after the description of our algorithm.) In this case, we cannot perform a Type-
B flip, which requires two i-hyperedges. Instead, we perform a Type-C flip, which consists
in complementing the chosen i-hyperedge; see Fig. 4. We separate this case explicitly
because it requires a few special words as we validate and analyze our algorithm in Section

2.3.

Orthogonal x-nodes and orthogonal regions. Two x-nodes of a ring structure R
are orthogonal if no i-hyperedge of R contains both of them. Easily, an x-node z has at
least one orthogonal partner if, and only if, =z belongs to no doubly overlapping pair of
i-hyperedges. Moreover, the set OR(z) (which we call the orthogonal region of z) of all
x-nodes that are orthogonal to x-node z form an “interval,” in the sense that OR(z) is



Region IV

Region HI Region III

Figure 3: Type-B flips increase width in places and decrease in other places, hence must
be used carefully.

Region 1 Region 1

Region II

Region 1

Figure 4: Type-C flips increase width in places and decrease in other places, hence must
be used carefully.



either empty or has the form

OR(:B) = {miymi+lami+2)"‘ ,(Cj} (1)
for some x-nodes z; and z;. We introduce the following terminology (letting x; and z;
be as in (1)):
e any i-hyperedge (r,7;) that contains z is a left-eztremal i-hyperedge for z;

e any i-hyperedge (rj41,7) that contains z is a right-eztremal i-hyperedge for z.

The technical utility of the notion of orthogonality resides in the following property.

Lemma 3 Let P be a communication pattern and R(P) a realization of P. For any
z-node z of R(P) and any y € OR(z),

W(R(P),z) + W(R(P),y) < 2W(P).

Proof. Add the x-nodes of R(P) explicitly to the circle used to define the communication
pattern P. Say that k chords of pattern P cross the chord (z,y). Then, easily, W(P) >
[k/2], for each of these k chords must map onto some i-hyperedge of any realization of
P. Since z and y are orthogonal x-nodes, no i-hyperedge that realizes one of these k
chords contains both = and y. Hence,

W(R(P),z) + W(R(P),y) = k < 2[k/2] < 2W(P). O

2.2 The Realization Algorithm

A. An Overview of the Algorithm

Given: a communication pattern P

Find: A realization R(P) with W(R(P)) < W(P) +1

Step 0. Construct an initial realization Ro(P) that has at least one exposed x-point.
Set the iteration counter k = 0.

Step 1. Select a critical x-node z of R(P).
Select a left-extremal i-hyperedge A for z and a right-extremal i-hyperedge p for
T.



Step 2. If A = p, then update Ry (P) to Ri41(P) by performing a Type-C flip of A = p;
if A # p, then update Ry (P) to Ris1(P) by performing a Type-B flip of A and p.

Step 3. If either W(Ri41(P)) < W(Ri(P)) or both [W(Ri41(P)) = W(Re(P)) and
WD(Ri+1(P)) < WD(Ri(P))]
then increment k to k + 1 and return to Step 1 with the new value;
else return R, (P) as the desired realization of P and halt. O

B. The Enabling Data Structures

The data structures. Two basic data structures enable our algorithm, the first quite
simple, the second a bit more complex.

1. There is a three-field register containing the integer W(Ry(P)) (the [global] width
of the current realization), the integer WD(Ri(P)) (the width-density of the current
realization), and a pointer to a critical x-node (any critical x-node will do).

2. There is an n-entry linear array. The ith entry of the array, where 1 < 1 < n, plays
the dual role of representing the ith regular node r; of the current realization Ry(P) of
problem P and its succeeding x-node z;. For each ¢, the ith entry of the array comprises:

e a register Acontaining the integer W(Ry(P),z;) (the [local] width of the current
realization at x-node z;);

e a pair of linear lists, named CW(?) (for clockwise) and CCW(z) (for counterclockwise),
respectively. List CW(z) [resp., list CCW(z)] will contain, in decreasing order of
size: (the name of) each i-hyperedge of the form (r,r;) [resp., (the name of) each
i-hyperedge of the form (r;,7)], together with the multiplicity of the i-hyperedge.
The purpose of these lists is to allow us to extract extremal i-hyperedges and de-
limit orthogonal regions easily. Specifically, list CW(z) [resp., list CCW(i)] will
allow us to extract a left-extremal i-hyperedge [resp., a right-extremal i-hyperedge]
for a selected critical node in time O(n).

Easily, our data structures occupy O(n + ¢') words of storage.

The utility of the data structures. The data structures we have defined are quite well
suited for implementing our algorithm. In particular, Type-B and Type-C flips, which are
our tools for progressively improving realizations, affect the nodes of a realization within
regions which are either contiguous blocks in our array or the union of two contiguous
blocks, one at the beginning of the array and one at the end. For Type-B flips, see Fig.
3: in Region I (which is the orthogonal region of the current critical x-node), these flips
add two i-hyperedges “above” each x-node; in Region III, they delete two i-hyperedges

10



“above” each x-node; and, in Regions II and IV, they add one i-hyperedge and delete one
i-hyperedge “above” each x-node. At least three of these regions are contiguous blocks in
the array, while the fourth is clustered either as one contiguous block or as two of them.
For Type-C flips, see Fig. 4: in Region I (which is again the orthogonal region of the
current critical x-node), these flips add one i-hyperedge “above” each x-node; in Region
II, they delete one i-hyperedge “above” each x-node. At least one of these regions is a
contiguous block in the array, while the other is clustered either as one contiguous block
or as two of them. Each of the major operations in our algorithm will be implemented

via a scan of the array, followed by some simple manipulation of the associated CW and
CCW lists.

C. Details of the Algorithm

Creating realization Ro(P). Say that we are given the communication problem P as
a set of pairs of integers, each pair indicating the endpoints of one of the chords we are
to realize. The range of the integers indicates the number of nodes the realizing ring
structures must have, which allows us to declare the length of the linear array. Say that,
by default, we let x-node zo be the x-node that is left “exposed” in realization Ro(P).
Then we initialize the CW and CCW lists by doing a pass over the array for each input
chord x. We represent chord x = (z,7) by whichever of the i-hyperedges (r;,r;) and
(r;,7;) does not contain x-node zo. Say that (r;,r;) is the chosen i-hyperedge. Then
we insert (the name of) this i-hyperedge into CW(j) (the CW list of node ;) and into
CCW(j) (the CCW list of node r;). If i-hyperedge (r;, ;) does not yet exist in these
lists, it is inserted behind (the names of) all bigger i-hyperedges and before (the names
of) all smaller ones; if it already exists, then its multiplicity is increased. As we create
these lists, we simultaneously accumulate the local widths {W(Ro(P), z:)} and the global
width W(Ro(P)) and width-density WD(Ro(P)).

Selecting a critical x-node. By hypothesis, the global register always contains both
the current global width W(R,(P)) and a pointer to an x-node that is critical for Ri(P).
We use this pointer to select the current critical x-node, since we are satisfied with any
such x-node.

Selecting extremal i-hyperedges. Say that z; is the selected critical x-node. In
order to find a left extremal i-hyperedge for z;, we scan the node array in the following
order: we scan entry 1 — 1, then entry i — 2, then entry i — 3, and so on, until we find
an i-hyperedge that contains node z; as the first entry on the current CW list; that
i-hyperedge is the selected left extremal i-hyperedge for z;. Note that, since x-node z; is
critical for Ri(P), we are guaranteed to find a left extremal i-hyperedge by the time we
reach entry 7 + 1. We then find a right extremal i-hyperedge for ; by an analogous scan
of the array, scanning in the order, entry i + 1, followed by entry i + 2, and so on, and
using the CCW lists rather than the CW lists. If the selected extremal i-hyperedges are

11



distinct, we perform a Type-B flip; if they are identical, we perform a Type-C flip.

Performing Type-B and Type-C flip. As we noted earlier, performing a Type-B
or a Type-C flip amounts to adding and/or deleting i-hyperedges from the sets of i-
hyperedges that cover the x-nodes in the (respectively, four or two) regions defined by
the chosen extremal i-hyperedge(s). We effect these additions and deletions by performing
the appropriate insertions into and deletions from the lists associated with the endpoints
of the flipped i-hyperedge(s). For instance, to flip i-hyperedge (r;, r;), we:

o decrease the multiplicity of (r;,r;) in CW(j) and CCW(7); if this decreases the
multiplicity of the i-hyperedge to 0, then we remove it from the lists;

e insert the i-hyperedge (r;,7;) in CW(z) and CCW(j), in the way described during
the construction of Ry(P).

In addition to performing these additions and deletions, we scan the entire array in order
to:

o tally the (possibly new) maximum local width at each x-node;
 keep track of a (possibly new) critical x-node;

e keep track of the current (possibly new) maximum global width and the “density”

of this width.

At the end of the scan, we use this information to update the global register.

2.3 Validation and Analysis

This section has two goals. First, we verify that our algorithm actually produces an effi-
cient realization of the given communication pattern P, i.e., a realization R(P) satisfying
W(R(P)) £ W(P) + 1, as claimed in Theorem 1. Second, we verify that our algorithm
operates in time polynomial in the size of the pattern P, as claimed in Theorem 1.

A. Algorithm Validation

Our algorithm iterates the following pair of operations, until an execution of the pair
fails to improve the current realization of the given communication pattern P.

1. Select a critical x-node of the current realization.

12



2. Perform a Type-B or Type-C flip (as appropriate) on (an) extremal i-hyperedge(s)
that contain(s) the selected critical x-node.

It then announces that the current realization (before the last flip) is the sought real-
ization R*(P) whose width is within +1 of optimal. In order to validate the operation,
we must prove that the algorithm terminates (so that realization R*(P) exists) and that
realization R*(P) satisfies Theorem 1. We begin with the former task.

Lemma 4 OQur algorithm performs no more than O(nc) Type-B or Type-C flips before
halting.

Proof. Our algorithm “accepts” a Type-B or Type-C flip that transforms the cur-
rent realization Ri(P) to its successor Ri41(P) precisely when the flip either reduces
W(Ri(P)) or keeps it fixed while reducing WD(R«(P)). Since, for any realization R(P),
W(R(P)) < c and WD(R(P)) < n, our algorithm “accepts” no more than O(nc) flips
before encountering its halting criterion. O

Finally, we verify that R*(P) has small width.

Lemma 5 If the last flip performed by our algorithm — the flip that was not “accepted”
— was a Type-B flip, then W(R*(P)) < W(P) + 1. If the last flip was a Type-C flip,
then W(R*(P)) = W(P).

Proof. Since our algorithm performs only Type-B and Type-C flips (and never Type-A
flips), we simplify our argument by verifying that the algorithm never produces any dou-
bly overlapping pairs of i-hyperedges in the course of “improving” successive realizations.
(Otherwise, we would have to argue that it produces only “benign” doubly overlapping
pairs, i.e., ones that do not increase the global width.) This is the task of the next lemma.

Lemma 6 If the ring structure R contains no doubly overlapping pair of i-hyperedges,
" then the same is true for any ring structure R' obtained from R by

e Type-B flipping a singly overlapping left-extremal i-hyperedge and right-eztremal
i-hyperedge for some z-node.

o Type-C flipping an i-hyperedge that is both lefi-extremal and right-extremal for some
z-node.

13



Proof. We present a proof only for Type-B flips, leaving to the reader the similar
argument about Type-C flips.

Focus on a ring structure R that contains no doubly overlapping pair of i-hyperedges.
Let z be an x-node of R, let A be a left-extremal i-hyperedge that contains z, and let p be
a right-extremal i-hyperedge that contains z. Say that we Type-B flip the i-hyperedges
X and p, and, after the flip, the resulting ring structure R’ contains a doubly overlapping
pair of i-hyperedges, call them & = (r;,,r;) and B8 = (r;,,73). Clearly, one of this pair
is the complement of either A or p, or else the double overlap would have existed in ring
structure R. Say, for definiteness, that o is the complement of A. Now, since a and
have double overlap, we know that they have distinct endpoints and that there is a simple
clockwise path in R’ that encounters the nodes 7y, 7;,75,,7; in that order. Since rj
follows 7, in this path, i-hyperedge 8 must contain x-node z, because A does; moreover,
since 7;, follows 7;, in this path, we see that i-hyperedge 3’s clockwise extreme endpoint
goes further clockwise than does A’s (since their endpoints are distinct). This, however,
contradicts the left-extremism of i-hyperedge A. We conclude that i-hyperedge 8 cannot
exist. O

Return to the proof of Lemma 5. We know now that we need consider only Type-B
and Type-C flips. Let us focus, therefore, on the last flip performed by our algorithm.

Assume first that the last performed flip was a Type-B flip. Say that this flip was
performed on realization Ri(P), so that Ri(P) was subsequently announced by the
algorithm to be the desired realization R*(P); say further that the critical x-node chosen
for this final flip was . Recall that a Type-B flip alters the local widths of Ri(P) only
at x-nodes in regions I and III (as depicted in Fig. 3): the flip decreases each x-node’s

local width by 2 in Region III, while increasing each x-node’s local width by 2 in Region
L

Say, for the sake of argument, that each x-node y € OR(z) has W(R(P),y) <
W(Ri(P),z) — 2. Easily then, after the flip, each x-node in Regions I and III will
have local width < W(R,(P)). Since the flip does not alter the local width of any
x-node in Regions II or IV, it follows that either W(Rg41(P)) < W(Ri(P)), or both
W(Ri41(P)) = W(Ri(P)) and WD(Ri41(P)) < WD(Ri(P)). (The former disjunct
occurs when Ri(P)’s only critical x-nodes were in Region III; the latter occurs (without
the former) when R.(P) had critical x-nodes in Region II or Region IV as well as in
Region III.) In other words, if each x-node y € OR(z) had had “small” local width, as
defined above, then the realization Ri41(P) would have improved Ri(P), in the sense
of the disjunctive cost reduction. Since the improvement did not actually occur, we
conclude that at least one x-node y € OR(z) did not have “small” local width.

Focus now on any x-node y € OR(z) for which W(R,(P),y) > W(Rk(P),z) — 2.

14



Since x-node z is critical,

W(R(P),z) = W(Ri(P)).
Since x-nodes z and y are orthogonal, by Lemma 3,
W(Re(P),z) + W(Rx(P),y) < 2W(P).
Finally, by hypothesis,
W(Re(P),y) 2 W(Ri(P),z) — 2.

These three relations combine as follows to verify the Lemma when the “rejected” flip
was of Type B.

V(R (P)) =2 = 2W(Ru(P),z)~-2
W(Rk(P)am) +W(Rk(P)’y)

2W(P).

INIA NI

When the “rejected” flip was of Type C, we can perform an analysis similar to the
preceding one. The major differences are as follows. The single extremal hyperedge now
partitions the ring into two regions; cf. Fig. 4. The flip increases the local widths of
x-nodes in Region I by 1, while it decreases the local widths of x-nodes in Region II by
1. If the Type-C flip with critical x-node flip is “rejected,” then, it is because there is an
x-node y € OR(z) for which W(Rk(P),y) > W(Ri(P),z) — 1. This alters the analysis
from the Type-B case by changing its final chain of relations to:

2W(R*(P)) -1 2W(Ri(P),z) - 1
W(Re(P),z) + W(Ra(P),y)
2W(P).

INIA

Since W(R*(P)) is an integer, this implies that W(R*(P)) = W(P). O

B. Timing Analysis

We consider the constituent tasks of our algorithms in turn and estimate the worst-case
time for each. Say that the input communication pattern P consists of ¢ chords based
on n endpoints.

Creating realization Ro(P). While creating the n-node ring structure that is realiza-
tion Ro(P), we are setting up our algorithm’s system of data structures. We process each
chord x of pattern P as follows; let zo be the x-node that is left exposed in realization
Ro(P), and say that chord x has endpoints r; and r;.

15



1. Select either i-hyperedge (r;,r;) or (r;, ;) to represent chord x, whichever does
not contain x-node zo; say, with no loss of generality, that i-hyperedge (r;,r;) is
selected.

2. Insert (r;,r;) into the lists CW(j) and CCW(7), after all larger i-hyperedges and
before all smaller ones. (If (r;,r;) was already present in a list, just increase its
multiplicity.)

3. Increment the register containing W(Ro(P),z) for each x-node belonging to i-
hyperedge (r;,7;), and update the register containing W(Ro(P)) and WD(R,(P))
appropriately.

For each of pattern P’s ¢ chords: The computation that implements Step 1 takes time
O(1). The computation that implements Step 2 takes time O(1) to access the desired
lists within the array and time O(n) to scan the lists in order to perform the insertion.
Step 3 takes time O(n) to scan the array updating local widths and time O(1) to update
the global register following each local update. Hence, within our framework, one can
create realization Ro(P) in time O(nc).

Selecting a critical x-node. Since this selection involves just accessing a register, it
takes time O(1).

Selecting extremal i-hyperedges. Selecting each extremal i-hyperedge involves scan-
ning some portion of the array and testing the first element of either the CW or CCW list
at each scanned array entry (to determine if the tested hyperedge contains the selected
critical x-node). The scan takes time O(n); the testing takes time O(1).

Performing a Type-B or Type-C flip. Since performing a Type-B flip takes precisely
twice the number of steps as performing a Type-C flip, we analyze only the former
operation. Once having selected extremal i-hyperedges, performing a Type-B flip entails:

1. removing the extremal i-hyperedges from the lists they resided in,
2. inserting the complementary i-hyperedges into the “complementary” lists,

3. scanning the array to adjust the local widths of each x-node in accord with the
added and deleted i-hyperedges,

4. updating the global width and width density in accord with the changes in the local
widths.

Step 1 takes time O(1). Steps 2 and 3 take time O(n) each. Step 4 takes time O(1) for

each execution of step 3. Hence, performing a Type-B flip takes time O(n); performing
a Type-C flip takes roughly half the time of a Type-B flip.

16



Testing for improved cost. The new global width and width-density are computed
while updating the array during the Type-B or Type-C flip. Thus, the algorithm needs
only compare the old contents of the global width register and width-density register with
the new contents in order to determine if the latest flip yields an improved realization.
This determination thus takes time O(1).

The grand total. Since one constructs the initial realization Ro(P) just once, and since
one iterates the select-flip-decide sequence only O(nc) times (cf. Lemma 4), the entire
process of finding an almost-optimal realization of communication pattern P takes time

O(n?c).

ACKNOWLEDGMENTS. We are grateful to Shimon Even for helpful conversations.
The research of A. L. Rosenberg was supported in part by NSF Grant CCR-92-21785.

After completing the research described here, we learned, via private communication,
that Noga Alon and Paul Seymour have a nonconstructive proof of the polynomial-time
solvability of some variant of the problem of optimally realizing a given communication
pattern. We have not seen any details of their work, which we believe has not been
written up.

References

[1] G. Bilardi and F.P. Preparata (1993): Horizons of parallel computation. Symp. for the
25th Anniversary of INRIA. Lecture Notes in Computer Science 653, Springer-Verlag,
N.Y., 1992, 155-174.

[2] R. Cohen (1993): One-bit delay in ring networks. IEEE Trans. Comp. 42, 735-737.

(3] P. Fraigniaud, S. Miguet, Y. Robert (1990): Complexity of scattering on a ring of
processors. Parallel Computing 13, 377-383.

[4] M.R. Garey, D.S. Johnson, G.L. Miller, C.H. Papadimitriou (1980): The complexity
of coloring circular arcs and chords. SIAM J. Algebr. Discr. Meth. 1, 216-227.

[5] J. Hromkovi¢, V. Miiller, O. Sykora, I. Vrto (1992): On embedding interconnection
networks into rings of processors. PARLE ’92. Lecture Notes in Computer Science,
Springer-Verlag, Berlin.

[6] S.L. Johnsson and C.-T. Ho (1989): Optimum broadcasting and personalized com-
munication in hypercubes. IEEE Trans. Comp. 38, 1249-1268.

17



[7) S. Miguet and Y. Robert (1990): Path planning on a ring of processors. Intl. J.
Computer Math. 32, 61-74.

[8] A.L. Rosenberg (1984): On designing fault-tolerant VSLI processor arrays. In Ad-
vances in Computing Research 2 (F.P. Preparata, ed.) JAI Press, Greenwich, CT,
181-204.

[9] A.L. Rosenberg (1989): Interval hypergraphs. In Graphs and Algorithms (R.B.
Richter, ed.) Contemporary Mathematics 89, Amer. Math. Soc., 27-44.

|10] Y. Saad and M.H. Schultz (1989): Data communication in parallel architectures.
Parallel Computing 11, 131-150.

[11] Q.F. Stout and B. Wagar (1990): Intensive hypercube communication, I: prear-

ranged communication in link-bound machines. J. Parallel Distr. Comput. 10, 167-
181.

18



