ACCESSING EXTRA DATABASE INFORMATION:
CONCURRENCY CONTROL AND CORRECTNESS

N. GEHANI, K. RAMAMRITHAM, and O. SHMUELI
CMPSCI Technical Report 93-81

Accessing Extra Database Information:
Concurrency Control and Correctness

Narain Gehani Krithi Ramamritham* Oded Shmuelit

AT&T Bell Laboratories University of Massachusetts AT&T Bell Laboratories
nhgQ@research.att.com krithi@nirvan.cs.umass.edu oshmu@cs.technion.ac.il
August 1993
Abstract

Traditional concurrency control theory views transactions in terms of read and write oper-
ations on database items. Thus, the effects of accessing non-database entities, such as the
system clock or the log, on a transaction’s behavior are not explicitly considered. In this
paper, we are motivated by a desire to include accesses to such eztra-data items within the
purview of transaction and database correctness. We provide a formal treatment of con-
currency control when transactions are allowed access to extra data by discussing the inter-
transaction dependencies that are induced when transactions access extra data. We also
develop a spectrum of correctness criteria that apply when such transactions are considered.
Furthermore, we show that allowing databases to view data which has been traditionally
kept hidden from users increases the database functionality and in many cases can lead to
improved performance.

*partially supported by the National Science Foundation under grant IRI-9109210.
t Author’s current affiliation: Technion - Israel Institute of Technology.

Contents

1

2

Introduction 1
Extra Data: Characteristics and Examples 2
2.1 Characteristics of Extradata. 2
2.2 Examplesofextradata 4
Preliminaries and Definitions 5
3.1 Operations, Events, and Histories 6
3.2 Conflicts between Operations 6
3.3 Serializability 7
3.4 Extra-data Independent Transactions 8
Correctness Notions when Transactions Access Extra data 11
Concrete Examples of Extra Data with varying Correctness Requirements 13
5.1 Serializable Accesses to the Extended Database- with Extra-Data Indepen-

dent Transactions 13
5.2 Serializable Accesses to the Extended Database 15
5.3 Serializable Accesses to the Database — with Extra-Data Independent Trans-

actions 18
5.4 Serializable Accesses to the Database 22
Other (Application-Specific) Correctness Notions 24
Discussion 25

1 Introduction

Traditional concurrency control theory views transactions in terms of reads and writes on
database items. Our goal in this paper is to examine the concurrency and correctness issues
that arise when we take into consideration all the data that is used or can be used by
transactions, not just what is in the database. Roughly speaking, “extra data” means useful
information that is not part of the enterprise’s database schema, but is nevertheless useful
and may affect what ultimately appears in the “proper database”. Such data lives in the
shaded zone between the database and the application software; it is our goal to shed some
light on its use and ensewing implications.

Thus, for example, we are concerned with data that has always been accessed by trans-
actions but not included traditionally in serializability theory, e.g., the system clock, com-
munication channels, and scratch-pads. We also examine information that can be useful for
transactions, such as those that are maintained by lock and recovery managers, e.g., the
log and information about transactions waiting for locks (some systems already allow log
access for tuning and control purposes). Allowing databases to view such data, namely “ex-
tra data”, can increase database functionality and can lead to improved performance. For
example, users can pose queries that could not be asked before. Also, with access to data
such as the predicted behavior of other transactions (e.g., their expected execution times or
data access patterns) and transaction management information (e.g., the number of trans-
actions waiting to perform operations on a particular object) transactions can be designed
for improved performance.

We elaborate on the benefits of accessing extra data by (1) showing that there are in fact
a number of instances where extra data can be viewed and manipulated as first-class data
items; (2) examining the properties of such extra data from the viewpoint of the transactions
and their correctness; and (3) providing a formal treatment of concurrency control when
transactions are allowed access to extra data.

We use the term database with its traditional meaning and use the term eztended database
to refer to the database plus the extra-data objects. We introduce an important new concept,
that of extra-data independent transactions. Such transactions, intuitively, perform correct
database state transitions (in the conventional sense) despite their extra-data accesses. We
treat two main correctness requirements: (1) serializability over the extended database and
(2) serializability only over the database. We analyze four combinations by considering extra-
data independent transactions and extra-data dependent transactions in conjunction with
these two correctness requirements. For each such combination we illustrate its usefulness
and flexibility in achieving user’s goals. This analysis sheds light on the role, usefulness and
pitfalls in using extra data.

In many databases, in accordance with protection and security considerations, transac-

tions are allowed access to data on a need-to-know basis. Clearly, when transactions are
allowed access to information that is usually within the purview of the transaction man-
agement system the protection and security ramifications of such accesses must also be
examined. This, however, is outside the scope of this paper.

The rest of the paper is organized as follows. Several examples of using extra data
and a discussion of their characteristics can be found in Section 2. A brief introduction to
the formalism used to describe the properties of extra data and discuss the correctness of
transactions using extra data is given in Section 3. The different correctness notions are
discussed in Section 4. Section 5 provides details of these correctness notions and illustrates
them via concrete .examples. Section 6 contains a discussion of relaxed correctness notions
applicable to extra data. Section 7 summarizes the paper and discusses the outstanding
issues.

2 Extra Data: Characteristics and Examples

In this section we first give an informal definition of extra data and discuss the characteristics
of extra data. Motivation for letting transactions access extra data is also provided via
several examples which show that potential for improvement in functionality exists when
transactions are allowed access to extra data. |

2.1 Characteristics of Extra data

Extra data can be defined as data that is typically not considered to be part of the database.
Extra data can be classified into four categories:

1. Data values modified by some entity outside the database system. The system clock
is a prime example of this.

2. Data values modified by the transaction management system in response to some
request initiated by a transaction. Information about waiting transactions, concurrency
control information such as the serialization graph, and the log are examples here.

3. Data values pertaining to (and modified by) the transactions themselves. Estimates of
a transaction’s (remaining) execution time and data requirements are examples.

4. Data private to a specific set of transactions. A scratch pad used by a set of cooperating
transactions to coordinate their activities is an example of this case.

Figure 1 gives a pictorial characterization of the components of an extended database. The
shaded area denotes the extra data. Note that not all data in the first two categories may be

information modified by entities

database objects

Figure 1: The Extended Database

considered as extra data since only those that can be accessed by transactions are considered
to be extra data. It is important to note that unlike database items, extra-data items may not
be persistent and may not be ezclusively accessed (read and updated) by user transactions.

Clearly, updates to a particular type of extra data will be restricted based on the type. For
instance, whereas no transaction can update “system updated” or “transaction-management
updated” extra data, a transaction might be allowed to update extra data pertaining to itself
and not others. These observations have certain important implications for concurrency
control. For instance, whereas it may be possible to delay the writing of extra-data items
belonging to categories (2) and (3) for concurrency control reasons, this is not possible
for extra-data items in category (1). Such delays must be carefully evaluated for their
effects on other transactions. For instance, if transactions’ commitment or abortion could be
delayed (for correctness reasons) purely because of their access to extra data, performance
can degrade. Thus, it is important to weigh the pros and cons of transactions’ access to
extra data before their use is permitted in general. Our goal in this paper however is to
understand the concurrency control and correctness issues related to such accesses to extra
data since in reality transactions do access data outside the database.

Given a database system that allows transactions to access extra data, the fdllowing
additional questions become relevant:

e What are the operations defined on extra-data objects?

e What are the semantics of these operations? In particular, how do the semantics of the
operations defined on an object affect the transactions that invoke these operations?

o What are the correctness requirements imposed on the transactions when they access
these extra-data objects. We will focus on two types of correctness-related issues
corresponding, respectively, to what is referred to as safety and liveness in concurrent

systems:

— When transactions are allowed to access extra data, what type of guarantees can
be provided about the values returned by transactions and about the state of the
database when they terminate?

— When transactions access extra data, will it affect their liveness, namely, termi-
nation, properties?
Under normal circumstances, every transaction will terminate, i.e., abort or com-
mit. Clearly, this must be preserved even when they access extra data.

These questions are answered in the following sections.

2.2 Examples of extra data

o The System Log. Traditional database systems hide recovery data from the user. Elim-
inating this restriction, that is, storing such data as just another object that can be
accessed by any user has many benefits [11, 4]. Users can pose queries on the log
that cannot be specified in traditional database systems and queries that were not
envisioned by the system designers. For example, (1) Find all users issuing transac-
tions that changed item z between Jan 1, 1993 and Jan 31, 1993. (2) What types of
transactions are most likely to run on the last business day of the month?

o Predicted Transaction behavior.

~ Knouwledge of the set of possible values a transaction will write to a data item. If
a transaction knows the set of possible values it will write to a data item, then
it can proclaim this to other transactions, which may be in a position to proceed
without waiting for this transaction to relinquish its lock 6].

— Estimate of ezecution time and data requirements of transactions. These will
be useful for dealing with transactions in real-time database systems [9]. For
example, if it is possible for a transaction to realize that enough time is not
available to execute a transaction, or that a feasible schedule is not possible, it
could instead invoke an alternative, with a lower computational requirement.

° Concurrency status of data items. Knowing how many transactions are waiting to
access a data item will allow a transaction to consider alternatives that are likely to
reduce its response time.

o Information about waiting transactions. In conjunction with the previous item, access
to information about waiting transactions can avoid /prevent deadlocks. For example,
a transaction can check before it performs an operation on a data item whether or not
the operation can proceed without delay. If not, and if the transaction is willing to
wait, it will check for possible deadlocks among waiting transactions and if a deadlock
is possible, the transaction can take alternative actions.

o The system clock. Many transactions possess functionality that depends on the time at
which they execute. Examples occur in business applications and in real-time systems.

¢ Limited information sharing. Consider two transactions, executing on behalf of two
designers who cooperate while making changes to a design object. They maintain a
scratch-pad in which they keep notes about changes made by each. A designer makes
an intended change only if the other has not already made it. This scratch pad is
accessible only by these designers and is not part of the database, i.e., it can be seen
as an extra-data object.

As the above examples illustrate, both the control flow within a transaction as well as a trans-
action’s data manipulation properties may be modified by the extra-data accesses. What
a transaction is allowed to do with the extra data that it reads depends on the correctness
requirements imposed on the transactions. For instance, they can use it to optimize their
actions — but we may require that the semantics of the transformation performed by the
transaction be independent of the resulting behavior. More liberal is the case where trans-
actions are allowed to make changes to the database that depend on the values of the extra
data, i.e., the database transformation will depend upon the value of the extra data. Of
interest here is the repeatability of the transaction in spite of its access to extra data and
the relationship of the execution that accesses extra data and the one that does not. We
discuss these issues in detail in subsequent sections.

3 Preliminaries and Definitions

In this section we introduce a simple formalism based on the ACTA transaction framework
[2]. We also define some of the terms used in the rest of the paper. '
Without loss of generality, we assume an object-oriented database: the database is a
collection of objects and objects are accessed via database operations.
A transaction accesses and manipulates objects in the extended database, i.e., objects
in the database as well as extra-data objects, by invoking operations specific to individual
objects.

3.1 Operations, Events, and Histories

It is assumed that operations are atomic and that an operation always produces an output
(return value), that is, it has an outcome (condition code) or a result. The result of an
operation on an object depends on the current state of the object. For a given state s of an
object, we use return(s,p) to denote the output produced by operation p, and state(s, p) to
denote the state produced after the execution of p.

DEFINITION 3.1: Invocation of an operation on an object is termed an object event.
The type of an object defines the object events that pertain to it. We use pg[ob] to
denote the object event corresponding to the invocation of the operation p on object ob
by transaction ¢ (for simplicity of exposition assume that a transaction does not contain
multiple p’s).

When “what the ob is” is clear, we will simply say p;. pe(val) is used to denote op
that either takes in val as input or produces val as output.

DEFINITION 3.2: A history is a partially ordered set of events invoked by transactions.
Thus, object events and transaction management events are both part of the history H.
The set of events invoked by a transaction ¢ is a partial order denoting the temporal
order in which the related events occur in the history. The transaction’s partial order is
consistent with the history’s partial order.

We write (e € H) to indicate that the event € occurs in the history H. — denotes
precedence ordering in the history H and => denotes logical implication.

3.2 Conflicts between Operations

DEFINITION 3.3: Let H(*®) denote the projection of the history with respect to the
operations on ob. ! Two operations p and q on an object ob conflict in a state produced

by H(®®, denoted by conflict(H(®, p, q), if
(state(H® op, q) # state(H™ogq, p)) Vv
(return(H("b), q) # (return(H® op, q) Vv
(retum(H("b), p) # (return(H® ogq, p)

Two operations that do not conflict are called compatible.

1H(®) = p; 0 pj 0... 0 py, indicates both the order of execution of the operations, (p; precedes p;;;),
as well as the functional composition of operations. Thus, a state s of an object produced by a sequence
of operations equals the state produced by applying the history H{(°®) corresponding to the sequence of
operations on the object’s initial state so(s = state(so, H(®®))). For brevity, we will use H(®) to denote the
state of an object produced by H(%), implicitly assuming initial state so.

(o denotes functional composition.) Thus, two operations conflict if their effects on the state
of an object are not independent of their execution order (first clause) or their return values
are not independent of their execution order (second and third clauses). Operations p and
q are said to conflict on object ob, denoted con flict(ob, p, q) if there exists a history H such
that conflict{ H*), p, q).

The notion of conflict will be used to define different types of correctness when transac-
tions access data as well as extra data concurrently.

3.3 Serializability

In traditional databases, serializability and, in particular, conflict serializability, is the well-
accepted criterion for correctness. We first define serializability formally since it forms the
basis for the correctness notions discussed here.

Let C be the conflict (binary) relation on transactions in 7", where 7 is the set of
transactions in the history.

DEFINITION 3.4: Vi,t; € T b #t,
(t; C t;)if Job Ip,q (canflict(ob,pt‘.,qg’.) A (pe;[0b] — g¢;[0b])).

The C relation captures the fact that two transactions have invoked conflicting operations
on the same object and the order in which they have invoked the conflicting operations.
Consequently, the C relation captures direct conflicts between transactions in a history
which affect their serialization order. The fact that a serialization order is acyclic is stated
by requiring that there be no cycles in the C relation. All this is formalized below.

DEFINITION 3.5: H, the history of events relating to transactions in T, is (conflict)
serializable iff Vt € T,-(t C*t) where C* is the transitive-closure of C.

Suppose t; has done a write and then ¢; does a read. Then, (¢; C ¢;). Also, given the
semantics of read and write, and if we desire failure atomicity, then if ¢; aborts then ¢; must
also abort. That is, ¢; has an abort dependency [2] on ¢;. Thus, abort dependencies between
transactions may also form due to conflicting operations.

As mentioned earlier, an application may desire correctness properties that are weaker
than serializability when an extended database is used. A discussion of such correctnes
properties can be found in [8]. Since, in this paper, we will be making use of set-wise
serializability, we define it in this section. Set-wise serializability has been proposed as a
correctness criterion for concurrency control in databases that are partitioned into different
sets of objects and consistency constraints are supposed to hold among objects in a given
set.

For k=1,...,k, let D C DB, where DB is the set of items comprising the database,
and let Ci be a binary relation on transactions in 7. Let H be the history of events invoked
by transactions in 7.

DEFINITION 3.6: Vee{l ... a}l,Vi,t; € T, ti #t,
(t: Ci t;) if Job € Dy 3p, q (conflict(ob, pe;[0b], ge;[0b]) A (pes 0] — ge;[0B])).

Thus, C; is C applied to a particular Dy.
DEFINITION 3.7: H is set-wise serializable if Vi€ T ,VDi ,1< k<n ,-(tC; t).

In [10], each Dy is said to be an atomic data set. For the purposes of this paper, given an
extended database, we can consider (1) the extended database to form a single atomic data
set or (2) the database to form one atomic data set and all the extra-data items to form
another atomic data set. That is, in (2), a cycle of C relationships formed by accesses to
the database as well as by accesses to extra data will be ignored since only C} needs to be
acyclic where C,, pertains either to the database or to the extra data.

3.4 Extra-data Independent Transactions

A transaction is a program that may access the extended database. The reading and writing
of extra data may in principle affect both the operations that transaction T' performs while
executing as well as its flow of control.

Consider a projection of the history containing only the operations defined on the database
items. An execution history involving extra data is database serializable if this projection
of the history is (conflict) serializable. By focusing on just this projection, the accesses to
the extra-data items are viewed as accesses to local variables. Consider a transaction T that
may access extra data.

DEFINITION 3.8: A conventional transaction is one that does not access extra-data
items.

DEFINITION 3.9: Transaction T is said to be eztra-data independent if there exists a
conventional transaction T” satisfying the following condition: for all database serializable
histories in which T' participates?, T' can be replaced by 7 in the serial history so that
T’ performs the same transformation to the database in the serial history as performed
by T.

?Recall that we use the term eztended database when we want to refer to the database plus the extra-data
items.

Observe that if T is extra-data independent then, when applied to a database state s, it yields
exactly what 7" yields when applied to s (here the history consists of a single transaction). If
T is extra-data independent then, as far as the serializability of the changes to the database
is concerned, we can think of the actual transaction T as a “surrogate” for T". If an execution
involving T is serializable then by substituting T” for T, in a serialization order, we obtain
a serial history with the same effect on the database state.

Henceforth, we refer to any 7" according to the above definition for T, as equiv(T). (In
general there may be a number of such T"s, for our purposes they are all equivalent.) A
transaction T' which is not extra-data independent, is called eztra-data dependent.

Let us consider a simple example to clarify the notion of extra-data independence. Sup-
pose a transaction is invoked to make a single car rental reservation. It chooses among car
companies based on the anticipated delay due to waits. The transaction uses extra data as
control information to find the path with the shortest waiting time:

trans {
car_rental avis = get_oid("avis");
car_rental hertz = get_oid("hertz");

if (num_waiting_read_write(avis) < num_waiting_read_vrite(hertz))
hertz->reserve(...);

else
avis->reserve(...);

}

This is an example of a transaction that is not extra-data independent: either an Avis car
is reserved or a Hertz car is reserved.

Consider a transaction invoked on behalf of another user who intends to reserve an Avis
car in Los Angeles and a Hertz car in Houston. The following transaction accomplishes this

while attempting to minimize the waiting time.

trans { _
car_rental avis = get_oid("avis");
car_rental hertz = get_oid("hertz");

if (num_waiting_read_write(avis) > num_waiting_read_write(hertz))
hertz->reserve(...); avis->reserve(...);

else
avigs->reserve(...); hertz->reserve(...);

}

This transaction is an extra-data independent transaction that is equivalent to the following
transaction that does not access extra data.

trans {
car_rental avis = get_oid("avis");
car_rental hertz = get_oid("hertz");

avis->reserve(...); hertz->reserve(...);

}

Consider a database serializable history where all transactions are extra-data indepen-
dent. In running the origfnal transactions serially, extra data may be different or may not
exist, which could lead to a change of control flow and/or values written. But, substituting
equiv(T') for each T isolates the important facets of the execution, namely its effect on the
database state, from other facets as embodied in extra data.

Given a transaction (program) T, it is undecidable whether an equiv(T) exists. So, we
cannot delegate the task of verifying the existence of equiv(T) to an automatic tool. An
alternative is to have the user supply equiv(T) and an equivalence proof. This is similar
to having the user certify a transaction as doing a “correct” state transformation in the
traditional formulation of concurrency control theory.

We now discuss some practical aspects of constructing extra-data independent transac-
tions:

e Divide transactions into two categories: transactions that read and write database
objects only, and those that read and write extra data and read database objects.
Clearly, such transactions are all extra-data independent.

® As alittle more interesting case, categorize as follows: transactions that read and write
database objects but are allowed to write extra data, and transactions that read or
write the extra data and read database objects. Here again, all the transactions are
extra-data independent.

o Allow any transaction to read and write extra data. If values read from extra data
affect the final writes of a transaction, then the transaction may not be extra-data
independent. Using data flow analysis, we can verify that extra-data information
does not propagate into the database. Then, the only effect extra data may have

10

on a transaction is manifested through flow of control. To make a transaction extra-
data independent, construct the transaction so the effect on the database js the same
regardless of the flow of control.

4 Correctness Notions when Transactions Access Ex-
tra data

It should be obvious by now that different types of correctness notions can be applied in the
context of extra data. In this section, we discuss several such correctness notions. The next
section illustrates them with concrete examples of extra data.

Recall that we are interested in serializability as the correctness criterion with respect to
the data. We may desire serializability w.r.t. accesses (a) to data in the extended database
or (b) to data just in the database. By serializability with respect to just the database data
we mean set-wise serializability with the only set of interest being the set of data items in
the database. Intuitively, it says that if the actual transactions are run serially and whenever
an extra-data access is performed in this serial execution the same values as in the actual
execution are “magically” supplied, then transactions will produce the same final database
state as in the actual execution.

With regard to the transactions, (a) transactions may be required to be extra-data inde-

pendent or (b) transactions could be extra-data dependent. Thus we are led to four possible
combinations of serializability-based correctness requirements:

1. Achieve serializability of accesses to the extended database. Also, the transactions
must be extra-data independent.
Given our definitions in Section 3, this implies that we should consider conflicts over
database objects as well as over extra-data objects and ensure that the induced C
relation is acyclic. In addition, the effects on the database will be as though the
transactions did not access any extra-data object. |
It is important to understand the implications of this correctness property. The fact
that transactions are extra-data independent implies that they behave — with respect
to changes to the database — as though they did not even access the extra data.
Serializability of all transactions, especially those that view just the extra data 1mphes
that these observe the extra data as any serial “observer” would.

2. Achieve serializability of accesses to the extended database.
We need to just ensure that the induced C relations are acyclic.

The removal of the extra-data independence requirement for transactions implies that
the transactions may produce results that reflect the fact that they accessed extra

11

data. As an example, consider a transaction that updates account balances with the
day’s deposits and withdrawals. Also, it reads the calendar and adds the interest for
the month to the balances only if it happens to be the last day of the month.

. Achieve serializability of accesses to (just the objects in) the database. Also, the
transactions must be extra-data independent.

This requires the C relations due to conflicting operations on the database objects
to be acyclic. That is, the database is one of the two atomic data sets in the system,
the other formed by the extra-data objects. Serializability is the correctness criterion
applicable to the former. In addition, the effects on the database are required to be as
though the transactions did not access any extra-data object.

One of the implications of this correctness criterion is that an observer of extra data
may not produce serializable results since conflicts over accesses to extra data are not
considered in determining the acyclicity of C relations. These results should be taken
just as “hints”. However, all changes to the database are as though the transactions
producing the changes never accessed any extra data.

. Achieve serializability of accesses to the database.

In contrast with the previous correctness requirement, transactions need not be extra-
data independent.

Here changes to the database may depend on the transactions’ accesses to extra data.
Note that since the extra-data conflicts are not considered in determining which trans-
actions conflict, transactions may produce database changes that are affected by extra-
data accesses. That is, this correctness criterion does not guarantee consistency of the
database. This is because values written to items in the database may depend on the
values of extra data read by transactions.

We now show what are the concurrency implications of the above correctness criteria.

Note that the larger the number of histories considered acceptable by a given correctness
criterion, the more the potential for improving performance.

Theorem: Let H; denote the set of histories considered to be correct according to

correctness criterion i. Then, (H; C H; C H,) A (H, C Hs C Hy)

Proof. (Hy C H,) as any history qualifying under H; would qualify under H,, as H,

does not require that transactions be extra-data independent. The reasoning is identical
for (H3 C H,). (Hy C Ha) as both deal with extra-data independent transactions, but H;

requires serializability to apply to the extended database whereas Hj only to the database.
(H, € H,) for identical reasons.

H, and Hj are not comparable. We prove this by first giving an example of a history

that is in Hj but not in H, and vice versa.

12

Consider a database containing one data item z and one extra-data item y, both of type
integer. Let R; (W;) denote a read (write) operation by transaction . Let transactions ¢;,
1= 1,2, execute the following transaction text:

2 = R(y);
y=4% (W(y))
11 = R(z);

z=X+1; (W(z))

[1 and {2 are local variables. Consider the following history:

H = Ry(y); Ra(y); Wa(y); Wi(y); Ru(z); Wi(z); Ra(z); Wa(z);
Here, H is in Hz but not in H,. This is because H is serializable over the database but
not over the extended database. Also, both transactions are extra-data independent, they
increment z regardless of the value of y.

Let us change ¢;, 1 = 1,2, to be:

12 = R(y);
l1 = R(z);
z=Y, (W(=))
y =1 (W(y))

Consider the following history:
H' = Ri(y); Ru(z); Wi(z); Wi(y); Ra(y); Ra(z); Wa(=); Wa(y);
Here H' is in H; but not in Hz. This is because H' is serializable over the extended database

(it is actually serial) and transactions are extra-data dependent. End Proof

5 Concrete Examples of Extra Data with varying Cor-
rectness Requirements

In this section we discuss in detail each of the correctness notions introduced in the last
section, providing concrete examples of extra data for which these correctness notions are
applicable.

5.1 Serializable Accesses to the Extended Database— with Extra-
Data Independent Transactions

Here, we require transactions to be extra-data independent. To ensure serializability over
accesses to the objects in the extended database, we must consider the conflicts resulting
from accesses to both the data and the extra data.

13

Consider a transaction ¢’ which performs operations op;, ops, and ops, in sequence, on
each data item in a set D. We now show how ¢’ can be implemented as a transaction ¢ which
uses extra-data items in such a way that it has the potential for better performance in a
parallel environment. That is, ¢’ will be equiv(t).

t consists of three (sub)transactions ¢y, t;, and t3. ¢; performs op,, t; performs op; and
ts performs ops. t,, ta, and t3 operate in a pipelined fashion, i.e., after ¢; does op, on a
data item d, ¢; does op; on d and then ¢3 does ops on d. Proper control of the transactions’
actions is achieved via work queues ¢; and g, which are extra-data items. ¢, inserts the id of
the data item on which it just completed op, into g;. ¢; deletes the id in the front of queue
1 and after doing op;, it inserts the id into g;. ¢3 removes an id from g; and performs ops on
the corresponding data item. When g¢; and g, are empty and t,, 3, and ¢3 have completed
their ongoing operations, they all commit together. If any of them aborts, all abort.

Transaction ¢, consisting of t,, t;, and ¢3, has the same effect as ¢/, with respect to opera-
tions on D. That is, ¢ is extra-data independent and ¢ is equiv(t). Also, the following axiom
suffices to show that interactions over the extra-data items ¢, and g, are also serializable
where the serialization order is ¢,, ¢, ¢s.

(t,‘ C tj)) if:
Jk(insert,, (k) — remove,,(k)).

This states that ¢; must remove id k only after it is inserted by some ¢; and (hence) ¢;
should precede ¢; in the serialization order.

What this example shows is that it is possible to realize a given transaction in such a way
that even though the implementation uses extra-data items, its behavior with respect to
the rest of the transactions and the effect on the database will be the same as the original
transaction. The motivation here is to rewrite the transactions in a way that allows us to
execute components of the transactions in parallel thereby improving the performance of the
system. The queues allow the transaction components to synchronize their activities so as
to achieve the desired functionality.

Another example of extra-data independent transactions producing serializable access to
the extended database occurs in the multi-database concurrency control scheme proposed
in [3]. Here, to ensure the serializability of transactions that access multiple (autonomous)
database sites, the following scheme is used. Every site has a special “ticket” that all gloBal
transactions that visit the database at that site are expected to read and write. In this case,
the ticket is the extra-data item. The global database serialization order that results is the
same as the order in which this ticket is visited by the transactions and so serializability is
achieved over the extended database. Also, since what each transaction does is not affected
by the value of the ticket, the transactions are extra-data independent.

14

5.2 Serializable Accesses to the Extended Database

Here we remove the extra-data independence requirement imposed on transactions. For con-
creteness, we consider the database log as an exa.niple of extra data which can be accessed
by transactions in the course of their execution [4]. Both committing and aborting transac-
tions write log records. Transactions can also read the log to perform queries. We require
serializability of all the data items in the extended database, in this case, the database plus
the log.

Let us assume that the commitment or abortion 3 of a transaction results in the writing of
a single log item containing all the relevant information about the transaction. Conceptually,
the log can be considered as a linear object that grows in one direction. Each item in the
log has an id (its LSN; i.e. log sequence number).

append,, (k) denotes the appending of a log item pertaining to transaction t;; when the
operation completes, the id of the appended log item is in k. The value of k is one larger
than the id of the previously appended log item.

ready,(k) denotes the read operation on log item & by transaction ¢;; this item should
already exist in the log for the read to be successful. Otherwise, the read fails.

last(k) can be used to determine the id of the last item in the log. This id will be in &
when last completes.

Given this, the following axioms state the properties of these operations in terms of their
effects on the resulting C relationships. Specifically, V t;,t; t; # t; (¢ C ¢;) if:

1. 3 k, k' (append,; (k) — append,,(k'))

Since both aborting transactions and committing transactions write to the log, trans-
actions append to the log in the same order in which they commit or abort. Also,
every transaction, once it begins execution, will commit or abort. Thus, when a trans-
action ¢; appends an entry into the log, a transaction ¢; that has not yet committed
or aborted, i.e., ¢; is a transaction in progress, will write its log entry after ¢;’s entry;
Since t; updates the queue after ¢; updates it, (¢; C ;) , that is, ¢; must appear after
t; in the serialization order.

2. 3 k (append,;(k) — read,;(k))
This states that if ¢; reads log record k, the read should occur after the write of record
k by some ¢;.

3. 3 k (appendy; (k) — last,,(k))

3Transactions can abort for one of many reasons, including unilateral aborts.

15

This states that if ¢;, via the last operation, “knows” that the last log record to be
written was the k*? record (written by transaction ¢;) then transaction ¢; should precede

t; in the serialization order.

4. 3k, K lasty(k)) — (append,;(¥')

A transaction ¢; that has not yet committed or aborted when a transaction ¢; performs
the last operation will write its log entry after ¢; executes last. That is, ¢; observes the
queue before ¢; updates it and hence ¢; will have to follow ¢; in the C ordering.

The four conditions define the C relationships, i.e., the serialization ordering require-
ments induced by transactions’ read, last, and append operations on the log. For each
operation, the axioms consider the order of occurrence of the other operations that produce
serialization ordering requirements.

Given that C relationships result not only from the invocation of operations by trans-
actions on database objects but also from the invocation of operations on the log objects,
the system should make sure that the acyclicity of the C* relation is an invariant. This is
the safety-related correctness property that must be satisfied usually, and is still the case
when accesses to the log are considered. The practical implication of the above axioms on
transaction management is the following: When an operation is performed on the log, the
system must note the C relationships induced by the operation, in light of the above axioms,
and must ensure that the C relation is acyclic.

Here are additional correctness requirements imposed on read and last operations:

o ready (k) € H = 3t; # t; (appendy;(k) — read,;(k)))
This states that ¢; reads log record k after the write of record k by some ¢;.

o lasty(k) € H = 3t; # t; (appendy; (k) — lasty,(k)).

This states that if the last operation executed by t; returns k, then the k** record
should have been written by some transaction ;.

Traditionally, cyclic C relations can be handled through transaction abortions. But
with transactions being able to access the log, we must now worry about the liveness of
the transactions because aborting and committing transactions that access the log form C

relationships which must not create cycles. The following theorem allays any fears in this
regard.

We assume here that the changes done by a transaction can be undone upon its abort

without forming further C relationships. This is a valid assumption if transactions perform
read and write operations on data [1].

16

Theorem: Given a set of existing C relationships, it is always possible to force trans-
actions’ operations including those on the log to occur in an order such that C* will be
acyclic.

Proof. We will show that the theorem holds by considering each of the three operations.

Let us consider a transaction ¢; that desires to terminate (commit/abort), i.e., append
to the log. If no cycles exist in the current set of C relationships and ¢;’s termination
will not cause a cycle due to the additional C relationships caused by the axioms, then ¢;
can terminate. Otherwise, there is a topological sort of the transactions which conforms to
the current C relation and there is a transaction ¢, which has no predecessor in this sort.
Since transaction ¢; desires to terminate, we should make sure that all its predecessors in the
sort have also terminated. In turn, these predecessors may have predecessors that need be
terminated, and so on recursively. This recursion stops with ¢;. We can simply run ¢; until
completion (if no tx C t;, k > 1, relationship will be formed - it may be formed only due
to data contention) or abort ¢;. Then, we can treat ¢, in the same way, and so on. So, we
know that there is a way to achieve the termination of some arbitrary ¢;.

Now suppose t; desires to perform a read operation on the log. If the read is successful,
according to axiom 2, it should be serialized after the transaction, ¢;, that wrote the log item.
Since ¢; has already terminated (and that is why this record is in the log) this serialization
ordering requirement is automatically satisfied. Suppose the read is not successful and so ¢;
has to abort. From what we said in the previous paragraph, this abortion will be successful.

Finally, suppose that ¢; desires to perform a last operation. Suppose last returns k. The
transaction ¢; that wrote the k*» log record must be serialized before t;, as per axiom 3.
Since t; has already committed this is automatically satisfied. End proof.

We will show now that, in practice, it might be better to “look ahead” at (known) future
C relationships to reduce the number of abortions caused by cycles in the C relation. Consider
the following scenario. Suppose (t; C ¢;) already exists. (For example, ¢; does a write of
some object in the database and then ¢; does a read. If ¢t; aborts (for some reason) then
since we require failure atomicity, ¢; must also abort. (See Section 3.)) Suppose t; performs
the last operation and ¢; is yet to terminate. That is, ¢; will perform an append operation
later, and hence, by axiom 4 will produce (¢; C ¢;). Thus, if we wait until ¢;'s append to
notice the cycle, the only way to break the cycle then is to abort £;. But instead, given
axiom 4, if we had allowed ¢; to perform last only after t; terminates, then we could have
perhaps committed both ¢; and ¢;. Thus, in general, ensuring that there are no C cycles can
be achieved by delaying operations whenever possible.

Also, as the following example shows, in some situations, forcing the abortion of prede-
* cessors in the C relation (to allow a transaction ¢; to abort) may remove the need to abort ¢;.
Assume that ¢;, t;, and ¢, are the only transactions in the system and the following are true:

17

(t:; C t;) and (t; C ti). Suppose ¢; and ¢ are involved in a deadlock. If ¢; is aborted, things
will be fine. The abortion of ¢; however will produce (¢, C t;) — since then #.’s abortion
(and hence the appending of its log record) will precede that of ¢; — and hence cycles in the
C relation. Let us see how the “algorithm” suggested by the proof of the above theorem
would handle this. The topological sort consistent with the C ordering is (t;, ¢;, tx). So
when ¢ is aborted, it will first force the abortion of ¢; and ¢;. Once ¢; is aborted, the need
to abort £, disappears and with that the need to abort ¢; as well. This implies that the
deadlock resolution algorithm must reevaluate the need to abort a transaction in order to

avoid unnecessary aborts.

Note that in the case of the log, as long as the history resulting from concurrent transac-
tion executions is serializable, correctness is considered to be preserved. The log is considered
like any other data item and is considered as being part of the database.

When other extra-data objects are accessed by transactions and serializability remains
the correctness criterion, the semantics of these other objects should be specified just as we
dealt with the log and then we must show that safety and liveness properties of transactions
are kept in tact.

It is important to realize that when transactions are allowed access to the log and se-
rializability remains the correctness criterion, it may delay the commitment or abortion of
other transactions. Specifically, because of axiom 4, once a transaction ¢; performs last, no
other transaction can commit or abort until £; commits. Such a delay can affect performance.
However, if one were to relax the correctness criterion, say by requiring something akin to the
lower degrees of isolation of traditional databases, then this negative impact can be reduced
or eliminated. Specifically, one could opt for non-repeatable reads of the log. We return to
this issue in Section 6.

5.3 Serializable Accesses to the Database — with Extra-Data In-
dependent Transactions

Consider the following example in which 2PL is used for concurrency control. Suppose a
transaction ¢’ holds a write lock on a data item and another transaction ¢ desires to read
that data item. Under 2PL, ¢t would be made to wait. However, suppose ¢’ gives ¢ (or
any other transaction) an indication of what the possible values it might write are, then
t might be able to proceed with its computations using this information. This is the idea
underlying proclamations [6]. ¢ proclaims the set of possible values that may be written so
that transactions such as ¢ may be able to proceed without waiting. In this section we show
how proclamations can be viewed in terms of transactions interacting via extra-data items.

A transaction using proclamations is implementing an ordinary (sequeﬁtial) program
text, the sequential program is called the underlying code. At any point in time such a

18

transaction maintains a number of computation threads of the underlying code, each based
on a different set of values for (read) database items, obtained through proclamations of other
transactions. Still, the collection of all these threads is internal to a single transaction as far
as the system is concerned, hence, in particular, threads cannot interact among themselves
to create a deadlock situation. Each thread may be ready to proclaim possible future values
for some item X, once all threads are ready to proclaim for X , the union of their individual
proclamations is proclaimed in an extra data item z associated with X. Observe that
proclamation is a voluntary operation, a transaction is not forced to proclaim.

In what follows assume that 2PL is used and that every transaction reads a data item
before writing to it. The “right” to proclaim for X is awarded only to the transaction that
holds a write lock on X. Suppose a transaction proclaims a set of values for X in z. This set
must contain the value the transaction read for X. The transaction may subsequently write
to z subsets of this set, which are monotonically decreasing (i.e. each new set of values is a
subset of the preceding one). Before a transaction commits it writes single values to each of
the variables z in which it proclaimed, that value must appear in z. That value is also the
value that it writes to the database item X. Before a commit decision is reached, no writes
are performed into the database.

A transaction ¢ may read proclamations for some items as follows. When a read request
on X is blocked on a lock, a proclamation read is performed. If the variable z is non-
empty, the set of values in z is read by the transaction ¢. (Otherwise, the transaction waits
until either variable z is non-empty or its read lock is granted.) The values read this way
are produced by another transactions ¢'. As stated, each set proclaimed by ¢’ for X must
contain the value ¢’ read for X. After viewing the proclaimed values, ¢ may either

1. Proceed, executing conceptually in parallel, one instance of its underlying code for each
combination of proclaimed values for items it has read up to now. ¢ keeps maintaining

its read request on X.

2. Wait for a read lock on X.

3. Wait for a refinement of the proclaimed values.

In the first case, transaction ¢ can commit if for each of the parallel computations, for each
item, it intends to do the same final write operations. (For example, consider a transaction
that depends on whether X < 100 or X > 100 and not on a particular value of X. If X is
proclaimed to be updated (in the future) from 60 to 62, 65, or 67, all parallel computations
will produce the same result.) If this is not the case, the transaction may be aborted or
refinement may be done in one of the following ways:

1. Do another read on z. Since the value(s) read are a subset of what was read before, this

19

may be sufficient to resolve the problem by “killing” some, by now irrelevant, threads
of computation.

2. Pick a transaction ' from which ¢ reads a proclamation which needs be refined and
make a dependency (¢ C t'), provided it keeps C acyclic. The “before value”, i.e.,
the value ¢’ reads before writing to it, may be used (Recall that this before value is
part of the proclaimed set and is marked as such).

3. Another possibility is to wait until some values are resolved in some proclamations
that ¢ read. Until then the transaction simply waits.

4. Commits while writing a conditional multi value which may be used by other trans-
actions, and will be refined “behind the scenes” by the system as more information
becomes available. In this case the read locks held by the transaction, on items whose
value (i.e. set) needs be refined, are held until no more refinement is needed. (This
option contradicts the requirement of writing a single value for each relevant item X
at commit time; we shall not discuss it further in this paper.)

If a transaction aborts, its proclaimed values, if any, are erased prior to its abort. If
transaction ¢ read a proclamation, say in z for X, from #' and then ¢’ aborts, this does not
affect ¢ directly. If ¢ needs refinements of the value of X it will be told to use the value that
t' has read for X (i.e., the before-value) which is so marked within the set proclaimed for X
in z.

We are now in a position to give a formal definition of the operations connected with
proclamations and also state the C relationships that form when these operations execute.
Let p_write,(z,p) denote ¢;’s proclamation of the fact that it intends to write one of the
values in the set p. It does so by placing p in z associated with data item X. p-read,(z,p)
denotes the reading by ¢; of the set p from z. ¢; and t; denote two different transactions.
Let write,,(X, V') denote ¢;’s actual write into database item X of value V and ready, (X, V)

denote ¢;’s actual read from database item X of value V. V ¢;, tj, 1 # i define (¢; C ¢;), if
any of the following six situations hold:

1. (write,,(X,V) — p_write,(z,p))
2. (write,(X, V) — write, (X, W))
3. (write,(X,V) - p_read,(z,p))

4. (writey(X,V) = ready (X, W)) -

These four axioms states that if transaction #; has performed a “true” database write

(i.e., a write), then any subsequent operation by a transaction operating on either X
or ¢ forces (¢; C t;), i # j.

20

5. (pwritey(z,p) — p_write,(z,p'))
This states that if two different transactions make proclamations with respect to a

data item X, their serializability order is the same as the order in which proclamations
occurred.

6. (p-write,;(z,p) — p_read + resolve,(z, b))

This relates a write to z and the reading of z. Recall that p contains not only the
values a transaction might write but also the value of X it read before any write took
place. We denote this before value by pj.

read-+resolve is an operation denoting a decision to resolve using a before value; it only
interacts with the proclaiming transaction; it must also be the case that this operation
is invoked only if the proclamation had been read previously, see below. This states
that if £; reads the before value proclaimed by ¢;, then it should precede ¢; in the C
ordering. This happens if ¢; cannot wait for the refinement to occur and so commits

based on the before value.

No C relationship is imposed if ¢; reads the proclaimed set contained in z after ¢; writes
a proclamation to z. This is because, as we saw earlier, if ¢;’s behavior is invariant to the
values that ¢; may write to z, it can be placed either before or after ¢; in the C ordering.
Also, given the motivation underlying proclamations, we do not require repeatable reads.
In fact, we depend on proclamations producing monotonically refined values. Thus, any
conflicts due to a p_read operation preceding a p_write operation are not considered. In this
sense, a correctness criterion weaker than serializability, specifically, one implied by degree-1
isolation (see Section 6), is all we need for the extra-data z.

We also require the following two correctness requirements to hold:

o If (p-writey,(z,p) — p-write,(z,p')) then (p’ C p).
This states that proclamations for X by ¢; should be monotonically decreasing.

o If p_read + resolve,(z,py)) then (p_read,;(z,p) = p_read + resolvey(z,ps))

That is, a transaction must have read the proclamation it resolves on.

Observe that the histories produced by using proclamation are not repeatable if trans-
actions are run in the finally determined serial order. This is because transactions will view
different values in extra-data items. However, if instead of the actual transaction ¢ we plug
in equiv(t) in the schedule in which the transactions are run serially will be the same as in
the actual execution. This intuition is made precise by the theorem below.

21

Theorem: Proclaiming transactions t,, ..., t, produce a database state that can be
produced by some serial execution of transactions ti, ..., ¢, where ¢; is the transaction

executing the underlying code of the proclaiming transaction t; *.

Thus, t; is equiv(t;). Also, all committed transactions are extra-data independent pro-
vided we only consider histories produced by proclaiming transactions.

Proof: Consider the history produced by an execution which contains both the database
and the extra-data accesses. The C relationship is acyclic. So, we can list the transactions
in a linear order ¢, ...¢, consistent with C . Consider the hypothetical computation ¢} ...¢,,
where if ¢; has aborted so does t.

We prove by induction that for all &, if during its actual execution ¢; writes a value into a
data item z, ¢} writes the same value in the hypothetical execution and hence ¢}, is equiv(ts).

Basis (k =1): If t, aborted then it never wrote into the database and the claim is true
as ¢ is aborted as well. In case ¢, did not abort, in the actual execution, all reads done
by ¢, are either from the initial database state or from proclamations done by transactions
that have not yet committed. Otherwise, there would have been a committed transaction
prior to ¢, that wrote into an item X that ¢, tried to read and this would have induced
a C relationship. But given that ¢, is the first transaction in the linear order that is
consistent with C, this cannot be the case. All the parallel computation threads within t1,
in particular including the computation that considered the combination of data values in
the initial database, produce the same answer. But, this particular computation is ¢].

Induction (k > 1): Again, if ¢, has aborted, we are done. Otherwise, inductively, the
claim holds for ¢, ...#;_,. Consider t; and t,. Any value read by t; was either obtained via
a direct database read or was a proclamation that contained a value (the “before value”)
that was obtained by a direct database read. All the real database values must have been
produced by ¢, ...%4_, or taken from the database because of the conditions involving write.
Also, these are the same values that ¢} reads, again because of the axioms involving write.
As argued in the basis case, since all of the parallel computations within ¢, agree on the
values they produce, the particular computation which works with the combination that

corresponds to the “before values” also agrees. But this is the t; in the hypothetical serial
execution. End Proof

5.4 Serializable Accesses to the Database

As was mentioned in Section 4, here we consider the database to form one atomic data set
and the extra-data items to form another atomic data set. Serializability is the requirement
for the former. This may be useful for transactions with particular correctness requirements.

“That is, the code of t; is run in parallel by ¢; on all combinations of proclaimed values.

22

Consider a modified version of the first car rental transaction from Section 3.4. Here, the
available credit is updated where the amount depends on the car rental company chosen.

trans {

car_rental avis = get_oid("avis");

car_rental hertz = get_oid("hertz");

if (num_vaiting read_write(avis) < num_waiting_read_write(hertz))
hertz->reserve(...);
master_card->credit_reserve(100);

else
avis->reserve(...);
master_card->credit_reserve(75);

This transaction is clearly not extra-data independent since the specific data items it
accesses depends on the values of the extra data read by it. Also, the credit reservation
amount, 75 or 100, depends on the extra data as well. However, the application writer may
not care from which company the car is rented as long as exactly one car is rented. Thus, if
all the transactions have such a behavior, we just need to ensure that conflicts due to accesses
to the database are serializable. This ensures that the database is always in a consistent
state as far as applications are concerned.

For another example, consider two transactions ¢; and ¢; that access disjoint parts of the
database but what one transaction accesses is dependent on what the other accesses. The
transactions communicate via communication channels that can be modeled as extra-data
items which are read and written by the transactions. That is, ¢; writes into the channel
the ids of the data items it has accessed and t; reads these, and vice versa. Here, we
have extra-data dependent transactions that produce serializable behavior with respect to
the database accesses. Since ¢; and ¢; access different parts of the database, they don’t even
conflict with each other. Here again, we have extra-data dependent transactions that produce
serializable behavior with respect to the database accesses. There is a subtle difference here
from serializability in that if we look at the resulting serial schedule and re-run the programs
corresponding to ¢; and ¢; we will not necessarily get the same overall state changes because
of accesses to the extra data and the extra-data dependence of ¢; and t;. However, if we
rerun the ¢; and ¢; so that they reflect the exact database accesses they made when they
originally ran then the rerun will produce the same database state as the original schedule.

23

6 Other (Application-Specific) Correctness Notions

Thus far, we have assumed that we would like to extend serializability as the correctness
criterion for transactions accessing extra data. But, as we alluded to at several places, it
might be appropriate to relax serializability, as has been suggested even for transactions
accessing just the database. The added motivation for this in the context of extra-data
access is that access to extra-data items, such as the log, which lie in the processing path
of every transaction must be allowed with minimal or no impact on performance. Since
relaxing correctness requirements is one way to achieve this, serious consideration must be
given to it.

Let us now consider some weakened isolation requirements [5] that have been suggested
and adopted in practice for transactions accessing the database. In the context of read /write
objects, degree-2 isolation ignores conflicts resulting from a read followed by a write. Such
a requirement leads to lack of repeatable reads. Degree-1 isolation ignores, in addition,
conflicts resulting from a write followed by a read. This permits the read of an object, writes
on which have not yet committed, without forming a C relationship between the writing and
the reading transaction. Degree-0 isolation ignores all dependencies. Let us consider some
examples applying these ideas to extra data.

e Suppose transaction t; accesses the system maintained current time. A subsequent
update of the current time by the system clock will not affect ¢; if degree-2 isolation is
in effect.

¢ Suppose the transaction management system updates the wait-for-graph on behalf of
a transaction that waits for a lock on an object. Another transaction, which desires to
know the length of time it will be forced to wait under current circumstances, views
the wait-for-graph. Under degree-1 isolation, it will be allowed to proceed without
forming any additional C relationships.

In both these cases, the extra-data items of interest are not directly updated by the trans-
actions. If such transactions do not require the repestable read property as guaranteed by
standard concurrency control mechanisms such as locking, then they can afford to allow

update operations to take place following their reads without incurring serialization ordering
requirements.

With the above in mind, if we consider the log as extra data, the removing of axiom 4
of the log semantics has the effect of foregoing the repeatable read requirement since two
invocations of last may now identify two different log records as the last record in the log.
Eliminating axiom 4 eliminates the performance penalty mentioned at the end of Section 5.2
while still providing a well-understood form of correctness. '

24

Now let us consider extra data that can be written by transactions. Suppose transactions
t and ¢, cooperate by reading from and writing into a data structure that the two of them
share. Thus, ¢, can read it after ¢, writes it and ¢, can again write into it, all without forming
any C relationships. Such a data structure can be modeled as extra data. If t, reads and
t; writes, we get degree-1 isolation. If both write and read, degree-0 isolation results.

To minimize the impact on the transaction management system, it might be useful to
design special extra-data access functions in the case of extra data that can only be read by
transactions. Similarly, for extra data used to achieve cooperation or coordination, canonical
forms of the same could be defined at the user level and system support provided to have
minimal impact on performance.

To summarize, application specific correctness requirements applicable to extra data can
be specified in terms of (a) conflicts that must be ignored in determining C cycles or
(b) conflicts that induce C relationships. Let us consider an example of the latter to show
its general applicability. Suppose we want transactions to possess the temporal causality
property which requires that if two transactions read some extra data in a certain order
with an intervening write to the extra data, their serialization should reflect the order of the
reads.

(ready; — write,;) A (write; — ready,) = (& C)
A concrete example of such an extra-data object is the system clock. What the above
requirement demands is that a transaction () that executes later (according to clock time)
than another transaction (¢;) must also be serialized after the other transaction.

7 Discussion

Recently, there have been many extensions to the classical work on concurrency control.
One extends and elaborates the structure of data items, viewing them as abstract data type
objects, thus exploiting the semantics of the operations for better concurrency control. An-
other relaxes the serializability correctness criterion by imposing instead specific constraints
on acceptable schedules [7]. The work reported herein bears resemblance to these extensions
in that, technically, we also view extra data as objects with arbitrary operations defined on
them and impose some restrictions on acceptable schedules. However, these are by-products
of our main interest, that of enlarging the set of transaction accessible data to include struc-
tures that are traditionally either (a) hidden within, and are internal to, the database system
itself or (b) local to a set of transactions. We have examined the consequences of such ac-
cesses and in doing so we are forced to use extensions to the traditional concurrency control
setting. Specifically, our goal in this paper was two-fold:

25

e To illustrate via detailed examples that allowing transactions to access extra data not
only improves the functionality of transactions but also has many performance benefits.

We considered extra-data items that occur in typical database systems such as the
log, the clock, and the concurrency control information. We also showed that other
types of extra data, such as proclaimed values, and control data used for coordinating
pipelined and cooperating transactions prove very useful for structuring transactions
in order to improve performance.

o To investigate, in detail, the correctness issues that arise when transactions are allowed
access to extra data.

We saw that while traditional serializability can continue to be the mainstay of correct-
ness, one needs to also consider extra-data independence of transactions. To precisely
capture the interactions due to extra-data access, we axiomatized the operations on
extra-data items to determine the serialization ordering requirements induced by extra-
data access. These helped characterize the different types of correctness issues that
must be considered. In this regard, we studied a variety of correctness notions.

Allowing transactions to access extra-data improves transaction functionality. On the other
hand, as we discussed at several points in the paper, performance consequences can be either
positive or negative depending on the properties of the data. One implication is that extra-
data access must be allowed only if the consequences are not detrimental to performance,
and if they are and yet extra data must be accessed, one must apply the least restrictive
correctness criterion that fits the needs.

Some of the practical implications for the mechanisms used for transaction processing
remain to be investigated. For instance, the transaction processing system must keep track of
C relationships that are induced when transactions access not Jjust the database but also the

extra data. Also, it must ensure that operations are scheduled in such a way that acyclicity
of C relations is ensured.

Acknowledgements

Our sincere thanks to Panos Chrysanthis, Lory Molesky, and Avi Silberschatz for their
comments on previous versions of this paper.

26

- References

[1] P. A. Bernstein, V. Hadzilacos and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

(2] P. K. Chrysanthis and K. Ramamritham. A Formalism for Extended Transaction Models.
In Proceedings of the seventeenth International Conference on Very Large Databases,
pages 103-112, 1991.

8] D. Georgakopoulos, M. Rusinkiewicz and A. Sheth. On Serializability of Multidatabase
Transactions through Forced Local Conflicts. In Proceedings of the IEEE Seventh Inter-
national Conference on Data Engineering, 1991.

[4] N. Gehani and O. Shmueli. The LOG as Part of the Database. Bell Laboratories Technical
Memorandum, 1992.

[5] J.N. Gray and A. Reuter, “Transaction Processing: Techniques and Concepts”, Morgan-
Kaufman, 1992.

[6] H.V. Jagadish and O. Shmueli. A Proclamation-Based Model for Cooperating Transac-
tions. In Proceedings of the eighteenth International Conference on Very Large Databases,
pages 265-276, 1992.

[7] Korth H. F. and G. Speegle. Formal Models of Correctness without Serializability. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 379-386, 1988.

(8] K. Ramamritham and P. Chrysanthis, “In Search of Acceptability Criteria: Database
Consistency Requirements and Transaction Correctness Properties” in Distributed Object
Management, Ozsu, Dayal, and Valduriez Ed., Morgan Kaufmann Publishers, 1992.

[9] K. Ramamritham Real-Time Databases. International Journal of Distributed and Parallel
Databases, Vol. 1, No 2, 1993.

[10] L. Sha Modular concurrency control and failure recovery— Consistency, Correctness and
Optimality. PhD thesis, Department of Computer and Electrical Engineering, Carnegie-
Mellon University, 1985.

[11] M. R. Stonebraker, “Hypothetical Data Bases as Views”, Proc. ACM-SIGMOD 1981
Int’l Conf. on Management of Data, pp 224-229, May 1981.

27

