DETERMINING REDUNDANCY LEVELS FOR
FAULT TOLERANT REAL-TIME SYSTEMS

F. WANG, K. RAMAMRITHAM, and J.A. STANKOVIC
CMPSCI Technical Report 93-82
November 1993

Determining Redundancy Levels for
Fault Tolerant Real-Time Systems *

Fuxing Wang Krithi Ramamritham John A. Stankovic

Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003

November 1993

Abstract

Many real-time systems have both performance requirements and reliability require-
ments. Performance is usually measured in terms of the value in completing tasks on
time. Reliability is evaluated by hardware and software failure models. In many situations,
there are tradeoffs between task performance and task reliability. Thus, a mathematical
assessment of performance-reliability tradeoffs is necessary to evaluate the performance of
real-time fault-tolerance systems.

Assuming that the reliability of task execution is achieved through task replication, we
present an approach that mathematically determines the replication factor for tasks. Qur
approach is novel in that it is a task schedule based analysis rather than a state based
analysis as found in other models. Because we use a task schedule based analysis, we can
provide a fast method to determine optimal redundancy levels, we are not limited to hard-
ware reliability given by constant failure rate functions as in most other models, and we
hypothesize that we can more naturally integrate with on-line real-time scheduling than
when state based techniques are used. In this work, the goal is to maximize the total
performance index, which is a performance-related reliability measurement. We present a
technique based on a continuous task model and show how it very closely approximates
discrete models and tasks with varying characteristics.

Key Words — Real-Time Systems, Reliability, Degradable Systems, Fault Tolerance,
Functional Variation, Performability

*This work is part of the Spring Project at the University of Massachusetts and is funded in part by the
Office of Naval Research under contract N00014-92-J-1048 and by the National Science Foundation under grant
CDA-8922572.

1 Introduction

To simultaneously support high performance, flexibility, and reliability requirements of complex
systems involves many tradeoffs. In real-time systems, schedulability analysis is often used
to guarantee that tasks meet their time constraints. A task is guaranteed subject to a set of
assumptions, for example, about its worst case execution time, resource needs, and the nature of
faults in the system. If these assumptions hold, once a task is guaranteed it can be assumed to
meet its timing requirements. Thus, the probability of a task’s successful completion is affected
by the probability with which the assumptions hold.

Let us consider a simple scenario to illustrate some of the tradeoffs involved. Assume that
reliability of task execution is achieved through task replication. If we increase the redundancy
level for a task we increase its probability of completing before its deadline, that is, decrease the
probability that the task will fail after being guaranteed. However this reduces the number of
tasks that get guaranteed in the first place and so increases the penalties due to task rejections.
Clearly, there are tradeoffs involved between the fault tolerance of the system, the rewards
provided by guaranteed tasks that complete successfully, and the penalties due to tasks that fail
after being guaranteed or that fail to be guaranteed. Therefore, ways to maximize rewards while
minimizing penalties must be found. In the current state of the art, most approaches rely on
state based analysis and are applied to static systems.

The work presented here is an extension to the performance-related reliability assessment,
but it is based on a task level analysis rather than'a state based model. This allows us to develop
a fast method to determine the optimal redundancy levels of tasks without explicitly referring
to states and without using any expensive algorithms for exhaustive search. Also, our method
is not limited to hardware reliability given by constant failure rate functions as in most other
models, since we do not depend on the memoryless property. Further, we hypothesize that using
analysis on a task basis more naturally integrates with dynamic, on-line, real-time scheduling.
For clarity of presentation, we present our solution in the context of systems where decisions are
made statically, i.e., at system design time, even though the é.pproa.ch developed in this paper
can be tailored to apply to systems that perform dynamic schedulability analysis.

Consider a system with m processors and n tasks. We must decide what level of redundancy
should be assigned to the tasks such that both reliability and performance requirements are met.
We use the term task configuration or configuring tasks to refer to the problem of determining

a task’s redundancy level. Once a task fedunda.ncy level is determined, a task is said to be

guaranteed if the given number of replicas of the task are all scheduled to complete before the
task’s deadline.

In particular, suppose a task T; provides a reward V; if it completes successfully once it is
guaranteed, a penalty P; if it fails after being guaranteed, and a penalty Q; if it is not guaranteed.
Let R; be the reliability of a guaranteed task T; and F; be its failure probability, with R; = 1—F;.
R; is mainly affected by the redundancy level for a task T; and the failure model for the processors.
Then, we define a performance index for the system such that it takes the tasks’ penalties,

rewards, and reliabilities into account. The performance index PI; for task T; is defined as

p1. = | Vili— PiF; i T; is guaranteed
N if T; is not guaranteed.

The performance index PI for the task set is defined as

Pl = Xn: PI;.
i=1
Thus PI accounts for both performance requirements and reliability requirements of real-time
tasks. It provides us a base for achieving a mathematical assessment of performance-reliability
tradeoffs. |

Given this definition of performance index, we need to know the reliability for each scheduled
task. Tasks’ reliabilities are affected by faults in both software and hardware. Many fault-
tolerance structures have been developed to tolerate these two types of faults. For example,
task replication and N-modular-redundancy are commonly used to tolerate hardware faults, and
recovery block and N -version programming are commonly used to tolerate software faults. The
quantitative models for hardware reliability are well established [3], while the quantitative models
for software reliability are still not fully understood. Because of this we focus on hardware faults
and the related quantitative reliability models.

In general, performance-related reliability models use a state-based approach by assigning
some kind of performance value or reward to a system’s various working configurations. Using
continuous-time Markov chain model, ‘'a degradable multiprocessor is expressed as an n-state
process with state space as 0, 1, .-+, n. State 0 represents the system failed state and state 1
through n represent various working configurations. Each working state i is associated with a
reward rate r;. Solving this Markov chain model yields the probability that the system is in

different working state at time ¢.

Beaudry introduced measures such as computation reliability and computation availability
for degradable multiprocessors [1]. Beaudry’s model is built on the Markov reward process.
The concepts in Beaudry’s model were generalized by Meyer, who introduced performability [9],
which is the probability distribution function of accumulated system performance. Lee and Shin
introduced an active reconfiguration strategy for a degradable multimodule computing system
with a static set of tasks [6]. The}; recognized that the system should reconfigure itself not only
when a failure occurs, but also when it spends a certain amount time without failure. Their
model is also a state-based approach which is represented as a Markov reward process. In [10]
Muppala, Woolet, and Trivedi have combined two approaches for modeling soft and hard real-
time systems. Their approach is based on the addition of transitions to the Markov model of
a system’s behavior for modeling a system failure due to the missing of a hard deadline. The
system’s response time and throughput distributions are used to denote the reward rates.

For these state-based approaches, tasks and task scheduling are implicitly accounted for
within a system state. The number of states would explode when considering all possible subsets
of tasks, their redundancy levels, and all possible feasible schedules. This may not be a major
problem for small static systems. But, in a dynamic system, we cannot afford to use any time-
consuming algorithm such as dynamic programming to exhaustively search for a solution and
we cannot generate task schedules off-line because we do not have enough task information to
make these scheduling decisions. Hence, to reduce computational complexity, we must look for
alternatives. '

Our main idea is to focus on one key factor w!hich affects both system reliability and perfor-
mance: the construction and use of task schedules that take into account prespecified require-
ments, dynamic demands, and current system status. This is the reason we call our analysis task
schedule based analysis. The ability to construct feasible task schedules depends on tasks’ redun-
dancy levels which mainly affects system reliability and on the tasks themselves which mainly
affects system performance.

Other work has developed specific algorithms or approaches to combining fault tolerance and
scheduling. In (7], Liestman and Campbell propose a deadline mechanism that can guarantee
that a primary task will make its deadline if there is no failure, and that an alternative task (of
less precision) will run by the deadline if there is a failure. If the primary task executes then it
is not necessary to run the alternative task and the time set aside for the alternative is reused.
Krishna and Shin continue with this theme in [5]. Specifically, they want to be able to quickly

switch to a new task schedule upon failure, where that new schedule has been precomputed.

4

Off-line they use a dynamic programming algorithm to compute contingency schedules which
are embedded within the primary schedule. In this approach they are able to ensure that hard
deadlines are met in the face of some maximum number of failures. The embedded contingency
schedules are not used unless there is a failure. Approaches for fault tolerance, such as these last
two papers represent, are valuable for static, embedded computer systems. However, these static
approaches are not suitable for many next generation real-time systems which must provide for
predictability while reacting to fhe dynamics of the environment.

The remainder of the paper is organized as follows. Section 2 presents notations, assumptions,
and the system model. We derive the optimal task configuration strategy for a continuous
model in Section 3. We discuss how to deal with a discrete model with tasks having different
computation times in Section 4. In Section 5 we discuss the effects of using integer functions
to approadmate the optimal task configuration function which is a real valued function. In
Section 6, we consider the task configuration strategy with tasks having different reward/penalty
parameters. In Section 7, we discuss how to apply the task configuration theory in practice. We

conclude the paper in Section 8 by discussing avenues for extending the results presented here.

2 System Model and Assumptions

In this section, we present the processor-task model first, followed by a discussion of task con-
figuration and task scheduling. |

Formally, the problem is characterized by a processor-task model given by {P;, P, ..., Pn}
and {71, T3, ..., Tu}.

{Py, Pa,..., Pn} is a set of m identical processors in a homogeneous multiprocessor system?.
Each processor is capable of executing any task. Processors may fail during a mission and the
failed processors are assumed to be fail-stop with failures being independent. Processors are
associated with the reliability function, R(t), and the failure function F(t), where ¢ is the time
variable and

R(t) =1- F(t). (1)
1The method developed in this paper could be extended to a distributed system with m identical processor

nodes. The main difficulty dealing with the distributed system is that both communication bandwidth and

communication reliability should be considered as we compute task’s reliability. The results of this paper are

based on a simpler system model which may provide a base to deal with the issues related to systems involving

communication among nodes.

There are no restrictions on the reliability function. A simple example of the reliability function

is an exponential function which is widely used to model many fault-tolerance systems:
Rt)=1-e7,

where A is a constant representing the failure rate.

{T1,T3,...,Tn} is a set of n aperiodic tasks to be configured and scheduled on m processors
in a time interval [0, L], where L is the largest deadline of the tasks. Task T; is characterized by
the following:

o ¢; — its ready time, which is the earliest time the task can start,
e ¢; — its computation time,

o d; — its deadline,

o V; — its reward, if it is serviced successfully,

¢ v; — its reward rate, derived as V;/c;,

P; — its failure penalty, if it is scheduled and fails because of processor failures,

p; — its failure penalty rate, derived as P;/c;,
® @; — its rejection penalty, if it is rejected, ,
® ¢; — its rejection penalty rate, derived as Q;/c;.

If task T; is accepted, it gets a reward V; if it succeeds, and gets a failure penalty P, if it fails.
If task T; is rejected, it gets a rejection penalty Q;. The scheduling window for task T} is the
time interval from its ready time e; to its deadline d;. To simplify the analysis, we assume that
tasks’ scheduling windows are relatively small compared to L. Further, tasks are assumed to be
independent.

With the above processor-task model, our task configuration strategy assigns a redundancy
level, u;, to task T;, for 1 < i < n. Redundant copies of the same task are assumed to be
scheduled on different processors. So u; is bounded from above by the number of processors, m,

where 1 <7 < n. A task is considered to have failed only if all its redundant copies fail.

After the task set is configured, a task scheduling algorithm attempts to generate a feasible
schedule. Let u; be the number of redundant copies of task T; and t-': be its scheduled finish time

vector made up of finish times of each copy of T:;:

£ = (fi, fay.s fus), Where f; <di, 1< < us
Then its reliability and failure probability are
Ri=1-F (2)
and
| Fi=F(fi)F(f2)--- F(fu)- (3)

Now we can define the performance indez PI; for task T;. If the task is feasibly scheduled,
l.e., guaranteed, it contributes a reward V; with a probability R; and a failure penalty P; with a
probability F;. Thus, we have

PL, = V:R- BF;

= v — (v + pi) Fi. (4)

On the other hand, if T; is rejected, the task contributes a rejection penalty Q;. In this case,
we have

PI; = —Q; = —cig;. (5)

Our goal is to maximize the total performance index PI,

PI=Y PIL. (6)

i=1
PI is mainly determined by tasks’ reliabilities and reward/penalty parameters. Tasks’ re-
liabilities are determined by their redundancy levels which can be controlled within the task
configuration phase, but we cannot change tasks’ reward/penalty parameters. We present a

simple example to demonstrate the relationship of PI and task redundancy level.

Example 1: Assume there is a multiprocessor with ten processors and there are ten tasks
with their parameters listed in Table 1. All scheduled tasks will finish at time 10. If we

assume each processor has a reliability of 0.9, then the reliability of a task is 0.9 when its

7

redundancy is one and it is 0.99 when its redundancy is two, etc. Table 2 shows the values of
PI for different redundancy levels (u). The maximum PI is reached when all scheduled tasks
have their redundancy levels at two (v = 2). According to PI, the redundancy level is not
enough if 4 < 2 and it is too much if u > 2. So the idea we are following in the remainder of
the paper is to derive the optimal redundancy level required at each time instance within L.
Then, knowing this time-dependent optimal redundancy level, we can determine how much

load to shed and based on this we can configure the task set accordingly (see Section 7).

Table 1: Task parameters for Example 1

Task e & di |Vi P Q:
T, Tp, -+ Tio | 0 10 10|10 100 1

Table 2: Relations between u and PI for Example 1

PI = 2}21 PI;
10(10 % 0.9 — 100 = 0.1) = —10
5(10 * 0.99 — 100 * 0.01) — 5 = 40
3(10 % 0.999 — 100 % 0.001) — 7 =~ 23
2(10 * 0.9999 — 100 * 0.0001) — 8 ~ 12
1(10 % (1 —1071°) — 100 * 10719)) -9 =~ 1

ISNESCHNIEG

I
In the next section, we discuss how tasks’ redundancy levels can be derived as a closed form

formula. To achieve this, we use a continuous model to represent discrete tasks. Here we briefly
present the basic idea. Consider a task T; with only one copy scheduled to start at ¢; and to
finish at ¢;. Its failure probability is F'(t,), because task T; can be executed successfully only if

the processor does not fail up to ¢;. Its performance index PI; is
cv; — ci(vi + pi) F(t2), (7)

where ¢; = {2 —t;. In a continuous model, the performance index of the same task is represented

as an integral from ¢1 to £2:
tz
NGRSO ®)

which is slightly larger than the one computed by (7) if F(t) is a monotonically increasing

function (which is true in general because of hardware aging process) and if it changes very

8

slowly. Typically, the reliability function R(t) or, equivalently, the failure probability function
F(t) changes very slowly. Hence,

()~ [POk, (9)

and the value computed by (7) is about the same as the one computed by (8). A similar
argument applies for tasks with multiple copies. Once we have such a continuous model, instead
of considering the redundancy level for each task, we can consider the redundancy level required
at a particular time ¢. Later, we show that while this simplifies analysis, it does not result in

any loss of accuracy in determining task redundancy levels.

3 Basic Task Configuration Strategy

In this section, we assume that all tasks have the same computation time ¢ and the same v, P,
and g. We discuss a way to derive task configuration function u(t), where u(t) represents the
required redundancy level at time ¢, so as to optimize the performance index. It is important to

note that all these assumptions are relaxed in the sections that follow. Specifically,

o In Section 4, a discrete task model is considered with tasks having different computation
times and it is shown that the continuous model is a good approximation for the discrete

model.

e In Section 5, we study the effects of converting u*(¢), a real valued function, into integer

values of u(t) since, in practice, redundancy levels are integers.

e In Section 6, we present an approach to handle tasks having different reward rates and

penalty rates, i.e., different values of v, p, and q for different tasks.

Because tasks’ scheduling windows are assumed to be small, all redundant copies of task T:
will be scheduled to finish around the same time. Let ¢ be the task finish time. Its performance

index PI; given in (4) becomes
PL = ofv — (v + p)F(t)9), (10)

where u; = u(t), which is the redundancy level for T;.

When ¢ becomes very small, we can use a continuous model and use dt to represent c.
Equation (10) then becomes
PI; = (v — (v + p)F(t)")dt. (11)

On average, the number of tasks that can be scheduled in the time interval [t — dt, t] is m/u(t).
So the total performance index for the time interval [t — dt, t] is

m

= + PO)t - (12)

Thus, performance index for the tasks that can be accommodated is

L m
/o Rt—)(” — (v + p)F(t)*M)dt, (13)

and the penalty due to all rejected tasks is

(- [) (19)

where C is the total computation times of all tasks without counting their redundant copies,

n

C = Z . (15)
i=1
Therefore, the total performance index is
L m
PI /0 ot @HRF(E) - oC (16)

The task configuration problem is translated into a form of calculus of variations, and we want
to find the best u(t) which maximizes PI. Let us define

m

Gltu(t) = 75

(v + g~ (v+p)F(t)<1)). (17)
Then, the maximum PI is determined by the following Euler equation according to the theory

of the calculus of variations [2]:

0G
Bu = 0, (18)

10

with the boundary conditions of 1 < u(t) < m. Equation (18) is the same as:

+q
F(2)“(1 — tnF(t)“®) = 229 19
(01 - (1) = 231 (19
where 0 < F(t) < 1.
Define)
v+q__
v+p_a (20)

Let us explain the physical meaning of a. Suppose we have a rejection penalty rate of ¢ = 0.
Assume that the failure penalty rate p is much larger than the reward rate v. The latter is
a reasonable assumption for many fault-tolerant systems. Then « is roughly the ratio of the
reward rate v and the failure penalty rate p. However, if ¢ > p, then a > 1 and it means that
the penalty for rejecting tasks is too high, so we should accept more tasks and reduce the task
redundancy. In this case, there exists no solution fo.r Equation (19) and the best configuration
strategy is 4*(¢) = 1 by using one of the boundary conditions.

Table 3 shows the relations between v, p, q, and a. Case 1 corresponds to a relatively low

failure penalty rate while Case 5 corresponds to a relatively high failure penalty rate.

Table 3: Relations between v, p, g, and «a

Case | v P q a
1 |1 19 1 0.1
2 |1 199 1 0.01
3 |1 1999 1 0.001
4 1 19999 1 0.0001
5 |1 199999 1 0.00001

If Equation (19) has a solution, it must satisfy the iso-reliability principle:
F(t)'® = A,, (21)

where A, is a constant mainly dependent on a. It is easy to verify that this is indeed the solution
if we substitute '(£)*(*) by a constant (A4,) in Equation (19) and observe that both sides of the
equation become constant, although we must choose A, properly. The iso-reliability principle is
the most interesting feature of this task configuration problem. Its name was chosen to suggest
the fact that A, represents a level of tasks’ failure probability which should be kept as a constant.
Thus, the tasks’ reliability is also a constant with respect to (1 — Aqa).

11

Substituting (21) into (19) to determine A, and we have
Ax(l—InA,) = a. (22)

To search for the root, we may use a binary search algorithm such as the Bisection algorithm or
a fast converging algorithm such as the Newton-Raphson algorithm (8].-
We can then derive the optimal task configuration strategy u"(t) by rewriting (21),

(23)

where 0 < F(t) <1 and 1 < u*(t) <m.
In practice, we cannot control the failure function F(t), but we can control the function u(t)
during the task configuration stage. We make two observations that are of significance from a

practical viewpoint.

Observation 1: u"(t) changes slower than the failure function F(t), because, in Equation

(23), u*(t) is inversely proportional to InF(t), where 0 < F(t) < 1.

In practice, F(t) is likely to be a very slow function of ¢, so u*(t) is likely to be an even slower

function of ¢.

Observation 2: If F(t)is a monotonically increasing function, then u*(¢) is a non-decreasing
i
function, where 0 < F((t) < 1 and 1 < u*(¢) < m.

To see that the observation is right, we show that (u*(t))’ > 0. If F(t) is a monotonically
increasing function and 0 < F(t) < 1, then F'(t) > 0, InF(t) < 0 because F(t) < 1, and
IlnA, < 0 because

0< F(t)*® =4, < 1.
From Equation (23),

InAd, .,

oy _ _ (1) F)
@) = (rre) =" emreyr Fe >

F(t) is likely to be a monotonically increasing function because of the hardware aging process.

Therefore, we can expect u"(t) to increase with time. This is demonstrated in the following

example.

12

Example 2: We plot u*(t) in Figures 1, 2, and 3 for three different L's by assuming that
m =10, F(t) =1—e™*, A = 0.0001. In these figures, each curve corresponds to a different

a. Here are some conclusions we can derive from these figures:
e u” increases with ¢,
e u” increases slowly when a becomes larger,

o u” is flat for large a when ¢ is small, e.g., @ = 0.1, because u* hits the lower bound 1.

This means that, when the failure penalty rate is low, we do not need any redundancy

for tasks.
7.0 m= 10 =
s | = 00001 M oray
: a a a=0.001
Qmemmo g =0.01
601 1 = Qg
504
404 X
30 &
20
1.0 Jenene
0ol | L 1 | | | L]] |
0O 100 200 300 400 SO0 600 700 800 900 1000

Figure 1: Optimal configuration strategy u*(t) with L = 1000

In this section, we have built the basic task configuration strategy, based on a continuous

model assuming tasks have the same computation time and reward/penalty rates v, p, and gq.

Specifically, we derived the optimal task configuration strategy u*(¢) in a simple closed form:

_ B
v = nFe

where B is a constant, B = InA,, and F(t) is the failure function. In the following sections we

now relax these assumptions.

13

40 m= 10 o—0 a=0.00001
22 o0t a=0.0001

u'(t)

A=A a=0.001
Owm—=0 qa=0.01

00l ! ! [| 1 | I | | !
0 10 20 30 40 50 60 70 80 90 100

Figure 2: Optimal configuration strategy »"(t) with L = 100

m=10 o 0 a=0.00001
£ t:?g?’ X emmme X @ = 00001
S a a a=0.001

061

0.0 20 4.0 6.0 8.0 10.0

Figure 3: Optimal configuration strategy u*(t) with L = 10

14

4 Discrete Model

In this section, we extend the continuous model to a discrete model. This relaxes the assumption

that task computations are infinitely small as assumed in the last section. We discuss two cases:

1. Tasks have the same computation time c.

2. Tasks have different computation times.

Tasks are assumed to have the same v, p, and q. This is relaxed in Section 6.

We consider case 1 first. Let L be divided equally into k equal sized intervals of size c:

[t01 tl]) [tlt tz], """) [tk—h tk])

with £p = 0 and ¢, = L. Let u(t;) be the average redundancy in the interval [t;_,,%;]. Then,
Equation (16) becomes

-qC + E (t) (v + g — (v + p)F(t:)"*)e. (24)

i=1
Using the same analysis method, we can derive the optimal configuration strategy as

IlnA,

w() = prey (25)

where 0 < F(t;) < 1,% = 1,2,---,k, and A, is the same as defined in (20). Table 4 shows the
relations between c versus PI under three different L's, where PI is computed with the optimal
configuration strategy, u"(;), for 1 < i < k. We assume that m = 10, @ = (r+¢)/(r+p) = 0.0001,
and A = 0.0001. The table shows that, for different values of ¢, the performance index PI is
about the same for a particular L, especially when L is large compared to c¢. This implies that
the continuous model which assumed very small values for ¢ accurately represents the discrete

model with respect to the performance index. So

(v + g — (v + p)F(£:)“*))e. (26)

/ (t)(v+q (v +p)F(2)*M)dt = ; (t)

For case 2, where tasks have different computation times, it is difficult to to extend Equation
(16) directly by using the similar method as in the case 1, because tasks may have different finish
times in any subinterval. But, notice that in Table 4, for a given L, PI is almost the same for
tasks with different computation times. So, given the approximation in (26), we can use the

continuous model to approximate this case also to obtain the performance index.

15

Table 4: Relations between ¢ and PI

c PI |L=1ooo PI |L=1oo PI |L=1o

10.0 | 2583.36988 | 423.31917 | 54.15487

1.0 | 2605.02754 | 437.06966 | 60.36285

- 0.1 | 2607.82060 | 439.25115 | 61.73948
-0.01 | 2608.36467 | 439.49504 | 61.93850
0.001 | 2608.40129 | 439.55622 | 61.95905

5 Converting u*(t) into integer values of u(t)

The optimal configuration strategy u*(t) in (23) is a real valued function. In practice, tasks’
redundancies are integers. In this section, we show that the optimal task configuration strategy
u*(t) can be approximated by an integer function with a very small loss with respect to the
performance index PI.

We compare the performance index using »*(¢) with the performance index using the following

integer functions which approximate u*(¢):

® u_ceil(t) — the integer equal to or greater than u™(t);
o u_rint(t) — rounding u*(t) to an integer;

e uint(t) — choosing one of the two neighboring integers of u*(t) which gives the better

performance. i
Let PI(u(t)) be the performance index using strategy u(t). Comparing the performance index
PI using u*(t) to the performance index PI using u_ceil(t), urint(t), and u_int(t) respectively,

it is not difficult to see that
PI(u™(t)) 2 PI(uint(t)) > {PI(uceil), PI(urint)}.

In Figures 4, 5, and 6, we plot u*(¢) and these three functions with L = 100. Table 5 lists
the ratios of the performance indices based on integer functions and the performance index using
the optimal configuration strategy u*(t), for three different L's. Here, we assume that m = 10,
a = (v+q)/(v+ p) = 0.0001, A = 0.0001, and ¢ = 1.

From Table 5, we conclude that u_int(t) is the best candidate to represent u*(¢) with respect
to the performance index PI. Also Figure 6 shows that u.int(t) has the redundancy values 2
and 3 in relatively large time windows. This validates the assumption we made earlier that the

optimal task redundancy is highly likely to be a constant within tasks’ scheduling windows.

16

Table 5: Ratios of the performance indices using integer functions and PI(u")

L | PI(uceil)/PI(w") | PI(urint)/PI(v") | PI(uidnt)/PI(u")
1000 0.929 0.921 0.960
100 0.859 0.716 0.906

10 0.825 0.080 0.825

s 10.0 ~

90}

80t ot q.gom o—a z._oeil
A= 0.0001

70} caia?
Pl(u_ceil)Pi(u*) = 0.859

so}

50}

a0}

0.0 l | l | | L ! | 1 |

Figure 4: u~ versus u_ceil with L = 100

17

u{t)

8.0

70

6.0

5.0

40

0.0
0

8.0

70

6.0

5.0

4.0

0.0
0

a = 0.0001
m=10

A =0.0001
L=100.0

c=1.0
Pl{u_rint)/Pl{u*) = 0.716

[s}
x

o0 u_rint
x u

Figure 5: u* versus v_rint with L = 100

a = 0.0001

m=10

A\ =0.0001

L=100.0

c=1.0
Pl(u_int)/Pl(u*) = 0.906

i s] o u_int
' X X U°

Figure 6: u* versus w.4nt with L = 100

18

6 Configuring Tasks with Different Reward/Penalty
Parameters

In this section, we extend the basic task configuration model to allow tasks with different v, p,
and g. Let v(t), p(t), and q(t) be the average reward rate and the average penalty rates at ¢,

computed from tasks whose scheduling windows include ¢. The total performance index becomes

PI= [(s + at) - ((0) + s} F)] - (1)
Define
£y(0) q(t)C
G(t,u(¢)) = r)[v(t)+9(t) (v(e) + p(E) F ()] - =1~ (28)
Then, the maximum of PJ is again determined by Euler equation:
0G
Ba 0, (29)
with the boundary conditions of 1 < u(t) < m. Equation (29) is the same as:
FM(1 - InF(£)®) = a(p), (30)
where 0 < F(t) < 1,1 < u(t) < m, and
v(t) + g(t)
t) = ———~. 31
RTORF0 D
The solution for (30) is the optimal configuration strategy u*(t), which must satisfy
F()"® = Aq(t),)

where 0 < F(t) < 1,1 < u™(t) < m, and A,(t) depends on a(t). Rewriting the above equation,

we have
wit) = TR (33)
To compute function A,(t), we substitute (32) into (30):
Aa(t)(1 = InAa(t)) = aft). (34)

Thus, given ¢, 0 < t < L, we can compute «(t). From a(t), we can determine the correspond-

ing Aq(t), and then we can determine u"(t).

19

7 Applying the Results

In this section, we discuss how to apply this task configuration theory in a real-time system.
The basic idea is to derive the optimal task redundancy function u"(t) first. Note that u*(t)
is determined only by the processor reliability function and task reward/penalty rates. u*(t) is
then approximated by a corresponding integer function w4nt(t). Finally, by using u.int(t), we
can determine how many copies of each task can be need to be scheduled.

If tasks to be configured have the same reward and penalty rates, e.g., the same v, p, and
g, the task configuration procedure becomes relatively easy, even if their computation times are
different. A, is computed by solving Equation (22) and F(t) is determined from the failure
properties of the hardware. We can then compute u*(t) using Equation (23). Next, we use
u-int(t) to approximate u(t) as presented in Section 5. In general, u.int(t) has a shape similar
to the one plotted in Figure 6, which is a step function. Thus, the computation for u_int(t) can
be easily speeded up, by just computing each turning point of the step function u_iné(t). For
example, in Figure 6, the redundancy levels are 1 for [0, 1), 2 for [1, 59), and 3 for [59, 100},
and the turning points occur at 1 and 59. Also, we may compute u_int(t) off-line to form a
table for on-line use. After u_int(t) is derived, tasks are assigned the redundancy levels given
by u_ni(t) in the following way. If a task’s scheduling window covers two different values of
uini(t), we assign the task the higher redundancy level. Otherwise, we assign the task with a
redundancy level determined by u_nt(t). Note that this is only an approximation because the
optimal redundancy level required by a task is détermined by its scheduled finished time in the
final schedule.

We can then schedule the tasks. First, consider a scheduling algorithm that contains logic to
shed tasks. In this case, the task set determined by the configuration phase is directly handed to
the scheduling algorithm. We can apply a heuristic-based [11] or a bin-packing-based scheduling
algorithm [4]. In either case, any remaining tasks are rejected after all available system resources
are consumed. Second, if a scheduling algorithm does not contain logic for shedding tasks
during sc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>