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Abstract

Name management is so fundamental to every aspect of computing that it is frequently
overlooked or taken for granted. Our research is aimed at developing both models to
improve understanding and mechanisms to improve practical application of name manage-
ment approaches in various computing domains. One domain that seems to have particu-
larly strong connections to name management is object technology for advanced software.
Object technology has already proven very useful in our investigation of name management
models and mechanisms. We also see great potential for beneficial application of improved
name management mechanisms to object technology for advanced software. In this paper,
we first outline our overall approach to research on name management and discuss some
specific name management concerns arising in object technology for advanced software.
We then illustrate the application of object technology in our efforts to construct name
management models and mechanisms. Finally we give an example of how enhanced name
management mechanisms might be incorporated into a representative instance of object
technology for advanced software.

1 Introduction

Name management is so fundamental to every aspect of computing that it is frequently
overlooked or taken for granted. By name management, we mean how a computing system
allows names to be established for objects, permits objects to be accessed using names, and
controls the availability and meaning of names at any point in time.

Names are used, and hence name management mechanisms are needed, for many purposes
in all kinds of computing systems. Traditional programming languages rely on names for
structuring programs as well as for managing data flow and control flow. Different languages
use different scoping rules, and occasionally other mechanisms, to manage names and where
and how they are used within a program. In operating systems, names are employed by
users and processes to access commands and files. Again, various mechanisms, such as the
environment variables, search paths and hierarchical directory structure found in Unix, are
used to manage the availability and meaning of names. Networks and distributed systems
rely on names to support sharing and communication of information and resources among
users and processes. Name servers are one mechanism used in managing the availability and
meaning of names in these systems. Even in relational database management systems, where
associative retrieval is the primary means of access, names are used to identify and organize
databases, relations and attributes.

Despite, or perhaps because of, its ubiquitous role in computing, name management has
received relatively little attention from computing researchers. We believe, however, that as
systems become larger and more complex, underlying name management mechanisms will
increasingly become focal points with respect to the ability to develop, maintain, integrate and
port systems. Moreover, as domains such as programming languages, operating systems and

Unix is a registered trademark of Unix System Laboratories, Inc.



database management systems continue to converge in coming years (a trend particularly no-
table in, and probably accelerated by, object technology), the incompatibility of their respective
approaches to name management will become increasingly apparent and problematic. We are,
therefore, actively pursuing a broad-based investigation of name management. Our research
is aimed at developing both models to improve understanding and mechanisms to improve
practical application of name management approaches in various computing domains.

One domain that seems to have particularly strong connections to name management is
object technology for advanced software. In fact, we first encountered many of the issues and
problems that have motivated our investigation of name management while working on, or
with, object-oriented programming languages, object-oriented databases and software object
bases. At the same time, object technology has already proven very useful in our investigation
of name management models and mechanisms. In addition, we see great potential for benefi-
cial application of improved name management mechanisms to object technology for advanced
software.

In this paper we examine these various connections between name management and object
technology for advanced software. We lay the groundwork, in Section 2, by briefly outlining our
overall approach to research on name management and describing some preliminary models
that we have developed. Then, in Section 3, we discuss some specific name management
concerns arising in object technology for advanced software. In Section 4 we illustrate the
application of object technology in our efforts to construct name management models and
mechanisms. Finally, in Section 5, we give an example of how enhanced name management
mechanisms might be incorporated into a representative instance of object technology for
advanced software. We conclude with a summary and an indication of ongoing and future
directions for our investigation of name management and object technology for advanced
software.

2 Name Management Basics

Our research on name management has two primary facets. One facet is the development of
models that can serve as a basis for enumerating, explicating or evaluating various approaches
to various aspects of name management. The long-range goal of this facet is to provide a
foundation for fundamental understanding of name management and its role in all domains
of computing. The other facet of our research is the definition and implementation of, and
experimentation with, prototype mechanisms for particular aspects of name management.
Here the long-term goal is to provide a comprehensive set of powerful, flexible, uniform and
broadly applicable mechanisms that will ease the construction and maintenance of (especially
large and complicated) computing systems. These two facets are closely interrelated, as we
will demonstrate in Section 4, since modeling both guides and is influenced by experimentation
with mechanisms. The initial steps in our investigation of name management were directed
toward modeling, however. In the remainder of this section we describe some models that have
served as a starting point for ongoing iterative development of both models and mechanisms,
and in particular have influenced our subsequent work on name management and object
technology.



A first step in modeling is to establish basic terminology. We consider the following to be
primitive, fundamental concepts related to name management:

object: An item of interest in a given setting. In a computer program, for instance, variables,
functions, procedures, statements, etc. could all be examples of objects.

name: An identifier used to reference, access or manipulate an object.

binding: In its simplest, most basic form a (name,object) pair. Given the availability of
binding , it is possible to use name to reference, access or manipulate object .

binding space: A collection of bindings.

context: A collection of bindings that is currently available for use in referencing, accessing
or manipulating objects. A context may consist of, or be formed from, one or more binding
spaces, or parts of binding spaces.

resolution: An operation that, given a name and a context, returns the object(s) bound to
the name.

Given this basic terminology, we would like to have a means of characterizing and differ-
entiating distinct approaches to name management. Informally, a particular approach can be
described in terms of a particular set of choices regarding such things as: what kinds of ob-
jects can be named, the form of names, how bindings may be established, how binding spaces
may be created and manipulated, and how contexts may be formed and manipulated. In an
effort to formalize this view, we are developing a reference model, or classification framework,
for name management that we call the NamingSpace reference model. In its current form,
the NamingSpace reference model characterizes the universe of approaches to name manage-
ment as a five dimensional space. Here we outline this classification framework by listing and
briefly describing the five dimensions. For each of the five dimensions, we indicate some of the
questions addressed in that dimension and identify a few representative points corresponding
to one or more of the questions.

The Object Dimension: A primary question in this dimension is: What kinds of objects
can be named? Representative points in the object dimension that might correspond to
answers to this question include:

Transient, persistent or both: A typical programming language would only allow
naming of transient objects, while an operating system might only allow naming
of persistent objects (such as files) and an object-oriented database or a database
programming language (e.g., Napier [DCBM89]) might allow both.

Names, bindings, binding spaces, contexts: Different choices are made in different
name management approaches. For example, traditional programming languages
allow none of these to be named, while in Unix names, binding spaces and contexts
can all be named, but bindings cannot.



The Name Dimension: Among the questions in this dimension are: Are names first-class?
What form can names take? Representative of points corresponding to the latter question
is:

Simple identifier Hierarchical Multi-level hierarchical: Simple variable
names in a typical programming language generally take the form of simple identi-
fiers. Qualified variable names (e.g., record fields or object methods) in a program-
ming language often take a hierarchical form. Internet path names, with their
multiple different separators, are an example of multi-level hierarchical names.

The Binding Dimension: Among the questions in this dimension are: Are bindings first-
class? How are bindings established? When are bindings established? What information
is included in bindings? Representative points corresponding to the latter question
include:

Simple (name, object) pairs: The most common answer – typical in most program-
ming languages, operating systems, etc.

Support for typed objects/overloading/polymorphism: In effect, bindings are
(name, type, object) triples [LB88]. Applies, for example, to certain classes of objects
in Ada.

Support for type and mutability differentiation: The Napier language, for in-
stance, views bindings as quadruples of the form (name, type, mutability, ob-
ject) [MABD90].

Arbitrary subsets of object properties: In the limit, this supports associative access
(e.g., [Bow90]).



The Binding Space Dimension: Among the questions in this dimension are: How are bind-
ing spaces created and manipulated? How are binding spaces related to one another?
Representative of points corresponding to the latter question is:

Flat space Hierarchy/tree Directed graph: Examples of all of these can be
found in Unix.

The Context Dimension: Some of the basic questions in this dimension are: How can con-
texts be formed? How can contexts be manipulated? What determines which context(s)
will be used in interpreting a given name? Representative answers to the first of these
questions include:

A single binding space: A Unix working directory, for example, can be a context.

Nested scope: Many programming languages, as well as the combination of directories
represented by a Unix search path, provide examples of context formation based on
nesting.

Arbitrary combination of (subsets of) binding spaces: Two examples of this ap-
proach to context formation are PIC/Ada [WCW85, WCW89] and Napier environ-
ments [Dea89].

The NamingSpace reference model is still evolving as we seek to capture the range of name
management options more completely and accurately. Nevertheless, the model has already
served as a basis for some experimentation with a variety of name management mechanisms.
That experimentation, in turn, is leading to further insights about the range of options and
hence will contribute to the evolution of the NamingSpace reference model. We illustrate this
interplay between model and mechanism in Section 4.

Another class of useful models provides rigorous foundations for defining the semantics
of approaches to, or components of, name management. Along these lines, we have been
exploring some models based on set theory, using sets of bindings to model binding spaces and
various set theoretic operations as basic context formation operators. Detailed treatment of
these models is beyond the scope of the current paper, though their influence will be seen in
some of the mechanisms described in Section 4.

A few other researchers have proposed models that are related, to some extent, to our
name management modeling work. In the earliest such effort that we are aware of, Fraser
developed a formalism, based on a simple extension of Church’s notation [Chu41], that
can be used to describe context and manipulations on context [Fra71]. The model includes
methods for concatenating and composing contexts, and the implication of the formalism is
that it could provide a rigorous semantics for the naming aspects of programming languages
and file systems. In [CP89], Comer and Peterson present a formal model of name resolution
in distributed systems. This model is very specific to distributed systems and, like the Fraser
model, is directed primarily toward providing a formal semantics for certain aspects of name
management. Not only are both of these models focused on specific domains, but, in terms
of the NamingSpace reference model, both address only a subset of the dimensions, and
even so they only cover a subset of the points that can be identified in those dimensions. The



classification model presented by Morrison, Atkinson, Brown and Dearle in [MABD90] is more
broadly focused, having been developed to categorize the various binding mechanisms found in
languages, including database programming languages, and operating systems. Their model
is still somewhat more narrowly focused than the NamingSpace reference model, however,
presenting only four dimensions (two of which are in fact subsumed by the binding dimension
of the NamingSpace model) and identifying only two points on each dimension.

3 Name Management and Object Technology

As we noted earlier, name management and object technology for advanced software seem
to have a particularly strong connection. On reflection this is not too surprising, since in
object-oriented computation the identification of objects and operations by their names is at
the heart of almost every computational step. As a result of their strong connection, however,
we find some specific name management concerns arising in object technology for advanced
software. Thus, in object-oriented programming languages the importance of names in identi-
fying classes, object instances, and operations is immediately apparent, while the various pro-
posed approaches to resolving name clashes in (especially multiple) inheritance mechanisms
(see, e.g., [Knu88]) exemplify name management concerns that are specific to object-oriented
computing. The addition of persistence, yielding object-oriented databases or database pro-
gramming languages, places an even higher premium on name management, since more
names, with longer durations, become relevant to a program, which leads to a higher proba-
bility of name clashes and an increased need for name management. Software object bases,
which for our purposes here have much in common with object-oriented databases, place
similarly heavy demands on name management.

Another indication of the strong connection is the fact that we first encountered many of
the issues and problems that have motivated our investigation of name management while
working on, or with, object technology for advanced software. In the remainder of this section
we briefly survey some examples of name management issues that arise in object-oriented
programming languages, object-oriented databases and software object bases, highlighting
those that have arisen in our own experience. This brief survey elaborates on the nature
of the connection between name management and object technology for advanced software,
indicates some of the problems that we and others have encountered in existing approaches
to name management, provides a starting point for populating the NamingSpace classifica-
tion framework with example instances of particular choices in particular dimensions, and
motivates our ongoing research in this area, which is discussed in subsequent sections.

3.1 Object-Oriented Programming Languages

Names are used in many ways in traditional programming languages. The name manage-
ment mechanisms employed, however, have tended to cover a rather limited set of points along
the various dimensions of the NamingSpace classification framework. Languages have always
had their own idiosyncratic syntactic restrictions on how names may be formed. Bindings are
usually defined via declarations of some kind, while binding spaces typically correspond to



program units, such as procedures, functions or blocks. In the many languages that use static,
nested scoping to control visibility, context is defined by iteratively considering the most deeply
nested to the least deeply nested binding space, starting from the current program counter
location, and augmenting the context with all bindings whose name components are not found
in any of the bindings already included in the context. The name resolution function simply
returns the object with the given name relative to this context. We, and many others, have
often encountered problems resulting from the limits that this approach to context formation
imposes on the ability to manage control flow and data flow in programs [CWW80]. Some
recent languages, such as Ada and Modula, have provided additional mechanisms for defining
binding spaces (e.g., the Ada package) and for forming contexts (e.g., the Ada with and use
constructs). Even these provide relatively limited flexibility, though, so various proposals have
been advanced to support yet additional control over context formation (e.g., [WCW89]).

Most object-oriented programming languages are based on one or more of the traditional
languages, and hence inherit some or all of (the shortcomings associated with) their name
management approaches. Object-oriented programming languages introduce some additional
name management issues, however. One issue is the impact of inheritance, especially multiple
inheritance, on binding space and context definition. It is worth noting that the standard
approach to name resolution in a single inheritance structure is essentially the same as the
nested scope mechanism found in traditional languages, with successive subclass definitions
corresponding to successively nested blocks (binding spaces) and context formation defined
by iterative consideration of successive superclasses. In a multiple inheritance mechanism,
though, some additional semantics for handling name conflicts is typically added. In C++, for
instance, a class is permitted to inherit more than one binding (member) with the same name
from other binding spaces as long as that name is never actually referenced. Eiffel, on the
other hand, does not allow a class to inherit multiple bindings with the same name. Finally,
CLOS relies on the specification order of inherited binding spaces to resolve name conflicts.

Another issue concerns the use of names, bindings, binding spaces and context in the
construction of programs. While object-oriented programming languages clearly facilitate
the description and construction of complex entities in programs, sophisticated capabilities
are still lacking for the description and construction of complex programs. Shortcomings in
current approaches to name management are one aspect of the overall problem. We have
repeatedly found name management shortcomings to be the cause of problems in building
large systems, most recently while attempting to install a large C++ system imported from
another laboratory.

In C++, programs are typically built by compiling separate modules and linking the mod-
ules together to form a single main program. To facilitate separate compilation, header files
(whose names, by convention, end with .h) containing class definitions are included into source
files using the #include directive. One problem with this approach is that it is difficult to
flexibly and arbitrarily specify context for header files. In particular, most systems typically
provide a single context formation operation that we call UnionOverride (which Meyer calls

Some languages allow names to be overloaded by type.

To remove a name clash, the rename clause can be used in the heir class.



#include foo.h
#include bar.h
main () {

Foo f;
Bar b;

}

Figure 1: C++ Code Fragment

“overriding union” in [Mey88]). The UnionOverride operation forms a new context given two
directories (or binding spaces) in exactly the same way that nested scope forms a context from
two nested blocks. That is, the resulting context consists of all the bindings in the first direc-
tory and all the bindings in the second directory whose name components do not exist in any
of the bindings in the first directory. In general, therefore, the order of the given directories is
significant.

As a (very simplified) example of the problems that we have encountered, consider the
C++ source code fragment in Figure 1, which includes class definitions contained in foo.h
and bar.h. Suppose that there are two directories named DIR1 and DIR2, each containing
files named foo.h and bar.h. Now suppose a software developer wants to form a context
that uses the file foo.h contained in directory DIR1 and the file bar.h contained in directory
DIR2. The UnionOverride operation clearly does not allow the desired context to be formed.
In the C++ compilation command:

CC -IDIR1 -IDIR2 main.C

the -IDIR1 -IDIR2 specification results in the foo.h and bar.h from DIR1. Switching DIR1
and DIR2 results, of course, in the foo.h and bar.h from DIR2. To create the desired context,
the software developer is faced with two alternatives. The first choice involves changing
the references in the source code (for example, changing #include <foo.h> to #include
<DIR1/foo.h>). The second choice involves changing the file and directory structure to form
the required context. Clearly neither of these solutions is desirable since modifying source code
or modifying the file and directory structure, especially in large systems, is an error-prone,
tedious and expensive process.

3.2 Object-Oriented Databases and Software Object Bases

From the perspective of name management issues, object-oriented databases and software
object bases have a great deal in common. Indeed, vendors of object-oriented databases often
cite software object bases as one of their intended applications, and some software object bases
(e.g., Triton [Hei92]) have been implemented by customizing an object-oriented database. We

In other words, iterative application of the UnionOverride operation directly corresponds to the standard
notion of nested scope in programming languages.



therefore address name management issues related to object-oriented databases and software
object bases jointly here.

In conventional object-oriented programming languages, the name management mech-
anisms for transient and persistent objects are quite separate. For transient objects (e.g.,
classes, objects), name management is dictated by the syntax and semantics of the language.
Persistent objects are typically implemented using files; therefore, name management for per-
sistent objects is provided by the underlying file system. Because distinct name management
mechanisms are provided depending on the persistence property of an object, programmers are
forced to use different, often conflicting, name management mechanisms. Such a separation
is confusing and prone to cause errors in the development of advanced software.

Recent developments in object-oriented databases have attempted to make persistence
an orthogonal property of types, thus obviating the need for files. While this approach ad-
dresses the impedance mismatch problem by providing a single, unified type model, there
is little evidence of powerful, flexible and uniform approaches to name management in such
systems. For example, many commercially available systems, such as GemStone [BOS91],
ONTOS [ONT93], ObjectStore [LLOW91] and O [Deu91], provide C++-based type models for
both transient and persistent objects; however, these systems tend to provide rather limited
support for name management. For instance, in GemStone and ONTOS, binding spaces may
be organized hierarchically, but context formation is restricted toUnionOverride semantics. In
ObjectStore, there are two kinds of names — names for databases (binding spaces) and names
for objects. Database names are external to the system and are managed by the underlying file
system, while object names are handled by a separate name management mechanism. More-
over, because database names cannot be bound in other databases, ObjectStore is restricted
to a single level hierarchy of binding spaces.

The major alternative to basing a software object base on an object-oriented database is to
build it as an extension to a (possibly not object-oriented) programming language. Generally
such an extension involves adding persistence to the programming language. Software ob-
ject bases of this kind, by integrating programming language and database (and/or operating
system) capabilities, give rise to interesting name management problems that are essentially
similar, however, to those arising in object-oriented databases. In fact, our interest in the gen-
eral topic of name management grew out of earlier work on PGraphite [WWFT88, TWW89]
and R&R [TWC90], two complementary prototype systems that together implemented (po-
tentially) persistent relation, relationship and directed graph types as extensions to Ada.
The goal of this work was to provide a software object base for use in Arcadia software
environments [Kad92]. Experimental use of these systems highlighted a number of name
management problems, arising primarily from the need to simultaneously manage naming of
both transient and persistent objects. Among these, the two most fundamental were related
to:

1. the lack of integration between names for transient (programming language-internal)
and persistent (programming language-external) data objects, and

2. the incommensurate, and inadequate, mechanisms for controlling exactly which names
(of both transient and persistent objects) were available for use (at any given point)



within a program.

Having noted these problems while experimenting with PGraphite and R&R, we soon dis-
covered that similar problems existed in most other software object bases as well as in most
object-oriented databases.

Although these problems are prevalent in present generation systems, the desirability of
improved approaches to name management in both object-oriented databases and software
object bases seems to be widely recognized. For instance, various proposals for architectures
for object-oriented database systems acknowledge the need for name management services,
though only a few details are provided [OMG92],[WBT92]. Similarly, emerging standards for
interfaces to software object bases [Tho89] and reference architectures for software engineer-
ing environments [ECM91] also allude toname management services as necessary components
while offering few specifics. Thus the prospects for future developments in the area of name
management and object technology for advanced software seem quite promising.

4 Object Technology Applied to Name Management

Object technology has proven very useful in our investigation of name management models
and mechanisms. We have found the concepts of object orientation to be quite natural for
formulating models of specific approaches to name management. In particular, they have
helped us to create concrete descriptions of various components of an approach and how those
components are interrelated. In addition, the fact that an object-oriented description, and
especially the interrelationships among its components, can be so easily altered has facilitated
our exploration of related alternative approaches. This has been particularly valuable for our
efforts at exploring and evolving the NamingSpace classification framework. At the same
time, because an object-oriented description can be so straightforwardly transformed into
code, then combined with an experimental harness and executed, we have been able to easily
experiment with running instances of the various approaches. Such experimentation with
prototype mechanisms provides feedback and suggests additional approaches, which can in
turn be described and then, almost as soon as the description is completed, experimentally
evaluated. Thus object technology is contributing to our definition, evaluation and evolution of
both models and mechanisms, while facilitating the crucial interplay between model building
and mechanism development.

In this section we present some examples of our use of object technology in investigating
name management models and mechanisms. These examples serve to illustrate some interest-
ing aspects of some alternative name management approaches, or points in the NamingSpace,
as well as the value of object technology when applied to name management.

Others have made similar observations. For instance, in their list of requirements for database programming
languages [AB87], Atkinson and Buneman appear to refer to both of these problems (requirements (4) and (9)).



4.1 Modeling and Implementing a Basic Name Management Approach

We begin by considering a basic approach to name management, corresponding to some of
the most straightforward and elementary choices that can be made in the various dimensions
of the NamingSpace. As a first step in studying this approach, we produce a simple graphical
depiction of it, as shown in the diagram of Figure 2. The graphical notation that we employ is

Remove (Binding)

Insert (Binding)

Iterate () ! Binding

Unpack (Name, Object)

Create (Name, Object)

Union (BindingSpace, BindingSpace)

UnionOverride (BindingSpace, BindingSpace)

Restrict (BindingSpace, Name, ...)

Exclude (BindingSpace, Name, ...)

Resolve (Name) ! Object

Name

Binding

Object

BindingSpace

Context

Figure 2: Model of a Basic Name Management Approach

an informal representation of an object-oriented structure, in which classes are represented
as labeled rectangles, their associated operations are given as lists of operation signatures,
and subclass relationships are represented by directed arcs from subclass to superclass. Some
of the details of this notation, notably the way that operations are described, are influenced
by the fact that we eventually implement our models in C++. Some ramifications of this will
become apparent shortly.

The graphical depiction expresses many of the properties of this particular approach rela-
tively clearly. Some other properties are not so evident from the diagram, however. Following
the organization of the NamingSpace classification framework, the properties of the basic
approach, and how (and how well) they are depicted in the diagram, are as follows:

The Object Dimension: The basic approach depicted in Figure 2 does not distinguish persis-
tent and transient objects, so this approach does not restrict naming based on persistence.
The diagram does, however, indicate that binding spaces and contexts can be named,
while names and bindings cannot. This information is derived from the signature of the
Create operation of the Binding class and the presence (or absence) of subtype arcs
leading to class Object.



The Name Dimension: The diagram for this basic approach gives no information about the
Name class beyond the fact that it exists. Thus, at the current level of abstraction, this
approach takes no position about any questions in this dimension.

The Binding Dimension: The basic approach depicted in Figure 2 uses simple (name,object)
pairs as bindings, as indicated by the signatures of the operations of class Binding. The
Create operation creates a binding given instances of Name and Object, while the
Unpack operation returns the Name and Object instances contained in a binding.

The BindingSpace Dimension: The diagram for this basic approach indicates, via the oper-
ations (and their signatures) of class BindingSpace, that binding spaces are composed
of instances of class Binding, and that operations exist for inserting, removing and
iterating over bindings in a binding space. The restriction that no two bindings in a
binding space may have the same name component, which is intended to apply in this
approach, is not evident from the diagram, however. (A richer notation that supported
some rudimentary indication of operation semantics, such as pre- and post-conditions
or even exceptions, could correct this shortcoming.) Since a binding space is a name-
able object, binding spaces can be organized in a flexible manner – e.g., a binding space
may contain multiple binding spaces, thus producing a hierarchical organization, and
a particular binding space can be contained in (and hence shared by) multiple binding
spaces.

The Context Dimension: In the basic approach depicted in Figure 2, contexts are formed
from binding spaces or, given that Context is a subclass of BindingSpace, other con-
texts. Name resolution is an operation specific to contexts in this basic approach, so the
context to be used in resolving a given name will be explicitly indicated. The context
formation and manipulation operations are:

UnionOverride: Forms a new context given two binding spaces. The resulting context
consists of all the bindings in the first binding space and all the bindings in the
second binding space whose name components do not exist in any of the bindings in
the first binding space.

Union: Used to combine two binding spaces. Since binding spaces must be unique
with respect to the name components in the bindings, the operation fails when the
binding spaces contain bindings whose name components are the same, but whose
objects are not identical.

Restrict: Forms a new context by extracting from a given binding space the bindings
whose name components match a specified set of names. The resulting context is a
subset of the original binding space.

Exclude: Forms a new context by excluding from a given binding space the bindings
whose name components match a specified set of names. The resulting context is a
subset of the original binding space.

Of course, the diagram does not indicate any of the semantic details of these operations,
although the names and signatures of the operations may suggest the intended inter-



pretations in most cases. (Again, a richer notation that supported some rudimentary
indication of operation semantics could correct this shortcoming.)

Our choice of the particular set of context formation operations included in this basic
name management approach is, in part, a response to problems of the kind illustrated by the
example corresponding toFigure 1. To assess how successfully this set of operations overcomes
those problems, which arise in name management approaches where UnionOverride is the
only context formation operation, we could consider some possible ways in which they might
be used to form a desired context for header files in C++, as discussed in the earlier example.
A set of possible context specifications to be used in the C++ compilation command, in place
of the options discussed earlier, appears in Figure 3. In the figure, subscripted lower case

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Figure 3: Some Possible Context Specifications

letters denote instances ofContext, uppercase identifiers denote instances ofBindingSpace,
lowercase identifiers denote instances of Name, binding spaces and represent
the directories DIR1 and DIR2 and names and represent the files foo.h and bar.h.
Thus, for instance, possibility (1) of Figure 3 corresponds exactly to the context specification
contained in the C++ compilation command:

CC -IDIR1 -IDIR2 main.C

Of course, since they employ only UnionOverride, the contexts represented by possibilities (1)
and (2) of Figure 3 both fail to satisfy the software developer’s requirements as discussed in
the earlier example. The remaining possibilities all accomplish the desired result, however,
with the choice among them depending upon some further assumptions about the situation.
For instance, suppose that the software developer wishes to form a context containing only
the from and the from . Using the Restrict operation in addition to
UnionOverride, this can be accomplished using possibility (3). Alternatively, the same result



can be achieved using Restrict and Union, as in possibility (4). Suppose, however, that in
addition to having the preferred bindings for and , the software developer wants (or is
willing) to have a context containing all of the other bindings in one of the directories. Then,
depending upon which of the other directories is wanted, either possibility (5) or (6) will also
produce an acceptable context. If instead the software developer wants (or is willing) to have
a context containing all of the other (non-conflicting) bindings in both of the directories, along
with the preferred bindings for and , using the Exclude operation as in possibilities (7)
or (8) will accomplish the goal. Finally, suppose that the software developer does not know
precisely what bindings are in and , but believes that the desired context should
contain all the bindings in both and wants to know if the resulting context is ambiguous.
The UnionOverride operation is not sufficient, since the bindings in one binding space may
override the bindings in the other binding space, but a context specification using the Union
operation, like possibility (9), will suffice. Of course, given the hypotheses of our example,
possibility (9) would raise an exception, since and each contain different bindings
with the same name. This is precisely what the software developer wants, however, since it
provides a notification that there is an ambiguity in the context specification.

4.2 Experimentation: Implementation and Variations

As the preceding discussion demonstrates, the graphical depiction of this basic approach
to name management provides a significant amount of information and permits us to begin
assessing its properties, and thereby positioning it in the NamingSpace. In order to study it
further, we can quite straightforwardly translate from the graphical representation into an
implementation in an object-oriented programming language. As noted earlier, we have been
using C++ as our implementation language. The C++ implementation is, in fact, a more de-
tailed representation of the approach than was the depiction in our simple graphical notation.
It can, in particular, capture the semantic details of the operations associated with the various
classes, which can only be inferred from the names and signatures appearing in the listings
of operations in the graphical depiction. Of course, in the C++ implementation these details
are buried in the coding of the specific methods. While this still does not facilitate reasoning
about properties of a modeled approach as much as a more declarative representation might,
it is certainly better than not capturing the information at all.

Naturally, the most important thing about being able to easily translate from model to
implementation is that it permits us to experiment quite directly with any approach that we
might choose to model. Initially we have carried out this experimentation by combining the
C++ class definitions derived from a model of a name management approach with a simple
testing harness, also implemented in C++, and then executing some simple scenarios that
exercise the name management capabilities. In Section 5 we discuss steps directed toward
providing a larger and more realistic testbed in which to experiment with implementations of
various name management approaches. Even the simple experimentation using the testing

In a realistic case, this might occur because the binding spaces are very large or change frequently.

Or possibly more realistically all but some specified subset, which could be described using Exclude.



harness can yield some useful insights and information, however. It allows us, for instance,
to empirically investigate the use of context formation operations by actually running experi-
ments corresponding to possibilities like those enumerated in Figure 3.

Experimenting with the implementation of the basic approach described above reveals
some interesting characteristics and suggests several possible variations. One striking char-
acteristic of this approach is the central role that the Binding plays; naming is accomplished
by explicitly creating a binding and then explicitly inserting that binding into a binding space,
for example. Another characteristic, which may be considered more serious, concerns the
name resolution function. Since the Resolve function returns any possible nameable object,
the function’s return type is Object. In using the C++ implementation, we found that this
means the programmer must cast the result of the Resolve function into the appropriate type.
Figure 4 illustrates the resolution of an instance of Person in some context. Based on these

Name n;
Person p;
Context some context;

p = (Person ) some context.Resolve (n);

Figure 4: Casting the Result of the Resolve Function

two observed characteristics, we might designate the basic approach described in Figure 2 as
a type-weak, binding-centered approach to name management.

A possible alternative worthy of some consideration might be called a type-preserving,
nameable-object-centered approach. A modification to the model of Figure 2 that yields such
an approach is shown in Figure 5, where the small box within the rectangle representing a
class stands for a generic parameter and the dashed arrows mean “is an instantiation of”.

The modification centers around the definition of a new class, i.e., NameableObject and
the removal of theBinding class. NameableObject is a generic (or parameterized) class that
inherits from the Object class. A C++ definition of such a generic class is shown in Figure 6.
This class defines three operations:

AssignName: Assigns a name to an (instance of) NameableObject in a binding space.

RemoveName: Removes a name from an (instance of)NameableObject in a binding space.

Resolve: Returns an object of the parameterized type with the given name in the given
context.

To use this class, an entity’s class definition inherits from a NameableObject class pa-
rameterized by the entity class itself. Figure 7 shows an example of such a class definition in
the C++ implementation of this model.



Union (BindingSpace, BindingSpace)

UnionOverride (BindingSpace, BindingSpace)

Restrict (BindingSpace, Name, ...)

Exclude (BindingSpace, Name, ...)Context

NameableObject

Context

Object

NameableObject

Binding
Space

Name

BindingSpace

RemoveName (Name, BindingSpace)

AssignName (Name, BindingSpace)

Resolve (Name, Context) ! T

NameableObject

T

Figure 5: Model of a Type-Preserving, Nameable-Object-Centered Approach

The use of parameterized classes and inheritance in this model leads to every subclass
of NameableObject having the appropriate name assignment, name removal and name
resolution operations associated with it. As before, we can use both the model and the corre-
sponding C++ implementation to assess properties of this approach and to position it in the
NamingSpace. The major benefit of the approach is that the name resolution function returns
the proper type and precludes the need for type casting. Another notable characteristic, of
course, is that bindings are not explicitly manipulated in this approach; instead naming is
accomplished using the AssignName operation associated with every nameable object. On
the other hand, having the Resolve operation associated with the object, instead of with the

template class T class NameableObject : public
Object {
public:

int AssignName (Name& n, BindingSpace& b);
int RemoveName (Name& n, BindingSpace& b);
static T Resolve (Name& n, Context& c);

};

Figure 6: NameableObject Class



class Person : public NameableObject Person { }

Figure 7: Using the NameableObject Class

context, may seem somewhat unnatural.
Any number of other alternative approaches, based on major or minor modifications to the

models, and corresponding C++ implementations, described here could be envisioned. One
might, for example, want to consider how and whether names or bindings, or both, might
be made nameable objects, what alternative context formation operations might be useful,
or how name management approaches and persistence should interact. We have, in fact,
already begun to investigate some of these questions. Based on our successful experience
with it to date, we believe that the use of object technology, as illustrated in this section, will
continue to prove valuable in exploring these and a wide variety of other issues related to
name management.

5 Name Management Applied to Object Technology

Although most of our work in the area of name management and object technology for
advanced software has focused on using object technology to study name management, we
have also begun exploring the potential for beneficial application of improved name manage-
ment mechanisms to object-oriented programming languages, object-oriented databases and
software object bases. In this section, we give a brief outline of our experience incorporating
an enhanced name management mechanism, implemented in C++, into a representative in-
stance of object technology for advanced software, namely Open OODB, an open, extensible
object-oriented database management system [WBT92]. Open OODB is designed to be easily
tailored for a wide variety of advanced software applications such as software development
environments, computer-aided design and manufacturing, and hypermedia systems. One goal
of Open OODB is to allow researchers to experiment with, improve upon and refine various
approaches to a broad range of object services such as persistence, name management, trans-
action, indexing and data dictionary services. Thus, Open OODB provides an excellent testbed
in which to experiment with implementations of various name management approaches. We
have currently installed an Alpha release of Open OODB on a SUN SPARCstation 10 running
Unix 4.1.3. The release uses the EXODUS Storage Manager 2.2 [CDS89] as its underlying
object store.

The persistence service in Open OODB provides an interface that allows applications to
make instances of arbitrarily complex C++ classes persist. The present persistence mecha-
nism used in our particular instantiation of Open OODB is based on a reachability model
of persistence. When an object is made to persist, all objects reachable from the persistent
object are also made to persist. The use of this mechanism, along with the object-oriented
capabilities provided by C++, facilitates integration of, and hence experimentation with, our
prototype name management mechanisms and Open OODB.



The first step towards integrating a particular name management mechanism with Open
OODB involves the use of the Open OODB persistence extending tools, which are used to
extend C++ classes with the necessary persistence capabilities. The tools are initially applied
to the constituent classes of the name management mechanism. Next, a root binding space
must be created and made persistent. A function that returns this binding space is made
available to all applications that are using the prototype name management mechanism.
Applications must then modify class definitions accordingly so that instances of a class may
be nameable. For example, to use the mechanism described in Section 4.1 classes are required
to inherit from the Object class, while the mechanism described in Section 4.2 requires
classes to inherit from the NameableObject<T> class (where T represents the name of the
heir class). Finally, the Open OODB persistence extending tools must be applied once again,
this time to the modified class.

The integration of our name management mechanism into Open OODB results in a name-
based persistence mechanism (i.e., an alternative persistence model based on name assign-
ment and manipulation). Instances of any class may use the name management mechanism
to assign names to objects, access objects using names, organize named objects (or, more
precisely, (name,object) bindings) into binding spaces, and construct contexts in flexible and
arbitrary ways. Since persistence is based on reachability, assigning a name to an object in a
binding space that is (directly or indirectly) reachable from the persistent root binding space
results in the binding, the name and the object being made persistent.

The results of this experiment have highlighted the advantages both of an object-oriented
database architecture like that of Open OODB and also of our object technology implementa-
tions of advanced naming capabilities. Open OODB’s capabilities for extending C++ classes
with persistence, combined with our C++ implementations, facilitates the integration of a
variety of name management mechanisms in a richer and more realistic testbed for exper-
imentation. It is relatively straightforward to change the name management mechanism
in this system, simply by substituting one of our C++-implemented approaches for another.
Therefore, we will now be able to experiment with how improved name management capabil-
ities affect an object-oriented database and also conduct much more realistic and extensive
evaluations of alternative name management approaches than could be performed using only
the simple testing harness employed in our initial experimentation.

Although this first attempt at integrating our name management work with a realis-
tic instance of object technology for advanced software has been remarkably successful and
worthwhile, there are several improvements and further steps that we would like to pursue.
First, we would like to unify the name management capabilities provided by our mechanism
with those in the C++ language that provides the application programming interface to Open
OODB. While the name management mechanism that we have integrated into the system
can be used to name both transient and persistent objects, it is still quite separate from the
name management mechanism (applicable to transient objects only, of course) provided in
C++. Another useful enhancement would be to support type checking in conjunction with
the name management services that our mechanism provides. The data dictionary service
in Open OODB provides information about types, but our current prototype does not utilize
that information. We plan to rectify this in future versions. Further experimentation with



the present and future versions of this prototype integration of our name management mech-
anisms and Open OODB promise to yield additional insights and suggest other aspects to
address.

6 Conclusions and Future Directions

Name management is fundamental to every aspect of computing, and it seems to have
especially strong connections to object technology for advanced software. In particular, object
technology has been instrumental in the two complementary facets of our research on name
management, and it also appears that improved name management mechanisms could greatly
benefit object-oriented programming languages, object-oriented databases and software object
bases.

In this paper we have outlined our overall approach to research on name management, de-
scribed some preliminary models that we have developed as a starting point for that research,
discussed some specific name management issues arising in object technology for advanced
software and given examples both of contributions that object technology has made to name
management research and of the benefits that enhanced name management capabilities can
make to object technology for advanced software. In the former category we have illustrated
contributions to both facets of our research agenda – the use of object-oriented modeling in
investigating various alternative approaches to name management as well as the value of
object-oriented programming in implementing prototype mechanisms that can be used for
empirically assessing modeled alternatives. In the latter category we have described how our
extended name management mechanisms can be integrated into a particular object-oriented
database system, resulting in a novel persistence control method as well as richer and more
powerful name management features.

We believe that the work described in this paper provides a foundation for increased un-
derstanding and improved practical utilization of name management, especially as it relates
to object technology for advanced software. Our models and our exploration strategy, based
on object technology, offer a basis for enumerating, explicating and evaluating various ap-
proaches to various aspects of name management. Building on these, it will be possible to
select or develop better and more appropriate name management approaches for use in cur-
rent and future systems, especially object-oriented programming languages, object-oriented
databases and software object bases. Our own future directions include expanding the scope of
our investigation ofname management, to encompass such things as its role in interoperability
(e.g.,[WWRT91]), while continuing to develop and enhance both models and mechanisms for
name management. With more and better models, coupled with more and better implemen-
tations, we hope to contribute to further progress in name management and object technology
for advanced software.
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