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Abstract

In this paper. we show that bisimulation equivalence hetween concurrent systems of the type described in (4] is undecidable
for two logics — Linear Temporal Logic LTL and LTL without the nexttime operator. Such concurrent systems contain
a control process and arbitrarily many identical user processes. These negative results indicate that it might be difficult

to compare two such concurrent systems and obtain the advantages from equivalences that are possible in other simpler
models of concurrency [3. 6. 1. 7].



1 Introduction

Most formal models for concurrent systems (referred to as C'S subsequently) provide a means l(or deseribing. and ultimately,
detecting such phenomenon as deadlock. starvation and liveness in such svstems. In a resource-oriented model [0,
processes are entities executing operations which request and release resources. These resources are controlled by finite
state devices called synchronizers. In this model. properties such as deadlock and liveness can he expressed naturally using
temporal logic. In general. a proof that establishes such a property depends on the model having a fixed number of processes.
When the number of processes increases. the task of proving that the new instance of the model possesses desirable properties
must be performed all over again. In [9]. a formal setting is described and several properties analyzed for systems with a
svnchronizer (referred to as a control process in [9]) and an indefinite number of identical user processes. A Milner style
communication mechanism is used for processes to interact with each each other. In [5]. two forms of such systems differing in
their power to model user processes and in their power to interact are analyzed for detecting strong stability — an important
property which asserts whether there are infinitely many model sizes where deadlock occurs.

Previously, research has been conducted in studying various notions of equivalences for simpler models of concurrency.
such as Kripke structures [3]. Among other things. such research has leen shown to be useful in reducing the size of Kripke
structures [3] and in replacing a part of a hierarchical system by another equivalent part [6. 1. 7).

In this paper. we study bisimulation equivalences hetween CS of the type deseribed in (] with respect to two logies —
Propositional Linear Temporal Logic (LTL). and LTL without the nexttime operator (LTL/X). A 'S of the type descrilied
in [9] satisfies a temporal formula iff there is a concurrent execution of the system which is a “witness™ for this formula.
Two S are bisimilar iff they are witness to the same set of formulaes. Qur main result is that bisimulation equivalence is
undecidable for these C'S with respect to LTL and LTL/X. These results indicate that it might be difficult to compare two
such CS and obtain the advantages from equivalences that are possible in other simpler models of concurrency [3. 6. 1. 7).

Using an undecidability result about Petri nets. we show in Section 2 that the equality problem for the language of
executions of two arbitrary C'S is undecidable. In Section 3 we show that the bisimilarity problem with respect to LTL and
LTL/X is undecidable. In that section we also show that certain restricted variations of the bisimilarity problem are also
undecidable. Appendix A contains a formal description of a ('S. execution sequences of a C'S. and the languages associated

with these sequences. Appendix B contains proofs for all the propositions and theorems which are not obvious.

2 Undecidability of the Equality Problem for Language of Executions

The notation for describing LTL and our model for C'S is from [9] and is summarized in Appendix A. LTL/X is LTL with
the nexttime operator. X. discarded. In ascertaining certain properties of a C'S. the use of the nexttime operator can he
dangerous. since it refers to a “global™ next state as opposed 1o the local “next™ stare [4, 3. LTL/X is thus a useful subset
of LTL and can be used to ascertain properties of a ('S in which the power to “count”™ steps is not deemed important.

Our model for concurrency consists of a unique synchronizer process and many identical uscr processes. Such a model.
at a certain level of abstraction. is useful for describing concurrency problems in which user processes are entities executing
operations which request and release resources controlled by the synchronizer [2. 11, 5). Properties of interest. including
mutual exclusion. reachability of a certain state in a synchronizer, etc., can be specified with temporal formulas.

In brief. processes are finite state machines that communicate with each other via an alphabet that contains pairs of
complementary symbols. and a special symbol. ¢. Two processes (either two user processes or a user process and the
svichronizer) in states s and s’ can communicate with each other provided there are two edges ¢ and ¢ directed out of s and
s" respectively, which are labeled with complementary symbols. Tn addition. any process at a state can undergo a transition
provided there is an edge. labeled e. directed out of that state.

The states of the synchronizer and user processes are annotated with symbols from a set of atomic propositions AP, The
linite state descriptions of both the synchronizer and user processes also contain a designated set of initial states, We denate

by (P*.8) a CS with & user processes, each of whose finite state deseription is P. and a svachronizer whose linite state
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deseription is &, (P.8) is a CS with an indefinite number of user processes and a synchronizer. Assuming all processes in
the C'S are in an initial state. an execution sequence is a sequence of global state configurations. each of which is caused by
communication between two processes or by an € transition. We consider three types of executions: (£)) finite executions
that arise in (P*.8) for any & > 0: (E4) finite as well as infinite executions that arise from a system (P4 8) for any & > O
and, lastly, (E3) finite as well as inlinite executions that arise in a system (2. 8).

By projecting execution sequences on to states of the synchronizer. and by using the annotations on the states ol the
svinchronizer. we obtain sequences of subsets of atomic propositions that appear for a synchronizer in executions of ('S. Such
sequences are “witnesses” for the validity of a subset of temporal formulas constructed using the set. AP, If ¢ is a finite or
infinite sequence of subsets of atomic propositions and f is a temporal formula. then we write ¢« = f iff ¢ is a witness for f.
For a formal definition of validity see Appendix A.

The set of sequences of subsets of atomic propositions that appear for type (E;). (E4). and ( E3) executions are denoted
respectively by LY (P.8). L7 (P.8). and L% 4(P.&). We obtain similar sequences by considering any user process
and projecting execution sequences on to states of this process, Since all user processes are identical, the three sets obtained
in this fashion will be independent of the user process selected for projection. For any user process, we denote these sets by
L'”"“‘(P. 8). LT (P.S). and L p.8). In [9] a simple transformation from a €S (P.8) to another €S (P'. &) is
provided such that Ly (P.8) equals L, (P, 8"). where ¢ 1s one of fintfe. proper. or extended. Thus. it suffices to restrict our

attention to the sets L3 (P.8). where ¢ is one of finite. proper. or erfended.

Definition 1 A femporal formula f € LTL holds in a system {P.8) with respect to finite erecutions iff v € L'hi""ii‘(P. S)

uc 3 ; finite Similar . o Finite propér

such that ¢ = f. In this case. we write (P.8) Errr [ Simiarly, we define (P.S) g RS ENRT 1
S proper q srtended g ertended

(P.§) LTL/Xf' (P.S) =TS f.oand ( L”:LTL/

The model checking problem for (P.§) with respect to a set of executions E. where £ is one of L' (P. 8). LSR8,
or. LF"*"4d(p 8). and a formula f. is the problem of deciding whether there exists an element ¢ in E such that v =,

The following proposition is proved in [9]!.
Proposition 1 The model checking problem is decidable for the ervecution classes defined above and for all LTL formulas.

Definition 2 Two systems (P.S) and (P'.8") are consistent if their states are labeled with propositional symbols from the
same set AP, Two consistent systems (P.8) and (P'.8") are bisimilar with respect to LTL and L;ii”i"(l".S) if

vfeLTL 8) LIRS 1 i (P8 RN £ e write (P.S) I (P8 when (P.S) and (P, 8} are bisimilar
welh respect 1o LTL and L‘-'”” (P.8). Stmlarly. we define (P.S) =5 (P78 when Foes one of LTL or LTL/X and -

one of “fimite”. “ertended”. or “infinidc”

In this paper we show that the following problems are undecidable;
- Problem 1: Given two arbitrary consistent concurrent systems (P.8) and (P'. 8"). is L5(P.8) = L(P'.8"). where ¢ stands
for one of finite. proper. or extended.
Problem 2: Given two arbitrary consistent concurrent systems (P.8) and (P'. 8"). is (P.8) = r (P 8"). where F stands
for either LTL or LTL/X and ¢ stands for one of finite, proper. or extended.
The undecidability of Problem 1 follows from several transformations starting from a well-known undecidable problem

in Petri nets, and is given below. In Section 3 we prove that Problem 2 is undecidable.

2.1 An Undecidable Problem in PN Domain

The discwssion in this section follows the notation and treatment in [8].

"The proof in - [9] must be modified slightly when E = L3 4p 8.
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Figure 1: Petri Net. Transformation I’y

A Labeled r-dimensional Petri net (referred 1o as PN subsequently). N.is a T-tuple (P.T.B. F. M. 5. h) where P =
{pa..... pr}is a set of places. T = {t).ta.. ... t.} is a set of transitions. B : P x T — A\ is the backwards incidcnce
function. \"is the set of non-negative integers. and F : P x T = \" is the forwards incidence function. A marking A/ = \™
associates a non-negative number with each place. My € A7 is the niial marking. Let 3 be a finite set of symbols and let
h:T = Y U{A} be alabeling function. where A is the empty symbol. If () # X for all f € T the labeling function is called
A-free and the PN is called a A-free PN.

For a string w € T"JT* we write Mo(w > iff the sequence of transitions specified by « can be fired starting with /.
We write Mo(w > M iff My(w > and the marking M is reached by firing the transitions specified in w. String w is properif
Mo(uw > and either (/) w € T": or (ii) if there exists a {” > 0. such that for every M’. «”. if M(«' > M’ and ' is a prefix of
w. then M' < (C.U....U)(r times). Note that the bound {” can be different for different proper strings in T+.

Figure 1(i) shows a PN as a graph. Each non-zero F(p.t) value (respectively a non-zero B(p.t) value) is represented by
an edge from transition ¢ to place p (from p to ¢) with value F(p.1) (respectively B(p.t)).

Definition 3 For a A-free PN N = (P.T.B.F. M. Y. h). let

L;inire(.\') - {/I(ll')lu' € T and .‘[u((l’ >}:
Lrrerer( Ny = LIt () {h(w)|w € T*. Mo(w >. and w is proper):
Lertended( \') = Lfinite( Ny {h(w)|w € T and My(w >}

The following result is proved in [8):

Theorem 1 Given fwo arbitrary A~frce labeled PN N and N7, the equality problem for languages LY (N) and LI (N7)
is undecidable.

Proposition 2 (1) Given two arbitrary A-free labeled PN N and N’

Ljinirﬂ(.\') = Ljinite(“\rl) iff Le‘.rre:nded(‘\f) = LF.I‘I!"("G!{(‘\,’I): and

(2) There exists a transformation Ty. which. given arbitrary PN Ny and Na. construcls nels Ny and No' such that
L}'inilf(‘\rl) = L}inite(.\-:,) i3 Lprorer(‘\rll) = Lpruper(.\_'__,').

Proof: The proof for (1) follows from Konig's Lemma and is given in Appendix B. For (2). consider the following transfor-
mation [y which eliminates proper infinite firing sequences in the original PN by mapping such sequences to infinite firing
sequences that are not proper in the new PN. In fact. the new net has no proper infinite firing sequences.  Finite firing
sequences of the original net are unaltered in the new net.

The transformation [y : ' = N’ appends one additional place to X', Arcs out of this place are labeled 0. while ares into
this place are labeled 1. Thus whenever a transition fires. it increases the value of this place by 1. Hence no infinite liring

seqnence ' is proper. 0



See Figure | for an example. Using Proposition 2 and Theorem 1 we get the following result:

Corollary 1 The cquality problem for languages L°(N) and L*(N') for two arbitrary A-free labcled PN N and N is unde-
cidable, where =¢” is onc of “finite”. “proper”. or “cricnded”.

2.2 Labeled Vector Addition System with States — The VASS Model

An r-dimensional Labeled VASS 1" = (S.E.D.qg.ve.Y_. h) is a T-tuple where S = {qo.q1..... qm} is a finite set of states.
E : SxSisaset of directed edges €1, ¢€a,...€1. T is the set of integers. D : E — I" associates with each edge an r-dimensional
~direction” vector with integer coordinates. qq is the initial state of 1. vq € \™ is the initial vector. Y is a finite set of
symbols. and h : § = Y~ is a function that associates with each state a symbol from )_. As before. h is a homomorphism
from sequences of states to words in ) _.

A configuration of 17 is of the form (g¢. ') where ¢ € 5 and v is an r—dimensional vector with integer coordinates, Starting
with the initial configuration (¢o. o). a path in 1" induces a sequence of configurations which are obtained using E and D
as follows: if the current configuration is {q.¢), and the edge ¢ = (q.4') is traveled. then the next configuration is (¢’. ¢')
where ¢/ is obtained by adding the vector ¢ to the direction vector specified on ¢. D(¢). This path is an R-path if all vectors
along the path have nonnegative integer coordinates. We represent an R-patl as a sequence of configurations starting with
(qo. o). For a finite R-path p = (qo.va). (4iy- i) . 4i- tin) define h(p) = h(go)h(qiy) .. hq;, ). Similarly. for an infinite
R-path p = (qo. to). (¢i,. ti,) .. .. define h(p) = h(qo)(q;,)... An R-path p is proper if it is finite or if 30" > 0 such that
Yk 2 0.0, S (U0 F)( r times) (for notational convenience, assume iy = 0).

Definition 4

LIt (VY= {h(p)lp is a finite R-path}:
Lreerer(Vy = LAt (Y ULh(p)|p is a proper infinite R-path}:
Lectended({7y = pLinite (Y {h(p)|p is an infinite R-path}:

Below we sketch a transformation I's which maps a A-free labeled PN N = (P.T.B.F. M. . h) to a labeled VASS
V"= (S.E.D.qp. vo.z:'.h’). I'» will satisfy the property stated in the first part of Theorem 2. If the net has r places. the
VASS is r—dimensional. T has the following parts: (7): To represent the fact that a transition ¢ is enabled only when each
place p has a value > B(p.t). and the fact that each place increases in value by F(p.t) — B(p.t) after { is fired. we construct
a component corresponding to t as shown in Step 1 of Figure 2. The vector —B(..1) acts as a guard for the edge transition
from ¢} to ¢} to occur. The vector F(..1) on the edge from 47 to 42 increases the vector in the next configuration by F(..1).
Lastly. 1. ¢7. and 42 have the same label as t: i.c. h'(q}) = h'(q?) = W'(42) = h(1). (ii): Step 2in Figure 2 prepares the VASS
for the next transition. The notation = denotes the zero vector. (iii): Step 3 in Figure 2 provides the initial configuration
for the VASS. State qq is labeled by a new symbol & not present in )_. The initial vector to equals the initial marking M.

With the construction so far. every firing sequence t;,1;,...1;, corresponds to an R-path such that the states along this

. 1,2 3 1,2 3 9
path (ignoring the vectors) are 0z, 401, 1, -+ -1, 47, 91, - and vice-versa. However, Steps 2 and 3 introduce the following

problem. Suppose L/iit¢(N) = LIinét¢(\y) for two nets .V, and Na. Further. suppose Ny has a transition ¢ labeled y and
suppose that none of the transitions of N4 are labeled y. Clearly. in this case. f is never enabled. However transformation 'y
will create VASS [2(N7) = 17 such that 17 has R-paths that end in state ¢}, but which cannot be extended to include states
qi and ¢3. This happens due to the edges introduced in Steps 2 and 3 of Ta. Since o does not have any transition labeled
+. VASS Ta(.\4) = 15 will not have such R-paths. Thus. despite the equality LY (N) = LIt X)), the corresponding
languages in the VASS domain are not equal. To correct this problem. we introduce the edges and states shown in Step - of
Figure 2. There is a state q,. labeled o. corresponding to every ¢ € Y. From each state ¢3. and from state gy, we add edges
labeled with the zero vector to each of these new states. Figure 3 shows the VASS obtained from the PN in Figure (i) using
I.



............ veessenearennna,.
........ .

- 0 -B(..Y F..Y ﬁ .,__.... ‘

STEP 1
ror o ; STEP 2

For each transition t !

there is a component : For each ordered pair of transiions
(L, F) (t and ¢ could be same)
there is &n edge labsied with
the 20 vector connecting two
components s shown onthe top

with 3 sates and 2 edges

STEP 3

Finally, we add a new
e qd (which becomes
oy VASS’ ..................................
and connect # fo each of

the components as shown.
These nw odges are (abeled
with the zero vector.

eeevasssressasteretonttonenrane.. .
\ “vaa,

E'{-.b,q.___'k,

STEP 4

For every symbol in ithe
we add a corresponding sisle. ot
We add edges labeied with the
20r0 vector to these siates as
shown..

e &
[}
!

7-(0’0'0'0) > =ftabx) Vo= (12.10. 8. 5)

Figure 3: VASS constructed from 'y



== @ Dr @

Step 1: (Sitretohing esch edge )

= -G

Siep 2 (Providing a suphs for each stale )

Figure 4: VASS to Restricted VASS - Transformation I's

Part (1) of the theorem below follows from the construction of ['a. Part (2) follows from Part (1) and Corollary 1.

Theorem 2 (1) Let Ny. N be two X=free labeled PN and let Ta(Ny) =17 and To(Na) = Vo, Then
LE(NY) = Lo(Ny) off Lo(Vy) = L(V%) where “¢” is one of ~finite”. ~proper”, or “extended”: and
(2) Gieen 2 arbitrary labeled VASSes Voand V', the equality of the languages L (V) and L* (V') is undecidable. where ~¢™ is

one of “finite”. “proper™. or “ertended”.

2.3 Restricted Labeled VASS

We now describe two restrictions on our VASS model. R-paths in a VASS with these restrictions can be “mimicked” with
no further alterations by executions in a concurrent system (P.§) constructed using a transformation presented in [9]. This
will eventually lead us to the proof of undecidability regarding equality of languages of executions of two C'S.

The restrictions are: (1) Each direction vector can have at most one non-zero coordinate. and the value of this coordinate
can be £1: and (2) the initial vector is the zero vector (0). We usually write V'R, etc. to denote a restricted VASS.

We now describe transformation I's from a VASS to a restricted VASS. Without loss of generality. we assume that the
mput VASS’s initial vector is the zero vector: otherwise. we perform the following changes to the input VASS: (/) Add a new
state ¢o’ to the VASS. This state is the new initial state. The new initial vector of the VASS is the zero vector: (ii) Add an
edge from ¢o’ to the previous initial state ¢p and label it with the previous initial vector vg: and (iii) label g" with a new
symbol . If the original input VASS is 17 and the new VASS is 17, then. clearly. w € L*(17) iff ww € L*(17”). where “e” is
one of “finite”. “proper”. or “extended”.

'3 consists of 2 steps as shown in Figure 4. Step 1 first renames state g; of the input VASS to ¢'. Second. each edge
of the input VASS is replaced by a sequence of edges and new states that factor the original edge into unit and 0 moves.
The number of states in the sequence equals \/p — 1. where \p is any value greater than the maximum of the sum of the
absolute value of the coordinates of any direction vector of the input VASS. The Mp edges in the sequence are labeled with
direction vectors that satisfy the following conditions: (i) each vector is either the zero vectar. or it has exactly one non-zero
component which is either 1 or —1: and (i) their componentwise vector addition yields the direction vector of the edge in
the input VASS being replaced. For example. if the edge being replaced is labeled with direction vector v = (2.0. —=3). and
if Mp is 7. then the following 7 vectors (1.0.0).(1.0.0).(0.0.=1).(0.0.=1).(0.0.=1).(0.0.0). and (0.0.0) can be chosen
to label the edges in the link. The head and tail states of each link are labeled by the same symbols that appear on the

head and state of the edge being replaced. The intermediate Mp — 1 states are labeled by a new symbol & not present in

the alphabet of the input VASS. For an edge € connecting states ¢" and ¢'. we denote the new states by ¢! thru T

shown in Figure 4.

From the construction so far. if states ¢;,q;,...q;, appear along an R-path in the original input VASS. then there is
an R-path in the restricted VASS such that states q“q}m ...r;iﬁfu_l'r{"ﬁr‘r}": - _agfiir'_l':["‘ ™ appear along this R-path.
where ¢, is the edge that connects states ¢'s and ¢+ A similar result holds in the reverse direction.

Step | introduces the following problem: an R-path in the restricted VASS to end in an intermediate state of a linear
sequence of Mp — 1 states. For example. for some R-path p in the original input VASS. suppose we reach a configuration

(¢i- (1.0.2)). and suppose there is an edge ¢ labeled with direction vector (=2.0. =2) directed out of state g;. Clearly.

6
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Figure 53: Example - Transformation '3

cannot be extended to include this edge if p is to remain an R-path. Using Step 1 of ['3. the R-path p’ in the restricted VASS
corresponding to p. can he extended from configuration (¢'.(1.0.2)) to include some of the intermediate states in the chain
that replaces edge ¢. Thus. Step 1 can map VASSes with equal languages to restricted VASSes with distinet languages. Step
2 corrects this problem as follows (see Figure 4): (/) create a chain of Mp — 1 states (denoted by ¢[1].q[2)... ¢[Mp — 1]).
where the edges in this chain are labeled with the zero vector and the states are labeled by synihol .t and (i7) add an edge
labeled with the zero vector from each state ¢' to ¢[1]. This new part of the restricted VASS ensures that any R-path ending
in a state ¢' can always be augmented to include Mp — 1 states which are labeled with symbol .

Figure 5(ii) shows the restricted VASS obtained by applying the three steps above for the VASS of Figure 5(i).

Theovem 3 (1) Let V] and Vs be two VASSes which both start from the zero rector. aLd Mp be any rvalue greater than the
marimum of the sum of the absolute value of the coordinates of the dirvection vectors in V] and V. Let VRy = Ta(17) and
VRa =Ta(Va). Then. L(Vy) = Le(V2) ff L*(VRy) = L*(VRa). where ~¢™ is one of “finite”. “proper”. or “cxtended”:

(2) Given a restricted VASS VR in r dimensions. we can obiain another restricted VASS VR' in (r + k) dimensions for
any k > 1 such that L*(VR') = L*(VR). where “¢” is one of ~finite”. ~proper”. or =exiended”: and (3) Given 2 arbitrary
r-dimensional restricted VASSes VR and VR'. the equality of the languages L*(VR) and LE(VR') is undecidable. where ¢~
is one of “finite”. “proper”. or ~extended”.

Proof: (1) follows from construction ['s. To prove (2). we only need to increase the dimensions of the direction vectors
in VR to » 4 k. For each vector. these additional k coordinates are zero. We need (2) so that the two concurrent systems
constructed can use the same comnumication alphabet, (3) follows front Parts (1) and (2). and Part (2) of Theorem 2. G
We now use the transformation described in [9] (which we denote by [) to convert a restricted VASS to a C'S. This
transformation maps R-paths in the restricted VASS to appropriate execution sequences in the ('S, For the sake of com-
pleteness. we describe briefly this transformation. The syuchronizer state-edge structure is identical to that of the restricted
VASS. The start state of the synchronizer is the same as that of the VASS. The set AP is identical to the set of symbols that
annotate the states of the VASS. If the restricted VASS is r—dimensional. then there are » pairs of complementary symbols in
the communication alphabet of the C'S. For the ith coordinate. the corresponding pair of complementary symbols is denoted
by a; and @;. If a direction vector along an edge in the restricted VASS is +1 (—1) in the /th coordinate for some I. 1 <1 < r.
it is replaced by a; (G7) in the synchronizer: and if it is the zero vector. it is replaced by ¢. The user process definition P is as
follows: P has r+ 1 states denoted by sy.s1....5.. sy is the start state of P. For every i.1 <7 < r. there is an arc fromn s
10 5; labeled with symbol a;. For every /.1 < i < r. there is an arc from s; to sy labeled with symbol W7, Thus. every edge
transition labeled with a direction vector that has a 41 in the /th coordinate is “simulated™ by a communication hetween
a user process in state sq and the synchronizer. This causes a transition in the user process to state s and increases e
number of user processes in state s by 1. Similarly. every edge transition laheled with a direction vector that hias a =1 in the

Ith coordinate is simmlated by a conumunication hetween a user process in state s; and the synehronizer and also decrenses



the number of user processes in state s; by 1.

Part (1) of the theorem helow follows directly from construction [y. Part (2) follows from Part (1) and from Theorem 3.

Theorem 4 (/) Let VR be a vestricted VASS and let (P.S) be the CS oblained using Ty. Then L°(VR) = L5(P.S). where
=" is one of “finitc”. “proper”. or “erlended”. Further. let VR and VR' be two r-dimensional restricted VASSes, Lol
(P.S)=T4y(VR) and (P'.8') = T4(VR'). Then (P.8) and (P'.S') are consistend.

(2) Given two arbitrary consistent systems. (P.8) and (P'.8"). the equality of languages L5(P.S) and L, (P'.8') is unde-

cidable. where ~¢” is one of ~finile”™. ~proper™. or ~exlended”.

3 Undecidability of Bisimilarity

Theorem 5 Giren two arbitrary consistent systems (P.8) and (P'.8'). it is undecidable whether (P.8) =g (P'.8). where
“¢" is one of ~finite”. “extended”. or “proper”.

Proof: For the case when “e” is either “finite” or “extended”. the proof is straightforward and outlined in Appendix B.
When “e” is proper. we use a transformation ['; similar to [;. T3 is described in Appendix B. In brief. ['5 transforins a
C'S into another such that («) the latter 'S has no infinite proper execution sequences: and (h) for each finite execution
sequence in the former C'S there is a-corresponding finite execution sequence in the latter and vice-versa. Thus. using [;

s : inite - inits
we map the problem of determining equality of languages L™ (P.8) and L4

(P'.8') 1o that of determining whether
(P1.81) =irp (P'1.8"1) where (P.8)) (respectively (P’1.81)) is constructed using [; from (P.8) (respectively (P'.S8')).
Using part 2 of Theorem 4 we get the required result. O

To prove undecidability of bisimilarity with respect to LT L/X consider a transformation ['s which changes the synchro-
nizer definition in a CS such that a new symbol & is inserted after every symbol in a word w« in the language of the original
CS. Thus. if the original ('S is (P. 8) and the new CS constructed from [g is (P'. &), then w € L5(P.8) iff v’ € LL/(P'.&').
where "e” is one of “finite”. "proper”, or “extended”. and u’ is obtained from « by inserting x after every symbol in .

Formally. ['s is as follows: (1) The new process definition P’ is the same as P: (2) The propositional alphabet of (P’.&').
AP’ = AP |J{x} where ¢ is a propositional letter not in AP. The communication alphabet of (P’.8’) is the same as that of
(P.8). (3) & is obtained from § as follows: every edge ¢ in § from state ¢ to ¢’ with communication symbol ¢ (¢) is replaced
by two edges €; and €2. and a new state ¢, as follows: ¢; goes from ¢ to ¢,. and €2 goes from ¢, to ¢': €; is labeled with e,
and e2 with ¢ (€). State ¢, is labeled with the propositional letter x. ’

Using a transformation I';z. which composes I'; and T's. we get the following result (see Appendix B for proof):

Theorem 6 Given two arbilrary consistent systcms (P.8S) and (P'.8"). of is undecidable whethor (P.8) PS8

=1 x
where “¢” is either ~finite”. ~ertended”, or “proper”,

We now consider the following restricted hisimulation equivalence problems:

Problem 1: For an arbitrary synchronizer § and two arbitrary processes Py and Pa.is L3(P.S) = L3(P,.S). where ¢ is
one of “finite”, “proper”. or “cxtended”.

Problem 2: For an arbitrary synchronizer & and two arbitrary processes Py and Pa. is (P;.8) =5 (Ps.8). where F stands
for either LTL or LTL/X and ¢ stands for one of finite. proper. or extended.

We sketch a transformation Tz which constructs from two arbitrary consistent ('S (P.8) and (P'.8') a synchronizer 8,
and two process definitions P and Py such that the property stated below in Proposition 3 holds. Using this proposition
and Theorems 4. 5 and 6 we conclude that the above two problems are undecidable (Theorem 7).

Note that the C'S obtained nsing transformations 4. T5.Ts. and Tz, are such that the user processes are ¢~free. Thus.
the undecidability results stated in Theorems 4. 5. and 6 apply to €S in which P and P’ are arbitrary ¢ free user process

definitions. The input to transformation Uy are two €S (2.8) and (7. 8'). where hoth P and P are ¢-free.

h



The first step of [z eliminates ¢ transitions in & and &’. This is done for § as follows. We introduce a new communication
symbol cpew. and its complementary symbol Thew. Every € labeled transition of 8 is now labeled with Tew. P is changed
as follows: For every state of P. add an edge from that state to itself: this edge is labeled with cpew. Let this user process
definition be P;. We do a similar change to P’ and &', except that we use another complementary communication syinbol
pair cpew’. and cpew’ distinet from any of the other conununication symbols. Let this user process definition be Pa.

At the second step. we join § and &' to construct a synchronizer S, as follows: We add a new state gpew. and add edges
from gnew to all the start states of §. and edges from qnew to all the start states of §’. An edge from gpew to a start
state of S (8’) is labeled by communication symbol Thew (cnew’). quew is the new start state of 8,: it is labeled by a new
propositional symbol r.

Proposition 3 L;(P.8)= L (P'. &) iff L5, (P1.8a) = LG (P2.8q). where ~¢” is “finite”. ~extended”. or “proper”.

Proof: From construction I'y. O
Part (1) of the theorem below follows from Theorem 4 and Proposition 3. Part (2) follows by using transformations
similar to I's and I'; and from Theorems 3 and 6.

Theorem 7 (1) Given two arbitrary process definitions P and P' and an avbitrary synchronizer 8. the problem of determining
if L5(P.8) = L3(P'.8) is undecidable. where “¢” is one of “finite™. “proper”. or “cxtended”. () Given fwo arbilrary process
definitions P and P' and an arbitrary synchronizer 8. it is undecidable whether (P.S) =% (P'.8). wheve “¢” is one of “finile".
“proper”. or “extended”. and F is either LTL or LTL/X.

Using similar methods. we can prove the following result for another restricted variant of the bisimilarity problem:

Theorem 8 Given two arbitrary synchronizer definitions S and 8' and an arbitrary process definition P. the problem of de-
termining equality of languages LG(P.S) and L% (P.8') is undecidable. where ~¢” is one of “finite”™. ~proper™. or “extended”.
similarly. the problem of deiermining (P.8) =% (P'.S). where “¢” is one of “finite”. “proper”. or “extended”. and F is
either LTL or LTL/X is also undecidable.

4 Conclusion

In this paper. we have shown that bisimulation equivalence is undecidable for C'S of the type presented in [9]. We have also
shown that certain restricted variants of the bisimilarity problem (single synchronizer and two user processes. and. single user
process and two synchronizers) are also undecidable. These negative results indicate that it is not possible to compare two
such systems with respect 1o LTL and LTL/X. Oue important direction for future research is to identify simpler notious of
equivalences for such 'S which are decidable. These “simpler™ notions of equivalences. however. should expose “important”

similarities (or properties of interest) between such (S.
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Appendix A — Concurrent System and Temporal Logic

In this appendix we describe our model for C'S with an indefinite number of identical user processes. The description and
notation is from [9]. We begin with a description of LTL and LTL/X.

LTL uses AP — a finite set of atomic propositions. the constant True. the connectives =, V. and the temporal operators
X (nexttime) and U (until). LT L is the smallest set of formulas obtained as follows: (a) the constant True and the atomic
propositions are formulas: (b) if f and g are formulas. then ~f. fv g, Xf. and fUyg are formulas. LTL/X is the set of LTL
formulas obtained without using the nexttime operator.

An iunterpretation is a pair (f.7) where t = t5.t)....is a finite or infinite sequence of subsets of AP and i is a nonnegative

integer. (f.7) = f is used to denote that the interpretation satisfies a formula f. |= is defined inductively as follows:
1. (t.7) E True
2. (t.1YE A. where A € AP. iff A €1;.
3.NE-fFEDES
L (Li)EfVyiFt.DES o (ti)Eg.
AEXFF i+ D ET

~t
—_
~

6.

—_—

t.7) = (fUyg) «f there exists & > i such that ({.k)Eg. and forall j.i< j< k(L. j)Ef.

Finally, we say that t = f f (1.0) E f. In words. if t | f. we say that the temporal formula f is calid for the
sequence of subsets of atomic propositions that appear in f. We use the words “sequence of subsets of atomic propositions”
and “interpretation” interchangeably. .

Our model for concurrency consists of a unique synchronizer process and many identical user processes. We first describe
the alphabet used by the processes to interact with each other. Intuitively, the alphabet provides a mechanism for synchro-
nization between two processes. It is thus useful to model operations which request/release a resource. A communication
alphabet 3 is a union of mutually disjoint sets 3"F. 5", and ¢. ¢ is used to represent internal process transitions. 3" ¥(5°7)
is the set of action (complements of the action) symbols. Thus. if ¢ € }:"’. then its complement © € Y 7. Each member of
> is a communication symbhol. Two symbols ¢.d are complementary if ¢ = d.

A synchronizer § is a A~tuple (S5, Rs. [s. ®s) where Sg is a finite set of states. Rs C Ss x Ss x Y is a set of transitions,
Is C Ss is the set of initial states. and & : Sg = 247 is a function that labels each state in Ss with atomic propositions that
are true in that state. A user process is a 4 -tuple (Sp. Rp. [p.®p). Sp. Rp. [p and ®p are similar to Ss. Rs. [s and dg.
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We now formalize the notion of an “execution™ in a 'S with & user processes and a synchronizer. Such a system is denoted
by (P*.8). Subsequently. we formalize the notion of “execution™ in a 'S with an indefinite nuniber of user processes and a
synchronizer (such a system is denoted hy (P.8)). Using these formalizations. we define three different sets of executions.
namely the set of finite executions, the set of proper executions. and. the set of extended executions.

For k > 1. a global state of (P*.8) is an element of (Ss x (Sp )k). A global state § = (sy.89....5041) is imitial ifl 5y € 5.
and for 2<i<k+1.5;€lp. Let Sy =Ss. and for 2 <i<k+ 1. let S; = Sp. Also. let R,.®; be the same as Rs and dg
respectively. and for each /.2 < i < k+ 1. let R; be the same as Rp and ®; be the same as ®p. We refer to the synchronizer
as Process 1. and the & user processes as Process 2. .... Process & + 1.

Distinct processes i and j (1 < i.j < k+ 1) can communicale in a global state (sy.s2....5141) Iff there exist ¢ € Y.
c# € s €S s €8jsuch that (si.s.c) € R; and (s;.5'.F) € Rj. Process i is enabled in a global state § if either it can
communicate with another process in 4. or for some s € S;.(s;.s.¢) € R;.

Starting with an initial state. we obtain the next global state in an execution sequence of the system by choosing one
of the enabled transitions. To make this more precise. let us define 8[i] for each i. 1 < i < k + 1. to be the state s; where
0 = (s1.82....5041). We say that a global state 5 can be reached from global state § by an internal transition of process i

if (8(7].5{]).e) € Ri and for 1 < j < k+1.j £ i.4[j] = -[j]. Similarly = can he reached from & by communication between
processes i and j. i # j. if for some ¢ € 3. (8[/).5[).c) € Ri.(8(j].<[J).©) € Rj. and for [ # i.j.1 <1 < k+1.4i] = -[l}.
We say that 5 can be reached from & by one computation step if 5 can be reached from 4 by an internal transition or by
communication between a pair of processes.

An erecution sequence € in a system (P¥.8) is a finite or infinite sequence of slobal states . ;. ... where & is an initial
state. and for each / > 0. 6,4+, can be reached from &; by one computation step.

An execution sequence in the system (P.S) is defined similarly. except that now a global state § is an element from
(Ss x Sp x Sp...). A global state (sy.sa2....) is initial iff 5; € Is and Vi > 2.s5; € Ip. Thus. an arbitrarily larze number of
user processes can participate in an execution.

For an execution sequence ¢ (either from (P*.8) or (P.8)). let ¢; denote the sequence ¢ restricted to the states of the ith
process. Thus. €; denotes the sequence of synchronizer states that appear in ¢. Let ®;(¢;) denote the sequence of subsets of

propositional symbols obtained by applying ®; to the states in ¢;. We define the following sets:

Definition 5

L{\-':"’:“(P".S) {@1(e1)le is a finite exccution of (P*.8) )}

L{;m“(P. S) Ul,zo L:_E-”““(Pk.S)

Lgrupfr(P.S) - L{\-”””(P.S) U

{Dy(c)le ts an nfimte erccution of (P¥.8) for some k > 0)
Lé"""(P. S) UL Piteq)le s an ifinide crecution of (P.S) }

L§y~!"nd-‘d( P, 5)

Appendix B — Detailed Proofs

Proof of Part (1) of Proposition 2: For a PN Y. Lfnite(y) C L[*rtended(y')  Therefore. if LfmT€nded(\) =
Lertended(N?) then LIimite(N) = LInite( X)), Conversely. suppose LIiPite(N) = L[Jinite(N) and let w € Lént-nded(\),
We will show that «w € L*7tmded( N7y Since LIMit(N) = LIMite(N) i « is of finite length, w € L#rtended( Ny Qup-
pose w is infinite. Since LS/ \') = LImit¢(\') every finite prefix of w is in Lm¢"9d(\*)  Srarting with the initial
marking My'. consider a tree representation @ of the firing sequences in N’ as follows: The root nade is labeled with
My': every node labeled with a marking M in @. has & children labeled with markings M. Mo, .. Vi respectively il for
each i1 < i< k3 eT Mt > M. We annotate every edge between two nodes by h'(1). where 1 was the transition

“taken™ along that edge. It is easy to see that every word (finite or infinite) obtained by concatenating the annotations on
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the edges along a path in @ is in L7774 d(\7) Also. @ is “finite” branching because every node can have only a maxi-
mum of |7”| immediate children nodes. Since every finite prefix of w is in L*"*"%“4(\'), for each such prefix. there must he

path in @ starting with the root node. Thus. by Konig's Tree Lemma. there is a word «’ € L*""*"%*4( X} such that w = «'. O

Proof of Theorem 5: For the case when “e” is either “finite” or "extended”. we first prove the equivalence of the
following two statements: (1): L§(P.S) = L{\-',""E(P'.S'): and (2): (P.8) =}y (P.8"). When e is finite. (1) = (2) is
easy. To prove (2) = (1). suppose (P.S) E{'}'}_” (P’.8'). Let the propositional alphabet used to label the states of the two
systems be AP. Using the nexttime operator X. construct an LTL formula f for every finite sequence (say w) of subsets of
AP such that if «’ is any finite sequence of subsets of AP that models f (i.c. u’ |= f). then w = «’. For example. suppose

w = ayas...ar. where each a; € 24%7. Consider the following formula f

(AP A XA P... A XX ktimes (A p)

rea p€az re€ax

Clearly. for any w’. «' |= f iff w = «'. Since such a formula either simultaneously holds in both the systems or fails in both
the systems. it follows that if « € L{\-'."“':(P.S) then it is also in L;{-i"i'”'(P’.S') and vice-versa.

When € is extended. once again. (1) = (2) is easy. To prove (2) — (1) observe that L:‘t,.,,,,dr A P.S)= Lgtndepr. 8"
iff L;Li"i“(P-S) = L;{-i"i"(P’.S'). (This can be proved using Konig's Tree Lemma argument similar 10 the proof of Proposi-
tion 2.) Thus. if L7944 P.S) and L 4¢P’ 8') are not equal. then. without loss of generality. there is a finite word w«
such that (a) w is a prefix of some word w' in LE"%4( P, §): and (b) and no finite prefix of any word in Lgtend=d(pr 8"
equals w. As in the previous claim. we can write an LTL formula f such that for any word «’. v’ = f iff w = «'. Clearly.
w’ k= f in (P.8): however. there is no word in Lg’,""““'( P’.8") that models f. Hence. (2) does not hold.

When “e” is proper. we show that an instance of the equality problem of the language of finite executions for two arbitrary
consistent systems (P.§) and (P’.8’) can be transformed to the problem of checking whether (P.8)) =70 (P/.8/).
where (P1.8;1) and (P, &) are obtained from (P.8) and (P'. 8') respectively using a transformation [';. We now describe
I'5 (see Figure 6). T's is similar to [y in principle. The main idea is to eliminate infinite proper execution sequences in the
original C'S.

The conumunication alphabet of (P;.8)) has a new pair of complementary symbols y and F in addition to the symbols
in the communication alphabet of (P.8). The propositional alphabet of (£.81) has a new symbol & in addition to the

propositional symbols of (P, 8).



The definition of Py is the same as P except for the addition of a new state g,,., and an arc from g, to the initial state
qo of P. This arc is labeled by the communication symbol y (see Figure G(i)). qp. . is the initial siate of Py.

81 is obtained from § as shown in Figure 6(ii). The first step replaces every edge from state ¢ 1o ¢’ (¢ and ¢ can be
identical) labeled with a communication symbol ¢ (respectively ¢) hy two edges. The first edge is from ¢ to a "new” state
(denoted by [q.¢']) labeled with communication symbol §. The second edge is from [¢. ¢} to ¢’ labeled with communication
symbol ¢ (respectively ¢). New states of the form [¢.¢'] are labeled ». The remaining “old” states are labeled as in §.
(P,'. &) is obtained similarly from (P’.&").

From I it is easy to observe the following:

(1) If (P.S) and (P’.8') are consistent. then so are (P;.8;) and (P,’. 8&'):
(.,) L!m:tr(P S) - Lfmlle(P, ~, 'ﬂ Lproper(P \‘) = L)»roprr(Pll.SlI): and

(3) LE™N(P. &) = L""’”“ (P. &)y iff L/””“(P Sy) = Lf"”"(Pl’.Sl'}. Using these observations. and the fact that for

arbitrary consistent systems (P.8) and (P'.8') (P.S) Zp 7. (P.8') is undecidable when “e” is “finite”. we get the required
resule. O

Proof of Theorem 6: The proof is similar to the proof of Theorem 5. Using I's (described in Section 3). we first prove

this theorem for the case when € is “finite” or “extended”. We make the following ohservations regarding [:

1. Let (P. &) be any 'S and let (P'.8’) be the S obtained using [;. Then. for every finite word « = ajas...ap. w €
init - . ~ . . .
L;{-’"' “(P.S) Iff « = ayrasras...ra; € Lf'"'“(P’.b’). Similarly. for every infinite word w = ajaqa....w €
Lt d(P 8) iff «' = ayraaras... € LG4 (P &)

[ 2]

Let (P;.81) and (P2.8a) be any two CS. Let (P’ 8)') and (P, &) be obtained from (Py. S;) and (Py. S) respectively
using ['s. Then. L§ (P 81) = Lg,(Pa. S) iff L3 (P 8)) = L .(Py'.82) where “e” is one of “finite”. “proper” or
“extended”.

3. Suppose (P1.81).(P2.82).(P'.&). and (P'.82') are as stated in Observation 2 above. Then the following two

statements are equivalent: (i): Ls ,(P'. &) = L (P2, 8'): and (ii) (P'. & )_LTL/X (P . 8Y).

Observations 1 and 2 are straightforward to prove. We now prove Observation 3. \When ¢ is “finite” (i) — (ii) is

easy. Suppose (/) does not hold. Without loss of generality. let w = ayrase .. .rag be a finite word in L("”“(Pl’.Sl') but

w & L""”' P.'.8)). Let f(a;) stand for the fornula (/\1--'". p). Consider the following formula f

Jan) AU UCe AU lan) A - J(ax) 1))

‘ N t ~ . . . ..
Clearly. if any word u’ € j'"' “(Ps'.8y') is-such that «' = f. then w = «'. Thus. if (/) does not hold. then (ii) does not
hold. For the case when e is "extended". we use arguments similar to those presented for the same case in Theorem 3.
For the case when e is ‘proper™. we show that an instance of the equality problem of the language of finite executions for

two consistent systems (P. &) and (P’. 8’) can be transformed to the problem of checking whether (P;.8)) —’I""T"’I:‘/'X (P'.S)).

where (Py.&)) and (Py’.8y’) is obtained from (P.S) and (P’'.8') respectively using a transformation I';.

I'; does the work of transformation I'; followed by the work of transformation [s. Given two arbitrary systems (. 8)
and (P'.8'). let (P1.81) and (P'.8)") be obtained using [z on (P.8) and (P'.8') respectively. We make the following
olservations regarding I';.

(1) If (P.S) and (P’. 8") are consistent. then so are (P.8)) and (). 8,'):

(2) LE" P8y = LEM (P8 i LIPS = LT SY): and
. NS 1
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result. O

S y AT fnite o . inite e . o Lo - . B ; . .
(P, S1) = LY (P8 il Lé’l"' PLS) :LLQ."” “(P.8)'). Using these observations. we get the requirid
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