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Abstract

The view lines associated with a family of profile curves of the
projection of a surface onto the retina of a moving camera defines a
multi-valued vector field on the surface. The integral curves of this
field are called epipolar curves and together with a parametrization
of the profiles provide a parametrization of regions of the surface. In
addition, one has the epipolar constraints which define curves in the
images. These image curves are related to the epipolar curves on the
surface but not by a simple projection. We present an investigation of
epipolar curves on the object surface, in the spatio-temporal surface
and the traces in the images. We address the question of when there
is an epipolar parametrization. We have obtained detailed results
which depend on a classification [4] of vector fields on surfaces with
boundary. These results give a systematic way of detecting the gaps
left by reconstruction of a surface from profiles. They also suggest
methods for filling in these gaps.
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1 Introduction

This paper is concerned with some aspects of the reconstruction of
surfaces from a sequence of profiles (also called apparent contours,
outlines and occluding contours) where the motion of the observer is
known. Such a reconstruction was introduced in [7] for a simple class of
motions, and was generalised in [1, 3, 13] to arbitrary motion. For the
general motion case, the epipolar correspondence played an important
role in matching points from one profile to the next as well as in
the parametrization of the surface. The first question one must ask is,
“When is this parametrization possible?” The parametrization breaks
down when profile is singular (has a cusp or worse) when the profile is
occluded at a t-junction and, as we explain below, at ‘frontier points’.
In these circumstances a ‘patching’ operation is needed to fill in the
missing pieces of the surface, which failed to be reconstructed, and to
do this we need to know the nature of these missing pieces. The object
of the present paper is to throw light on this by a thorough study of
the epipolar curves close to the places where the prametrization breaks
down. In addition one must consider the accuracy of determining
the epipolar correspondence. This is problem is also studied here by
examining the constraint in the image plane.

Recall that the profile of a surface M from a given viewpoint can
be defined either for parallel or for perspective projection. For par-
allel projection and a view direction (unit vector) w we consider the
critical set T, on M to be the set of points where the normal to M
is perpendicular to w. (If w is a function of ¢t then we would write X,
rather than X,().) Projecting in the view direction w onto a view-
plane perpendicular to w gives the profile. Thus profile points p and
surface points r are related by an equation of the form

r=p+ 2w (1)

where ) is the distance from p to r.

For perspective projection, we follow [1, 3] in taking a centre of
projection (camera centre) c not on or inside of M and defining the
critical set ¥, to be the set of points » of M where the normal is
perpendicular to the line segment (‘viewline’) from c to r. (When c is
a function of ¢ we write X, for X.(,).) The critical set is then projected
along the visual rays onto a unit sphere centred at ¢ to give the profile
points ¢ + p in this sphere (the ‘image sphere’). (See Figure 1.) Thus
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Figure 1: a) Parallel projection. b) Perspective projection.

p is regarded as a unit vector giving the direction of the viewline. We
have

r=c+Ap (2)
where here ) is the distance from c to r (the distance from the profile
point ¢ + p to r being A — 1). To allow for camera rotation we can
take new coordinates g on the unit sphere, where p = Rgq, R being a
rotation matrix and R(0) = identity.

From (2) we have (suffices denoting derivatives)

Ty =C + Atp + '\ph (3)

so that by taking the scalar product with the normal n to the surface
at r, and using r,.n = 0, p.n = 0, we obtain the distance formula (as

in [3])
—C¢.n
A= . 4
Dent ( )
Note that when we use rotated coordinates ¢ instead of p, we have
pe = Rg. + Q x Ry, (5)
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where 2 is parallel to the instantaneous rotation axis of R, with length
equal to the instantaneous angular speed. It is usual to take ¢ = 0
in (5), so that the equation reads p, = ¢; + Q X ¢, since R(0) is the
identity.

We are interested in families of profiles, so that our view direction
w or camera centre ¢ will be functions of a variable ¢, and the rotation
matrix R is also allowed to be a function of ¢t. We assume this from
now on. Given such a motion, a correspondence can be set up on the
profiles as described below.

The epipolar plane at a profile point p is the plane spanned by
the view direction w and tangent vector w,, or the viewline r — ¢
and the tangent c, to the motion. Note that the epipolar plane is
undefined in the perspective case if » — ¢, ¢, are parallel. (Of course,
for parallel projection w, w, could only be parallel if w; = 0.) The term
‘epipolar plane’ is borrowed from stereo, where the epipolar plane is
the plane spanned by a viewline and the base line between the two
camera positions. It is shown in [3, 13, 12] that there is considerable
advantage to be gained from taking a parametrization of the surface
M in which one set of parameter curves (¢ = const.) consists of critical
sets and the other set of parameter curves (uz = const. say) consists of
epipolar curves, that is curves whose tangent vector is always along
the viewline (or view direction). In the last paper, it is shown that the
advantages of using the epipolar correspondence as opposed to other
methods for defining a correspondence between points on two or more
profiles is that the reconstruction can be transformed readily into an
optimal estimation problem. Since the epipolar plane turns out to be
the osculating plane for the epipolar curve through a given point, the
viewlines are approximately coplanar and can be used to give a second
order approximation of the curve. Some of the important geometric
properties of reconstruction using the epipolar correspondences are
presented in §2.

Note that when the epipolar parametrization is used, we have (for
perspective projection)

rt"P. (6)

since the curves u = const. are tangent to the viewlines. For parallel
projection we have r, parallel to w.

There are circumstances where this desirable parametrization is
impossible. One of these occurs when the critical set is tangent to



the viewline: tangents to the two parameter curves at a point are not
allowed to be equal in a regular parametrization. In that case it is
well-known that the profile is singular, that is, has a cusp or worse
singularity. (This is because the critical set, which is a space curve, is
being projected in the direction of one of its tangents, resulting in a
singular projected curve.) A similar problem will arise if the critical
set itself becomes singular. This occurs when the point r on the surface
is parabolic and in addition the viewline (or view direction) is along
the unique asymptotic direction at r: see for example [9, p.458], ‘lips
and beaks’ singularities, where the author refers to parabolic points
as ‘spinodal points’.

There is one other circumstance where the parametrization breaks
down. This occurs when the epipolar plane at p is the tangent plane
to M at r,i.e. when ¢, is in the tangent plane at r, which is the same
as saying that ¢, is perpendicular to the surface normal n at 7. See
§3 below for a precise statement of when the epipolar parametrization
fails.

There is another very geometrical way of describing this situation.
Let r(u,v) be a (regular, local) parametrization of the surface M ,
and let n(u,v) be a nonzero normal vector at r(u,v) (choosing some
orientation for the normal such as that of », X r,). Then the family
of critical sets is given by the equation

(r(u,v) - c(t)).n(u,v) = 0. (7
Regarding (7) as the equation of a family of curves in the (u, v) plane,
parametrized by t, the envelope of the family is given by solving (7)
simultaneously with the derivative of this equation with respect to t,
namely ¢;.n(x,v) = 0.

We call the envelope of critical sets on M the frontier of M , since,
locally at least, the envelope separates those points of M which lie
on some critical set (the points forming the visible region) from
those which don’t (forming the invisible region). See Figure 2. It is
possible that, at some later time, critical sets will come to cover part
of the invisible region; hence the emphasis here on localness. Note
that Figure 2 shows the situation at as generic point of the frontier.
In Figure 3 below we show what happens at a parabolic point of the
frontier. To sumrmarize:

Definition 1.1 The frontier of M (relative to the given motion c(t))
is the envelope of critical sets on M , that is the points satisfying (7)
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Figure 2: The frontier: envelope of critical sets on M , the generic case.

and c,.n(u,v) = 0. For parallel projection, the frontier points satisfy
we.n(u,v) = 0 and w.n(u,v) = 0. The frontier contains the set of
points r of M where the epipolar plane coincides with the tangent plane
to M.

The last statement follows because, at points where the epipolar
plane coincides with the tangent plane to M , the vector ¢; in the
epipolar plane must be also a tangent vector to M , and hence per-
pendicular to n.

1.2 Remark

The only additional points of the frontier are those where r — ¢ and
c: (equivalently p and c;) are parallel: here, the epipolar plane is
undefined. These additional points are those where the camera motion
is directly along the visual ray. Although an epipolar parametrization
of the surface is not possible here, one can consider r(u, t) as a family
of curves on the surface given by the critical sets. Similarly, p(u,t) is a
family of curves on the unit sphere given by the profiles. Even though
there is no epipolar plane, the epipolar constraint (6) is still defined
and can be used with (3) to show that p, is parallel to p. But p, is
also perpendicular to p, since the latter is a unit vector, so, at such
points when the epipolar constraint is applied, p; = 0. Our analysis
shows that the epipolar curves and critical sets at these points behave
like those at a parabolic point on the frontier.



Figure 3: The frontier: envelope of critical sets on M , at a parabolic point.

It is geometrically clear that, along the envelope, the critical sets
cannot be part of a coordinate grid on M : coordinate grid lines corre-
sponding to constant values of one coordinate function are not allowed
to intersect each other. We shall see later that the epipolar curves go
badly wrong along the envelope too: they are in fact singular there.
However, the spatio-temporal surface described in the next section
does admit an epipolar parametrization. Before giving this construc-
tion, we will look at a surface which will be used as a running example
for the ideas in this paper.

Example 1.3 The paraboloid

Consider the surface M : z = 22 4 y?, parametrized by r(u,v) =
(u,v,u? + v?), and let c(t) = (1,¢,¢%) be the path traced out by the
camera centres. (Remark It is no use having a straight line for the
path of camera centres. For a straight line gives ¢, = 0 which makes
every point of the envelope a ‘point of regression’ (2, §5.26]. Indeed
the envelope can reduce to isolated points instead of a curve: try
c(t) = (1,¢,0).)

For ¢(t) = (1,t,t%) the equation (7) becomes f(u,v,t) = 0 where

flun,t)=(u-1)"+(v-t)* - 1. (8)

The critical sets in the plane of the parameters u, v are circles between
the lines © = 0, « = 2 in the (u, v)-plane and these two lines form the
envelope. That is, the frontier on the surface itself consists of the set



of points of the form (0, v, v?), (2, v, 4+ v?) for arbitrary v. See Figure
4. The visible region in the parameter plane lies between the two lines
u=0,u=2 ¢

2 Geometry of the viewlines

Suppose one has a regular parametrization of the surface M by r(u,t)
and a camera trajectory c¢(t) such that for some fixed %o the view lines
c(t) + M(uo, t)p(uo, t) are tangent to the surface at r(uo,t). Note that
Proposition 3.4 gives the precise conditions under which this is possi-
ble. Thus, for the parameter curve r(uo,t), parametrized by ¢, there
is a one parameter family of viewlines [(t) such that I(¢) is tangent to
the surface at r(uo, t). Intuitively, reconstruction algorithms are based
on intersections of viewlines. In practice, these viewlines may not
intersect and the points where they are closest can be considered as
an approximation. In general, such an approximation may not even
approach a point on the surface. However, there are cases where the
closest points do converge to a point on the surface. In particular, if
I(t) is a tangent line in a family, then the point on I(t) closest to the
line I(t + €) approaches r(uo,t) as € = 0. There are two parametriza-
tions which have this geometric property. One of these is the epipolar
parametrization and the other is the normal parametrization. More
formally, this can be stated as follows: the distance from the camera
center to the surface at the point of tangency is to first order given by
the distance from the camera center to the point where this viewline
is closest to the viewline for a nearby camera position if and only if
the parametrization satisfies either the epipolar or normal constraint.
What is interesting about this result is that it gives a new formula for
the depth.

Suppose the two viewlines are determined by (c(t), r(uo,t)) and
(c(t + €), r(uo, t + €)) respectively. These lines in three-space will not
in general intersect, and is possible to solve for the points where they
are closest to each other. Let a be a point on the first line and b a
point on the second line.

a = c(t)+ap(u,t) (9)
b = c(t+¢)+Bp(uo,t+e) (10)
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Figure 4: Visible region and frontier on the surface and in the parameter
space of the surface of Example 1.3




b—a = e+ (8- a)p+ﬂ€pe+%6’(Cu+ﬁpu)+°(€’)

If @ and b are the closest points, then the line b—a is perpendicular
to each of these two lines. This can be written as

(b-a)-p(uo,t) = 0 (11)
(6-a)-p(uo,t+¢) = 0 (12)

The a and 8 can be thought of as functions of € and have Taylor
series expansions around € = 0. Thus, one can solve for a as a Taylor
series in ¢ and take the limit as ¢ goes to 0, i.e. solve for the constant
term. Since we are considering a fixed value of uo and the expansion
is around ¢, we omit those parameters from the expressions.

0 = (b-a)p
ec,-p+(ﬁ—a)+§e’(c,,-p+ﬂpn-p)
0 = (b—a)-p(t+¢)
= (b—a)~p+e’(c.-p,+ﬂp,-p,+-;-(ﬂ-—a)p-p,t)+o(63)

Manipulating these equations to solve for « gives, for ¢ = 0,

a= St P (13)

Pt D
This is therefore the distance from the camera centre to the point
a of closest approach of the two viewlines, in the limit. Note that
this is defined whenever p, # 0, including most points of the frontier,
whereas formula (4) is not defined at the frontier. We now show that
this is equal to the distance to the surface if and only if r(u,t) is an
epipolar or normal parametrization, i.e. 7¢||p or p||n.

Proposition 2.1 If r(u,t) is ¢ parametrization of M with t being
the parameter of a moving camera center, then for a point not on the

frontier

—c . _.c .n
t P¢= t (14)
D Dt De-n

iff rellp or pe|In.
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Proof: <= Case 1: If r,||p then differentiating equation (2) one can see
that ¢, is in the plane of p and p,, one writes

ce=Ep+npe

One can then take dot products with the surface normal and the tan-
gent to the trace of the epipolar curve:

C'n = Tp.-n (15)
Ce Pt = NPt Pe (16)

Eliminating 7 gives the desired equation.
Case 2: If p¢||n then substitution gives the desired equation.
= Equation (14) can be rewritten as

(=ce-pe)(pe - m) — (—ce-n)(pe - pe) = 0 (17)

This can be written in terms of cross products as

(Pe X (e Xp)) - n=0 (18)

This implies that v = (p; X (ce X pe)) is in the tangent plane to the
surface. Since this is a tangent vector and perpendicular to p,, either
Pef|n and every tangent vector is perpendicular to p, or v is a multiple
of p.

e Case 1: (p, X (¢ X p¢))|lp- By the fact that the cross product
of two vectors is always perpendicular to each of the factors,
(pe x (ce X pe)) is always in the plane spanned by ¢, and p;. Then
it follows that the triple product [p, p;, ¢;] = 0. This says that
since generically p, # 0, ¢, is in the plane spanned by p and p,.
Using the equation :

Ty =C + AP+ Ape,

it follows that [p,p,, 7] = 0. Thus, r, is in the epipolar plane
as well, and by definition it is a tangent vector. Except at the
frontier, the intersection of the epipolar plane and the tangent
plane is just a line in the direction of p. This shows that r||p.

e Case 2: p||n. For the spherical image, the normal to the profile
is the normal to the surface, so p, is normal to the profile. This
is the normal correspondence used in {3] for stationary curves on
the surface and results in a parametization when tracking the
profiles of critical sets, except when the profiles are singular.
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3 The spatio-temporal surface

We introduce an auxiliary surface which will prove to be very useful in
subsequent discussions. We work in the slightly more complex situa-
tion of perspective projection and make the following definition, which
is given in two forms since M may be specified by a parameterization
or implicitly as the zero locus of a function.

Definition 3.1 Let M be a smooth surface, defined locally by a para-
metrization (u,v) — r(u,v). The spatio-temporal surface M is
defined to be the surface in R® (coordinates t,u,v) given by the equa-
tion

(r(u,v) - c(t)).n(u,v) =0, (19)
where n(u,v) is a nonzero normal vector at the point r(u,v) of M .
Compare the identical equation (7): the only difference here is that we
make t an eztra coordinate direction.

If M is defined by an equation g(z,y,z) = 0 (where we assume the
partial derivatives g, g,, 9, do not all vanish simultaneously on M, to
ensure it is smooth), then the surface M is defined in R* (coordinates
t,z,y,2) by the equations g = 0 and

((z,9,2) — c(t))-(92, 94, 95) = 0. (20)

The surface M is closely allied to the ‘spatio-temporal surface’
of Faugeras [8]. Unless otherwise stated we use the ‘parametrized’
version (19) in what follows. Intuitively, we lift the critical set X, on
M to a ‘height’ ¢t in a new coordinate direction, spreading out the
critical sets in the ¢-direction, to make M.

A short calculation with the implicit function theorem [2] shows
the following.

Proposition 3.2 The spatio-temporal surface M is smooth ezcept at
points (u,v,t) where all of the following happen: r(u,v) is parabolic,
the viewline r — c is in the unique asymptotic direction at r, and r is
a frontier point of M (i.e. ¢,-n=0).

The situation where M is not smooth therefore corresponds to the
case of ‘lips/beaks singularities occurring on the frontier’, which is
not generic for a 1-parameter family of camera centres c(t) and a
generic smooth surface M . (As already cited, see [9, p.458] for more
information on lips/beaks singularities.) For the paraboloid we have
the following construction for M .
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Figure 5: The spatio-temporal surface for the paraboloid example

Example 3.3 The Paraboloid, continued

The equation (8) in addition to giving the critical set for each value of
t is also the equation of M . Thus M is a slanted cylinder all of whose
horizontal sections are circular. See Figure 5. The projection from
M to M is not a diffeomorphism at points where . = 0 or » = 2; in
fact it is a fold mapping, which is geometrically clear from the figure.
The critical sets on M ‘lift’ to sets £, on M , namely the horizontal
circular sections of M . ©

The surface M will be useful in several ways. For a first application,
let us ask when we can use ¢ and some other parameter u as a (local)
regular parametrization of M. That is, when can the critical sets form
one family of coordinate grid curves on M 7 This amounts to deciding
the following:

1. When is M parametrized locally by ¢, or ¢, v?
2. When is the projection from M to M given by (u,v,t) = r(u,v)
a local diffeomorphism?
A routine calculation using the implicit function theorem shows

that, assuming the critical sets to be smooth (i.e., avoiding the ‘lips
and beaks’ situation), the only circumstance where both the above
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conditions fail is when ¢,.n(u, v) = 0, that is when r(u, v) is a frontier
point. See §1.1 for the interpretation of this in terms of epipolar
planes.

We can sum up the above conclusions as follows.

Proposition 3.4 It is possible to use the parameter t as one compo-
nent of a reqular parametrization of M, locally at r, so long as neither
of the following happens:

1. The critical set is singular (‘lips or beaks’ situation);

2. The point r is a frontier point of M , which can be identified by
any of the following (where we assume that 1. does not hold):

o The epipolar plane, which if it ezists is spanned by the cam-
era motion vector c, and the viewline r — c, is the tangent
plane to M at r,

o The vector ¢, is in the tangent plane to M at r,

o The vector c, is perpendicular to the profile normal at p
(which is parallel to the surface normal at r),

o The point r lies on the envelope of critical sets on M .

If ¢, is in the direction r —¢, then the epipolar plane does not exist, but
the point is still on the frontier. This can happen at isolated points on
the frontier for isolated values of ¢. The critical sets of a surface r(u,v)
are given by (r(u,v)-c(t)).n(u,v)=0, giving a 2-parameter family of
solutions. The condition ¢||(r — ¢) is two constraints, so there can be
isolated solutions. Note that, so far as determining the profile normal
is concerned, it does not matter whether we use the p coordinates
on the image sphere or the ‘rotated coordinates’ g. The converse of
Proposition 3.4 is not true in the sense that the critical set can be
singular at a point where the projection from M to M is non-singular.
However, t still cannot be used as a local parameter. This can be
seen in the following example of a parabolic point which is not at the
frontier.

Example 3.5 A non-frontier but parabolic point

Consider the surface M : z = z? + y® which can be parametrized by
r(u,v) = (u,v,u? + v*). Take the camera centre curve to be c(t) =
(0,1,¢). The equation (19) of M is f(u,v,t) = 0, where

fu,v,t) = ((u,v,u’+v°)=(0,1,2)).(-2u, —3v% 1) = u? —3v* +20° 4.
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Figure 6: Projection from M to M showing the critical sets and the frontier,
(i) at a generic point of the frontier; (ii) at a parabolic point of the frontier

For t = 0 the critical set f(u,v,0) =0 is singular and the viewline is
along the unique asymptotic direction to the surface M at the origin,
namely the y-axis. To see this note that the normal plane containing
the y-axis intersects the suface in the curve (0, ¢,¢%), whose first and
second derivatives vanish at ¢ = 0. However, the projection from M to
M is actually nonsingular here: this is because c,(0).n(0,0) # 0 is just
the condition that the jacobian has full rank, which follows from the
fact that the origin is not a frontier point. ©

Here is a second application of the surface M. In Figure 2 we have
shown the pattern of critical sets along the frontier of M. Using M we
can find whether there are any exceptions to this simple picture. On
M the ‘lifted critical sets’ ¥, are simply the curves given by ¢t = con-
stant. The ‘lifted frontier’ F'is the curve on M given by the condition
ce.n = 0 as in §1.1. The interpretation of Figure 2 is that the £, are
transverse (non-tangent) to F , so that the projection M to M looks
like Figure 6, left.

We can easily find the condition for the lifted critical set £, to be
tangent to the lifted frontier F'. For £, is given by the two equations

15
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(r=c¢).n=0,t = const. and Fis given by the two equations (r—c).n =
0,c..n = 0. We simply require that the 3 x 3 matrix obtained by
differentiating the three different equations here with respect to the
three variables u, v, ¢ should have determinant zero.

Proposition 3.8 The lifted critical set £; and lifted frontier F are
tangent on M if and only if the triple scalar product [c,,r — ¢, n, X 1,]
is zero. This is so if and only if either

(i) c: is parallel to r — ¢ (the camera is heading straight along the view
line), or

(ii) v is a parabolic point of M .

Proof: Evaluating the 3 x 3 determinant gives (¢;.n,)((r — ¢).n,) —
(ce-ny)((r — ¢).n,), which rearranges to the triple scalar product. For
the second assertion, note that ¢, and r — ¢ are both tangent vectors
(since we are considering a frontier point) and n, X n, is either zero
or parallel to the normal vector n. If it is zero. we have a parabolic
point, and if not then the only way the triple scalar product can be
zero is for ¢, and 7 — ¢ to be dependent. O

The pattern on lifted critical sets on M, when £, is tangent to F, is
therefore as shown in Figure 6, right, and the situation for the critical
sets and frontier on M is easily derived by projection; it is also shown
in the figure. There follows a simple example where the condition ¢,
parallel to » — ¢ holds. The pattern of critical sets for this case is the
same as for a parabolic point on the frontier.

Example 3.7 The paraboloid, continued

We consider again the paraboloid z = u? + v? but this time use the
path c(t) = (1 — ¢, ¢3,¢%), so that ¢,(0) = (-1,0,0) is along the visual
ray from c(0) to the origin. In this case the equation of M turns out
to be

(u-(Q1-0))P+(@w-2?)Y?=1-2t+1t,

and the additional equation of Fis u — 2tv + t = 0. Note that the
critical sets, projected into the (u, v)-plane, are all circles. The frontier
is not in this case parametrized by ¢ near to ¢ = 0, since there are two
points of the frontier for each nonzero ¢ close to 0. In fact, these are
given by )

v?(1 +48%) —v(2t* +4t) + 2t = 0,u = (2v - 1)t.
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This equation has real distinct roots for v provided ¢ < 0 (also for
t > 2.83 approximately), so that each critical set for ¢ < 0 is tangent
twice to the frontier, and the critical sets then move away from the
frontier for ¢t > 0 (returning to it for ¢ > 2.83). ©

4 Epipolar curves

The epipolar field on M is, roughly speaking, the multi-valued vector
field which associates to each point 7 of the visible region a vector
in the viewline direction r — ¢(t) for each ¢ with r on the critical set
3, . The epipolar field becomes single-valued on the spatio-temporal
surface M , which is another reason for studying that surface. The
epipolar curves on M or M are integral curves of the epipolar field.
Before being more precise, we return to the paraboloid example.

Example 4.1 The paraboloid, continued

We continue to take the curve of centres as ¢(t) = (1,¢,¢%). Given
a point r(u,v) = (u,v,u? + v?), lying on a critical set X; , we want
the tangent vector to M which is along the viewline at 7, i.e., along
the direction (u, v, u? + v?) — (1,¢,¢?). The required vector in param-
eter space is therefore simply along (u — 1,v — t). Of course, we can
eliminate ¢, but at the expense of making the multi-valuedness ex-
plicit: using (8) we find that the vector at (u,v) in parameter space
is (u — 1, &+/u(2 — u)), which happens to be of unit length.

To find the epipolar field on M we need to find a tangent vector to
M at (u,v,t) which projects to a vector parallel to (u— 1, v —t) under
the projection (u, v,t) = (u, v). Using the gradient of f from equation
(8) as the normal to M , we want a vector parallel to (z — 1,v —t,£)
satisfying

(u-1,v-t8).(u-1lv-t,—(v—1t))=0.

The solution for £ is 1/(v —t), and the vector solution can be written
so that the curves are parameterized as (u(t), v(t),t). Such a vector is
((w=1)(v —t), (v — t),1): we can take the epipolar field on M to be
given by this formula. (Below, in Proposition 4.4, we give a general
prescription for finding the epipolar field in M J)
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To find the epipolar curves on M we want the solutions of the

differential equation
dv _ 2

'z't- = (‘U - t) .
Substituting w = v — ¢ turns this into dw/dt = w* — 1, which gives
w = — tanh(t + k) for any constant k, i.e. v=1¢ — tanh(t + k). There
are two ‘exceptional’ solutions, namely v = ¢t + 1, which correspond to
‘k = Foo’. Using equation (8), the corresponding solutions for u are
u = 1+ sech(t + k). The exceptional solutions for v both give u = 1.
So the epipolar curves on M are (for any constant k)

(u,v,t) = (1= sech(t+ k),t+ tanh(t + k),t);
(u,v,t) = (1,t£1,2). (21)

Note that these curves are always nonsingular and are necessarily
transverse to the ‘lifted critical sets’ £, , which are given by t =
constant. This says that we can always parametrize M locally with
a coordinate grid consisting of the £, and the epipolar curves: ‘the
epipolar parametrization always works (locally) on M.

The frontier is given by ¢, - n = 0, where ¢, = (0,1,2t) and
n = (—2u, —2v,1). The epipolar field on M is obtained by projec-
tion from M , (so of course it becomes zero on the frontier, since v = ¢
there). The epipolar curves on M are obtained by treating the first
and second components in (21) as parametrizations with respect to
t. For example, consider the curve which, at ¢ = 0, passes through
u = v = 0. This is the curve

u =1 - secht,v =1 — tanht,

which has initial terms in its MacLaurin expansion

u=%t’+..., v=—-:];'t3+....

This curve, like all the epipolar curves on M apart from the ‘excep-
tional’ curve u = 1, has an ordinary cusp where it meets the frontier.
(The exceptional curve does not meet the frontier.) The shape of the
epipolar curves in M is shown in Figure 4. The visible region here is
that between the lines u = 0,4 = 2. _

The example is ‘non-generic’ to the extent that two epipolar curves
on M project to indentically the same epipolar curve on M . These
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are the curves u = 1,v = ¢t + 1, which project to u = 1. Note that
the two critical sets on M through points with u = 1 are tangential.
This implies that the corresponding epipolar curves through such a
point will also be tangential (the epipolar direction is determined by,
indeed conjugate to, the tangent to the critical set). In the present
case the epipolar curves are not merely tangential: they coincide. Note
also that although the line u = 1 is in some sense exceptional, this
does not prevent the use of local coordinates on M at a point on this
line, with coordinate grid given by the epipolar lines and the critical
sets. This ability to use an ‘epipolar parametrization of M ’, which
is so important in [1, 3], depends only on the two sets of lines being
transversal (non-tangent) at any point. Of course it fails hopelessly
along the frontier. <©

The following definition has already been used informally in the
above discussion.

Definition 4.2 In the setup used above, with a surface M and a family
of viewpoints c(t) (resp. a family of view directions w(t)), an epipolar
field on the visible region of M (the region covered by the critical sets)
is @ smooth nonzero (multi-valued) vector field which at any point r
has vectors along the viewlines at r (resp. the view directions at r)
corresponding to the critical set(s) passing through r.

Let # = (u, v,t) be a point of the spatio-temporal surface M. Thus,
under the map w : M — M given by

(u,v,t) = r(u,v),

the point 7 goes to a point of the critical set X, . An epipolar field in
defined on the whole of M .

Definition 4.3 An epipolar field on M is a smooth vector field which
associates to the point ¥, the tangent vector to M projecting under w
to a nonzero multiple of the viewline vector r — c.

The above definitions do not specify the lengths of the vectors
giving the vector field. This will not matter for us since we are only
interested in the integral curves of the vector field, which we call the
epipolar curves on (the visible part of) M or on M . Changing
the lengths of the vectors only changes the parametrization of these
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curves. To make the vector fields definite we could normalise the
vectors to length 1, say. Below, we give an explicit formula for this
tangent vector field on M .

It is not hard to find explicitly the epipolar field on M for a
parametrized surface r(u, v), where no assumption is made about this
parametrization beyond that of regularity (r,,r, independent). The
result is as follows.

Proposition 4.4 An epipolar field on M has the form

((ce - m) (LT;C’I"_”]) y(—ce-m) ([r % Ty n]) y=II(r —¢,7 — c))(22)
=} (R

Here, II is the second fundamental form of M (see e.g. [9, 10]),
and n = r, X 7, is normal to M . Note that the last component of this
vector is zero if and only if the viewline is in an asymptotic direction
at the surface point. This implies that the profile is singular at the
corresponding point. At a frontier point, the first two components are
zero and the epipolar field is ‘vertical’. This says that the epipolar
curves on M are singular along the frontier of M °.

Proof The equation of M is given in 19 so that a general tangent
vector to M at (u,v,t) is say a, 8,7 where

a(r—c).n, +P(r — ¢).ny, —Te,.n =0. (23)

The image of the vector a, 8, T under the projection M — M is ar, +
Br,. We want this to equal r — ¢, which determines a and S8 since
T, 7, are independent. Thus (23) determines 7 so long as ¢;.n # 0;
the contrary case of course occurs precisely at the frontier. The final
formula is independent of the frontier restriction since we can clear
denominators.

Now 7 — ¢ = ar, + fr, gives

(r—¢)xXry==Pryxry; (r—c)Xr, =ar, X1, (24)

Hence
[r—cryruxr]==8|ru x|,

[r—c,r,,,ruXr,]za" Ty X Ty ”2 .
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The lifted tangent vector is therefore

(@,8,7) = (o, B, (a(r — €).nu + B(r — €).n,)/cc.m),

which is proportional to
c.na, c,.nf, a(r — c).n, + B(r — c).n,).

We can now substitute for a, 8 from (24). Note that n can here be
any nonzero normal vector, for example r, X 7,.

Now ny.(r — ¢) = —II(r,,r — c) provided n is a unit normal (see
(10, p.190]). Using the linearity of II it is a simple matter to reduce
the tangent vector to M to the form given in the statement of the
proposition.

4.5 Notes

1. The formula for the epipolar field on M looks impressive, but if
we regard M as contained in M X R then it really says that the
epipolar tangent vector to Mis along (¢;.n(r—c), —II(r—c,r—c))

2. It is a standard fact of surface geometry (see e.g. [3, Eq.(9)]) that
II(v,v), for a tangent vector v, is just the sectional curvature of
M in the direction v, scaled by || v ||>. Thus, in our case, the
term II(r — ¢,r — ¢) in (22) can be rewritten x*/A? where «* is
the ‘transverse curvature’, i.e. the sectional curvature of M in
the direction of viewing. Both quantities here can be measured
from the image; see [3, §4].

3. Of course there is a similar formula to (22) in the case of parallel
projection with variable viewing direction w(t). In fact it is
identical to the above formula, replacing » — ¢ by w and ¢, by
w,, except that, for reasons of orientation, the sign in front of I
becomes +. In the reinterpretation as in Note 2 above, we have
simply II(w,w) = &*.

5 Epipolar constraints in the image sphere

In summary of reconstruction via epipolar curves, each point on the
profile in the initial image frame is tracked to a point on the profile
in each subsequent image using the epipolar constraint. The epipolar
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constraint is a line in the image which is intersected with a profile to
give the correspondence to a point on a profile in a previous image.
The correspondence is used to reconstruct a 3-D epipolar curve on
the surface, which is part of a family of curves that can be used to
parametrize the surface except at the frontier or when the profile is
singular. While the camera is moving in space, the epipolar curves are
generated on the surface, but we also are interested in what happens
in the viewplane since all our measurements as well as the tracking
are done there. In this analysis it should be kept in mind that because
the camera frame is moving, a point in the viewplane at one instant
in time is a different point in space at another. As the epipolar curve
is traced each point appears on the profile at different time instant.
One could look at the 3-D curve that is traced out by connecting the
points in the different viewplanes as the camera moves. In the case of
planar motion, this gives the pedal curve of the epipolar curve. If one
identifies the different viewplanes using the coordinate system that is
transported by the camera, then this trace of epipolar points is a curve
in the viewplane, but it is not the projection of a curve on the surface
for any single view. In addition, it depends strongly on the rotational
motion of the camera. Nevertheless, we want to analyze this curve
and the epipolar constraints that are used for tracking. As before
the equation for the surface can be expressed in a rotating cordinate
system as

r(u,t) = c(t) + Mu, t)R(t)q(u, t) (25)
From equation (5) we have
@=p—Qxg (26)

Assume that ¢; # ap so that the epipolar plane is well-defined. Equa-
tion (3) together with the constraint r||p implies that p, is in the
epipolar plane spanned by ¢; and p. But since p is a unit vector, it
is also true that p - p, = 0. This means that the direction p; of p, is
determined but not the magnitude. From equation (26) we have

¢ = ap—Qxgq (27)
g(t+8t) = q(t)+ (ap. - Q x g)dt + O((6t)?) (28)

Thus, it can be seen that although ¢, is determined by p, the direction
of ¢, cannot be obtained directly. The correct direction for ¢, only
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emerges once the correct value for a is found. The epipolar constraint
does not pass through the point g in the later image. From g¢(t) go
along the vector (—2 X ¢)dt and, at the endpoint, take the line in
the direction p, (this all takes place, strictly, in the tangent plane to
the image sphere). This line meets the profile for ¢ + d¢ in the point
satisfying the epipolar constraint. The next section shows more clearly
what this looks like for a restricted type of motion.

6 An analysis of epipolar curves for
circular motion and parallel projection

In this section we show what the epipolar constraint looks like in the
case of circular motion, which is where the camera moves in circle
on a sphere with the view direction passing through the center of
the sphere and the viewplane rotating with the motion. This can
also be thought of as an object rotating on a turntable. We also
assume parallel projection to simplify the equations. First we re-derive
the essential formulae for the frontier, spatio-temporal surface and
epipolar curves. It turns out that for circular motion these formulae
are particularly simple.

Let the point a(t) rotate on a circle, which we regard as a circle of
latitude at latitude 3, on a sphere of radius p. Thus

a(t) = —pw(t), where w(t) = (—ccost, —csint, —s),

where ¢ = cos 3, s = sin 3. Take a moving image plane with origin at
a(t) and normal vector w(t). (We can also take p = 0, meaning that
all the image planes pass through the origin. This is often done when
setting up the distance formula in this context.)
Let us use coordinates (U, V) in this image plane, where a point p
in space satisfies '
p=d+U€1+Vez,

e, = (—sint,cost,0),e; = (scost, ssint, —c),
so that e, e;, w form a right-handed triad in 3-space. Note that
eys = CW — 8€3, €3 = €1, Wy = —C€;.
Thus by differentiation
pe = (pc+ U, +Vs)e, + (Ve — Us)es + Ucw.
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The epipolar constraint is that r, is parallel to w, and
r=p+dw,r = p + Aw + Ay,

so this implies that p, is in the plane of w and w;, that is in the w, e,
plane; hence the coefficient of e; in the expression for p; is zero, i.e.

Vi=Us.
Going back to the formula for r, (parallel to w) we deduce also that
Us=Ae-Vs.

So we have the direction of the epipolar curve in the image plane
given by (U, Vi) = (Ac — V's,Us). How do we construct this curve,
which gives us the epipolar correspondence in the image plane? The
construction is very similar to that for rotated coordinates in the image
sphere given in §5 above. We have

Uiey, + Viea=p: — ar — Ueys — Vey,

where all the terms on the right-hand side are known besides p,. We
also know that p, is in the plane of w, e, so that projecting p; to the
image plane we obtain a vector in the direction of ¢;. The length of this
vector is unknown. Projecting the other terms on the right-hand side
into the image plane gives a known vector, namely (pc—V's)e;+Use; =
b, say. So from the current profile point p we take a vector b4t and at
the end of this vector we take the line in the e, direction. Where this
meets the profile for t+ 4t is the point of this next profile satisfying the
epipolar constraint. We can see from the equations that this constraint
in the rotating coordinate system is not a horizontal line nor does it
pass through p.

7 Special circumstances where the epipo-

lar parametrization fails

We have seen in Proposition 3.4 when it is possible to use the param-
eter ¢ (which governs the camera centre motion) as one the the local
parameters defining the surface M. Then the curves ¢ = cont. on
the surface M are simply the critical sets. We can use the epipolar
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parametrization, in which the epipolar curves form the other set
of parameter curves u = const., provided the epipolar curves are (i)
nonsingular and (ii) transverse (non-tangential) to the critical sets. In
this section we list the possibilities where these conditions break down,
so that an epipolar parametrization is impossible locally. The point of
this is that when the epipolar parametrization is used to reconstruct
the surface from the profiles, we will then be able to predict the way
in which ‘gaps’, occurring through the failure of this parametrization,
should be optimally filled.

According to Proposition 3.4, the ‘bad’ situations occur when the
epipolar curves on M are singular, or when they fail to be transverse
to the critical sets. The last simply means that the view direction
and critical set tangent coincide, which is the same as saying that
the profile is singular. So we need to consider the following special
situations:

1. Special non-frontier points r of the visible part of M :

(a) An epipolar direction at r is asymptotic, making the profile
singular. Special cases of this are:

(b) The point r is parabolic and one of the epipolar directions
at r is asymptotic (creating a ‘lips/beaks’ transition on the
profiles).

(c) One of the epipolar directions at r is asymptotic with four-

point contact (creating a ‘swallowtail’ transition on the pro-
files).

2. Frontier points r of M :

(a) A general frontier point 7.

(b) A parabolic point r on the frontier.

(¢) A point on the frontier where c, is along the viewline. (See
Remark 1.2.)

(d) The profile is singular at the point p in the viewplane corre-
sponding to a frontier point r, i.e. an epipolar direction at
r is asymptotic. Generically the frontier point will not be
parabolic.

Most of these have been considered above, or are easy to deal
with. In the next subsection, we consider the special cases in which
the profile is singular. For example, in the ‘lips/beaks’ situation the
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only special thing is that the critical sets become singular: the epipolar
curves are nonsingular. The most difficult case is the last one above,
and we give brief details of that in §7.2. The figures 10-12 show the
patterns of critical sets, the frontier and the epipolar curves in M and
M.

7.1 Special non-frontier points

As noted above, if the profile has a cusp, then the critical set is tangent
to the viewing direction, so there can be no epipolar parametrization
at such points. As the camera moves, the point on the surface which
generates this singular profile traces out a curve called the cusp tra-
jectory on M. Unless the cusp point is a parabolic point, the critical
sets are non-singular and transverse to the cusp trajectory. Recall
that we are not at a frontier point here. Thus, in a neighborhood of
the cusp trajectory away from parabolic points or endpoints, there
is a parametrization such that the cusp trajectory is a parameter
curve and the other parameter curves can be either critical sets or
epipolar curves. If the surface were transparent, then this would be a
parametrization of a surface, otherwise it is a surface with boundary,
and the boundary is one of the parameter curves, namely the cusp tra-
jectory. This boundary is also called the natural boundary. Note that
the natural boundary separates the self-occluded points from the rest
of the surface. In contrast with the frontier, which separates points
which can potentially appear in profile from those that cannot, the
natural boundary separates those points which actually do appear in
profile from those that are obscured by another part of the surface.
Thus, this type of boundary can only occur for non-convex objects
or configurations of objects. The natural boundary can appear or
disappear at swallowtail, lips, and beaks transitions.

For the ‘lips/beaks’ case, the critical set itself is singular, so it
cannot be part of a parametrization. However, the epipolar curves are
non-singular. Thus, it is necessary to find another family of curves
transverse to the epipolar curves. The cusp trajectory is transverse
to the epipolar curves, so there is a parametrization such that one
family of curves is the epipolar family and the other contains the
cusp trajectory which is the natural boundary (see Figs. 7,8). These
figures also show the sequence of profiles for circular motion. Both
the profiles and the trace of the epipolar curves have a cusp at the
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natural boundary.

A swallowtail point occurs when the tangent ray has order of con-
tact four at a hyperbolic point, i.e. there are nearby tangents intersect-
ing the surface at four points. This occurs along a flecnodal curve on
the surface, and the camera center must lie on an asymptotic ray [9].
In general, the camera trajectory will only intersect the asymptotic de-
velopable surface of this flecnodal curve at isolated points. For opaque
surfaces, a cusp trajectory and a t-junction trajectory will end at a
swallowtail point. These two curves form the natural boundary (see
Fig. 9.) Note that for the transparent surface, the cusp trajectory
and t-junction trajectory each have two parts, so there are four curves
that meet at the swallowtail, but only two of these are visible. In the
viewplane for circular motion, the epipolar curves have cusps where
the profiles have cusps, and they undergo a swallowtail transition as
well. On the surface M, both the critical sets and the epipolar curves
are non-singular at the swallowtail point; however, they are both tan-
gent to the natural boundary at this point. In this case, only one of
the three can be used.

7.2 Special frontier points

We can examine the case of a frontier point giving a singular profile
point by considering a general surface M : z = f(z, y), tangent to the
(z, y)-plane at the origin, and a path ¢(t) = (d+c,(t), ca(t), c3(t)) near
tot = 0. We assume that f,.(0) = 0 and ¢5(0) = 0, to make the profile
singular and the origin on the frontier. Let us parametrize M locally
by z and ¢, which is valid provided f,,(0) # 0. This just says that the
origin is not parabolic on M. A straightforward, if lengthy, calculation
shows that the epipolar field on M close to (z,y,t) = (0,0, 0) (using z
and y as local coordinates on M) has the following form, up to linear
terms (all derivatives are at 0):

dz/dt = —d(c}) fzyz + d(c3)t,

dy/dt = & f...z + 2d(c}) foyt-

This vector field has a singularity (a zero) at z = ¢ = 0. Hence there
are generically three possibilities for the nature of the integral curves:
a node, a focus and a saddle (see for example [11, Ch.4] or any book
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Figure 7: Lips: the top figure shows the critical sets, epipolar curves and
natural boundary on M for a lips transition. At the transition the critical
set is a point. Everything to the left of the natural boundary is occluded.
The picture is the same for M since the point is not on the frontier. The
bottom picture shows the profiles and traces of epipolar curves in the image
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Figure 8: Beaks: the top figure shows the critical sets, epipolar curves and
natural boundary on M for a beaks transition. At the transition the crit-
ical set consists of two straight lines. Everything to the left of the natural
boundary is occluded, The picture is the same for M since the point is not
on the frontier. The bottom picture shows the profiles and traces of epipolar
curves in the image plane. 29



Figure 9: Swallowtail: the top figure shows the critical sets, epipolar curves
and natural boundary on M for a swallowtail transition. Everything between
the two branches of the natural boundary is occluded. The picture is the same
for M since the point is not on the frontier. The bottom picture shows the
profiles and traces of epipolar curves in the image plane.
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on elementary differential equations). Write A for the quantity

d(cg) f:zz

2,8
Then the distinction between the three cases is as follows:

1. node, i.e. the matrix of coefficients in the linearized vector field
above has real distinct eigenvalues of the same sign, if and only
if -9/4 < A < -2,

2. saddle, i.e. the matrix has real distinct eigenvalues of opposite
signs, if and only if A > -2,

3. focus, i.e. the matrix has complex conjugate eigenvalues, if and
only if A < -9/4.

The pattern of epipolar curves on the surface M (or rather on the
surface with boundary which is the visible part of M ) is shown also
in Figures 10-12. Compare [4], where the classification of such vector
fields on surfaces with boundary is given.

8 Conclusion

The epipolar constraint has been used for establishing correspondences
between profiles of surfaces and results in an epipolar parametrization
of regions of the surface. We have showed that such a parametrization
breaks down at the frontier or when the profile is singular. A complete
analysis of the frontier is given based upon the classification of vector
fields on surfaces with boundary. In addition, even though the epipolar
parametrization cannot be used at the frontier, the epipolar constraint
still makes sense and the parametrization can be used for the spatio-
temporal surface except when the profile is singular.

The analysis of the frontier presented in this paper is only one part
of the problem of detecting gaps in the surface reconstruction. The
analysis is also presented in this paper for the problem of occlusion.
For example at T-junctions and cusps, part of the profile is occluded
by the another part of the surface. This creates a natural boundary of
visibility in addition to the frontier. The natural boundary can appear
or disappear at swallowtail, lips, and beaks transitions.
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Figure 10: Case 1: Node of the epipolar field when the profile is singular
at the frontier. There are two distinct eigenvalues with the same sign. The
two eigendirections are labeled 1 and 2. Direction 2 is the exceptional di-
rection, since there are only two epipolar curves tangent to it. All other
epipolar curves are tangent to direction 1. On M, the top picture shows the
exceptional case, and the bottom the general case.
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Figure 11: Case 2: Saddle of the epipolar field when the profile is singular at
the frontier. Both of the epipolar lines through pp map to curves in M which
are tangent to the frontier. In general neither eigenvector is in the kernel of
the projection, so each epipolar curve maps to a smooth curve in M which
is tangent to F.
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Figure 12: Case 3: Focus of the epipolar field when the profile is singular at
the frontier. The eigenvalues are complex.

34



In addition to the natural boundary, which depends on the tra-
jectory, there is a global boundary of visiblity which is trajectory in-
dependent, i.e. there may be some points which cannot be observed
from any trajectory. This phenomenon is determined both by local
and global geometry. The relevant local geometric information is the
intersection of the tangent plane at a point with the inside of the sur-
face. For an elliptic point, the tangent plane is on one side of the
surface. Thus, it is outside for convex points and inside for concave
points. Convex points will be visible if there are some rays in the
tangent plane which do not intersect the surface elsewhere. Concave
points will never be visible. Locally at hyperbolic points the tangent
plane cuts the surface in two curves that cross, and whose tangent
directions are the asymptotic directions. There will be a cone of di-
rections in the tangent plane such that if some ray in this cone is not
obscured by another part of the surface, then the point will be visible,
i.e. this cone is the sector of the tangent plane which is outside of
the surface. Parabolic and planar points are more difficult to charac-
terize. For example, parabolic points on the ‘outside’ of a surface of
revolution are visible, those on the ‘inside’ are not, e.g. the inside of a
cup. Planar points are even more complicated, but for an ideal plane,
the points are not visible in that the critical set moves infinitely fast
over the surface. This topic is the subject of future work.
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