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Abstract

Tracking and evaluating the progress of large, complex plans or
schedules as they unfold in real time is extremely difficult for humans.
In this paper we present a mixed-initiative system for the task of sched-
ule maintenance in a simulated shipping network. A schedule mainte-
nance agent monitors the network, predicting the occurrence of states
that may result in reduced throughput and formulating schedule mod-
ifications to avoid those states. The goal is to maximize throughput
while minimizing disruptions to the original schedule. We present re-
sults of experiments in which human subjects attempt to obtain that
goal both with and without the aid of the agent. We found that the hu-
man and the agent working together are able to achieve better results
than either one working alone. In addition to looking at global perfor-
mance measures such as throughput, we analyze individual schedule
modification decisions made by subjects in an attempt to assign credit
for the improvements in performance.
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1 Introduction

Plans formulated to run in the real world will often fail due to the complexity
and unpredictability of the environment. Existing methods to deal with
this problem include real time recovery from plan failures [1] [2] [7] and
post-hoc plan repair based on failures observed while executing the plan
[56]. Failure recovery mechanisms, such as replanning, can be expensive, and
it may not be feasible to repair a plan by letting it repeatedly fail. An
alternative strategy is to monitor the execution of the plan, attempting to
predict pathological states that make it difficult or impossible to achieve
goals. [4] Doing so admits the possibility of effecting plan modifications in
real time to avoid pathological states.

Plan steering is a mixed-initiative approach to real time prediction and
avoidance of plan failures. A plan steering system comprises a pathology
demon that monitors the execution environment to detect and predict patho-
logical states, a plan steering agent that evaluates the demon’s predictions
and formulates plan modifications to avoid predicted pathologies, and a hu-
man user who monitors the environment, the demon, and the agent. The
human and the agent work together to steer the plan away from potential
problems by intervening before they develop. The benefits of keeping com-
puters in the loop are clear. For large, complex plans, involving hundreds
or thousands of events over time, determining whether events are unfolding
according to plan and assessing the impact of dynamic plan modifications
are impossible for humans.

As a first step toward plan steering, we built an agent for the related task
of schedule maintenance in the transportation planning domain. We exper-
imentally assessed the performance of the agent at its two primary tasks:
predicting schedule pathologies and formulating schedule modifications to
avoid those pathologies. In those experiments, which are summarized be-
low, the agent was completely responsible for managing the schedule; no
human intervention was allowed. The new results in this paper show that
the agent can help human planners - indeed, working in concert, humans
and an agent perform better than either does alone.

The schedule maintenance system is described in Section 2. We sketch
the system’s architecture and present its task, prediction and avoidance of
pathologies in a simulated shipping network, in detail. We summarize the
results of previous experiments that evaluated the system’s accuracy at the
prediction of pathologies and its ability to construct schedule modifications
to avoid those pathologies. In Section 3 we present the design and results



of experiments aimed at testing the performance of humans at the same
task of schedule maintenance. We look at performance in three conditions:
the human acting alone, the agent acting alone, and the human and the
agent working together. Performance is first analyzed by looking at scores
assigned to each run of the simulation. Then we decompose those scores by
looking at individual decisions made by humans when assisted by the agent.
The goal is to determine how credit for good performance should be shared
by the human and the agent.

2 The Schedule Maintenance System

The task for our system is management of schedules in a simulated ship-
ping network called TransSim. A TransSim scenario consists of ships, ports,
cargo, and simple movement requirements (SMRs) for each piece of cargo.
An SMR specifies the route that a piece of cargo is to take through the net-
work and when it is to begin its journey. The SMRs of a scenario constitute
its schedule and largely determine the behavior of the simulation. If many
SMRs reference any one port then it is likely that a bottleneck will develop at
that port. Ports are limited resources and ships must queue for service when
a port is being used to load or unload another ship’s cargo. A bottleneck
exists at a port when the docking queue at that port is “large” and results
in reduced throughput. The goal of the schedule maintenance system is to
maximize throughput. It does so by predicting the length of docking queues
at each port in a scenario and making changes to SMRs where appropri-
ate. The system attempts to minimize the number of changes to preserve as
much of the structure imposed by the initial SMRs as possible. These two
goals are often at odds with one another so an appropriate balance must be
found.

2.1 Performance at Pathology Prediction

The only pathology that the current system attends to is bottlenecks at
ports. The function of detecting and predicting pathologies is performed by
a pathology demon that monitors the state of all ports in a scenario as it
unfolds. The demon combines the current state of a port (number of ships
docked, number of ships queued, etc.) with information about ships that
are already in channels en route to the port to project the port’s state for
each of several days into the future. Ship travel times are not deterministic



and the demon’s knowledge of its environment is imperfect, so there is an
error component to its predictions.

We experimentally evaluated the accuracy of the demon’s predictions
and the extent to which accuracy was affected by three environmental fac-
tors: the horizon into the future for which predictions are made, the amount
of variance in the demon’s ability to project ship arrival times, and a thresh-
old that controlled how aggressive/conservative the demon is when deter-
mining that a given ship will be in port on a given day. The experiment
involved running 10 simulations in each of 27 conditions, three values for
each of the three factors, and recording prediction error for each simulated
day. We found, not surprisingly, that there was a significant main effect of
both prediction horizon and threshold. Error rates increased with distance
into the future for which predictions are made. An optimal threshold level
was found that minimized error over a wide variety of values of the other
factors. Finally, there was a significant interaction between prediction hori-
zon and variance in demon knowledge of ship arrivals. Raising variance had
an increasingly adverse effect on error as the prediction horizon was pushed
further into the future.

2.2 Performance at Schedule Maintenance

We have implemented a schedule maintenance agent that monitors the de-
mon’s predictions to identify potential bottlenecks. It applies a simple
heuristic to convert predicted queue lengths for multiple future days into
a boolean tag for each port: likely future bottleneck or unlikely future bot-
tleneck. When a port is identified as a potential problem, the agent looks
for an opportunity to modify the scenario’s SMRs to avoid or alleviate the
bottleneck. Currently, the only action the agent can take is to reroute cargo
that is bound for the port in question. Only cargo sitting on the docks of
other ports can be rerouted. Once a piece of cargo is on a ship in the channel
its route cannot be changed.

We ran several experiments to determine what effects the agent’s rerout-
ing decisions would have on throughput and how those effects changed with
problem size and complexity. First, for a given network topology we varied
the number of SMRs. Increasing the number of SMRs means adding cargo
to the scenario, thereby increasing congestion and pathology frequency and
intensity. Second, we varied the number of ports and ships in the scenario.
Finally, we added compatibility constraints between cargo, ships, and docks
to see what would happen as the complexity of the task increased. Sev-



eral measures of cost were recorded for each simulation: queue length, the
amount of time cargo spends in transit, the amount of time cargo spends
sitting idle waiting for a ship, the number of simulated days required to
complete all SMRs, etc. In each condition, 10 simulations were run with no
intervention to obtain a baseline score, and 10 simulations were run with the
schedule maintenance agent actively generating and accepting its own ad-
vice. We found that in a wide variety of conditions, the actions of the agent
reduced most simulation costs. Not only was that effect seen regardless of
pathology intensity or problem size and complexity, but the agent was most
beneficial in highly pathological, large scenarios. That is, the benefit of the
agent is high in those cases where conditions are most difficult for humans.

We ran another experiment to explore the effects of demon accuracy on
agent performance, with the surprising result that there was no significant
difference in agent performance over a wide range of factors affecting demon
accuracy. If the agent performs equally well with accurate and inaccurate
predictions, then perhaps its ability to improve throughput is a result of
“randomly” changing routes and not a result of its domain knowledge. To
test that hypothesis we ran a control condition in which, with varying fre-
quency, a randomly selected piece of cargo was assigned a new randomly
generated route. For each level of frequency we ran 10 trials and compared
the resulting scores to the previous results (scores on the same scenarios
with and without agent advice). In all conditions, random rerouting tended
to improve throughput, with more random rerouting being better than less.
Also, there existed some level of random rerouting that equaled or exceeded
the performance of the agent. However, the agent required significantly
fewer rerouting decisions than the random rerouting condition to achieve an
equivalent level of performance. That is, for a given level of performance,
the agent preserved more of the structure inherent in the initial schedule.

[3]

3 Bringing Humans into the Loop

Part of the motivation for plan steering is the belief that humans find it
extremely difficult to perform tasks such as the one for which our agent was
designed. Tracking hundreds of events over time and understanding primary
and secondary effects of schedule modifications is not something that people
do well. Therefore, we ran a series of experiments in which humans were
asked to perform the same task at which the agent was previously evalu-



ated. We provided a set of graphical displays that gave the human user
essentially the same information and rerouting capabilities available to the
agent. In one half of the trials the human worked alone, and in the other
half the human and the agent worked together. This experiment design and
experimental results are presented below.

3.1 Experiment Design

The schedule maintenance agent was designed to increase throughput in
TransSim simulations while minimizing schedule disruptions. The goal of
this set of experiments is to determine how both an unassisted human and a
human working in concert with the agent perform at that task. In each case
the human has quick access to roughly the same information and schedule
modification capabilities available to the agent. The transportation network
is displayed as a connected graph with ship icons moving along the arcs as
they traverse simulated channels. The pathology demon’s predictions are
displayed as a moving graph of queue length vs. simulated day. A sliding
window shows both current history of actual queue lengths and predicted
queue lengths for several days into the future. One predicted queue length
window is on screen for each port during the simulation. Taken together with
the network display window, the human user has a simple but informative
visualization of the information used by the demon and the agent.

Just as the agent makes schedule changes by rerouting cargo, so does the
human. An inbound cargo window for each port lists the pieces of cargo that
are bound for the port but have not yet been loaded into ships and placed in
a channel. Cargo routes may be highlighted and modified by simply clicking
on a new destination port.

By monitoring the demon’s predictions for each port, it is possible to
judge the effects of sending additional cargo. If the predicted queue length
at a port is low or is trending downward, then it might be a good idea to
let cargo continue to be dispatched to that port. If the predicted queue
length at a port is high or is trending upward, then it might be a good idea
to reroute cargo around the port to a less congested area. The benefit of
rerouting is that the cargo in question will not waste time sitting in a long
docking queue and the queue at the bottlenecked port will be given time to
clear itself out. It is important to remember that the demon’s predictions
include some error. A predicted bottleneck may never materialize and the
rerouting action may have been wasted.

In one half of the trials the human works alone. In the other half the



human has the aid of the schedule steering agent. We call these the unas-
sisted and assisted conditions respectively. In the assisted condition the
agent evaluates the state of the network and generates advice for the user.
Advice identifies both a port that is thought to be a potential bottleneck
and a piece of cargo bound for that port, and suggests an alternative route.
The human evaluates the agent’s advice via the various displays described
earlier and may decide to accept or reject the advice. In either case the
human may implement a rerouting decision of their own construction.

Each of the 4 participants in the experiment ran 10 simulations. The
first 2 simulations were training trials to get the user familiar with the
task and the available tools. One training trial was assisted and the other
unassisted with the order chosen randomly. Next, two groups of 4 trials
were presented where all trials in a group were either assisted or unassisted.
Again, that ordering was randomized to counterbalance for possible order
effects. A total of 6 different scenarios were used: the first 2 were always
used for training and the remaining 4 were presented in both the assisted
and unassisted conditions. The order of presentation of the scenarios within
a grouping was also randomized.

3.2 Overall Performance

Several measures of cost were recorded for each simulation (see section 2.2).
One-way analysis of variance (ANOVA) showed a significant main effect
of scenario on all of the cost measures. Variance in the structure of the
schedules for each of the 4 scenarios resulted in differing pathology intensities
and was ultimately reflected in simulation costs. Therefore, to determine if
the presence of agent advice impacted simulation score, we performed two
way ANOVA of each cost measure on trial type (assisted or unassisted)
and the scenario number. This controlled for variance due to the scenario.
There was a significant main effect of trial type on four of the costs: docking
queue length, the amount of time that cargo spends sitting idle, the total
amount of time that cargo spends in transit, and the number of schedule
modifications. All other cost measures were lower in the assisted condition
than in the unassisted condition, though they were not significant.

To determine whether agent assistance helped or hurt performance, we
used D tests to compare cost measure means in those conditions. ! In
addition, we let the agent run unhindered on each of the 4 scenarios, taking

1A D test is a randomization two sample t test that is robust against deviations from
parametric assumptions.



its own advice, to see how well it performed. Both assisted and unassisted
scores were then compared to means obtained by the agent. The results are
presented in the tables below. It is clear from Table 1 that humans working
with the help of the agent are able to obtain better throughput than humans
working alone. All cost means are lower in the assisted condition although
Cargo Transit is not significantly so. Not only does agent assistance result
in reduced docking queues and reduced idle time for cargo, but it reduces
the amount of time that it takes cargo to travel to its final destination
(lower Cargo Transit). This improved performance comes at the expense
of disrupting the scenario to a greater extent: on average, about 6 pieces
of cargo rerouted without assistance, compared to about 12 pieces rerouted
with assistance. Since performance is better in the assisted condition, it
is not the case that the agent’s advice makes things worse and therefore
more intervention is required. Apparently, the agent is bringing pathological
states to the attention of the human user that they would otherwise have
missed and that the human believes require attention. The agent is serving
its intended purpose of helping the human track large numbers of events as
they occur in a complex environment.

Cost Assisted | Unassisted | p Value
Queue Length | 742.38 828.19 0.0560
Idle Cargo 1366.56 1497.75 0.0240
Cargo Transit | 2750.63 2849.44 0.1420
Reroutes 12.0 6.25 0.0010

Table 1: Comparison of Costs in Assisted vs. Unassisted Trials

How does the human’s performance in either condition compare to the
agent’s? We see in Table 2 that the unassisted human performs significantly
worse than the agent in all categories. However, the agent implements al-
most 3 times as many changes to the scenario. Neither seems to be striking
a good balance between maximizing throughput and minimizing schedule
disruption. The results in Table 3 tell a different story. The performance of
the assisted human is indistinguishable from the agent’s performance; none
of the cost measures are significantly different. This result alone is interest-
ing since the agent performs quite well. The difference is that the assisted
human is able to achieve this feat with significantly fewer changes to the sce-
nario: 12 reroutes for the assisted human compared to more than 18 for the



agent. Apparently our mixed-initiative approach to schedule maintenance is
working. As noted before, the agent is probably flagging potential patholo-
gies that the human would have otherwise missed and suggesting schedule
modifications. However, the human is selectively filtering the suggestions to
implement only those that seem most crucial and that are not wasteful.

Cost Unassisted | Agent | p Value
Queue Length | 828.19 682.88 | 0.0020
Idle Cargo 1497.75 1272.88 | 0.0010
Cargo Transit | 2849.44 2649.56 | 0.0150
Reroutes 6.25 18.63 0.0000

Table 2: Comparison of Costs in Unassisted Trials vs. Agent

Cost Assisted | Agent | p Value
Queue Length | 742.38 682.88 | 0.2220
Idle Cargo 1366.56 1272.88 | 0.1650
Cargo Transit | 2750.63 2649.56 | 0.2050
Reroutes 12.0 18.63 0.0100

Table 3: Comparison of Costs in Assisted Trials vs. Agent

3.3 Evaluating User Decision Points

During an assisted trial, the user is constantly evaluating the state of the
network and deciding whether or not to act. We focus on 3 specific action
decisions to determine why the assisted human’s performance is so good.
They are: the agent offers advice and it is accepted, the agent offers advice
and it is rejected, the human makes a rerouting decision independent of
the agent. The problem is one of credit assignment. Is good performance
due to the intelligence of the agent? Is it due to the human’s ability to
differentiate between good and bad advice? Or is it due to the human’s
ability to formulate schedule modifications independently.

The metric we have chosen for this credit assignment task is daily queue
length summed over all ports. Every time during the course of a single



simulation that the human makes one of the three decisions, we look at
total queue length over a window of fixed size in the future to determine if
the decision was good or bad. This is complicated by that fact that there is
a heavy trend in queue length. As more and more cargo enters the network,
queue lengths grow slowly but steadily to somewhere near the midpoint
of the scenario. As cargo leaves the network for final destinations, queue
lengths fall off until the scenario ends. The impact of a single user action is
easily swamped by the effect of trend. To combat that effect we generated a
baseline queue length curve for each of the 4 scenarios to serve as a standard
for expected queue length. That baseline was created by averaging the queue
lengths measured for each day over all four of the participants’ assisted trials
in a scenario and then performing a 3-mean smooth. [6] To score a decision
point on a given day in an individual trial, we simply look at future queue
lengths in that trial and compare them to future queue lengths in the same
time range in the appropriate baseline curve. Subtracting baseline scores
from actual scores eliminates trend and gives some idea of performance
relative to expected values.

Action Mean Difference | p Value
Accept Advice -0.32 0.1790
Reject Advice 0.583 0.0190
User Modification | -1.02 0.0070

Table 4: Decisions Points in Scenario 3

The results for scenario 3 are show in Table 4. For each action type
we computed actual queue length minus expected queue length and com-
pared the mean of those numbers to a mean of zero. In that way we can
determine how the actions affect performance over the course of a single
simulation when compared to expectation. Accepting the agent’s advice
results in smaller than expected queue lengths, but the result is not signifi-
cant. Rejecting the agent’s advice led to significantly larger than expected
queues. It appears that in this scenario, the agent’s advice tends to stave
off potential pathologies and ignoring its advice is detrimental. In terms of
making beneficial schedule modifications, the human fares quite well. When
compared to expectations, the results of the human’s rerouting decisions are
significantly better. With the tools that we provided, the human was able to
evaluate the state of the transportation network, identify potential trouble



spots, and formulate a preventative plan. Therefore, poor human perfor-
mance in the unassisted trials was not due to an inability to understand and
manipulate the domain.

4 Conclusions and Future Work

In this paper we presented a mixed-initiative system for schedule mainte-
nance in a simulated shipping network. Simultaneously achieving the two
goals of maximizing throughput and minimizing the number of changes to
the initial schedule proved to be difficult for both the human and the agent.
The human rerouted few pieces of cargo at the expense of high simulation
costs. Experimental results indicate that the humans’ individual decisions
resulted in significantly better than expected performance. Therefore, poor
overall performance by human subjects is not due to their inability to un-
derstand the domain. The agent’s simulation costs were quite low but the
number of pieces of cargo rerouted was high. The optimal balance was
struck by the agent and the human working together. The agent enhanced
the human’s ability to identify potential pathologies in a complicated envi-
ronment, and the human evaluated and filtered away schedule modifications
with dubious utility that were suggested by the agent.

The goal of this research is to arrive at a generalizable architecture for
plan steering. We want to be able to replace TransSim with the real world
and have agents working with humans to avoid pathologies in plans and
schedules. To that end, we will continue to push on this system by investi-
gating pathologies other than bottlenecks, advice other than rerouting, and
methods for increasing predictive accuracy. We then hope to study other
problem domains to understand how they are different from transportation
planning and how those differences impact the efficacy of our architecture.
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