Executing Reactive Behavior
for Autonomous Navigation

Benny Rochwerger, Claude L. Fennema,
Bruce Draper, Allen R. Hanson and Edward M. Riseman

CMPSCI TR94-05

February 1994

This work was supported by the Advanced Research Projects Agency (via
TACOM) under contract number DAAE(07-91-C-R0O35, and by the National
Science Foundation under grant number CDA-8922572.

)

Executing Reactive Behavior for Autonomous
Navigation *

Benny Rochwerger ~ Claude L. Fennema! Bruce Draper
Allen R. Hanson Edward M. Riseman

Computer Vision Laboratory
Dept. of Computer Science
University of Massachusetts

Ambherst, MA 01003

Abstract

The aim of the Unmanned Ground Vehicle (UGV) project at the
University of Massachusetts is to develop a system capable of nav-
igating both on-road and cross country, avoiding obstacles, and de-
termining its position using landmarks. Complex problems, such as
driving, can be solved more easily by decomposing them into smaller
sub-problems, solving each sub-problem, and then integrating the so-
lutions. In the case of an autonomous vehicle, the integrated system
should be able to “react” in real time to a changing environment and
to “reason” about ways to achieve its goals. This paper describes the
approach taken on the UMass Mobile Perception Laboratory (MPL)
to integrate independent processes (each solving a particular aspect
of the navigation problem) into a fully capable autonomous vehicle.

Keywords: Vision-guided robotics, real-time systems and applica-
tions, control, integration, finite state machines.

*This research was supported by DARPA via TACOM under contract number
DAAE07-91-C-R035 and by the National Science Foundation under grant number CDA-
8922572.

tComputer Science Program, Mount Holyoke College - South Hadley, 01075 MA

1 Introduction

One of the goals of the autonomous vehicle effort at the University of Mas-
sachusetts is the development of a landmark-based navigation system capable
of robust navigation both on-road and cross-country. While driving, the ve-
hicle must exhibit classic driving behaviors, such as staying on the road or
prescribed path, avoiding-obstacles, etc., while using landmarks for deter-
mining vehicle "pose” - that is, the position and orientation of the vehicle -
with respect to a 3D world model. The emphasis of this effort is model-based
navigation.

The experimental laboratory vehicle (Figure 1) for this effort is the Mobile
Perception Lab (MPL), a heavily modified Army HMMWYV ambulance that
is equipped with actuators and encoders for the throttle, steering and brake.
The interface to the on-board computer is through a 68030-based controller.
On board diesel generators provide power.

The vehicle’s vision sensor package includes a Staget, which is a rotat-
ing stabilized platform mounted on the roof of the cab with a CCD color
camera and a FLIR sensor. Two forward-looking stereo cameras and a for-
ward looking color CCD camera are mounted in a rectangular enclosure at
the front edge of the cab’s roof. The primary computing engine for vision

processing, goal-oriented reasoning and path planning is a Silicon Graphics

340GX four-node multiprocessor. The multiprocessor is interfaced to the
sensor suite through a Datacube MaxVideo20 image processor, which pro-
vides frame rate image processing for certain type of operators. Space and
power is also provided for the Image Understanding Architecture (IUA) [23],
a massively parallel heterogeneous processor.

The MPL is an experimental laboratory for testing and integrating dif-
ferent approaches to problems in autonomous navigation, including, but not
limited to, landmark-based navigation, obstacle detection and avoidance,
model acquisition and extension, road following, and path planning. It is
therefore important that MPL have a software environment where multi-
ple visual modules, addressing different subtasks, can be easily integrated
to provide autonomous driving functions. It is also important to provide
an environment in which researchers can quickly experiment with different
combinations and parameterizations of those modules. At the same time,
MPL’s software environment must be efficient enough to meet the demands
of real-time navigation research. In addition, controlA of the system must be
both planned as well as driven by external events.

To illustrate the problem, comsider the task of driving to your friend’s
new house. You were given instructions such as “at the second light on Main
street turn right, then stop at the third house on your left”. Obviously, this

is not enough information to get you there and you will most likely consult

2

Figure 1: The Mobile Perception Laboratory, built on a modified HMMWV
chassis, has computer controlled steering, throttle, and brakes, a complete
research laboratory on the back.

a map to find out how to get from where you are to Main street. Once you
have a general idea of where are you heading, you will get into your car and
start driving towards your friend’s house. On the way you may have to take
actions that were not in your original plan, like stopping suddenly to let a
child cross the street. In some cases you may have to completely rethink
your plan, when one of the streets you wanted to take is closed for repairs.

For an autonomous vehicle to mimic human driving, it is not sufficient
for it to have the ability to drive down the road, or recognize traffic lights. It
must also know how to combine all of its capabilities (count traffic lights while
driving), as well as how to react to unexpected events (stop, there is a child
crossing the street); how to keep going when completely new situations are
encountered (a road is closed); and how to complete the missing information
(how to get to Main street).

The task of autonomous navigation, as with many other complex tasks,
can be decomposed into more specific subproblems like road following, ob-
stacle avoidance and landmark recognition. In order to achieve a fully au-
tonomous vehicle, the solutions to all these subproblems must be integrated
into a coherent system. This paper focuses on the preliminary work done
on the problem of integration for the UMass Mobile Perception Laboratory
(MPL). Since each of the subproblems is still a field of active research in

which approaches and solutions may change rapidly over time, the integrated

4

system should be flexible enough to allow testing different sub-systems.

To achieve the desired flexibility we have implemented the control sys-
tem as a “programable” finite state machine (FSM), where the states are the
different modes of operation of the system (behaviors), and the transitions
are the system’s reactions to events (either external or internal). The com-
position of the states and the transitions is not fixed, i.e., the FSM can be
tailored to the particular task the system is trying to achieve.

The paper is structured as follow: the first section presents a brief review
of behavior based systems, and the terminology used throughout this paper
is introduced. Then, a formal definition of a script (section 3) and the script
monitor (section 3.1), are presented. Experiments on the MPL are described
in section 4. Section 5 discusses our thoughts on how to incorporate a planner
into the FSM model, and section 6 presents some of the implementation open

issues. Finally, section 7 summarizes the work.

2 What is a behavior?

behavior 1: the manner of conducting oneself; 2a: anything that
an organism does involving action and response to stimula-
tion; 2b: the response of an individual, group, or species

to its environment; 3: the way in which something (as a

machine) behaves. Webster’s 7th. dictionary.

In the robotics literature, behavior has generally been used to describe
processes that connect perception to action, i.e., @ behavior senses the envi-
ronment and does something based on what was perceived. A combination of
behaviors is also called a behavior, thus, a complex behavior can be achieved
by combining simpler behaviors. In Brooks’ subsumption architecture (3, 4],
the task of robot control is decomposéd into levels of competence; each level,
in combination with lower levels, defines a behavior. Payton, Rosenblatt and
Keirsey (17, 18] in their Distributed Architecture for Mobile Navigatioﬁ sys-
tem (DAMN), refer to behaviors as very low level decision-making processes
which are guided by high leQel plans and combined through arbitration. In
their DEDS work, Ramadge and Wonham [20], as well as Rivlin [22], events
are considered the alphabet, X, of a formal language; a behavior is a sequence
of events, or a string over X*. Note that in this terminology every prefix of
a string is also a behavior, i.e., the sequential combination of behaviors is a
behavior.

These definitions, although consistent, can be confusing - the same term
is used for individual processes and for the composition of these processes.
To make the distinction clear, we have chosen to think of a behavior as a

mode of operation [18], in which several perception-action processes [6] are

executed concurrently. Each process converts sensory data into some kind of
action (either physical or cognitive), and at any time may generate an event -
a signal to let the system know that “something” significant has occurred.
All inter-process communication is achieved through a global blackboard - a
section of shared memory accessible to all ! . The system reacts to events
by changing its behavior; hence the sequence of behaviors actually executed
depends upon the sequence of events. Since the latter is unpredictable, so
is the former. To program such a system, one must specify which processes
constitute a behavior and for each possible event describe the system’s re-
action. We employ a finite state machine (FSM) - with states representing
behaviors and transitions representing reactions to events - to specify the
system. For example, the following set of statements describe a system that
will drive on the road while obeying traffic lights, until a given distance is

travelled:

In its current incarnation, the blackboard is built on top of the ISR3 - a symbolic real-
time database for vision (2, 7). Although the ISR3 was mainly designed as an in-memory
database, it provides a very efficient memory management mechanism (on top of UNIX)
and a set of primitives necessary for shared memory based communication.

While driving down the road,
if the traffic light turns red, wazt.
if goal is reached, stop.

While waiting at the traffic light,
if it turns green, start driving.

These statements correspond to the FSM in Figure 2a. Note that a state
represents a behavior or mode of operation, i.e, a set of concurrent perception-
action processes.

Based on the notion of behaviors represented as states of a finite state
machines, a Behavior Description Language (BDL) was designed and imple-
mented. Behaviors are described as two sets of perception-action processes,
and a transition table. The run set specifies the minimum set of processes
that form the behavior; the kill set specifies those processes that should not
be running for the correct execution of the behavior 2 . The transition ta-
ble specifies what to do for each of the valid events (events not specified
in the state description are not valid). A simple BDL example is shown in

Figure 2b; for a more complete example see section 4.

2The choice of two sets implies that processes that were running when the behavior
started will continue to run unless explicitly killed.

Drive
[rf, tl,dm]

PROCS={
rf "driveOnRoad",
tl *checkTrafficLight",
vs *vehicleStop”,
dm *distanceMonitor"

}
STATES = { drive, wait, stop }
EVENTS = (red, green, done)
MSGS = (distance}
WHILE drive (d) {
SET distance = d;
RUN rf, tl, dm;
EVENT red GOTO wait;
EVENT done GOTO stop:
}
WHILE wait () {
KILL rf;

RUN wvs, tl;
EVENT green GOTO drive;

(b)

Figure 2: Script of a simple driving system: (a) Finite state machine (FSM)
representation. Listed below the state name are the perception-action pro-
cesses that should be run and killed (marked with a =) in that state. This
example is composed of four perception-action processes: follow the road
(f), check for traffic lights (#), monitor the distance traveled (dm), and
stop the vehicle (vs). (b) BDL representation. First the perception-action
processes available are listed. Then the set of states (or behaviors) and the
set of events are declared. Finally, a description of each state is provided.

3 Scripts - Augmented finite state machines

Returning to the simple driving system, consider the following task:

1. Drive for 100 meters (while obeying traffic lights).
2. Turn left.

3. Drive for 150 meters (while obeying traffic lights).

In the FSM model presented in the previous section, this task will be rep-
resented as a six state FSM (Figure 3a). As the complexity of the vehicle’s
task grows, this approach will lead to long and repetitive representations. To
alleviate this problem, the FSM is augmented with a feich-goal state, and the
behavior description is parameterized. A particular behavior (like drive for
100 meters or drive for 150 meters) is instantiated from this generic descrip-
tion through the use of blackboard messages at run time. The system starts
in the fetch-goal state where it reads goals (in terms of behaviors) from a
precompiled plan. When a goal is retrieved, the script monitor (section 3.1)
writes relevant blackboard messages into the blackboard before creating the
perception-action processes. Once such a process is mnning, it looks for its
parameters in the blackboard (Figure 4). With this ap;-Jroach the same task

is represented in four states. (Figure 3b).

10

Drive 100 m. g 3 Drive 150 m.
[, tl,dm] [dt, dm, ~rf] (rf, t1, dm, ~dt}

(a)

Green

Drive “distance”
[, tI, dm, ~dt]

Fetch goal
[vs, ~ALL]

Turmn "direction”
(dt, dm, ~rf]

(b)

Figure 3: Script as an augmented finite state machine: (a) Specifying a task
in terms of a sequence of behaviors (dt is a dead reckoning turning process).
(b) Parameterizing the states and adding the fetch-goal state can greatly
simplify the FSM. Blackboard messages (in quotes) are used to refine the
behavior at run time. The fetch-goal state differs from all states in two
ways: 1 - transitions out of the state are unlabelled since the next state is
explicitly specified in the goal retrieved from the script. 2 - Unless the plan
is empty, the kill and run sets are ignored (ALL is a shortcut to “all running
processes”).

11

Script
ﬁSGS = {distance}

WHILE drive(d) (
SET distance = 4;

érive(lOO):

®

Script
Monitor

®

Blackboard

name:

data:

name:

data:

name: distance

data: 100

name:

data:

®

Distance
Monitor

Figure 4: Passing parameters thru the blackboard: 1 - The script monitor
interprets the script. 2 - When the drive state is entered, the script monitor

writes a blackboard message for the distance monitor.
monitor reads the distance message from the blackboard.

12

3 - The distance

Formally, a script S is defined as the eight-tuple (P,Q, E, M, é, s, p, G),

where:

e P is the set of available perception-action processes.

e @ is the set of states (Q = B U fetch-goal, where B is the set of

behaviors).

e E is the set of possible discrete events (transitions in the FSM).

M is the set of valid blackboard messages.

4 is the transition table, § : Bx E — @

k is the kill table, s : B x P — {0,1}

p is the run table, p: B x P — {0,1}

G is the plan expressed in terms of subgoals. Each subgoal is of the

form < b,, M, >, for b, € B and M, C M.

Scripts can be generated by an automated planner, or by hand (using

BDL).

13

3.1 The script monitor

The script monitor in our system is in charge of “high level” control 3 : read-
ing, interpreting, and executing BDL scripts. Essentially, the script monitor
is a plan ezecuter [11] very similar to PRS [13, 16]. The monitor does not
perform any action on the vehicle by itself but controls the set of running
processes at any time.

The script monitor consists of two modules, an interpreter and an eze-
cuter. The interpreter takes a BDL script S and builds the transition (4),
kill (x) and run (p) tables; then the subgoals in S’s plan are stacked into the

ezecution stack G. The ezecuter simulates a finite state machine as follows:
L. B, + fetch-goal (Start at the fetching state)
2. if (by = fetch-goal) then

(a) if G is empty then Vp € P

i. kill(p) (Terminate ALL processes)

ii. if (p(bg,p) = 1) then run(p) (Run cleanup processes)

ili. stop (S was successfully executed)

(b) < by, My > « pop(G) (Fetch next goal)

3In this context, “high level” control is used to differentiate the control of processes
from the “low level” control of the vehicle actuators.

14

(c) blackboard « M, (Write blackboard messages)

3. Vp € P if (x(by,p) = 1) then kill(p) (Terminate processes)
4. Vp € P if (p(by,p) = 1) then run(p) (Create processes)
5. Wait for an event e € E (Wait)
6. by + 8(by, €) (React to event - follow transition table)
7. goto 2 (Repeat until all goals are achieved)

Clearly, for the system to complete the task in G, the following must hold:

Vbe @ 3sy € E* s.t. §(b,ss) = fetch — goal

where 4 is the transition function applied to a sequence of events [12].

4 An example

The following perception-action processes have been successfully tested on

the MPL:

e Vehicle pose determination based on landmark model matching

1, 5, 15].
o Neural-network road following (ALVINN) [19].

15

e Servo-based steering [10, 9].
e Obstacle detection via stereo.
o Reflexive obstacle avoidance.
e A distance monitor.

e Turning via dead reckoning.

An experiment was designed in order to demonstrate the capabilities of
the vehicle and the performance of the independent perception-action pro-

cesses. The following script was tested:

1. Drive on the road, while avoiding obstacles, for z meters.
2. Estimate vehicle position using landmarks.
3. Drive on the road, while avoiding obstacles, for y meters.
4. Estimate vehicle position using landmarks.

5. Turn left (at the experimental site this command is a transition to

off-road navigation).

6. Drive off road, while avoiding obstacles, for z meters.

16

The full BDL script for this coordinated action, with z = 100, y = 150
and z = 50, is shown in Figure 5; the FSM representation is shown in Figure
6. Note that the same result can be achieved with a different script: if
in the driving states the success condition takes the system back to the
fetch-goal state and a compute-pose statement is added after each drive-
onroad/drive-offroad statement in the plan, the result will be similar. As in
other programming languages, in BDL some things can be expressed in more

than one way.

5 Planning

The script mechanism attempts to decompose the navigation problem into

three sub-problems: goal planning, reaction planning and behavior planning.

Goal planning - Given a particular finite state machine, and a task (e.g.
drive to Main street), what is the sequence of behaviors that the system
must execute to achieve this task. In a BDL script this sequence is

specified in the goal list, G.

Reaction planning - Given a set of behaviors, a set of possible events,
and an abstract task (drive), what should be the reactions to detected
events, i.e., how should the behaviors be connected into a finite state

machine. This is given in the transition table, §.

17

PROCS={
pe “poseEstimation®,
rf “"roadFollow",
od “obstacleDetect”,
oa “"obstacleAvoid-",
se “servo",
dm *distanceMonitor*,
dt “deadReckoningTurn",
vs "vehicleStop"

}

STATES = {drive-onroad, drive-offroad, turn, compute-pose, avoid-obstacles}

EVENTS

[}

(success, obstacles, clear)
MSGS = (distance, direction}

WHILE drive-onroad (dist) (
SET distance = dist;
RUN xf, od, dm:
EVENT success GOTO compute-pose;
EVENT obstacle GOTO avoid-obstacles;
)

WHILE drive-offroad (dist) (
SET distance = dist;
RUN se, od, dm;
EVENT success GOTO compute-pose;
EVENT obstacle GOTO avoid-obstacles;
)

WHILE turn (dir, dist) {
SET' direction = dir;
SET distance = dist;
RUN dt, dm;

EVENT success GOTO FETCH:;

}

WHILE avoid-obstacles ()
KILL rf, se;
RUN oa, od;
EVENT clear GOTO BACK;

}

WHILE compute-pose () {
KILL rf, se;
RUN pe;
EVENT success GOTO FETCH:
}

GOALS (
drive-onroad (100);
drive-onroad (150);
turn (left, 10);
drive-offroad (50);
}

Figure 5: BDL script to achieve the following goal: drive on the road for 100
meters, then for 150 meters, take a left turn and drive off road for 50 meters.

18

success

success

drive-onroad compute—pose

[pe, ~f, ~s€]

fetch—goal
[vs, ~ALL]

success

_

Figure 6: An augmented FSM for on/off road navigation : drive while avoid-
ing obstacles for a specified distance, then check position. It can also take
turns. The perception-action processes involved include pose estimation (pe),
road following (7f), obstacle detection (od), obstacle avoidance (o0a), servoing
(se), distance monitor (dm) and dead reckoning turning (dt).

success

19

Behavior planning - How to construct behaviors from a set of perception-
action processes, i.e., how should processes be combined to form intel-
ligent behaviors. This is achieved in the script thrﬁ the run (p), and
kill () tables.

Conceptually, a solution to each of these sub-problems (a script) could
be generated automatically. The first problem can be viewed as a tradi-
tional planning problem, where each of the behaviors can be considered to
be primitive actions. At this level, a hierarchical planner, such as the one
implemented in the RML system [9], can be easily integrated with the script
monitor. The monitor fetches a subgoal from the stack G; if the specified ac-
tion is not primitiw.le, the planner is invoked to refine the subgo(a;l. Note that
planning is another behavior and hence planner invocation is done through
the state transition mechanism. If a plan failure occurs the planner may also
be invoked by the behaviors, to dynamically create a new plan, or at least
part of a plan. Adding a planner in this way to the example of the previous
section will produce the FSM in Figure 7. In this particular example, the
planning state may be entered when the compute-pose behavior cannot es-
timate the current position (i.e. the system is lost). Note that at this level

only the subgoals stack, G, is modified dynamically.

20

—_ T~
success ' lost

N
—_———— F!an])—'—~\\
e — Vs
// - not primitive_‘\\ 7 \

VA

S~

success \

success

drive-onroad compute-pose

[pe, ~rf, ~se]

drive-off road
[se, od, dm]

fetch~goal
[vs, ~ALL]

Success

success

Figure 7: Integrating the monitor and the planner. If the monitor finds a
non-primitive action, the planner is called to decompose it into primitives. If
the compute-pose behavior cannot determine the position of the vehicle, the
planner is called to generate a plan to get to a known point.

21

The second problem raises the issue of dynamic modification of reactions
(FSM transitions, §). There are several reasons we may want to have this

capability:

o Partial planning - Planning reactions to all possible events can take a
long time, when in most cases only a small subset of events typically
occur in any particular state. The system should be able to pre-plan
only for those events that are likely to occur - or even those which are
unlikely but require an immediate reaction - thereby saving consider-
able amounts of pre-planning time. This can be useful in situations
that rarely occur, and if they do occur, then the need to stop the vehi-
cle to deliberate is not a bad tradeoff. An example could be discovering
a mechanical failure in the vehicle; if this happens the best thing to do

is to stop and think.

e Modifying reactions - With only partial information about the envi-
ronment, and possibly inaccﬁrate heuristics guiding the planning, some
reactions may be either wrong or not optimal. As more information
becomes available the system may improve its reactive capabilities. For
example consider driving on a rainy day; under normal (dry) conditions
the best reaction to an obstacle which suddenly appears in front of the

vehicle is to brake sharply. On a wet road, this may be a very bad de-

22

cision, as soon as the planner realizes that the road is wet, the reaction

to a sudden obstacle should be reconsidered.

The composition of behaviors (sub-problem 3) raises many questions.
Each state in the FSM (a behavior in our terminology) can be viewed as
an instance of Brooks’ layered control [3]; as such, arbitration of commands
to the actuators, and allocation of sensors (and other resources), become
problems (see section 6). The solution of these problems is fundamental for

a planner that composes behaviors.

6 Open Issues

Although limited, the script monitor system in its current form has given
us an idea of the complexity involved in building intelligent controllers, par-
ticularly in a real-time application domain where safety must be ensured.
Encoding system reactions as a finite state machine seems a reasonable ap-
proach, but it is not clear how to optimally construct the individual states,
i.e., which perception-action processes constitute each state, and how these
processes interact with one another. These are difficult problems and an

efficient solution to them is essential.

23

6.1 Resource Sharing

Concurrent processes accessing sensors and sending commands to actua-
tors will inevitably cause problems if resource allocation is not handled cor-
rectly. For example, consider the case where the vehicle is to travel down
the road, looking for a landmark while avoiding obstacles. This behavior
can be achieved by three perception-action processes, road-follow, obstacle-
avoidance and find-landmark, running concurrently. The problem is that the
resources needed by these processes are limited and conflicts will surely arise
(see Figure 8). Even in this simple example each resource poses some difficult

problems:

o The vehicle controller - Commands from different processes have to be
combined (arbitration). The way this combination is achieved is crucial

if the vehicle is to execute rational behaviors.

o The image processor - Interleaving processes in this unit may consid-
erably slow down the system. On the other hand it is clear that while
moving some processes (such as avoid obstacles!) cannot be suspended
for long periods of time while the image processor is being used by

some other process.

24

Vehicle
controller

Avoid
Obstacles

Find
Landmark

Figure 8: Resource allocation graph for a driving state. Perception-action
processes are represented as ovals, and resources as rectangles. A directed
edge from a process P to a resource R indicates that P uses R. Assuming
there is only one instance of each resource, the potential for deadlocks is
large.

Image
processor

o The movable camera - It is likely that different processes will try to
point the camera in different directions or require its use at the same
time. Generally, the time to move a mechanical device such as this is
much longer than computation time. Again we encounter the problem

of probable long waits.

6.2 Inter-process Communication

In the current implementation, all communication between processes is done

thru the blackboard. In this particular domain, where potentially large

25

amounts of data are shared (images, maps,-etc.), the shared memory para-
digm seems the most efficient method of communication for processes running
on the same machine. But if perception-action processes were to rul; in a
distributed architecture, other means of communication will be necessary
(UNIX sockets, TCX [8], etc.).

Ideally, the blackboard should support several mechanisms for commu-
nication. Processes running on the same machine can still communicate
through shared memory; processes on different machines use some other
mechanism. Of course, whenever timing constraints allow it, the actual
mechanism should be transparent to the perception-action processes, i.e.,
access routines should look the same regardless of where is the data or how
it is copied from one process to another. In hard real-time situations this
will not be possible.

To try to alleviate possible bottlenecks, the communication needs of each
process should be considered when it is assigned a machine. The scheduler
can try to run those processes with large communication needs (those sharing
big chunks of data) in the same machine. All of this becomes part of the

planning process.

26

7 Conclusions

An autonomous vehicle should be able to react in real-time to a changing
environment, but it should also be able to reason about its goals. In our
system, these seemingly contradictory capabilities are achieved through the
use of a“programable” finite state machine. In this model, reactions to events
(either internal or external) are represented as state transitions. The system
can react rapidly by following a transition table. Goal-directed reasoning is
supported by the “programability” of the FSM - the system does not enforce
what goes into a state or a particular transition table, instead it executes

“scripts” which eventually will be written by an automated planner.

8 Acknowledgments

Many people were involved in the design and implementation of the system
described in this paper. Special thanks go to Gokhan Kutlu for his work
on the ISR3, Srinivas Ravela for his work on the reflexive obstacle avoidance
process, Sumit Badal for his work on the stereo based obstacle detection pro-
cess, Jonathan Lim, Shashi Buluswar and Katja Daumeller for their work in
the landmark based pose estimation process, Carnegie-Mellon University and
Dean Pomerleau for making ALVINN available, Alan Boulanger for bringing

up the ALVINN code, to Bob Heller for his general help, and to Gila Kamhi

27

for her careful review of this paper.

References

[1] R. Beveridge. Local search algorithms for geometric object recognition:
Optimal correspondence and pose. Ph.D. Thesis CMPSCI TR93-71,
University of Massachusetts at Amherst, 1993.

[2] J. Brolio, B. Draper, R. Beveridge, and A. Hanson. The ISR: an
intermediate-level database for computer vision. Computer, 22(12):22-
30, 1989.

[3] R. A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1), March 1986.

(4] R. A. Brooks. Intelligence without representation. In Proceedings of
the Workshop on the Foundations of Artificial Intelligence, Cambridge,
MA, 1987. MIT Press.

[5] B. Draper, S. Buluswar, A. Hanson, and E. Riseman. Information ac-
quisition and fusion in the mobile perception laboratory. In Proc. of
Sensor Fusion VI, pages 175-187, Boston, MA, Sept. 1993.

[6] B Draper, A. Hanson, and E. Riseman. Integrating visual procedures
for mobile perception. In H. Christensen, editor, Ezperimental Envi-
ronments. World Scientific Press, to appear. also in CVGIP:IU, March
1994.

(7] B. Draper, G. Kutlu, and J. Wong. The ISR3 user’s manual. University
of Massachusetts - Ambherst.

[8] C. Fedor. TCX task communications (version 7.7). Robotics Institute -
Carnegie Mellon University, Jan 1993.

[9] C. L. Fennema. Interweaving reason, action and perception. Ph.D.
Thesis COINS TR91-56, University of Massachusetts, 1991.

[10] C. L. Fennema and A. R. Hanson. Experiments in autonomous naviga-
tion. In Proceedings of the Tenth International Conference on Pattern
Recognition, pages 24-31, 1990.

28

[11] M.-P. Georgeff. Planning. In Readings in Planning, chapter Introduc-
tion, pages 5-25. Morgan Kauffmann, 1990.

[12] J. E. Hopcroft and J. U. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[13] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-
time reasoning and system control. IEEE Ezpert, 1992.

[14] K. Kluge. Multisensor system integration for autonomous navigation
tasks. In I. Masaki, editor, Intellegent Vehicles. IEEE Press, to appear
in 1994.

[15] R. Kumar. Model dependent inference of 3D information from a se-
quence of 2D images. Ph.D. Thesis COINS TR92-04, University of
Massachusetts at Amherst, 1992.

[16] J. Lee, M. J. Huber, E. H. Durfee, and P.G. Kenny. UM-PRS: An im-
plementation of the procedural reasoning system. Artificial Intelligence
Laboratory - University of Michigan.

[17) D. W. Payton. An architecture for reflexive autonomous vehicle control.
In Proceedings IEEE Robotics Automation Conference, pages 1838-1845,
1986.

[18] D. W. Payton, K. Rosenblatt, and D. M. Keirsey. Plan guided reaction.
IEEE Transactions on Systems, Man and Cybernetics, pages 1370-1382,
1990.

(19] D. A. Pomerleau. Neural network based autonomous navigation. In
Charles Thorpe, editor, Vision and Navigation: The CMU Navlab.
Kluwer Academic Publishers, 1990.

[20] P. J. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81-98, January 1989.

[21] E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill Inc., second
edition, 1991.

[22] E. Rivlin. DEDS formalism for systems with vision. University of Mary-
land.

29

[23] C. Weems et al. Status and current research in the image understanding

architecture program. In Proc. Image Understandig Workshop, pages
1133-1140. DARPA, April 1993.

30

