Matching Perspective Views of
Coplanar Structures using Projective
Unwarping and Similarity Matching

Robert T. Collins
J. Ross Beveridge

CMPSCI TR94-06

February 1994

This paper was presented at the 1993 IEEE Conference on Computer Vision and
Pattern Recognition, New York City, June 1993. This work was funded in part by
DARPA/TACOM contract DAAE07-91-C-R035 and by the RADIUS project under
DARPA/Army contract TEC DACA76-92-R-0028.



Matching Perspective Views of Coplanar Structures
using Projective Unwarping and Similarity Matching *

Robert T. Collins

Department of Computer Science
University of Massachusetts
Amherst, MA. 01003
rcollins@cs.umass.edu

Abstract

We consider the problem of matching perspective views
of coplanar structures composed of line segments. Both
model-to-image and image-to-image correspondence
These

matching scenarios generally require discovery of an

matching are given a consistent treatment.

etght parameter projective mapping. However, when
the horizon line of the object plane can be found in
the image, done here using vanishing point analysis,
these problems reduce to a simpler siz parameter affine
matching problem. When the intrinsic lens parameters
of the camera are known, the problem further reduces
to four parameter affine similarity matching.

1 Introduction

Matching is a ubiquitous problem in computer vi-
sion. Correspondence matching can be broken into
two general areas: model-to-image matching where
correspondences are determined between known 3D
model features and their 2D counterparts in an im-
age, and image-to-tmage matching where correspond-
ing features in two images of the same scene must be
identified. Fast and reliable matching techniques exist
when good initial guesses of pose or camera motion are
available [6, 7] or when the distance between views is
small [1]. What is lacking are good methods for finding
matches in monocular images, formed by perspective

projection, and taken from arbitrary viewpoints.
This paper examines the problem of matching copla-
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nar structures composed of line segments. A simple
method is presented that, when applicable, allows fast
and accurate matching of coplanar structures across
multiple images, and of locating structures that cor-
respond to a model consisting of significant planar
patches. The main point to this paper is that the full
perspective matching problem for coplanar structures
can often be reduced to a simpler four parameter affine
matching problem when the horizon line of the planar
structure can be determined in the image. Given this
horizon line, the image can be transformed to show
how the structure would appear if the camera’s line of
sight was perpendicular to the object plane. This pro-
cess is called rectification in aerial photogrammetry.

2 Planar Transformations

Essentially all matching problems involve solving for
both a discrete correspondence between two sets of fea-
tures (model-image or image-image) and an associated
transformation that maps one set of features into reg-
istration with the other. These two solutions together
constitute matching: a match being a correspondence
plus a transformation. For planar structures under a
perspective camera model, the relevant set of transfor-
mations is the eight parameter projective transforma-
tion group [12].

More restrictive transformations are worth special at-
tention. Often these transformations are more easily
computed, thus making matching easier. One such
special case occurs for frontal planes, planar structures
viewed “head-on” with the viewing direction of the
camera held perpendicular to the object plane. When
the intrinsic camera parameters are known, perspec-
tive mapping of a frontal plane to its appearance in

the image can be described with just four affine pa-



rameters: an image rotation angle, a 2D translation
vector, and an image scale [22].

2.1 Frontal Planes

Under the standard pinhole camera model, the image
projection of world point (X,Y, Z) is the image point
(X/Z,Y/Z). In this case, the appearance of any 3D
object is governed only by the relative position and
orientation of the camera with respect to the object,
1.e. the camera pose. There are 6 degrees of freedom
for camera pose: three for rotation and three for trans-
lation. Constraining the camera to point directly per-
pendicular to an object plane, to yield a frontal view
of the plane, fixes two degrees of its rotational free-
dom. The four remaining degrees of freedom, one free
camera rotation about the normal of the object plane
and three translation parameters, can be character-
ized by how they affect the appearance of the object
plane in the image. For example, translation directly
towards or away from the object plane manifests itself
as a uniform change of scale in the projected image.
Translation parallel to the planar surface shows up as
a proportional 2D translation in the image. Finally, a
rotation of the camera about its principle axis (which is
normal to the object plane) causes the projected image
to rotate by the same angle about a point in the im-
age plane. The pinhole camera projection of a frontal
plane is therefore described by four affine parameters
that are directly related to the physical pose of the
camera with respect to the plane. Said in another way,
the function that maps object coordinates to image co-
ordinates for a planar structure viewed frontally by a
pinhole camera is a four parameter affine mapping.

A more realistic camera model must take into account
the camera lens parameters. To a first approximation,
lens effects can be modeled by a set of linear parame-
ters that include focal length, lens aspect ratio, optical
center, and optical axis skew. The combined effects of
these parameters can be described by a general six
parameter affine mapping of the ideal pinhole image
onto the observed raster image [16]. A more realistic
model of the projection of a frontal plane is thus a
four parameter affine mapping of object features onto
an idealized pinhole image, followed by a six parameter
affine mapping onto the observed raster image.

In summary, the perspective projection of a frontal
plane is described in general by a six parameter affine

transformation. When a calibrated camera is used its
intrinsic lens effects are known, and can be inverted
to recover the ideal pinhole projection image. After
correction for intrinsic lens effects, the frontal view of
an object plane can be described by a four parameter
affine similarity mapping.

2.2 Arbitrary Orientations

For planes viewed at an angle, the function mapping
object coordinates to image coordinates is no longer
affine, but is instead a more general projective trans-
formation [12]. Lines that are parallel on a tilted ob-
ject plane appear to converge in the image plane, in-
tersecting at a vanishing point. Two or more vanishing
points from different sets of coplanar parallel lines form
a line in the image called the vanishing line or horizon
line of the plane.

For frontal planes, all parallel lines on the object re-
main parallel in the image. This is because the image
projection of a frontal plane is described by an affine
transformation, which preserves parallelism. To avoid
continually treating frontal views as a special case, by
convention a set of parallel lines in the image is said
to intersect in a point “at infinity.” For frontal planes,
all vanishing points of parallel lines appear at infinity,
and the vanishing line passing through them is also
said to be at infinity.

This convention allows the relation between views of
frontal object planes and tilted object planes to be
precisely stated. The mapping of object coordinates
to image coordinates for a plane viewed at any orien-
tation, either frontal or tilted, is described by a projec-
tive transformation. Parallel lines on the object map
tolines in the image that converge to a vanishing point,
all of which lie on the vanishing line associated with
the object plane. Frontal views are distinguished from
more general views in that the vanishing line is located
at infinity. In this case the projective transformation
mapping object coordinates to image coordinates also
happens to be an affine transformation.

These considerations lead to a simple yet powerful ob-
servation. By applying a projective mapping to the
image that takes the vanishing line of a coplanar struc-
ture to the line at infinity, the vanishing points of all
lines in the object plane will also appear at infinity.
Once this is done, all parallel lines in the planar struc-
ture will appear parallel in the image. This implies



that the new image is a frontal view of the object
plane, and thus the mapping from object to image can
be represented as an affine transformation.

2.3 Rectification

We have seen that the vanishing line of a frontal plane
appears at infinity in the image plane, and further-
more, that it is possible to recover a frontal view from
the image of a tilted object plane by applying a projec-
tive transformation that maps the object’s vanishing
line to infinity. There is, however, a six-dimensonal
space of projective transformations that all map a
given line in the image off to infinity. How to choose
a “best” one is described in this section.

For a pinhole camera image, the location and orienta-
tion of the vanishing line of an object plane determines
the true 3D orientation of the plane with respect to the
camera’s line of sight. When the equation of the van-
ishing line is az + by + ¢ = 0, the normal to the object
plane, in camera coordinates, is

n = (a,b,¢)/ll(a, b c)|l. (1)

For a frontal plane, the normal of the plane must be
parallel to the Z-axis of the camera. If the camera
could move, the image of a frontal plane could be re-
covered from the image of a tilted plane by merely ro-
tating the camera to point directly towards the plane.
The camera can no longer be moved physically, of
course, but the image can be transformed artifically

to achieve the desired 3D rotation.

Assume the unit orientation of the object plane has
been determined to be n, as in equation 1, oriented
into the image (¢ > 0). To bring this vector into co-
incidence with the positive Z axis requires a rotation
of angle Cos™*(n- (0,0, 1)) about the axis n x (0,0,1).
The effects of this camera rotation on the image can be
simulated by an invertible projective transformation in
the image plane [19]. In homogeneous coordinates,
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The image is transformed to appear as if the camera
had been pointing directly towards the object plane.

The result therefore is a frontal view of the object
plane, as seen by a pinhole camera, i.e. a rectified four
parameter affine view.

This transformation can be used to map a vanishing
line to infinity even when the camera lens parameters
are not known. In this case the pure pinhole image can
not be recovered and the position of the vanishing line
in the image can no longer be interpreted geometrically
Nevertheless, the
image will be rectified to present some six parameter

in terms of 3D plane orientation.

affine mapping of the frontal object plane.

3 Correspondence Matching

A two step approach is used to match coplanar line
segments seen from two arbitrary 3D viewpoints. The
first step is to rectify both sets of line segments using
the techniques described above. This reduces the per-
spective matching problem to a simpler affine match-
ing problem. The second step is to use a local search
matching algorithm [6, 8] to find the optimal affine
map and correspondence between the two sets of line
segments. If both sets of line segments are extracted
from images, then an image-to-image matching prob-
lem results. If one set of segments is derived from a
geometric object model, then a model-to-image match-
ing problem results.

The local search matching algorithm is used in place of
more commonly known types of affine matching for the
following two reasons. First, the goal of local search
matching is to find optimal, rather than acceptable,
matches. When started from random positions in the
search space, the local search algorithm finds the opti-
mal match with high probability. This means that the
best possible match will be returned even when the
image data is of poor quality, and that the algorithm
will continue to perform well even when repetitive im-
age structure generates a profusion of partial matches.
Second, the local search matching algorithm we use
operates over a space of many-to-many line segment
correspondence mappings. This is important, particu-
larly for image-to-image matching, because bottom-up
line extraction processes frequently fragment line seg-
ments. Finding the true match may require piecing
together fragments from both images.

Most previous approaches to affine matching do not
seek optimal matches, and do not allow many-to-many



mappings between features. Common approaches to
affine matching roughly fall into one of the following
four categories: 1) key-feature algorithms [9, 21], 2)
generalized Hough transforms [4, 17, 24] and pose clus-
tering algorithms [23], 3) geometric hashing [18, 20],
and 4) constraint-based tree search [3, 14, 15]. Key-
feature approaches to matching seek some easily iden-
tified and distinctive feature which predicts the pres-
ence of the model as a whole. Generalized Hough
transforms, and more generally pose clustering ap-
proaches, seek support for specific model-to-image
transformations based upon partial matches between
small sets of model and image features. Geometric
hashing extends the key-features approach by consid-
ering larger sets of local subfeatures and multiple mod-
els. Constraint-based tree search seeks locally consis-
tent matches by searching, usually depth first, a tree
of potential model-to-image feature bindings. All of
these techniques hypothesize the presence of an accept-
able match. Typically they do not enforce global ge-
ometric consistency, leaving this to an auxiliary post-
processing algorithm. None deals with the problem
of searching through a profusion of possible partial
matches for the one which is best.

Unlike the approaches to affine matching just cited, lo-
cal search matching uses a combination of iterative im-
provement and random sampling to search the discrete
space of many-to-many correspondence mappings be-
tween model and image line segments for one that
minimizes a match error function. The match error
depends upon the relative placement implied by the
correspondence. More particularly, to compute the
match error the model is placed in the scene so that
the appearance of model features is most similar to
the appearance of corresponding image features. For
affine matching, a least-squares procedure determines
the best-fit similarity transformation registering the
model to the image. The first term in the match er-
ror is a function of the residual squared-error. A sec-
ond term penalizes matches which omit portions of the
model.

Local search matching iteratively improves a current
match by repeatedly testing a local neighborhood of
matches defined with respect to the current match.
Each neighbor is a distinct correspondence mapping
between model and image features. Tractable neigh-
borhood sizes, for instance n neighbors in a space of 2™
possible matches, tend to yield tractable algorithms.

However, there is an art to designing small neighbor-
hoods that do not induce a profusion of local optima.
New neighborhoods definitions have been developed
that are particularly well suited to matching geomet-
ric features [6, 8].

Despite clever neighborhood definitions, local search
can become stuck on local optima. Random sampling
offers a probabilistic solution to the local optima prob-
lem. The probability of finding the globally optimal
match starting from a randomly chosen initial match
is analogous to the probability of getting heads when
flipping an unfair coin. Even with an unfair coin, it is
a good bet that heads will appear at least once in a
large number of throws. For instance, using a coin that
only comes up heads in 1 out of 10 throws, the odds
of getting heads 1 or more times in 50 throws are 99
out of 100. Similarly for local search matching, even if
the probability of seeing the optimal match on a sin-
gle trial is low, the probability of seeing the optimal
match in a large number of trials is high.

The combination of iterative refinement and random
sampling has proven to be very effective. Under difhi-
cult circumstances, this basic form of algorithm re-
liably finds excellent, and usually globally optimal,
matches. The algorithm performs well even when
scenes are highly cluttered and significant portions of

a model instance are fragmented or missing entirely.

4 Examples

Although other methods are available (see discussion
in Section 5), the results in this paper rely exclusively
on vanishing point analysis for finding vanishing lines
in the image. This simple approach works surprisingly
well for many man-made scenes, both indoor, outdoor,
and aerial. Vanishing points are found using a stan-
dard Hough transform approach [5]. Each line in the
image is entered into a two dimensional Hough array
Each
image line “votes” in a great (semi)circle of accumu-

representing the surface of a unit hemisphere.

lators, and potential vanishing points are detected as
peaks in the array where several great circles inter-
sect. For most man-made scenes, either two or three
clusters will dominate the Hough array. These clus-
ters correspond to the vanishing points of the two or
three dominant line directions in the scene. Each pair
of vanishing points defines a vanishing line for planes
containing lines of those orientations.



The present version of the local search matching sys-
tem supports four parameter, but not six parameter,
affine transformations. ! We therefore needed to know
the lens parameters of the camera for each experiment.
It should be stressed that only rough knowledge of the
calibration parameters is generally needed to find ac-
ceptable matches. The most important parameters to
determine are focal length and aspect ratio. We as-
sumed for all our experiments that the image center
was at the numeric center of the image, and that the
optical X and Y axes were perpendicular and aligned
with the row and column axes of the raster image.
Aspect ratio was determined from the camera manu-
facturer’s specifications, when available, otherwise it
was assumed to be one-to-one. The focal length for
each experiment was determined from vanishing point
information and aprior: knowledge that the dominant
line directions were perpendicular in the scene [11].
This computation amounts to varying the distance of
the focal point from the image until two vectors point-
ing from the (variable) focal point towards two (fixed)
vanishing points in the image are perpendicular.

4.1 Model-to-Image Matching

Figures la) and b) show a set of straight line segments
extracted from an image of a wall poster using the
Burns algorithm [10], and a set of model lines to be
matched to the image. The first stage in matching is to
detect two clusters of lines converging to the two main
vanishing points in the image, and from the resulting
vanishing line rectify the image to present a frontal
view of the poster (Figure 1c).

The four parameter affine match found by the local
search matching algorithm yielded a set of correspon-
These

correspondences were used to estimate an eight pa-

dences between model lines and image lines.

rameter planar projective transformation to bring the
model lines into registration with the image data lines,
using the least-squares estimation procedure of [12].
Figure 1d shows the transformed model overlaid on
the input image lines.

!There is a full 3D perspective version [7], but it is
inappropriate for these matching problems because exact
camera parameters and an initial object pose estimate are
required.

4.2 Image-to-Image Matching

Because it does not rely on computing 3D object pose,
this approach extends easily to image-to-image corre-
spondence matching. In this case, both images are
rectified using the techniques of the last section, and
one is treated as the model while the other becomes
the data to be matched. The goal is to discover the
affine transformation that maps one set of rectified im-

age lines into another.

When both cameras are calibrated, both images can be
rectified into four parameter affine mappings of object
coordinates to image coordinates. Since the mapping
from one image to another can be written by inverting
one object-to-image transformation and composing it
with the other, and since the four parameter affine
group is closed under inversion and composition, the
resulting image-to-image transformation can also be
described by a four parameter affine mapping. Simi-
larly, when either camera is uncalibrated the resulting
transformation between rectified views is a general six
parameter affine mapping.

Figure 2 shows an example of image-to-image match-
ing in the context of aerial image registration. Fig-
ures 2a) and b) show sets of extracted straight line
segments from two aerial photographs. The first im-
age presents a frontal view of the ground plane, a fact
verified by vanishing point analysis, which finds two
orthogonal sets of nearly parallel lines. At this point
we should mention that the term “frontal” was coined
with terrestrial robotics in mind, and that within the
aerial domain the correct term to use is “nadir”. The
second image is clearly not a nadir view, a fact again
verified via vanishing point analysis. Figure 2c shows
these image lines after rectification.

To apply local search matching, image 1 was assumed
to be the model and rectified lines from image 2 the
data. Both line sets were filtered to include only lines
greater than 100 pixels long, reducing the matching
problem to 55 long lines in one image and 68 lines
in the other. Additionally, the search space was parti-
tioned based upon the dominant orthogonal line direc-
tions. The best match found is displayed in Figure 2d.
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Figure 1: Model-to-image matching example on a poster image: (a) data lines from poster image, (b) poster
model, (c) rectified poster data lines, (d) poster model registered with the image data.
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Figure 2: Image-to-image matching example on an aerial image: (a) image lines from nadir view, (b) image lines
from oblique view, (c) rectified oblique view, (d) registration of nadir view with rectified oblique view.




5 Issues and Extensions

The domains we anticipate are scenes depicting ei-
ther indoor or urban outdoor environments with much
planar and parallel linear structure. Such scenes of-
ten contain lines and planes in two or three domi-
nant directions. The approach to matching taken here
requires each plane to be matched separately, so a
method is needed to partition lines in the image into
sets belonging to planes in the world. This would be
nearly impossible in monocular images, were it not
for the rich structure of man-made environments, sug-
gesting domain-specific heuristics based on corners and
perpendicularity. In particular, L-junctions composed
of two lines from different vanishing point clusters are
good candidates for coplanar corners. We are currently
exploring heuristic geometric methods, as well as more
formal approaches based on projective invariance, for
partitioning image lines into coplanar groups.

We are also exploring other methods besides vanishing
point analysis for detecting the horizon line of an ob-
ject plane in the image. Possibilities include analyzing
texture gradients [13], and exploiting properties of the
perspective projection of convex planar curves [2].

The techniques presented here may not be adequate
to determine feature correspondences when structures
are present in the scene that deviate significantly from
coplanarity with respect to the viewing distance. How-
ever, to the extent that some scene features are found
to be coplanar and can be successfully matched, this
initial set of planar correspondences provide strong
constraints on the positions of remaining features. For
calibrated cameras, the relative rotation and direc-
tion of translation between two camera positions can
be computed from the perspective transformation de-
scribing how the appearance of a planar structure dif-
fers in the two images [12]. This reduces the search for
other 3D feature correspondences to that of induced
stereo, where corresponding feature points lie along
known epipolar lines. Even for uncalibrated camera
systems, knowledge of the perspective transformation
relating the image features of a planar structure con-
strains the positions of arbitrary point features in one
image to lie along epipolar lines in a second image.

In its current form, the local search affine matching
algorithm described in this paper is used for image-to-
image feature matching simply by declaring the fea-

tures in one image to be a model. This is not ideal,
since the the current treatment of model and image
lines is not symmetric. Future work on the affine
matcher may include developing a more symmetric er-
ror metric for image-to-image matching, and extending
the range of the match transformation space to han-
dle six parameter affine matching so that images from

uncalibrated camera systems can be used.
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