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Abstract

Significant performance advantages can be realized by implementing a database system on a
shared memory multiprocessor. An efficient implementation of a lock manager is a prerequisite
for efficient transaction processing in multiprocessor database systems. To this end, we ad-
vocate adopting an autonomous locking strategy. In autonomous locking, transactions acquire
and release locks via operations on shared memory, in contrast to conventional locking where
communication with a lock manager is involved. We demonstrate the superior performance and
scalability of autonomous locking through benchmarks of a prototype lock manager implemented
on a large scale shared memory multiprocessor. For instance, when contention is high (i.e., for
hot lock operations), the performance of autonomous locking is nearly an order of magnitude
better than conventional locking. The paper also addresses issues related to recovery (assuming
independent node failures).
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1 Introduction

Although there has been a significant amount of work done on shared disk (SD) and shared
nothing (SN) database systems, very little work has been done on shared memory (SM) database
systems. In an SD system, each node is connected to all disks in the system, while in an SN
database system, the database is partitioned among multiple systems. In an SM database
system, in addition to having shared disks, each node has access to shared memory. The recent
advances in multiprocessor technology have made large-scale cache coherent multiprocessors

possible, enabling the construction of high performance SM database systems.

The lock manager is a critical component of any database system which uses locking to
ensure the correctness of concurrently executing transactions. In a database system containing
multiple nodes, many lock requests may be issued concurrently by transactions executing on
separate nodes. By adopting a cache coherent shared memory system model, we demonstrate
how database locking on multiple nodes can be performed very efficiently. In this strategy,
called Autonomous Locking (AL), transactions acquire and release locks directly via operations
on shared memory. The AL strategy is particularly effective in the presence of hot spots. Hot
spots occur when a small set of data elements are requested concurrently by many transactions
[20, 16, 12]. When multiple transactions attempt to lock the same data object in a compatible
mode (creating a hot lock), the lock manager becomes a performance bottleneck. Our perfor-
mance studies indicate that the performance of AL is significantly better (by almost an order of

magnitude) than that of conventional locking techniques, especially for hot locks.

Given that a large volume of work has been done on locking techniques for SD database
system, (which we call conventional locking, or CL), it is instructive to compare AL to CL.
Typically, an SD database system employs one or several lock manager processes to control the
acquisition and release of locks on behalf of transactions. Thus, when a transaction running on
some node needs a lock on a database object, it must contact the appropriate global lock manager
with the lock acquisition request. Similar inter-node communication occurs in order to release
an acquired lock. However, performing inter-process communication without shared memory
can be expensive. A centralized CL architecture imposes an inherent sequential bottleneck on
the lock acquisition/release process. This has been recognized, and to mitigate this problem,
multiple lock managers can be used, where each manages a distinct partition of the lock space
[17]. Furthermore, to increase availability, each lock manager normally runs on a dedicated node.

Although partitioning the lock space in this manner can be effective for CL, by adopting AL,



we can further substantially decrease the overheads for database locking operations. Adopting

AL over CL has a number of advantages:

AL eliminates inter-process communication overheads.

o AL eliminates a sequential bottleneck, thus increasing potential concurrency.

AL eliminates the need for dedicated lock manager processes.

AL achieves high lock space availability without explicit partitioning of the lock space.

By eliminating the lock manager processes, AL eliminates a number of inherent ineffi-
ciencies associated with it. Since all lock acquisitions and requests operate directly on shared
memory, no inter-process communication is required in AL. In CL, when lock space partitioning
is done and many lock manager processes are employed, a given series of concurrent lock requests
for different locks may still contact the same lock manager. In contrast, with our implementation
of AL, concurrent lock requests for different locks are not subject to any sequential bottleneck.

Furthermore, regardless of the CL partitioning scheme, AL is superior for access to hot locks.

On the surface, the autonomous locking strategy is no different than the technique that a
multiprocessor operating system developer would use to implement a semaphore. However, there
are two significant differences between semaphores and database locks. First, unlike semaphores,
database locks must be managed so to ensure faslure atomicity ? of transactions, and second,
in addition to shared and exclusive modes, database locks normally support other lock modes.
Ensuring the the lock space reflects failure atomicity of transactions is especially difficult when
nodes can fail independently. Consider a node crash which occurs while some active transaction
has acquired shared locks. If some of the lock control blocks (the data structures indicating,
among other things, which transactions are currently sharing the lock) had migrated to another
node (due to shared lock requests at other nodes), a crash may lose some but not all of a
transaction’s lock control blocks. In this case, some strategy must be devised in order to ensure
that a consistent state of the lock space can be reached during recovery. Our implementation of

AL meets the requirement of failure atomicity.

We have conducted an evaluation of AL and CL on a large scale shared memory multi-

processor. Qur experiments demonstrate that under common locking scenarios, the locking cost

?Failure atomicity [15] of a transaction, also called the all-or-nothing property, means that either all or none

of the transaction’s operations are performed.



for CL increases linearly with contention while the locking costs for AL remain fairly constant.
In fact, for hot locks, AL’s performance is better than CL’s by almost an order of magnitude.

Section 2 reviews some background material, including our assumptions about the system
model, transaction model, a general discussion of database locking, and reviews conventional
locking. Section 3 discusses autonomous locking. Section 4 discusses the performance of au-

tonomous and conventional locking. Qur conclusions are presented in section 5.

2 Background

This section briefly reviews background material related to database locking, SD and SM
database systems, and conventional techniques for performing locking in SD database systems.
Suitable' platforms for SM database systems, namely, a cache coherent shared memory multi-
processors and cache coherent distributed shared memory machines, are discussed in section
2.1. Locking is the preferred method for enforcing serializability in commercial relational and
object-oriented database systems, and is discussed in section 2.2. Section 2.3 discusses hot spots
and hot locks. Finally, conventional locking (CL) in an SD database system is discussed in

section 2.4.

2.1 System and Transaction Model

Our implementation platform for an SM database system is a a cache coherent shared memory
multiprocessor. A coherency protocol, implemented in hardware, ensures that any read operation
sees the most recently written value for any data item. Each node has its own cache, and before
an operation is performed on a data item, the data item must first be brought into the cache.

In general, a data item will be either in the local node’s cache, another node’s cache, or on disk.
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Figure 1: SM Database Architecture



Typically, the operations execution time is minimal if the data item is already in the cache,
more expensive if the data item is in another node’s cache, and the most expensive if the data
item must be fetched from disk. We assume a page based write-invalidate snoopy cache model
[1, 19], where, before a page write by one node occurs, all other cache copies the page are first
invalidated. Typically, the hardware elements implementing the cache coherency scheme include
a cache controller, a cache directory, and the cache itself. The cache contains the cached data,
while the cache directory contains the addresses of all cached data. Figure 1 illustrates the basic
SM database architecture. We assume each node maintains a non-volatile log, and that in-place
updating is used in conjunction with the write-ahead log protocol [2]. All operations on this log
take place in the node’s cache. This in-cache log is volatile, but can be made stable by writing

it to one of the shared disks.

We focus on transaction workloads where each transaction executes entirely on a single
node. In contrast, a query processing approach may entail executing a single transaction on
multiple nodes. Although an SM database system is well suited for query processing, the pre-
sentation of the recovery strategies is simplified when each transactions executes on a single
node. However, as shown in section 3.2.2, our results generalize to include transactions which

execute on multiple nodes.

If the failure of a single node implies the failure of the entire multiprocessor, then the
database recovery issues are essentially the same as for a uniprocessor. In this paper, we address
the more complex recovery issues which surface when node failures are independent. Next gen-
eration cache coherent commercial multiprocessors are being designed to support independent
node failures [6]. Furthermore, cache coherent shared memory can also be efficiently supported
on a distributed shared memory (DSM) machine. Stanford’s FLASH [10] research architecture
is one example of a DSM machine. In FLASH, hardware support for cache coherency is im-
plemented by connecting several off-the-shelf microprocessors, caches, and custom interconnect
controller chips via a high speed network. This looser coupling of system nodes facilitates the
identification and isolation of single node hardware failures. To take advantage of these future
enhancements, in our model, we assume that nodes in the shared memory multiprocessor fail
independently. A node failure implies all volatile memory (the node’s cache, and possibly the
cache directory) is lost. When node a, which holds the only copy of a page, crashes, we assume
that the page is unavailable for use by other nodes until a recovery procedure is executed, which
reconstructs some or all of the dirty data of cache a. The volatile and stable logs facilitate the

reconstruction of the database data and database lockspace located on a node after a crash.
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Figure 2: Lock Mode Compatibility Table

Although node failures in an SM database system should be infrequent, some additional
measures can be taken to increase the availability of the system. Although an expensive propo-
sition, all volatile memory could be mirrored with redundant hardware. This would increase

availability, but the difficulty of recovery issues would remain if the backup memory also failed.

2.2 Locking in Database Systems

To ensure serializable executions, virtually all commercial database systems use locking. The
basic lock modes are shared (S) and exclusive (X). An X lock on record (or database object)
r guarantees that no other transaction will read or modify r, while an S lock on r ensures
that no other transaction will modify r. Note that several S requests on r can be granted
concurrently. In addition to the basic lock modes, intention locks are also included to facilitate
multigranularity locking [9]. In a multigranularity locking protocol using intention locks, the
database is characterized by a hierarchy (on a directed acyclic graph), with locks are requested
in root to leaf order, and released leaf to root. Before requesting an S or IS lock on a node, all
ancestor nodes of the requested node must be held in IX or IS mode by the requestor. Also,
before requesting an X, SIX, or IX lock on a node, all ancestor nodes (if any) of the requested
node must be held in SIX or IX mode by the requestor. The lock mode compatibility table
which enables multigranularity locking is illustrated in figure 2. Object oriented systems use

similar compatibility tables to ensure serializability [7].

2.3 Hot Locks

The discussion in the previous subsection indicates that there are many cases where locks may

be concurrently held by many transactions. While kot spots [13, 16] refer to data which is



frequently accessed, we use the term hot locks to refer to locks on database objects which are

frequently accessed in a non-conflicting mode.

A Hot Lock on r is a lock where a non-conflicting lock operation (acquire or release)

is performed by many concurrent transactions.

Hot locks may arise under many situations in multi-node database systems. For example,
suppose many query transactions simultaneously attempt to lock r in S mode. In this case,
since there are many concurrent compatible requests, the lock on r is hot. In a multigranularity
locking scheme, it is very likely that intention locks will be concurrently requested at the nodes
close to the root. For instance, multiple IS and IX locks may be concurrently held by many
transactions on the root node of the lock hierarchy; lock requests accessing this root node may
easily form a hot lock. These two factors, the likelihood of hot locks in a multi-node database
system, and the potential for concurrent transaction execution in these situations, motivate
our lock manager design. Our performance studies indicate that autonomous locking performs

extremely well under hot lock traffic.

2.4 Locking and Recovery in Shared Disk Database Systems

In the conventional approach to locking for SD database systems, global concurrency control
is enforced by having one lock manager process per database object. To acquire or release a
lock, messages are sent to the appropriate lock manager process. In a survey of concurrency
and coherency control for SD database systems [17], Rahm discusses three locking schemes
for SD systems: central locking, distributed locking with fixed authorities, and distributed
locking with dynamic lock authorities. In these protocols, for each database object, a single lock
manager enforces global concurrency control. In central locking, there is only one lock manager,
while in dynamic locking, there are multiple lock managers, each responsible for a separate
partition of the database object space. Distributed locking is further distinguished based on
whether the partitions are predetermined (fixed authorities) or change dynamically (dynamic

lock authorities).

The disadvantage of the central locking approach is that the lock manager process can
become a performance bottleneck. In order to mitigate this performance bottleneck, normally,
an entire node is reserved for the central lock manager. Further performance gains can be

achieved by partitioning the lock space with distributed locking. By partitioning the lock space,



one hopes to decrease the overheads of lock acquisition and release by enabling multiple lock

managers to process requests concurrently.

Although very little work has been published on recovery in SD systems, recovery issues
are addressed (in the context of fine-granularity locking in an SD transaction environment) in
ARIES [12]. Under Rahm’s taxonomy, this system falls under the category of central locking.
In ARIES, locking is managed by a single GLM (Global Lock Manager) process and a per node
LLM process (local lock manager). The transaction system first sends lock requests to the LLM.
If the lock is currently held by by the LLM, the LLM itself processes the request. Otherwise, the
lock request is forwarded to the GLM. On a GLM failure, the global lock table is reconstructed
from the information contained in the LLMs. When the GLM notices that a LLM [ has failed,
all of I’s locks held at the GLM are released except those which were asked to be retained by
the local system (normally update locks are retained). For increased availability, one node in
the system is designated as the backup GLM. The backup GLM will replace the GLM in the
case where the GLM and at least one LLM have failed. During recovery, no surviving node will

be granted any of I’s locks by the backup GLM until all nodes recover completely.

To the best of our knowledge, only one paper has addressed issues in implementing a lock
manager on an SM database system. In [18], instead of using a GLM per object, it is suggested
that a global lock table be used in conjunction with a non-volatile global extended memory.
Database locks are acquired directly from the global lock table stored in non-volatile shared
memory. However, this assumption of non-volatile shared memory is a significant departure
from our implementation of AL on an off-the-shelf shared memory multiprocessor wherein the
cache — where (parts of)) the lock space may reside — is volatile. Although assuming non-volatile
memory basically ensures failure atomicity without additional logging mechanisms, non-volatile
memory is much more expensive than volatile memory. Furthermore, in [18], no quantitative
performance results are given, only conjectures are provided. In contrast, we provide quantitative
performance measurements for AL, and address recovery from failure in the context of volatile

memory.

3 Autonomous Locking

In this section, we discuss the basic operation (section 3.1) of AL and the related recovery

3

issues in section 3.2. These recovery issues include ensuring a failure atomic lock space®, and

3We use the term failure atomic lock space to mean that the lock space reflects failure atomicity of transactions.



integrating AL into a DB system which supports fine granularity locking.

3.1 Basic Operation

Consider acquiring an object lock under AL. A lock request consists of a lock name and a lock
mode. Using a hash function, the name is translated to a lock control block (LCB) address
specific to one lock. An LCB stores the current mode of the lock, plus two transaction lists,
one containing the current holders of the lock, the other containing any transactions waiting
for the lock. All updates to the LCB are performed inside a critical section. If the requested
mode is compatible with the mode stored in the LCB, and there are no conflicting waiters,
a tuple containing the requesting transaction and requested mode is added to the holder list,
and the lock is granted. Otherwise, the transaction/mode tuple is added to the wait list, and
a not-granted flag is returned to the requestor. The strategy for releasing a lock is similar.
After finding the appropriate LCB, the tuple identified by the transaction is deleted from the
holder list, and any lock requests in the wait list which become compatible due to the release
are granted. A similar strategy for acquiring and releasing locks is employed in CL. However, in
CL, since each lock has exactly one process (node) responsible for all lock operations, no explicit

critical section is required.

By exploiting the shared memory available in an SM database system, AL eliminates
the need for a lock manager process by using data synchronization. By replacing process syn-
chronization with data synchronization, significant performance gains result. In CL, the lock
operation request must be channeled through an intermediate process, the global lock manager.
By eliminating the global lock manager, AL eliminates one source of overhead involved in the
execution of lock operations. The global lock manager can become a sequential bottleneck when
many lock operations are sent concurrently to the same global lock manager. This traffic pattern

can occur under the following situations:

e Under a poor partitioning scheme.

e Under hot lock operations.

Even when multiple global lock managers are used, for a given partitioning scheme, it may be the
case that multiple requests for lock operations on different database objects are channeled to the
same global lock manager. An AL scheme will not encounter this problem, since, on each node,

the lock operation code can be executed independently. AL also has performance advantages



especially for hot lock operations. Under CL, all lock operations on a hot lock will necessarily go
to a single global lock manager (recall in CL all lock operations on a particular database object go
to a single global lock manager). Although under AL, consistency of access to a particular LCB
is ensured by requiring all accesses to the LCB to occur within a critical section, this mechanism

is generally much more efficient than ensuring consistency via inter-process communication.

3.2 Recovery Issues

In this section, we address recovery issues for SM database systems in the context of independent
node failures. The difficulty of recovery in multiple node database systems stems from the fact
that uncommitted data of a single transaction can become partitioned on multiple nodes (due
to page migration). Furthermore, for AL, the lock space of a transaction can both (a) coexist
in the volatile memory of nodes executing transactions, and (b) become partitioned on multiple
nodes. We discuss two main issues in the recovery of an SM database system: (1) the support

for fine granularity locking, and (2) ensuring a failure atomic lock space.

3.2.1 Supporting Fine Granularity Locking

When multiple records are stored in a single page, using page locks to ensure serializability
would unnecessarily restrict concurrency. To mitigate this problem, contemporary database
systems use fine granularity locking [12], i.e., locking is performed on individual database objects.
In an SD database system, pages located in the database buffer are transferred between lock
manager processes, while in an SM database system, the cache coherency protocol performs inter-
node page transfers transparently. When supporting fine granularity locking, it is possible for
uncommitted data to migrate between nodes in either of the SD or shared memory architectures

(due to the disparity between lock granularity and data transfer granularity).

When uncommitted data migrates, additional steps must be taken to avoid inter-node
cascading aborts. For example, suppose records r1 and r2 are stored in page p, and record-
level locking is performed using 2PL (two-phase locking). Transaction ¢* on node a locks, then
updates rl. Then, transaction t* on node b locks, then updates 2. Consider the effects on
transaction a if either node a or b crash. If node b crashes, aborting t* can be avoided if
sufficient redo information is maintained to redo t*’s update to r1. Similarly, if node a crashes,
aborting t® can be avoided if sufficient undo information is maintained to undo t%’s update to

rl.



Maintaining the redo information can be efficiently supported by (volatile) logging up-
dates, and maintaining the undo information is typically supported by stable logging the undo
of the update. In the example, prior to allowing p to migrate, a redo record for ¢*’s update to r1
is (volatile) logged, and an undo record for t*’s update to r1 is stable logged at node a. These
methods are employed by the ARIES SD transaction environment [12]. In ARIES, the GLM is
used to enforce these policies. Methods for ensuring a cascadeless system in the context of a

multiple node implementation of multi-level transactions are also discussed in [14].

In AL, avoiding inter-node cascading aborts must be achieved without a global lock man-
ager. In AL, ensuring that the redo information exists before a page migrates can be performed
by holding a short-term page lock until the record update is logged. For ensuring that undo’s
can be performed in the case where uncommitted data had migrated from node a prior to the

crash of node a, two alternatives are the exist:

1. Extend the cache coherency protocol to force the log to disk prior to the migration of a

“dirty” page.

2. Add an additional field to each database object, enabling the storage of the before image.

Solution 1 requires an extension of the cache coherency protocol. We envision that only
those pages updated by transactions need this extension, so a per page flag will indicate which
dirty pages require the invocation of a “migration handler”. For these pages, the migration
handler is invoked prior to page transfer, which is responsible for forcing the undo log to disk.
Solution 2 avoids the delays associated with disk I/O at the cost of an extra field per updated
database object. This extra field stores the before image of the database object on the same
page as its associated uncommitted image. To effect an undo, the uncommitted data is simply

replaced by the before image.

3.2.2 Ensuring a Failure Atomic Lock Space

Ensuring a failure atomic lock space is especially difficult when nodes can fail independently.
Compatible locks, i.e., those which may be concurrently held by transactions on different nodes,
pose a special problem for recovery, since, as a side effect of the coherency protocol, the LCB will
be valid at only one of the nodes. For example, after two transactions running on different nodes
have acquired a compatible lock, the LCB will be valid at the node which acquired the lock last.

In this case, a crash may lose some but not all of a transaction’s LCBs. For instance, note that

10



this scenario is only applicable to uncommitted transactions, since committed transactions have
no effect on the lock space (once a transaction has committed, all its locks are released). In
contrast, each lock acquired by an uncommitted transaction will have a corresponding entry in

the lock space.

AL ensures failure atomicity of transactions in the presence of independent node failures
as follows. Before a transaction acquires any locks, its transaction identifier (TID) is stable
logged. In addition, prior to any lock acquisition request, a log record, containing the lock name
and TID of the lock request, is volatile logged. These log records are used to ensure consistency
of the lock space after a node failure occurs. Let us examine what steps should be taken if an
LCB (lcb), stored on node I, is lost due to the crash of node I. Active transactions which have

entries in [cb fall into two categories with respect to recovery of the lock space:

1. An active transaction [, which executes on the same (local) node where lcb is stored, or

2. An active transaction r, which executes on a (remote) node which is different from where

the leb stored.

In case 1, the transaction ! should be aborted, since the node it was running on crashed. In
this case, losing the LCB entry of transaction ! poses no problems for recovery, since the effects
of aborted transactions should be erased. (To complete the abort of transaction !, additional
measures must be taken, as discussed in the previous section. Recall that objects updated by
transaction ! may have migrated to another node. In this case, to undo the update, locks need

to be acquired prior to undoing the update.)

In case 2, it is not necessary to abort the transaction r, since the node it was running
on is still active. In this case, all of transaction r’s LCB entries should be restored. Since they
were logged at node r prior to allowing the LCB to migrate, this information can be used to

reconstruct the lost LCB entries.

This discussion has considered only a single node failure. However, to recover in the case
where multiple nodes have failed, the same cases, and thus the same techniques, apply. In this
context, all transactions running on nodes which have failed are aborted, and any locks held
by these transactions must be removed from the lock space (case 1). Any locks of non-aborted

transaction’s which were lost by node crashes must be restored (case 2).

Although we have presented this material under the assumption of independent transac-

tions ezecuting on a single node, these recovery techniques apply to transactions which execute
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on multiple nodes. Consider a transaction running on multiple nodes. If one node crashes,
generally, it will be necessary to abort the entire transaction. Omnce this is done, the same

mechanisms are used to ensure a failure atomic lock space.

3.2.3 Failures on a Cache Coherent Shared Memory Multiprocessor

In this section we address the possible types of single node failure on a cache coherent shared
memory multiprocessor, and suggest solutions to recovering from these failures. A system failure
could be caused by any of the hardware elements implementing the cache coherency scheme,
including the cache controller, the cache directory, or the cache itself. If any of these components
fails, the entire node could be isolated and taken off-line. However, we must address the issues
of (1) knowing when a node failure has occurred, and (2) determining the dirty pages which the
failed node had cached. Node failure must be identified by the hardware. Once this is done, if
the failed node’s cache directory remains intact, the cache directory of the failed node may be
probed in order to determine which cached pages are dirty. However, if the contents of failed
node’s cache directory are lost, the dirty pages can be recovered from the logs of the other
systems, as is done in [12]. In [12], every page in the database has a Page LSN which contains
the LSN (log sequence number) of the log record that describes the latest update to that page.
During recovery, this information is used to reconstruct any dirty page which had been lost due

to a system failure.

3.2.4 Summary

For an SD database system, coherency for database objects in implemented in software, while in
an SM database system, database buffer coherency is performed as a side effect of the hardware
cache coherency protocol. AL exploits the more efficient SM coherency protocol by acquiring
locks directly from shared memory. For AL, we discussed appropriate mechanisms for ensuring
the failure atomicity of transactions, and how to support fine granularity locking in the context of
a hardware cache coherency protocol. The mechanisms for supporting fine granularity locking in
SD and SM are similar. The most costly mechanism used to ensure a cascadeless implementation
is stable logging, and is effective for both SD and SM systems. However, in both systems,
ensuring a cascadeless implementation without stable logging is possible by storing the before

image of a record in the same page as the uncommitted update.

The major differences in recovery for SD and SM involves ensuring that the lock space can

12



be returned to a consistent state after a node crash (in order to ensure the failure atomicity of
transactions). The recovery issues for a centralized implementation of CL have been documented
in [12]. If either a GLM or LLM fails, the surviving node can be used as a source of lock
reconstruction information. In AL, a node failure could (1) cause a transaction abort but not
lose all the transaction’s locks, or (2) lose locks of a non-aborted transaction. To cope with
these cases, recovery mechanisms are necessary to ensure that the lock space can be returned
to a consistent state. In order to facilitate undo and redo on the lock space, the transaction
identifier is logged to stable storage prior to acquiring any locks, and, as is normally done in
any lock manager implementation, when a transaction acquires a lock, the transaction identifier
and the granted lock mode are stored in the lock control block. These mechanisms would also

be useful for a CL implementation to handle the case when the GLM and at least one LLM fail.

Since the mechanisms to support recovery and cascadeless implementations are similar
for AL and CL, thus implying similar overheads, we did not implement these support mecha-
nisms, nor did we measure the impact of their performance of the database system. Instead,
our performance studies presented in section 4 focuses on assessing the overheads involved in
performing lock operations. Qur performance studies show that at a concurrency level of 24, to
acquire one hot lock under CL costs 1.09 ms., while it costs 0.17 ms. under AL. It would be
worthwhile to assess the system’s overall transaction throughput rate under AL and CL, but to

do so, one must also consider the cost of performing disk I/O. This is part of our future work.

4 Performance Studies

In this section, we present performance benchmarks of prototypes of the CL and AL lock manager
designs on the KSR1 multiprocessor. Both AL and CL implementations were performed for the
following two reasons. First, we wanted to compare (an SM implementation of ) AL with an SD
implementation of CL. However, if we were to use existing communication mechanisms (such as
TCP or UDP) for inter-node communication, performance of SD CL would be very poor. For
example, on the KSR1, the round trip time to write one byte of data was measured at 13 ms. for
TCP, and 10 ms. for UDP *. Second, assuming a cache coherent shared memory multiprocessor

was adopted as the platform for the database, we wished to quantify the differences between AL

*These inter-node communication costs can be improved by using high speed networks and bypassing the TCP

or UDP protocol stack. Using these methods, [11] reports a best case roundtrip inter-node message time of 500

psecs.
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and a shared memory implementation of CL.

The purpose of our experiments was to compare the performance of AL vs. CL under
cases where control returns to the transaction without waiting. Since this is a very common
lock manager data path, it is an important path to optimize [8]. For lock acquisitions, control
returns without waiting when the requested lock is compatible with the current lock mode. When
the lock request is compatible, the transaction identifier and requested mode are appended to
the LCB and the lock is granted. Otherwise, when the lock request is not compatible, the
transaction identifier is enqueued in (the wait list of ) the LCB and the lock is not granted. We
focused on the first case, since it covers all requests in which the requesting transaction can
proceed immediately. Furthermore, since the code for lock release is similar to the lock request

code, our comparisons focused on timing the code for lock requests.

Our performance studies also focused on comparing AL and CL under contention for hot
locks. For hot locks, regardless of the CL partitioning scheme, all lock requests will be sent to the
same global lock manager. For hot locks under AL, accesses to the LCB storing the hot lock are
serialized via a critical section. For non-hot locks (concurrent requests for differentlocks), under
most request patterns, the performance results for both AL and CL would improve. For non-hot
locks under CL with multiple GLMs, a good partitioning scheme would reduce the ill-effects of
contention. For non-hot locks under AL, the ill-effects of contention should be negligible, since

contention for page locks would be reduced, leaving only the overheads of bus contention.

Section 4.1 discusses the KSR1 implementation platform. Section 4.2 discusses details of
the AL and CL implementation on the KSR1. Section 4.3 discusses our experimental method-

ology, and section 4.4 discusses the results of our experiments.

4.1 KSR1 Multiprocessor Overview

The KSR1 architecture can support up to 1088 nodes. All memory in the system is cache
memory, thus the KSR architecture is called AllCache. The node interconnect is a 2-level
hierarchy where the first level, called a ring, implements coherency among groups of 32 nodes.
Up to 34 rings can be connected together, yielding a 1,088 node configuration. Each node has a
local cache which is 32 MB, plus a smaller .5 MB subcache. Half of the subcache is an instruction
subcache, the other half is a data subcache. Coherency is performed between local caches, and
all data and instruction references are made through the subcache, using the local cache as an

intermediary (if necessary). Pages in the local cache are 16K bytes, while pages in the subcache,
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called subpages, are 128 bytes. Qur experiments were run on a 64-node, 2-ring KSR1, illustrated
in figure 3.

This 2-level cache interconnect implements a 5-level memory hierarchy, consisting of the
subcache, local cache, local ring’s cache access, remote ring cache access, and disk. If a memory
request is not satisfied by the node’s subcache or local cache, the local ring is first searched. If
the requested memory address is not found on the local ring, remote rings are then searched.
If the address is not located in any of the caches, the disk will finally be accessed. A subcache
access requires 2 cycles ®, local cache access 20 - 24 cycles, local ring access 175 cycles, remote

ring access 600 cycles [19].

The node datapaths are 64 bits wide, it has 64 floating point registers, 32 integer registers,
and 32 address registers. On each clock cycle, an instruction pair, consisting of one address

calculation, branch, or memory instruction, and one IPU/FPU operation can be initiated.

4.1.1 Synchronization Primitives

The KSR1 provides simple yet very effective primitives for ensuring that sections of code can be
executed indivisibly and in isolation. The get subpage (gsp) and release subpage (rsp) can be

used to implement critical sections. The gsp(p) instruction requests that the invoker obtains a

5A clock cycle on the KSR1 is 50 ns.
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subpage p in a mutually exclusive (ME) state, while rsp(p) removes a subpage from ME state.
The semantics of the gsp primitive are such that, if the subpage is not already in ME state in
any cache, the local cache acquires it in ME state ®. Thus, once a subpage p is locked by gsp(p),

no other process, whether it is on the same or a different node, can acquire p until it is released.

When the data that a critical section accesses can fit on a single subpage, the implementa-
tion is extremely efficient. One reason for this is that, as a result of synchronization, the critical
section data is also brought into the requesting node’s cache. Furthermore, the overheads for
page synchronization on the KSR1 are small, even under high contention. This is illustrated in
figure 4, which plots the overheads involved in acquiring a subpage in ME state. The bottom
curve plots the cost of N nodes simultaneously acquiring N different subpages, while the top
curve plots the cost of N nodes simultaneously acquiring the same subpage. Thus, the bottom
curve illustrates just the effects of bus contention, while the top curve illustrates the effects of
contention for a subpage 7. As the figure illustrates, acquiring a subpage in ME state takes less

than 10 p-secs., and this overhead scales well under high contention.

4.2 Implementations of Autonomous and Conventional Locking

AL and CL can be decomposed into two components, a synchronization component, and the
component which updates the lock space. When a transaction requests a lock under CL, process
synchronization is used to communicate this request to a lock manager. In contrast, when a
transaction requests a lock under AL, data synchronization is used to process the request. Section

4.2.1 discusses the implementation of synchronization for CL, while section 4.2.2 discusses the

®There are two versions of gsp, gsp.nwt (no-wait) and gsp.wt (wait). We use gsp.wt, which causes the cache

to stall the CPU until the subpage can be obtained in ME state.

"The slight bump in the top curve for two nodes results from the allocation of requestors to different rings of

the multiprocessor.
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implementation of synchronization for AL. The component which updates the lock space is

discussed in section 4.2.3.

4.2.1 Synchronization in Conventional Locking

We considered a number of alternatives for implementing process synchronization. After bench-
marking various UNIX facilities for communication, we concluded that on our implementation
platform, a FIFO queue is the most efficient method for implementing inter-process communica-
tion. The standard (UDP and TCP) socket interface was also considered, but the performance

was unacceptably slow.

We took advantage of the cache coherency protocol to implement a highly concurrent
(almost wait-free) FIFO queue. A circular FIFO is implemented by maintaining two variables
in the header, next—available and next—service, which denote the next free slot in the queue,
and the slot which is currently being serviced. The only time any part of the FIFO data structure
is locked is when the enqueueing transaction “reserves” a slot. Specifically, each enqueueing
process (transaction) first locks the FIFO header, reads and increments next—available, then
unlocks the FIFO header. To obtain maximal concurrency from the cache coherency protocol,
the header is stored on a separate subpage from the remainder of the FIFO, and each slot is
allocated on a separate subpage. Locking the header is implemented using the atomic subpage
lock mechanism described in section 4.1.1. Once a slot is acquired, the requestor knows which
slot to place its request into. Omnce the request slot has been filled, a synchronization variable
enqueue—complete is set, indicating to the lock manager that the enqueue is complete. The
requestor then waits for the service to complete by busy-waiting on the service—complete slot

variable.

The LM waits for the next—service slot to be filled by busy-waiting on enqueue—complete.
Once enqueue—complete is set, the LM processes the request (see section 4.2.3), then places
the return value of the request into the same slot, and finally sets the service—complete slot

variable, indicating to the requestor that the service is complete.

4.2.2 Synchronization in Autonomous Locking

The strategy for synchronization in AL is much simpler than in CL. In AL, once the appropriate

LCB is determined by hashing, an atomic subpage lock is acquired on the LCB. Once the lock
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acquisition or release is processed, the subpage lock on the LCB is released.

4.2.3 Lock Acquisition and Release

Identical lock acquisition and release code is used by both AL and CL. The lock acquisition
procedure requires three arguments, the address of the LCB of the database object, the requested
lock mode, and the TID of the requesting transaction. A lock is granted if the requested mode
does not conflict with the strongest mode of any holder (one comparison), and the strongest
mode of any waiter (another comparison). Prior to granting the lock, the TID and requested
mode tuple are added to the list of lock holders. If the lock is not granted, this tuple is added to
the list of waiters. Since our experiments focused on the case where concurrency was possible,

we do not discuss the details of granting locks to waiting transactions.

4.3 Experimental Methodology

In order to best simulate independent transactions in an SM database system, our testbed imple-
ments each transaction as a separate process. Furthermore, in order to isolate the computational
load of one transaction from another, each transaction was allocated to a separate, dedicated
node on the KSR1, and prevented from being swapped out by pinning the process into mem-
ory. Shared variables are implemented by requiring all processes to open a shared file, then the
mmap(2) system call is used to map the file into the address space of each process. Once this
mapping is performed, access to shared memory is performed like any other data reference, i.e.,

through pointers or structure access.

In the interest of a fair comparison and potential scalability, all our workloads were run
on a “mixed” ring. In a mixed ring workload, half the transactions execute on Ring 1, and the
other half execute on Ring 2. In order to obtain consistent timing measures, prior to actually
timing code segments, we “preloaded” the cache by executing these segments without timing
them. This scenario is consistent with the high probability of cache hits which would arise in
the case of frequently requested locks. The KSR timer routines used are of the “user_timer”
variety, and measure elapsed time (as opposed to system time). This routine reports time in

units of 8 machine cycles, where each cycle is 50 ns.

In order to create contention for locks, the standard barrier synchronization method is
used. For example, to create the conditions under which N processes will concurrently request

a lock, a shared variable (sem), initialized to zero, is incremented by each process. Then, each
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process waits, by busy-waiting on sem, until sem is equal to N.

4.4 Experiments

We conducted a number of experiments which compared CL to AL. To quantitatively assess
how each strategy performs under contention, our experiments measured the average time it
took for a transaction (running on a dedicated node) to perform a lock request under different
degrees of contention. Our comparisons focus on the cases where concurrency is possible (i.e.,
the acquisition of different locks, or the acquisition of the same lock in shared mode). The
same lock acquisition and release code was used for CL and AL, but different synchronization
mechanisms were used to ensure mutually exclusive access the LCB. In CL, ensuring a mutual
exclusion is implicit, since, for a given LCB, only one GLM is allowed to update it. To ensure
mutual exclusion in AL, subpage locks are held on the LCB for the duration of any reading and

updating by a lock operation.

In all the graphs, a solid line represents costs associated with AL, while the dotted line
represents costs associated with CL. The z axis represents the degree of concurrency, i.e., how
many processes are concurrently performing the measured operation. The y axis represents the
cost, per process (also interpreted as or per transaction), to perform the measured operation.
Along the z axis, data points were sampled for 1, 2, 4, 8, 16, 24 and 32 concurrent processes
(transactions) 8. Based on multiple runs of the same experiment, 95 percent confidence intervals
(where we are 95 percent confident that the measurement error falls within this interval) were

computed for each sample point, and are plotted in each graph.
A cquiring Hot Locks

For AL and CL, the cost of acquiring a hot lock, along with the synchronization overheads,
are plotted in figure 5. Figures 5a and 5b graph the same experiments, figure 5a plots contention

up to 8 processes while 5b plots contention up to 32 processes.

The bottom dotted line plots process synchronization costs, used in CL, while the bottom solid line

plots data synchronization costs, used in AL. For these curves, the y axis indicates the average
cost of performing a null critical section with the two synchronization mechanisms. Data syn-
chronization is measured as the overhead required to obtain and release a subpage lock in ME

state. Process synchronization measures the overhead to use the FIFO queue mechanism when

8 « « . «
Note that, in order for an experiment to compare the same number of concurrent transaction processesin AL

and CL, an additional (dedicated) node serves as the global lock manager in CL.
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Figure b: Hot Lock Acquisition and Associated Process and Data Synchronization Costs.

only a null message is sent. These two curves indicate that under any degree of contention, the

inherent synchronization overheads for CL are significantly greater than for AL.

The top dotted line and top solid line plot the cost of acquiring a hot lock for CL and

AL respectively. The cost of acquiring a hot lock was measured by having N transactions (each
running on a separate node) concurrently attempt to acquire a shared lock on a single record.
For hot lock acquisition, the y axis indicates the average lock acquisition time per transaction, in
p-secs. As is evident from the figure, under any level of contention, using AL to acquire a hotlock
offers significant performance advantages over using CL. The high overheads of synchronization
under contention in CL are reflected in the total cost to acquire a lock for CL. For CL, the
overheads of synchronization dominate the costs of actually performing the lock acquisition.
However, for AL, the overheads of synchronization do not overwhelm the costs of performing
the lock acquisition. The difference between the top and bottom lines for AL and CL indicate

the cost of actually executing the critical section, and are about the same for AL and CL.
A cquiring Batched Locks

Given that batched locks (sending more than one lock request in a single message) will
mitigate the negative performance impact of process synchronization, we compared the perfor-
mance of AL against a CL implementation in which multiple lock requests were requested per
message. For CL, sending N requests for N different locks to the lock manager in a single message
constitutes a batch of N. Since the notion of batch locks does not apply to AL, AL acquired the
N different locks one at a time. Figure 6 compares the performance of AL and CL for batches

of 10 and 100 locks. For batches of 10 locks, the lock acquisition cost of AL and CL are about
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equal for up to four concurrent processes, and for more than four concurrent processes, AL again
outperforms CL. For batches of 100 locks, CL outperforms AL for concurrency levels of two and

four, but once concurrency level reaches eight, AL outperforms CL.

4.5 Summary

In order to quantitatively compare AL and CL, we implemented both locking strategies on
a large scale cache coherent shared memory multiprocessor. For both these implementations,
we exploited two features of the multiprocessor to achieve low latency: the cache coherency
protocol, and the atomic subpage lock facility. We emulated a database environment consisting
of independent concurrent transactions by assigning each transaction to a separate, dedicated
node. Contention for hot locks was assessed by measuring the case where multiple transactions
concurrently request the same lock in a compatible mode. Our experiments also measured the

synchronization component of lock acquisition.

These experiments reveal the overheads inherent in using data and process synchronization
to implement lock operations as critical sections. Consider N processes which simultaneously

attempt to access a single critical section. The average cost, per process, will be at least:

N-1

_( x CS)

DN | e

k]

Where CS is the execution time of the critical section, the cost to execute the lock acquisition
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code for both AL and CL. In addition to the cost of actually executing the critical section, the
cost of a lock operation also includes synchronization overheads. The synchronization compo-
nent is not so easy to model analytically, since it depends on subtle interactions between the
software and the hardware of the implementation platform. In an ideal situation, the synchro-
nization overhead would be negligible. However, our experiments show that the synchronization
overheads for CL overwhelm the cost of executing the lock acquisition code (the critical section).
In contrast, the synchronization component for AL is negligible, and this translates into better

overall performance for AL, especially under high contention.

Although our experiments were limited to measuring contention up to 32 nodes ?, the
multiple ring architecture of the KSR1 suggests that our autonomous lock manager will scale
up to hundreds of nodes. In our performance tests on a 2-ring KSR1, processes were evenly
divided between the two rings. For autonomous locking, this allocation maximized the more
costly inter-ring cache-to-cache traffic. By maximizing the inter-ring traffic, our performance
measures reflect the worst case type of traffic which would occur in a system with more than

two rings. Yet, AL was shown to dominate CL for a wide range of parameters.

5 Conclusion

It is well known in the multiprocessor literature that data synchronization is more efficient than
process synchronization. Our study demonstrates the suitability of using data synchronization
for implementing a critical component of a database system, the lock manager. Our performance
studies quantify the performance of autonomous locking (which uses data synchronization) vs.

conventional locking (which uses process synchronization).

For an SM database system, autonomous locking offers significant performance advantages
over conventional locking. AL eliminates the notion of a global lock manager, allowing all
transaction managers to acquire locks directly from shared memory. By eliminating the GLM,
the overheads inherent in inter-process communication are eliminated, thus providing much
better performance from lock acquisition and release operations. Furthermore, with AL, no
explicit partitioning of the database is necessary to allow the concurrent acquisition of database
locks. Under any degree of contention, AL outperforms CL for requests for a single lock. When

contention is high (i.e., for hot lock operations), the performance of AL is nearly an order of

°Due to configuration parameters restricting the allocation of processors, our experiments used only 32 of the

64 processors
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magnitude better than CL.

There has been considerable debate about whether a SM implementation platform is
suitable for database systems. Based on a TP1 benchmark performed on a Sequent Symmetry
shared memory multiprocessor, [21] concludes that a SM database system can deliver very high
performance. In [22], an analytical and simulation study compares SN (shared nothing), SD,
and SIM (shared intermediate memory '°). This comparison concludes that the data sharing
architectures, especially SIM, are more resilient to transaction load surges. In [3, 4], simulation
studies compare SN, SD, and SM (called SE (shared everything) in this reference), and concludes
that SM outperforms SN and SD by a fairly wide margin. However, none of these studies have

measured the performance of the lock manager component of the database in isolation.

Other researchers have argued that SM database systems are not well suited for high
performance database implementations, claiming that the platforms that these database systems
are implemented on are not scalable and do not have good failure properties [5]. We have shown

that this need not be the case:

e Our prototype lock manager implementation and performance studies indicate that st
is posstble to construct a scalable implementation of a lock manager. For the KSR1
implementation platform, our measurements show that the impact of high data sharing
contention on shared system resources is marginal. This indicates that, in addition to
efficiently supporting a lock manager, any concurrent operation on shared data will be

scalable.

e For autonomous locking, we have also described recovery mechanisms which are sufficient
to ensure a failure atomic lock space, and mechanisms which ensure a cascadeless system

in the context of fine granularity locking.

Current research in multiprocessor architectures and in cache coherent DSM architec-
tures promise to enhance the failure properties of shared memory platforms. In anticipation
of these features, we have described mechanisms for supporting a failure atomic lock space for
autonomous locking. Two basic mechanisms enable the reconstruction of a failure atomic lock

space after a node crash has occurred. First, prior to acquiring any locks, a transaction must

1°The SIM model is slightly different than the shared memory model. In SIM, a shared intermediate memory

serves as a global shared buffer for all nodes.

23



stable log its transaction identifier. Secondly, as is normally done in any lock manager imple-
mentation, the transaction identifier and the granted lock mode are stored in the lock control
block. Under any page migration and node crash scenario, these two mechanisms enable a failure
atomic lock space by providing the recovery procedure sufficient information to remove all locks
held by aborted transactions and reestablish any locks (which were lost due to a node crash)

held by non-aborted transactions.

Autonomous locking can also be integrated with fine-granularity sharing environment. By
logging redo information and stable logging undo information for updated data objects prior
to page migration, inter-node cascading aborts can be avoided in a fine-granularity sharing
environment. AL can coexist in a network of systems which use CL. To integrate AL into
networks of systems which use CL, a single process on the AL system could be used as an
intermediary to acquire and release locks under AL, but to remote CL systems, it will serve as

a global lock manager.
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