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Abstract

Buffer management in database systems deals with allocation, search and replacement of buffers
for the data to be accessed so as to promote data sharing and reduce the number of disk accesses.
These activities are much more complex in multimedia database systems (MMDBS) which handle
time variant data. Multimedia data have timeliness and synchronization requirements and hence
traditional buffer management schemes like FIFO and LRU are not quite suitable for multimedia
buffer management. Since the data rates involved are very high, despite the development of efficient
storage and retrieval strategies, disk I/O is likely to be a bottleneck, thereby limiting the number
of concurrent sessions supported by a system. This calls for better use of data that has already
been brought into the buffer by exploiting sharing whenever possible using advance knowledge of the
multimedia stream to be accessed. Since most of the research work in multimedia data management
has concentrated on data modeling and storage management, no work has been done to explore the
benefits of data sharing when concurrent users are accessing multimedia data.

In this paper, by considering the specific application of News-On-Demand-Service (NODS) where
extensive sharing of continuous media data is possible, we explore the potential benefits of continuous
media sharing. We first introduce the notion of continuous media caching which is a simple and novel
technique where buffers that have been played back by a user are preserved in a controlled fashion
for use by subsequent users requesting the same data. We then propose new buffer management
schemes that use this technique to utilize the available buffer space effectively to promote sharing,
thereby reducing the number of disk I/Os. Finally we compare our schemes with traditional buffer
management schemes through simulation. Our results indicate that buffer management schemes
that utilize continuous media caching outperform the other schemes in environments where sharing
is possible. This indicates that for improved performance, it is essential to develop new MMDBS-
specific buffer management schemes that exploit the characteristics of multimedia applications.
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1 Introduction

Multimedia systems have attracted the attention of many researchers and system developers, because
of the multimedia nature of the data used in modern applications and due to their capability to im-
prove the communication bandwidth between computers and users. These multimedia information
systems cater to a variety of scientific and commercial fields ranging from medicine to insurance.
Lately the construction of the national information super-highway has received enormous attention
and many commercial ventures are focusing on providing on-demand services. Multimedia informa-
tion systems will form the backbone of these services. Multimedia data can be classified as static or
dynamic (also known as continuous) media. While static media, like text and images, do not vary
with time (from the perspective of the output device), dynamic media, like audio and video, vary
with time. Whenever continuous media is involved, in order to ensure smooth and meaningful flow
of information to the user, timeliness and synchronization requirements are imposed. Timeliness
requires that consecutive pieces of data from a stream be displayed to the user within a certain dura-
tion of time for continuity. Synchronization requires that data from different media be coordinated
so that the user is presented with a consistent view. Hence, unlike real-time database systems where
deadlines are associated with individual transactions, multimedia data has continuous deadlines.
Though efficient storage and retrieval strategies are being developed, since the data rates involved
are very high (between 2-5 MB/sec of compressed data per request) disk I/O could still be a bot-
tleneck, i.e., the number of concurrent sessions supported could be limited by the bandwidth of the
storage system. Hence, it is important to make better use of data brought from the disk into the
database buffer. ’

In this paper, we explore the benefits of continuous media sharing in multimedia database systems
(MMDBS). Specifically, we consider the News-On-Demand-Service (NODS) which typifies applica-
tions where extensive data sharing is possible and focus on buffer management schemes that promote
sharing of continuous media data. Since multimedia data are typically read only, by sharing the data
between users, many trips to the disks can be avoided. Unlike traditional multimedia systems where
data is typically retrieved and sent directly to the output device, in applications where sharing can
be exploited, we will show that it is preferable for the data to be brought into the buffer from the
disk at the server and retained in a controlled fashion to promote sharing. The motivation for our
work comes from the fact that sharing of continuous media data can increase the number of users
that can be supported by a system. Furthermore there are many interesting issues that arise in such
an environment.

The most important fact is that once the user has requested a playback, advance knowledge
of the multimedia stream to be accessed can be used to anticipate demand and promote sharing
(planned sharing for future accesses). This is particularly true with NODS since users watching
news do not request fast-forward or rewind. To achieve this, we introduce the notion of continuous
media caching. It is a simple and novel technique where buffers that have been played back by a
user are preserved in a controlled fashion for use by subsequent (or lagging) users requesting the
same data. This technique can be used when there is sufficient buffer space such that it is possible
to retain data for the required duration. With this technique, the system can avoid fetching the



data from the disk again for the lagging user. Hence this technique makes it possible to support
more numbers of sessions than the number permitted by the storage system. Also the throughput
of the system, ¢.e., the percentage of user requests permitted, can be increased by using the cheaper
option of additional memory instead of choosing a storage system with a higher bandwidth. In the
two buffer management schemes we propose, SHR1 and SHR2, data sharing in exploited using the
technique of continuous media caching (planned sharing). Since multimedia applications have certain
timeliness and synchronization requirements, and the amount of buffer and disk bandwidth available
is limited these schemes also have admission control integrated with them. SHR2 also tries to utilize
the data that might already be in the buffer (unplanned sharing) and hence it is one of the best
possible schemes for buffer management of continuous media data.

Thus far, most of the research work in the area of multimedia data management has concen-
trated on data modeling and storage mangement. While some of the issues relevant to MMDBS
are enumerated in [4, 5, 12, 16], object-oriented approaches for implementing MMDBS are sug-
gested in [6, 12, 17, 26]. Some architectural aspects of multimedia information systems like data
placement, buffering and scheduling are described in [6] while issues related to a distributed mul-
timedia information system, performance in particular are discussed in [4]. Extensive research and
performance studies on efficient storage and retrieval strategies for multimedia data can be found
in (2, 9, 13, 20, 23, 25, 27]. Is-News [21] and ORION’s Multimedia Information Manager (MIM)
[26] are examples of some of the many multimedia information systems that have been developed.
Some aspects of buffer management for multimedia data are addressed in (2, 6]. While [6] does not
specifically consider concurrent sessions in multimedia systems, [2] does address some performance
issues when concurrent users are trying to access continuous media data. However it disregards
sharing of continuous media data. The Use-And-Toss-it (UAT) policy has been suggested in [6] for
multimedia data, under which, once a piece of data is used, it is tossed away so that the next piece of
required data is brought into the same buffer. Generally the UAT policy is good only if data sharing
does not exist or cannot be exploited. Buffer management schemes have been widely studied in
traditional database systems (8, 22] and in real-time database systems [15]. These typically consider
only textual data. The objective of these buffer management schemes is to promote sharing and
reduce disk accesses, thereby increasing the throughput. In real-time database systems an additional
objective is to maximize the number of transactions that execute within their deadlines. Commonly
used buffer management schemes like first-in first-out (FIFO) and least-recently-used (LRU) are not
suitable for multimedia data since they have continuous deadlines. Essentially, there has not been
any research to evaluate the potential benefits of continuous media sharing when users are accessing
multimedia data concurrently.

The rest of the paper is organized as follows. In section 2 we discuss the data characteristics of
multimedia data and NODS in particular. Issues related to continuous media sharing are discussed
in section 3. Using simple examples, we illustrate how continuous media sharing can be useful in
increasing the number of users supported by a system. Section 4 first reviews some of the traditional
schemes which we will be considering in our performance studies for comparison purposes. Then it
discusses the proposed buffer management schemes that exploit continuous media sharing. Details



of the performance tests are discussed in section 5. It describes the various assumptions made,
parameters used for the tests and the results. These results show the superior performance of
buffering schemes that exploit data and application characteristics. Possible extensions to this work
are described in section 6. Section 7 concludes with a summary of this work.

2 Data Characteristics

Multimedia objects are captured using appropriate devices, digitized and edited, until they are in a
form that can be presented to the user. These independently created objects are then linked using
spatial and temporal information, to form a composite multimedia object that may correspond to a
presentation or some specific application.

In order to ensure smooth and meaningful flow of information to the user, there are timeliness
and synchronization requirements which vary from application to application. Timeliness requires
that consecutive pieces of data from a stream be displayed to the user within a certain duration of
time for continuity and hence multimedia data has continuous deadlines. Synchronization requires
that data from different media be coordinated so that the user is presented with a consistent view.
Essentially it refers to the temporal sequencing of events among multimedia data. It deals with the
interaction of independent objects that coexist on different media such that the user is presented
with a consistent view and is very much dependent on the type of application. Detailed analysis
of synchronization requirements for multimedia data can be found in [19, 24]. This synchronization
information forms the basis for buffer management.

The rest of this section describes the data characteristics of NODS, which typifies applications
where extensive sharing of data is possible. In NODS, given that at any particular time the number
of topics in high demand is likely to be limited, given the higher level of interest in certain topics
like sports/business, the probability of one or more users requesting the same item for playback is
very high. To request a service the user has to choose a topic and a language from, for example the
following:

1. Topic - Politics, International, Business, Sports, Entertainment, Health, Technology etc.

2. Language - English, Spanish, Italian, French, German, Hindi etc.

Each topic consists of a list of news items. News items are composed of video and audio segments
and possibly some images. All news items to be displayed when a topic is chosen are compiled in
advance and known apriori.

Sharing of data can occur in various capacities as we discuss below. Typically there are many
news items that are shared between topics. For example, consider the news item on NAFTA!, which
can be included in a variety of topics like Politics, International and Business since it has relevance
to all. Sharing of continuous media can also occur at the media level. Since the same news items
will be provided in different languages, to reduce storage, additional storage is necessary only for the

!North American Free Trade Agreement



audio segments as the video segments can be shared. In addition, sharing can occur when multiple
users are requesting service on the same topic. This clearly shows that sharing at different levels
can lead to compound sharing. In this paper, we mainly focus on the last type of sharing since it is
likely to have the most impact on performance. Intelligent buffer management schemes can and must
utilize this to improve the performance of a system. Typically users watching news do not request
fast-forward and rewind. We discuss this further in section 6.

I News Item boundary
I segment boundary

C=—===3 audio data
SEmEmmS  video data

Figure 1: Multimedia Data Stream of a request

Figure 1 shows the data stream of a request. Since video is often compressed, we assume a
variable bit rate for continuous media data. The data rate depends on the amount of action that:
is packed in the video. If the video is from a still camera (e.g. the newsreader reading the news)
the data rate will be low, whereas if the video is from a moving camera (e.g. sports clippings) the
data rate will be high. Hence each segment refers to a part of data that has the same data rate.
A request may consist of many segments, each having its own data rate. In our work, segments are
restricted to be of equal length for ease of implementation. However since the data rate of segments
can vary, the amount of buffer required by a segment varies. In practice, if a segment is too long, it
can be split into segments that have the same data rate.

3 Continuous Media Sharing

In this section we introduce the concept of continuous media caching which promote planned sharing.
It is a simple and novel technique where buffers that have been played back by a user are preserved
in a controlled fashion for use by subsequent users requesting the same data.

Since the buffer requirements for images and audio are less compared to video (as we will see
later in this section), we ignore them and consider only the requirements of video data. Hence we
mainly focus on sharing that occurs when multiple users request service on the same topic (though
they have chosen a different language). When there is sharing, many possibilities exist and we study
some alternatives here to see how the buffer and disk requirements analysis will change. When the
same service is being requested by two (or more) users simultaneously, one of the following could be
true:

1. they arrive at the same time (they start at the same time)
2. they arrive with a gap of few time units (or segments)
3. they arrive with a gap of large number of time units (or segments)

Depending upon the order in which users share an application, they may be classified as leading
(the first one) or lagging (the subsequent ones that can share the buffers). Using the same buffers
for both users can definitely payoff in case 1, whereas in case 2 it may payoff. In case 2, after the
data has been played out of the buffer for the leading user, rather then discarding the data, it can be
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cached by preserving it in the buffer so that the same data can be reused by the lagging user (rather
than fetching it again from the disk). We refer to this technique as continuous media caching. In case
3 it is easy to see that continuous media caching will not payoff since preserving buffers may prove
to be too costly in terms of buffer availability. In this case it is better to totally ignore preserving
data buffers. In our buffer management scheme, we allow sharing to occur as long as the difference
between the arrival time of two consecutive users for the same topic is less than the length of the
topic. Barring information about the future arrivals, this is the earliest time instant when a sharing
situation can be recognized.
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Disk Bandwidth for Next Request
: @ Disk Bandwidth for Next Request
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Figure 2: Buffer Sharing between two requests

Figure 2 compares the disk and buffer requirements with respect to time for the non-shared case
and the shared case (continuous media caching). Two requests for the same topic (containing 5
segments) that arrive with a time difference of 2 segments is shown in the figure. In the non-shared
case, disk and buffer bandwidths are allocated independently for each request. However for the
shared case, since it is known that segments three through five will be available in the buffer (it
will be loaded into the buffer for the first request) when the second request needs it, the buffers are
reused for the second request, i.e., the buffers are preserved till the corresponding playback time for
the second user. These segments need not be fetched again from the disk for the second request.
This results in an increase in the buffer requirement, but the disk bandwidth requirement drops since
fewer trips are made to the disk. Thus it can be seen that continuous media caching exploits sharing
to decrease the number of disk I/Os and hence improve performance.

Figure 3 shows the details of the segments that are actually present in the buffer at each time
instant in the shared case (bottom right case of figure 2). It illustrates the amount of intelligence
in the continuous media caching technique which preserves only the necessary segments for just the
required amount of time. It differentiates the segments as follows — segments that are loaded for
the first user, segments fetched from the disk for the second user and segments that have been used
by the first user but preserved for the second user.
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Figure 3: Segments available in buffer at each time slot (zooming into bottom right of figure 2)

We present an example of a simple system, to illustrate how sharing can be exploited to support
more users. Consider a system which has a main buffer of 1280 MB and a storage system with a
high storage capacity and a data transfer rate of 40 MB/s. MPEG-2 is an accepted standard for
continuous media data storage/transmission and the requirements of different media based on this
standard are as follows (in the compressed form): image ~ 100 KB for a frame, audio ~ 16 KB/s
(high quality) and video ~ 4 MB/s. Ignoring the data requirements of audio and images, we analyze
the requirements of a session using the characteristics of its video data on a segment (of duration 1
second and having same data rate of 4MB/s) basis. The available buffer can hold 1280MB/(4MB/sec)
= 320 seconds of video, which translates to 320 concurrent sessions. Neglecting the seek time (which
is typically in the order of 10’s of milliseconds) and based on the data bandwidth of the storage
device, the system can support (40MB/s)/(4MB/s) = 10 concurrent sessions (topics). Thus we see
that the number of concurrent sessions supported is limited to 10 by the bandwidth of the storage
system enenthough the buffer can handle 320 sessions. However by exploiting sharing, the buffer that
can support 320 seconds of video can be effectively utilized to satisfy more number of users, provided
they request one of the 10 topics that can be fetched using the available disk bandwidth. If the 10
topics are shared by u;, ug, ..., #10 concurrent users respectively, then the number of users supported
will be 3032, u;. This is however the best case and the probability of this is very low, since all the
users sharing the sessions arrive at the same time in this scenario. On the other hand, the worst case
occurs when the users requesting the same topic come with larger inter-arrival times. Continuous
media caching may not be possible in this case (due to insufficient buffer bandwidth), resulting in
only 10 users being supported by the system. However if they arrive within short intervals, instead
of fetching the data from the disk for the lagging user, data read from the disk by the leading user
can be preserved for reuse by the lagging user. Thus depending on the inter-arrival time and other
possibilities of sharing (three cases discussed earlier), the number of users supported will be between
10 and Z}:l u;. This simple example gives an idea of how sharing can be exploited in a MMDBS for
the case of NODS to provide better buffer management. If seek times were also considered in the
above example, continuous media caching will prove to be even more beneficial.

4 Buffer Management Alternatives

In this section we describe the five different schemes that have been considered for comparison. We
first review traditional schemes and then present our proposed scheme.



4.1 'Traditional Schemes

The objective of the buffer manager is to reduce disk accesses for a given buffer size. Usually fixed
size pages are used to avoid fragmentation. When the requested database page is not in the buffer,
it is fetched from the disk into buffer. Then the page is kept in the buffer using the fiz operation,
so that it is not paged out and future references to the page do not cause page faults in a virtual
memory operating system environment. Once it is determined that the page is no longer necessary
or is a candidate for replacement an unfiz is done on that page. Buffer allocation and replacement
are considered orthogonal issues in traditional database systems. A page can be allocated anywhere
in the global buffer in a global scheme whereas in a local scheme, specific portions of the buffer
are allocated for a given session and a page for a session is allocated in the area allocated for that
particular session. Hence in the global scheme there is only one page replacement algorithm whereas
in the local scheme several page replacement algorithms may exist. In either case the goal of the
page replacement algorithm is to minimize the buffer fault rate. Before allocating a page, the buffer
manager checks if the corresponding page is in the buffer and if not, it retrieves it from the disk.
While static allocation schemes allocate a fixed amount of buffer for each session when it starts,
dynamic allocation schemes allow the buffer requirements to grow and shrink during the life of the
session.

In virtual memory operating systems where there is paging, code pages (which are read only) are
typically shared, for example if many users are using a particular program like an editor, then the
code pages of the editor are shared between the different users. Though this scheme cannot be used
as such for continuous media data, it provides some motivation for the continuous media caching
scheme. Some of the common page replacement strategies include FIFO and LRU [8]. We consider
FIFO and LRU schemes which have been modified for our implementation. The modifications are
necessary since we use a segmented buffer management scheme i.e., buffers are allocated and replaced
on a segment basis. During segment replacement, depending upon the buffer space required for the
new segment that is to be brought in from the disk, one of more segments may have to be replaced.
Segments in turn can be expressed in terms of standard pages (to avoid fragmentation), but we do
not discuss this any further. In the FIFO scheme, if the next segment of a requested topic is in
the buffer, it is reused and not fetched from the disk. If the next segment is not in the buffer, one
or more of the oldest segments in the buffer are chosen for removal and replaced with the required
segment. In contrast, the LRU scheme replaces the segments that were used least recently. Hence,
in this scheme when the probability of choosing a particular topic is high, it is very likely that some
of the segments of the topic may be in the buffer when needed. An important aspect to note is
that since FIFO and LRU schemes do not utilize any information about the future use, they do not
perform admission control and hence could fail any time during the processing of a request. This
would result in the wastage of the disk and buffer bandwidth that have been used thus far.

Before we discuss the UAT scheme, we introduce the memory model, admission control and
bandwidth reservation scheme that is used by UAT and the other schemes we are proposing. In the
case of a MMDBS, advance knowledge of the data stream to be accessed is available and this has
to be utilized for better buffer management. Since we are assuming a large main buffer, we assume



that this information about the topic and segments can be stored in main buffer (i.e., the number of
segments that make up a topic and the segment data rates for each segment). Buffer space that is
not used exists in a free-pool. Buffers needed for the segments of a request are acquired (analogous
to fix) from the free-pool and returned (analogous to unfix) to the free-pool when they have been
used. When buffers are requested from the free-pool, the oldest buffer in the free-pool is granted to
the requester. The admission control and reservation scheme is dependent upon the sharing policy.
Given (n — 1) sessions already in progress, the n*® request is accepted iff the following inequalities

hold.

Nidy < M (1)
=1
Zdi,t < R (2)
i=1

where d;; represents the continuous media rate for request ¢ at time slot ¢, / represents the length of
each time slot, typically 1 second. The first equation gives the limiting case for the buffer bandwidth
(buffer size = M) and the second for disk bandwidth (data rate supported = R). If the inequalities
hold, the required buffer and disk bandwidth is reserved.

The UAT policy has been modified for our implementation in the following manner: data is
replaced on a segment basis and it uses admission control and bandwidth reservation to anticipate
future demand. If there is no sharing, the UAT policy is ideal for continuous media data. UAT
reuses segments that may already exist in buffer, 7.e., if any of the required segments happen to exist
in the free-pool then they are grabbed from the free-pool, thereby avoiding fetching those segments
again from the disk. If the free-pool is empty, then no buffer space is available and the request has to
be rejected for insufficient buffer bandwidth. To fetch the remaining segments from the disk, UAT
works with an integrated admission control and reservation scheme since they utilize information
about future needs of a particular session. UAT does not consider sharing explicitly, .e., when the
segments of a topic have been played back, they are not preserved in buffer for a future user who
might request the same topic. Hence requests are considered independent of each other for admission
control and reservation purposes, even if they are for the same topic. The admission control policy
checks for each request separately if there is sufficient buffer and disk bandwidth available to fetch
and store data for the request on a segment by segment basis (using inequalities 1 and 2). If the
required bandwidth is available then the required disk and buffer bandwidths are reserved, else the
request is rejected.

4.2 Proposed Schemes

In this section we propose new buffer management schemes which use continuous media caching
techniques to explicitly exploit the sharing characteristics of MMDBS applications. These schemes
(SHR1 and SHR2) are variations of the UAT scheme we discussed earlier, with enhancements for
continuous media caching. The buffer and disk bandwidth for these schemes are determined by
utilizing the technique illustrated in figure 2 (page 5). The difference between SHR1 and SHR2 is



in the way they handle segments that might already exist in the free-pool. While SHR1 does not
reuse segments that might already exist in the free-pool, SHR2 does. Thus one would expect SHR2
to perform better than SHR1 and we will see later that it does indeed. We do not discuss details of
disk scheduling here. For these shared schemes a rate monotonic type of scheduling is the best, i.e.,
since the disk bandwidth will be assured for the various sessions, each session will be allocated some
disk bandwidth corresponding to the ratio of the data rate of the segment it is fetching to the total
demanded data rate.

4.2.1 SHR1 - Shared Scheme based on future accesses

Since SHR1 utilizes continuous media caching, segments used by a leading user are explicitly pre-
served for use by the lagging user. This can be explained better using figure 3 (page 6). The segments
that are explicitly preserved begin with the segment that is being played back by the leading user
when the lagging user enters the system. All segments that follow this are also preserved in the
buffer till the lagging user needs it for playback. (Referring to figure 3, the segments that have been
preserved are 3, 4 and 5). Since SHR1 does not reuse segments that might already be in buffer,
they (segments 1 and 2 in figure 3) are to be fetched from the disk. Since SHR1 considers sharing
explicitly, the integrated admission control and reservation scheme has to be modified accordingly.
Specifically, in SHR1, the admission control policy checks if there is sufficient disk bandwidth avail-
able for segments to be loaded from the disk (segments 1 and 2) and sufficient buffer bandwidth for
loading these segments in buffer and preserving the other segments (i.e., loading segments 1 & 2 and
preserving segments 3, 4 and 5). If the required bandwidth is available then appropriate disk and
buffer bandwidths are reserved, else sharing is not possible. When this is the case, the request in
considered independently (similar to the UAT scheme) and an attempt is made to reserve the nec-
essary buffer and disk bandwidth for each request. If this also fails, then the request is rejected.

do while there are requests in the queue
select next request ;
admitted = false ;
For each segment in the topic, check if the segment is already
in the free—pool and grab it if it is available ;
For each segment grabbed from the free—pool. modify the

total profile to reflect preserving of these segments and
check for buffer bandwidth violation ;

For segments that have to be fetched from the disk, modify
the total profile for disk and buffer accordingly and check
for buffer/disk bandwidth violation ;

For segments that exist in the buffer and are shareable. modify
the total profile for buffer and check for bandwidth violation ;
if no violation at any stage

admitted = true ;

/* total profile contains reservation for this request */

sl?estore old total profile ;
reject request ;
endif
end do

Figure §: Admission Control and Reserving future bandwidth

4.2.2 SHR2 - Shared Scheme based on past and future accesses

This uses segments that might already exist in buffer and is an improvement of the SHR1 scheme.
Referring back again to figure 3, if it happens that some of the segments are in the free-pool (say
segments 1 and 2 are in the free-pool after they have been used and returned by user 1), they can be
reacquired from the free-pool if the buffers space corresponding to those segments has not already



been granted to another session. If all the segments (loaded for the first user prior to this users
arrival) are available, then no data is to be fetched from the disk for the second user (only buffer
bandwidth is checked/reserved), else data is to be fetched from the disk for those segments that
do not exist in the free-pool(both buffer and disk bandwidth checked/reserved). Thus SHR2 uses
past and future information about segment access and hence should perform the best as we verify
later in the performance tests. Figure { describes the admission control and bandwidth reservation
scheme for SHR2. The total profile refers to the total requirements of buffer/disk bandwidth. The
figure describes the sequence in which the availability of segments in the buffer is checked along with
admission control and buffer/disk bandwidth reservation.

do forever
do for all active sessions

if buffers are shared with another session

if leading user

preserve the used buffers for lagging users ;

acquire new buffers from the free pool ;

fetch data from disk into the buffer ;

else if lagging user

if there are more lagging users
preserve the used buffers for lagging users ;
read from preserved buffers ;

else
return the used buffers to the free pool ;
read from preserved buffers ;

endif

release current buffers to free pool ;

read from preserved buffers

endif

else
when a new segment is encountered

return the used buffers to the free pool ;
acquire new buffers from the free pool ;
fetch segment from disk;
endif :
end do
end do

Figure 5: Buffer Allocation & Replacement — SHR2

Buffer allocation and replacement is to be done in an integrated manner as shown in figure 5.
Buffer allocation is done when a inter segment synchronization point is encountered. Buffers used
by a segment that has been played back are freed first and then buffers needed by the next segment
are allocated. Once the buffers have been allocated for a segment, they are not freed till the end of
the segment. For every user, at the beginning of a data transfer from disk, new buffers have to be
allocated. This is achieved by acquiring the necessary number of buffers from the free pool. Once
data from these buffers are played back by a user, if there are lagging users, instead of returned them
to the free pool, they are preserved in the buffer. For a lagging user, buffers need not be acquired
from the free pool, since a disk transfer is not necessary. Instead data is read from the preserved
buffers and when the reading is complete these buffers are returned to the free pool. Information
about allocated buffers can be maintained using a hash table since it is necessary for sharing buffers.
The five schemes we discussed are summarized below.

[[ Scheme || Admission Control & Bandwidth Reservation | Sharing Past Data | Sharing Future Data i

FIFO v
LRU . v
UAT v v
SHR1 v W]
SHR2 v v v

We do not explicitly consider prefetching of data [22, 23] but if it is considered, then our schemes
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have to be modified such that prefetching is applied to all or none of the sessions.

5 Performance Tests

We have performed a number of tests to compare the five schemes under various conditions. In this
section we first describe the various parameters and metrics used for the tests and then present the
results with a discussion.

Client Cllent Client
Disk sk

Client

Figure 6: Configuration of the System

We assume a client-server type of architecture shown in figure 6. A DMA transfer is assumed
between the disk and the buffer at the server and hence the CPU is not likely to be a bottleneck. 5o
the CPU has not been modeled in the performance tests. It is assumed that network between the
client and the server provides certain quality-of-service (QOS) guarantees about the network delay
and bandwidth. A detailed discussion of reliability and networking issues for continuous media can
be found in [3]. We will assume a two level storage system: primary storage (main memory buffer)
and secondary storage (disk). Knowing the maximum seek time, rotational latency and data read
rate, the effective transfer rate, R can be determined for a storage system. This is used in performing
bandwidth allocations for the disk. The secondary storage device could be a magnetic/optical disk or
even a RATID based system for increased bandwidth. We do not go into the details of how multimedia
data is organized and retrieved from the secondary storage in an efficient manner since there has
been extensive research in this area [2, 13, 20, 23, 25, 27] and it is orthogonal to the main focus of
this work. We make a few assumptions for simplicity reasons — (1) Since the data rate for video
dominates, we assume that requests desiring the same topic with different language options can share
the segments. Hence though the topic chosen by the customer is a parameter, we do not consider
the language as a parameter. (2) Segments are of equal length (this simplifies our implementation
for the performance tests but the results will not be affected).

5.1 Parameters & Metrics

The parameters to be considered fall under three different categories — customer, system and topic.
They are listed below in the table with their default values. Topic details (length, data rate, etc.) are
generated using a uniform distribution. Customer arrivals are modeled using Poisson distribution.
The topic chosen by a customer is modeled using Zipf’s law [28]. According to this, if the topics
1,2,...,n are ordered such that p; > pa > ... > pn then p; = ¢/i where ¢ is a normalizing constant
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and p; represents the probability that a customer chooses topic 7. This distribution has been shown
to closely approximate real user behaviour in videotex systems [11] which are similar to on-demand
services. The disk rate we use here is the average effective transfer rate (this includes seek time and
latency apart from the transfer time).

" Catego_rl l Parameter l Setting _ "

“ﬁtomer Inter-Arrival Time Poisson Distribution with mean of 40 sec
Topic Chosen Zipf’s Distribution (1-10)

[ System | Buffer Sise 1.28 GB I
Disk Rate 40 MB/sec |

Topic Total Number 10
Length Uniform Distribution (500-700) sec
Data Rate of Segment | Uniform Distribution (2-5) MB/sec
II Metric | Interpretation "
Success % % of requests that are successful

Buffer Reject % | % of requests rejected due to lack of buffer bandwidth
Disk Reject % % of requests rejected due to lack of disk bandwidth

The metrics we use are shown in the table above. Admission control and bandwidth reservation
is performed on a segment basis for each request and if the bandwidth is insufficient at any point,
the request is rejected. Before a segment is placed in the buffer, the following actions are taken.
First the buffer is searched to see if the requested segment exists in buffer. If it does not exist then
some victim is chosen in the case of FIFO and LRU or the required buffer space is acquired from the
free-pool. If this cannot be done because of the available buffer size then the request is rejected and
it counts as a reject due to insufficient buffer bandwidth. When segments have to be fetched from
the disk, if sufficient buffer space is available then the disk bandwidth is checked for sufficiency. If
the disk bandwidth is sufficient then the request proceeds. If all the segments can be brought in,
then the request is successful else the request is rejected and it counts as a reject due to insufficient
disk bandwidth. In UAT, SHR1 and SHR2 these checks are done at the beginning of the session as
part of the admission control.

5.2 Results

Each simulation consisted of 25 iterations and each iteration simulated 200 customers. The confidence
interval tests of the results indicate that 95 % of the values are within 3 % of the mean in almost all
cases. The results are discussed based on the graphs that use the success % as the metric. A request
can be rejected either due to lack of buffer or lack of disk bandwidth. Due to space constraints, graphs
that show this breakup for all the cases are included in the Appendix (referring to these graphs as
the results are discussed gives more insight into the dynamics of the schemes). All parameters are
set to their default values specified earlier unless explicitly indicated in the graphs. Topic details
(the database accessed by users) are generated for every iteration.

5.2.1 Comparison based on Customer Parameters

Figure 7 compares the success percentage of the various schemes for mean inter-arrival times between
20s to 100s. For smaller values of inter-arrival time, higher buffer and disk bandwidth is necessary
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to satisfy the requests. Hence it can be observed that the success percentage is lower at inter-arrival
time of 20s and it gradually increases to 100% for 80s and more. We note that among all schemes
SHR2 performs the best. This can be explained by the fact that while SHR1 does not utilize the
buffers that exist in the free-pool and UAT /FIFO/LRU do not share buffers based on information
about future accesses by a session, SHR2 uses both types of information and hence is able to perform
very well. At the inter-arrival time of 20s SHR2 has a 20-40% advantage over other schemes and this
clearly indicates that buffer sharing (based on past and future use) pays.

Tete

Success %

0
20 30 40 50 60 70 80 90 100
Inter-Arrival Time (s)

Figure 7: Comparison Based on Inter-Arrival Time

5.2.2 Comparison based on System Parameters

Next we compare the schemes based on the available disk bandwidth. SHR2 was primarily designed

to reduce the disk I/Os by preserving buffers in buffer and this test verifies that claim.
100

Succoss %

20 ko

0
10 1§ 20 40 45 S0

25 30 35
Disk Rate (M8/s)

Figure 8: Comparison Based on Disk Bandwidth

It is clear from figure 8 that SHR2 outperforms all the other schemes at lower disk bandwidths.
The figure indicates that when the available disk bandwidth is 10MB /s, SHR2 outperforms the other
schemes by 60% which is substantial. As the available disk bandwidth increases, all of the schemes
begin to converge. This clearly goes on to prove that by using SHR2, when there is sizeable buffer
space, the number of users supported can be increased considerably.

Figure 9 studies the effect of buffer size on the performance of the schemes. In general if the buffer
space available is low, all buffer mangement schemes experience poor performance. Furthermore, to
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exploit sharing, SHR2 needs a sizeable amount of buffer. It can be observed that at lower buffer
sizes of 400-800 MB, SHR2 is not able to exploit sharing as much and hence performé similar to the
other schemes. However, as the buffer size available increases (800MB-1.28GB), SHR2 uses the extra
buffer to exploit sharing and hence begins to outperform the other schemes. It is also interesting to
note that the success % of all the other schemes begins to flatten out as buffer size increases due to
lack of disk bandwidth. Hence schemes other than SHR2 cannot utilize increased available buffer
beyond a certain point without sufficient disk bandwidth.
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LRU 4—
UAT @--
80}~ SHR1 G-
SHR2 —
® 60 -
2
@
8
3
%] 40 |- -
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’
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200 400 600 800 1000 1200
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Figure 9: Comparison Based on Buffer Size
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Figure 10: Comparison Based on Number of Topics

5.2.3 Comparison based on Topic Parameters

The next comparison is based on the number of topics available. It was mentioned earlier that
the topics chosen by the users follows the Zipf’s law. According to this distribution, the top few
topics in demand have almost the same value of probability even with increased number of topics
for selection. Hence it is observed in figure 10 that the drop in success % is not much for all the
cases. If a uniform distribution is chosen, the drop would be steeper. The main observation however
is that SHR2 continues to dominate the performance even with increasing number of topics.

Figure 11 explores the effect of the length of the topic on the performance of the different schemes.
This is important due to the fact that increasing the length of the topic results in a request taking
longer time to complete and hence the number of concurrent customers in the system increases, which
in turn demands increased buffer and disk bandwidth. Thus the success % of the schemes drop with
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increasing length of topic. Observe that while the drop for other schemes is steep, the drop for SHR2
is gradual. All schemes perform well when the length of the topic is between 100-300s. However
when the length of the topic is 800s, SHR2 has an advantage of 30-50% over the other schemes.

100
T FIFO -o--
LRU ~a—
UAT a--
80 SHR1 @—
SHR2 ¢
R 60 |-
§
] 40 |
20 |
1 ] 1 1 1 1

0
100 200 300 700 800

400 500 600
Avg Length of Topic (s)
Figure 11: Compdrison Based on Length of Topic
Another important parameter to be considered is the average data rate of the segments. Based
on the MPEG-2 standards, the average data rate for a compressed high quality video is between
3-5MB/s. Hence we have performed tests for average data rate ranging from 2-10MB/s.

100

80

Success %

20

0

2 3

4 5 6 7 8 9 10
Avg Data Rate of Segment (MB/s)

Figure 12: Comparison Based on Data Rate of segment
As expected, we note from figure 12 that with increasing data rates, all schemes begin to perform

poorly. But we observe that SHR2 degrades more gracefully than the other schemes. This is again
due to the fact that SHR needs fewer disk accesses compared to the other schemes.

Thus using these tests we have been able to demonstrate that in multimedia information systems
where sharing can be exploited, schemes can and must be designed such that they make use of this
sharing potential based on information about past and future access to perform more efficient buffer
management.

6 Extensions to this Work

We mentioned earlier in section 2 that in the case of NODS, sharing is also possible at the news-item
level. e.g., when news items are being shared by the topics. Though we have not performed any
explicit tests to investigate this, it would be interesting to determine the amount of performance that
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can be gained. We intend to evaluate the schemes using other metrics that are more closely tied to
QOS guarantees like the following: (1) The maximum arrival rate (minimum inter-arrival time) that
can be sustained if 95% of the requests are to be accepted (2) The maximum arrival rate that can
be sustained if the requests are queued instead of being rejected and the maximum tolerable waiting
time for a user is 10 seconds.

Numerous improvements are possible for the schemes we proposed. To distinguish cases where
sharing will be really beneficial, better heuristics can be designed based on the knowledge of topics,
data rates, arrival rate etc. Bandwidth reservations can be prioritized based on the frequency of
requests for topics. Another variation would be to delay a user for some time units, to explore the
possibility of sharing with another user. A centralized server has its limitations and hence to improve
the response time, data distribution and replication may be used in which case network delays may
have to be considered during the analysis. Data distribution may be used to divide the load among
the servers, by storing different most frequently requested topics on different servers.

The concept of continuous media caching and the buffer management schemes that utilize this
are applicable in many other scenarios. A modification of this technique is applicable for storage
management in a multi-level hierarchy, i.e., data management on the secondary device while data
is fetched from a tertiary device. This concept is likely to be useful for video-on-demand services
(VODS) when some of the titles shown are in heavy demand. However VODS requires support for
fast-forward and rewind and hence enhancements are necessary for admission control, bandwidth
reservation and buffer allocation/replacement. While this is a topic of research, a few solutions
can be perceived. To accommodate fast-forward, increased bandwidth may have to be reserved for
each topic, e.g., disk bandwidth reserved should be the maximum of all the segments. Similarly, for
rewind, used data can be cached on the local disk and reused. Another issue to be considered in the
context of continuous media caching is the way in which the schemes must be changed if there are
alternatives paths available at intermediate points of the request.

7 Conclusion

Buffer management schemes for MMDBS are complex because they handle data that have timeliness
and synchronization requirements. Since the data rates of multimedia data is very high, the storage
system is likely to limit the number of concurrent sessions supported by the system. To make
efficient use of data that has been fetched into the buffer, by considering the applications of NODS,
we explored the potential benefits of continuous media sharing to reduce the number of disk I/Os and
hence support more number of users. We effectively utilize the advance knowledge of the multimedia
stream to be accessed to promote sharing. Using the simple technique of continuous media caching
(planned sharing) that preserves buffers in a controlled fashion for use by subsequent users requesting
the same data, we proposed two new buffer management schemes, SHR1 and SHR2. These schemes
have admission control and bandwidth reservation integrated with them. Also in addition to planned
sharing, SHR2 utilizes data that might already be in the buffer. Hence SHR2 is the best multimedia
buffer management scheme when sharing is possible and has superb performance.
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To compare the performance of our proposed schemes with traditionally used schemes, we con-
ducted a variety of performance tests. The parameters we used for the tests include — buffer size and
disk rate (system parameters), mean arrival time (customer parameter), number of topics, length of
topic and data rate of segment (topic parameters). The metrics we used for the tests are success
percentage of requests, disk and buffer reject percentages. We observed that SHR2 performs very
well in all cases since it uses shared data to the best possible extent — by using data that might
already be available in the buffer when the request arrives and utilizing continuous media caching
for future accesses. Specifically we observed that the disk reject percentage for SHR2 is low in all
cases, thereby verifying the fact that SHR2 reduces the number of disk I/Os. Hence, even at low
disk bandwidth SHR2 can give good performance. Also if the data rate increases, SHR2 degrades
more gracefully compared to the other schemes. These tests indicate that by exploiting continuous
media sharing, substantial performance benefits can be achieved. In summary, to increase the num-
ber of users supported, instead of enhancing the storage system to provide additional bandwidth, by
adding some extra memory and by exploiting data sharing opportunities, higher performance can be
achieved at lower costs.

Through this work, we hope to have motivated the significance of buffer management and contin-
uous media sharing in the context of complex multimedia information systems which deal with huge
amounts of data. Designers of these systems should consider this and exploit the characteristics of
the multimedia application whenever possible to get the best performance out of their systems.
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