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Abstract

This report discusses the issues involved in developing a grasp controller, within the framework
of control composition, and introduces control pre-imaging. Pre-imaging is a design technique for
augmenting the performance of a baseline controller through the opportune activation of metalevel
control actions. Such metalevel control actions are activated whenever the current system state
is associated to past unsuccessful patterns of interaction between the existing predictable, stable
controller and the environment. The technique is illustrated by the implementation of a grasp
controller capable of generating grasp configurations through successive, local refinements, given
the position and normal of each contact. Our objective is to demonstrate the value of formally
designed control modules to the design and implementation of effective controllers for complex
control tasks.
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1 Introduction

Since the early days of robotics, one of its long-term goals has been to create efficient and flexi-
ble mechanisms to expand the spectrum of what can accomplished by both persons and machines.
Autonomous navigation, robotic walking/exploration, automated manufacturing, and dextrous ma-
nipulation are examples of problem domains committed to this original goal. Typically, such problem
domains are highly complex: multiple modes of sensory information are usually available, and the
associated control problems are high-dimensional, non-linear, and plagued by uncertainties in sensor
data and actuation.

In recent years, interest in behavior-based controllers has grown in the robotics community, mainly
because they were perceived as having the potential to overcome the complexity associated with the
control of autonomous, sensor-intensive, redundant systems operating in unstructured environments.
In the behavior-based control framework, the overall state space is decomposed into less complex
subspaces, and a behavior is assigned to each subspace. Each behavior addresses a particular aspect
of the overall control task, resulting in improved run-time performance and robustness 5])-

However, decomposing the control task into several tractable control subtasks is just half of the
solution: a control strategy for a broad range of tasks and perceptual contexts must be built from the
constituent controllers. Building control strategies from a given basis or repertoire of controllers is the
control composition problem.

In this work, we study the control composition problem, in the context of grasp synthesis for dextrous
hands. Section 2 presents a learning intensive approach to the grasp synthesis problem, illustrating the
issues involved in developing a general purpose grasp controller. Section 3 formalizes the composition
problem and describes two controllers that form a basis for construction of effective grasp controllers.
Two distinct context-dependent control composition schemes are presented to demonstrate pertinent
issues. Section 4 presents the pre-imaging (PI) technique (the central contribution of this thesis),
designed to augment the performance of composite controllers by exploiting the control characteristics
of the constituent regulators. Section 5 describes the implementation of the grasp controller as a
component controller within a system capable of performing autonomous, collision-free reaching and
grasping of objects. Section 6 concludes this article and discusses issues to be explored in the future.
Appendix A shows how the composition problem can be cast as an optimal control problem and
how to accomplish time-optimal grasp synthesis, using the same grasp controllers mentioned earlier.
Appendix B characterizes formally the knowledge-based grasp controller introduced in Section 3, and
proves its completeness for certain grasp tasks and classes of objects.



2 Learning Primitive Grasping Actions

To grasp an object involves a sequence of complex actions, from object identification up to manip-
ulator/finger positioning. In this work, to grasp an object means to position contacts on its surface
so as to realize a desired wrench task. Grasp synthesis denotes the process of designing a contact
configuration capable of delivering the desired wrenches to the object. The grasp synthesis process
can be executed either off-line or on-line: in the off-line approach, the final contact positions are com-
puted before the grasp process starts, and there is no concern about how to generate the final contact
configuration, or which intermediate steps should be taken in order to get to the final configuration.

This work concerns on-line grasp synthesis: the objective is the development of a feedback control
mechanism for incremental grasp formation. Closed loop grasp synthesis can accommodate geometric
uncertainty during grasp, as small errors in sensing and actuation can be suppressed by the predictable
performance of convergent controllers.

This section presents an implementation of a grasp controller, in which the control policy for atomic
grasp actions is learned over a number of trials. This initial approach illustrates the issues involved in
developing a general purpose, multifingered grasp controller.

2.1 Related Work

The grasp planning or grasp synthesis problem has been studied extensively. Most published work
concerns off-line grasp synthesis, and three general approaches have been used, namely (1) geometric
force closure grasp synthesis [12, 13, 29|, (2) optimization-based grasp synthesis [6, 17, 18], and (3)
taxonomy-based grasp synthesis [11, 28].

The first two approaches aim at finding the best grasp configuration under a certain grasp metric,
either (1) purely based on object geometry or (2) based on specific aspects of grasp configurations.
Taxonomy-based techniques are primarily concerned with searching in a taxonomy tree for the best
manipulator configuration given the task and object geometry. Some approaches restrict the number of
contacts according to the object dimensionality (2 contacts in 2D and 3D [6], 2 contacts in 2D [12], at
least 3 contacts in 3D and 2 contacts in 2D [18]), others constrain the object representation (polygons
or polyhedra are assumed in [13, 29], and smooth/parametric models are required in {6, 12, 17]).

None of the approaches above yields a grasp controller. Grasps are preceded by off-line computation of
the best grasp configuration, and the algorithmic complexity can be very high [12] or the computation
may involve exhaustive search over the object geometry [13, 29]. Because the approach in (18] only
requires local information (contact position and normal), the authors claim that real-time implemen-
tation is possible. However, the authors report inadequate grasps due to local minima, and residual
moments may be exerted on the object.

With the exception of [18t], no other approach allows for incremental models of the object. A complete
model (either in terms of its real geometry or in terms of a smooth model) is required before grasp
synthesis starts, and it is not clear how incremental object models could be accommodated in the
framework of these approaches.

2.2 Learning Primitive Grasping Actions

In its first implementation, the grasp controller executes atomic auctiox.ls2 selected according to a
control policy expressed as a map relating state to actions. The underlying control policy is learned

2 Atomic actions denote elementary control actions requiring little or no computation.



over a number of trials using Q-learning [31]. The Q-learning procedure incrementally computes the
expected reward of selecting each action, for each state; the corresponding “greedy” control policy is
simultaneously derived.

For the sake of discussion, a simple 2D grasp controller was constructed, based on three atomic
actions: each individual contact could either move a fixed angular distance clock- or counterclockwise,
or remain in its current position. The remainder of this section details the Q-learning procedure setup
to compute the expected reward of each state-action pair. Our goal is to establish a benchmark control
performance and learning rate to which we may compare subsequent alternative control designs.

2.2.1 Learning Problem Setup

State Representation: In this first implementation, state information is essentially geometrical,
based on the angular position of all contacts involved in the grasp. Specifically, the object surface is
divided into 12 bins, corresponding to angular sectors of 30° degrees. Assuming four-fingered grasps
(or four contacts), the grasp state is completely specified by a 4-tuple containing the bin index of
each contact. This grasp state representation is unique for a given object, provided that object’s
geometry and orientation are known. Considering three possible actions for each contact, a total of
3* actions is possible from each state. So, even for this coarse state codification. there is a total of
12434 = 1,679,616 entries in the state-action table.

Trial Description: In each trial, four contacts are randomly placed in four different bins over the
object surface. Each contact selects one of the three possible atomic actions, in each control step.
Therefore, it is possible to generate any contact configuration within the limit of at most 10 control
steps, no matter the initial configuration. Accordingly, each trial terminates upon convergence or after
at most 10 control steps, whatever comes first.

Convergence: The grasp synthesis process converges as soon as a satisfactory grasp configuration is
generated. In this work, all grasp configurations are scored by the same metric, described in Section
3.5, where the grasp metric and related issues are fully discussed.

Training: Training proceeded for 500 epochs; each epoch consisted of 90 grasp trials over the same
object — the irregular triangle, shown on Figure 2(a). A total of 45,000 grasp trials were attempted
during training.

Update equation:

Q(se,a¢) = (1 — a)Q(se,a:) +a(R+7 max Q(Se41)),

where @ = 0.02 and v = 0.9. After each control step, the Q-table is updated using the update
equation above with R = 0, and the resulting grasp configuration is tested for convergence. Once
the trial is finished, the grasp solution is evaluated as either failure or as success, and the Q-table is
updated with R = —10 (punishment) or R = 10 (reward), respectively.

Aci;ion selection: The next action is chosen randomly, according to a Boltzmann probability distri-
bution over the Q-values associated with each action. The probability that action a* will be selected.
given that the system is at state s at time ¢ is

eQ!a.u‘!

Zn=l eg!aTaJ! °

Pr(ay, =a') =

The temperature T varied in the empirically determined range of [20.0,0.005).



2.3 Results

Figure 1 is the plot of average failure rate as a function of the number of training epochs, for the

ir;egula.r triangle. This plot was smoothed by averaging the raw data over a 10-epoch wide sliding
window.

After the training stage, the performance of the resulting controller was assessed over 200 grasp trials,
for the irregular triangle in its original orientation and for a 30°-rotated version, depicted in Figure
2(b). The goal of this comparison was to evaluate the invariance of the control policy with respect to
orientation. As before, each trial would proceed up to 10 steps or until convergence. No failures were
observed for the irregular triangle, but the controller failed to generate a satisfactory grasp solution
in 29.0% of the trials for the rotated irregular triangle. For the irregular triangle, 99 different grasp
configurations were generated (all evaluated as satisfactory), while for the rotated triangle 81 distinct
grasp configurations (55 evaluated as satisfactory) were generated. Figure 2 shows the four grasp
configurations most frequently generated for the irregular triangle and the rotated irregular triangle
object. The frequency each configuration was generated over 200 grasp trials is also indicated, for
both satisfactory and unsatisfactory grasp configurations.
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Figure 1: Average failure rate during training. Each epoch consists of 90 grasp trials over the irregular
triangle object (oriented at 0°). The plot was smoothed by averaging raw data over a 10-epoch wide
sliding window.

2.4 Discussion

As formulated above, the problem of synthesizing grasp configurations from a given initial configuration
is no different than finding the solution of a maze from an arbitrary initial position. In the case of the
irregular triangle, the Q-learning method learned how to select an appropriate control sequence given
the current state. When the same control policy was applied to a different object, some past action
sequences were still successful; this explains the successes observed for the rotated irregular triangle
object.

The average failure rate observed for the rotated irregular triangle (29.0%), indicates that the control
policy derived by the learning scheme described is orientation-dependent. Furthermore, it is likely



(a) Irregular Triangle - satisfactory configurations

35 % 35 % 30 %
+
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(b) Rotated Irregular Triangle — satisfactory configurations
120 % 75 % 45 % 40 %
(c) Rotated Irregular Triangle ~ unsatisfactory configurations
55 % 45 % 3.0 % 25 %

Figure 2: The four configurations most frequently generated for (a) irregular triangle, (b) the rotated
irregular triangle (satisfactory configurations) and (c) unsatisfactory configurations.” The number
immediately on the left of each configuration reflects the frequency it was generated.



that controller performance will degrade as the geometric dissimilarity between a given object and the
irregular triangle object grows.

Dependence on object geometry and orientation is related to the state representation employed. Con-
trollers based on geometric representations do not respond well to geometric uncertainty and do not
generalize over objects as well as force-domain derived representations.

State representation also directly affects the acquisition of a control policy through experience. Grasp
state representation directly affects the size of the search space, and therefore, the convergence rate.
Also, each grasp state must be uniquely described by the adopted representation: the presence of
indistinguishable (“hidden”) states may hinder convergence or even make the learning process inviable.

The two problems just discussed - how to represent the state of a grasp and how to derive a control
policy based on the chosen representation scheme - should not be treated independently. Grasp
states can be uniquely represented in several different ways, but only representations allowing for the
derivation of effective grasp control policies should qualify as potential solutions; finding an adequate
state representation is an important part of problem solution.

2.5 Conclusion

Our implementation of an atomic action-based grasp controller lacks a context independent state rep-
resentation capable of encoding a rich class of correct grasp solutions. The work that follows demon-
strates that these deficiencies can be addressed by replacing atomic actions by controllers. Section
3.6 discusses the value of adopting a control-based state representation, in terms of conferring context
independence to the composite controller. Moreover, the idea of using control-based representations
can be further expanded, by associating to each state its relevance to the final control objectives. This
is the basis for the pre-imaging (PI) technique, to be described in Section 4.



3 Control Composition: Formalization and Application

3.1 Behavior-Based Architectures

Complex, autonomous, sensor-based control tasks (e.g., dextrous manipulation, robotic exploration)
usually involve redundant sensory information and actuation, i.e., there is more than one way of
generating state information and of accomplishing a particular task. Also, solutions must frequently
satisfy arbitrary constraints (kinematic workspace limitations, obstacle avoidance, etc.), increasing
further the complexity of the control task.

In order to cope with control complexity researchers have proposed behavior-based control architec-
tures, where the state space S is decomposed into subspaces S;, and behaviors B; are assigned to the
S; to address subtasks relevant to the task domain. The control task domain must be decomposed
into subtasks and the individual behaviors must be composed to form a composite controller capable
of solving a family of specific control tasks.

3.1.1 Related Work

Behaviors have been defined [5] as control modules designed to execute particular control actions when
triggered by a specific sensor data pattern. Little (if any) interpretation of sensory data is performed;
control actions are computed by fixed procedures, closely linked to sensory information. In general,
behaviors use local or partially global models of the environment, and some implementations advocate
against the use of any explicit model.

In terms of behavior composition, three approaches sum up the alternatives tried so far: (i) hand-
crafted behavior composition [1, 5, 21, 26], (ii) potential function-based composition[25], or (iii) com-
position learning [24]. Robot navigation is the problem domain for most of the systems [8, 21, 24, 26].
In [1, 25] a sequence of actions is sought for an abstract, simulated problem. For most implementations
[1, 5, 21, 26], the composition strategy is determined off-line, hardwiring sensor data to control actions.

The advantages of using behaviors are: (1) information acquisition becomes more directed to specific
features of the environment, alleviating the burden of interpreting sensory inputs and keeping com-
plete models of the environment, and %2) control actuation over the system is simplified, due to the
straightforward mapping from sensory information to control actions. As a corollary of (1) and (2), the
overall control complexity is reduced, making tractable rather complex control tasks. Furthermore, by
encapsulating low and intermediate level expertise about the problem domain, behaviors constitute a
new abstraction level on top of the original level formed by atomic actions.

3.1.2 Issues on Control Composition

Althoug_h regarded as successful in its problem domain, the behavior-based paradigm leaves unan-
swered important issues, chiefly derived from the lack of methodology in composing appropriate solu-
tions from a repertoire of controllers:

1. Composition complexity: The human designer is an active element in the synthesis process of
behavior-based controllers: ultimately, if the “emergent” behavior is not right for some reason, a
human designer is called to recraft the composition strategy, or to patch the behavioral repertoire.
Indiscriminate proliferation of behavior may re-introduce the planning complexity that control
decomposition sought to avoid, since control composition is itself exponential in nature.

10



Furthermore, the control characteristics of the resulting controller are not known in general.
Because of this, the results of adding an extra control layer on top of an existing controller are
not predictable, in terms of control stability and performance.

2. Generalization capabilities: Handcrafted compositions tune intricate behavior-based architec-
tures on the basis of observed performance in a particular environment. This procedure compiles
robot, environment, and task into the emergent sensorimotor strategy. As such, it can not be
expected to generalize well over tasks, robots, or sensors.

In order to improve on the existing control architectures, we propose that constituent controllers should
be formally designed from a declarative control specification (as opposed to procedural behaviors),
and implemented as asymptotically stable controllers, amenable to composition into a predictable
composite controller.

3.1.3 Procedural and Declarative Behaviors

Procedural behaviors are characterized as device-, task-dependent control actions, triggered by direct
sensor data. In contrast, declarative control specifications express more abstract objectives, inde-
pendent of sensors, mechanisms, the environment, or the task. Grasp stability, or more generally,
imparting a force to the world through a mechanical contact, is such an objective. This goal can be
expressed independent of the number of fingers, hands and arms employed, independent (largely) of
the object geometry and task. It is important to note that the control specification is declarative, not
the derived controller. The controller marshals kinematic and sensory resources as required by the
task in the current context.

3.1.4 Formal Design and Predictability

Ideally, a formal design methodology would (1) establish a minimum set of control characteristics each
constituent behavior must possess, and (2) establish a composition scheme capable of preserving those
control properties, yielding predictable yet adaptable composite controllers. The next section focuses
on efforts to synthesize provable correct controllers. :

3.2 Provable Correct Controllers

Many researchers have explored the issue of how to synthesize provable correct controllers, attempting
to determine an effective set of requirements or properties the controller must possess to be considered
correct. Navigation functions [20] and harmonic functions [9] have been used as to generate sufficient
control surfaces.

3.2.1 Navigation Functions

In [20], Koditschek and Rimon describe how to construct a correct navigation function, for a point
robot moving amidst spherical obstacles within a bounded workspace. Of special interest are the
conditions a map ¢ : S = [0, 1] must met to be considered a navigation function:

1. ¢ must be continuous and analytic on its domain;

2. ¢ must be polar, i.e., must have an unique minimum on its domain;

11



' 3. ¢ must be Morse on its domain — this implies that the Hessian of ¢ must be non-singular in
each of ¢’s critical points (points where the gradient of ¢ goes to zero);

4. ¢ has its maximal value (uniformly) exactly on the boundary of its domain;

5. The gradient of ¢ is bounded over the entire domain.

The gradient of a navigation function ¢ can be proven to yield a sufficient controller, under the con-
ditions above. Although effectively solving the robot navigation problem for some theoretic domains,
the prerequisites for control sufficiency presented in [20] are difficult to apply in practice. First, it is
assumed complete knowledge about the environment, what is often not a realistic assumption. Prov-
ably correct navigation functions can be constructed, up to world model precision, albeit at a high
computational complexity. Second, the sequence of transformations required to complete the control
surface can be very sensitive to relatively small changes in the environmental geometry.

3.2.2 Harmonic Functions

Connolly and Grupen [9] illustrate how harmonic functions can be used as basis for developing sufficient
controllers. Harmonic functions are linearly superimposable and yield complete navigation functions,
generating smooth, continuous trajectories in c-space. Furthermore, this approach may be applied to
general, incomplete geometry, and can be recomputed incrementally.

3.3 Building Controllers Through Composition

In the control composition framework, elements from a finite set of control modules are composed into
a composite controller. The Hessian matrix can be used to characterize the individual controllers and
to analyze the resulting composite controllers. The Hessian matrix of a multivariable control function,
F, defined on the domain, ©, is defined as 8 F/8©?, or in matrix notation

22F aF ... 3k
ETH 86,90, 86,00,
& F[06? = : : : (1)
*F a?F .. *F
06,00, 80,004 062

Three classes of controllers can be distinguished by examining properties of the Hessian of F:

Convex controller: If the Hessian matrix is positive definite over the domain ©, then the resulting
controller is convex over ©. The control function will possess exactly one minimum.

.Harmoni.c controller: If the trace qf the Hessian matrix is identically zero, then the control function
is a splutmn to the Laplace’s equation, or a harmonic function. As mentioned earlier, harmonic
functions can be used to construct complete controllers.

Sub-harmonic controller: If the trace of the Hessian matrix (or equivalently, the Laplacian of the
control function F') is non-positive,

PF _&PF FF &°F
e " tam Tt

<0

trace( —_—
062 —

then this implies that local maxima may be present on control surface. Because regions around

these local maxima are inaccessible to all states at a lower potential, the controller may no longer be
complete.

12



All these classes of controllers (convex, harmonic, and sub-harmonic) are closed under linear su-
perposition: given two control functions F; and F; belonging to class C, their linear superposition
F' = ayF} + a,F, will also belong to class C, provided both a; and a, (called the superposition
coefficients) are non-negative, but not simultaneously zero.

3.3.1 Control Properties of the Composite Controller

While convexity guarantees convergence and monotonic error decrease for individual controllers, nei-
ther of these properties are necessarily inherited by the composite controller, because of the dynamic
nature of the composition strategy. In the current framework, the superposition coefficients are a
function of system state; limit cycles may arise in particular situations, preventing convergence.
Therefore, composition may corrupt some of the “good” properties the individual controllers pos-
sess, if not properly addressed. Each composition strategy covered in this work deals with this issue
to a different extent: knowledge-based composition (Section 3.6.1) uses a steep, heuristic switching
boundary positioned to yield provably correct grasp geometries under certain conditions (Appendix
B). Learning-derived composition (Section 3.6.2) derives a strategy to avoid undesirable states over a
number of trials. Finally the pre-imaging controller manages the control activation policy to optimize
the performance of a particular control composition strategy.

3.4 A Basis for Grasp Control

Grasp synthesis presumes the existence of a grasp metric which is being maximized during the synthesis
process. Grasp metrics usually emphasize one or more aspects of the resulting grasp configuration:
capacity to resisting external disturbances [17], distance between contacts [6], ratio between resulting
wrenches and applied forces, or minimization of total forces applied to the object [13], grasp stability
[18], and others.

This section describes two controllers, respectively the force and moment closure controllers, that later
will be composed into a grasp controller. Both controllers, originally introduced by Grupen et. al.
[15, 14], are fixed-time, computationally inexpensive controllers of complexity O(n) on the number of
contacts. They are based on simple wrench domain models of the object-manipulator interaction and
on a simplified model of the grasping task, wherein:

- Contacts are assumed to be frictionless point contacts, and contact forces have unit magnitude;

- Object geometry is scaled such that the maximum moment is also unitary; the solution contact
geometry is an optimization based on shape, rather than dimension.

Both controllers are designed around the stable grasp sufficiency metric, that reflects to which extent
the wrench task is attained by the current contact configuration.

3.4.1 Stable Grasp Sufficiency Metric

In scoring a grasp configuration, it is frequently useful to analyze the associated grasp matrix (also
known as the grasp Jacobian). This matrix describes the transformation from a set of forces applied
by contacts on the object surface to a set of object frame wrenches. The grasp matrix W. is defined
as W = [W; W, ... W,], where W; is a six dimensional vector of wrenches applied at the i** contact
position.

13



One of the basic requirements that precedes most tasks is the construction of a stable grasp. A grasp
configuration is considered stable if it can resist arbitrary perturbation wrenches. The null space of the
grasp matrix defines the basis for the perturbation wrenches that can be resisted by the given contact
configuration. If the null space is six dimensional, contact wrenches can be scaled up to suppress any
arbitrary external disturbance, while keeping the desired net wrench on the object.

From the previous discussion, it’s clear that a pre-condition for stable grasps is the construction of
a null space within the grasp matrix. Grasp configurations that meet this pre-condition are referred
to as null grasps. One possible strategy for null grasp synthesis would be (1) to check for the null
grasp condition. If it is met, the synthesis process is over. If the current contact configuration
doesn’t yield a null grasp, then (2) move the contacts towards a configuration yielding null grasp.
However, the procedure for computing the null space of a matrix doesn’t allow for differentiability
and therefore cannot be used as a control surface. The same shortcomings plague other grasp metrics:
they are computationally expensive and frequently involve optimization procedures or matrix analysis
techniques that don’t offer directional information on which a grasp controller can be based.

To overcome those shortcomings, a sufficiency metric was devised (15], based on the residual wrench
vector g

pp
. 1 n ) T . 1 n A
- (Fime) (ize) »

where /5 expresses the net wrench over 1 < j < n contacts, t is an optional wrench closure bias.
and &; is the wrench vector resulting from the i** interaction force. The elements ¢; € [—1,1] of t
and the elements w;; € [~1,1] of w; are qualitative in the sense that they do not reflect engineering
units of force and torque, but express the relative ability of a contact configuration to transmit forces
and torques through the object’s surface. Minima in e correspond to linear combinations of these
qualitative wrenches which map into the null space of the grasp matrix.

By moving the contacts along the direction that minimizes ¢, the grasp controller approaches the
desired null grasp configuration. One plausible approach is to compute the gradient of ¢ with respect
to the contact coordinates 6; and move the contacts accordingly. Assuming that the function w;(6;) is

differentiable, one can compute %:_

o _ 2(~ 1 ,)Ta(t‘—iziwi)

t —_ .
2; n & 96;
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where G; is the wrench gradient with respect to the contact coordinate 8;. In vectorial notation
GY
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Equation 4 evaluates to 0 in one of two conditions: (2) 5 = 0 and (b) when GT5 = 0. The first
condition is the desired convergence criterion and results in a grasp geometry that can be scaled to
span the task. The second condition is equivalent to a local minimum of e. This class of minima
results when a local tangent to the wrench surface, G, is orthogonal to the residual vector, 5. Both
grasp controllers are based on Equation 4: what distinguishes them is exactly how &; varies with the
contact coordinate, 6;.

3.4.2 Force Closure Controller

The force closure (FC) controller regulates the position of unit normal forces on the surface of a
Gaussian sphere. If § and ¢ are the angular coordinates on the Gaussian sphere, then the corresponding

wrench domain model of the object W (8, ¢) = [F, F, F, M, M, M.) becomes?.

wy, = fr = —cos(8)cos(¢) wy = my=0
we = f, =—sin(0)cos(p) wg = my,=0
wy = f.=—sin(d) wg = m;=0.

The sufficiency metric for the FC controller yields:

n 2 n 2 n 2
erc = |tpz + % Z cos(@,-)cos(d),-)] + [tf-y + %z.s'in(ai)cos(gb,-)] + [t;z + -71;2 sin(fbi)] (5)

i=1 i=1 i=1

The gradient of Equation 5 with respect to 8, yields:

Oe .
SoL = (43 + Bl sin(f + ) ©)

where Agy, Bor, and v, are constants independent of 6;:

AOk =
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Equation 6 demonstrates that the sufficiency metric employing the force closure model generates a
unimodal error function. Figure 3(a) shows the plot of both the force closure metric (Equation 5,
dashed curve) and the plot for the sufficiency metric (Equation 2, solid curve), for the square shape,
2 contacts. Those plots are obtained by fixing the black contact at the origin § = 0, and moving
the white contact counterclockwise over the object surface. Figure 3(b) shows the complete object
model; in the same figure, the sufficiency metric’s local minima are marked over the object surface with
triangles, and the white contact is positioned over the metric’s global minimum. Figure 3(c) shows
the corresponding constant curvature unit Gaussian sphere, and its global (and only) minimum.

3Note that using this assumption for regular polygons reduces the control of grasp sufficiency (wrench closure) to a
force closure optimization. This is due to the fact that the moment diagrams for regular polygons exhibit characteristic
frequencies of n”z%’- and are therefore ignored in the 1** harmonic approximation (the unit Gaussian sphere). Thus the
designation “force closure”.
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Figure 3: (a) Sufficiency metric error plot, for the complete object model (solid curve) and for the
smoothed object model (dashed curve). (b) Square object being grasped by two contacts; the black
contact stays fixed at the origin, while the white one moves around object. The triangles mark the
position of the sufficiency metric local minima on the object surface. (c) FC object model. In this
case, the global minima for both metrics coincided on 6 = 180°.

Figure 3 illustrates how the FC controller may contribute to grasp synthesis: it is a global approxima-
tion of every manifold geometry with no spurious minima. For regular polygons, this heuristic control
surface selects combinations of faces that minimize the force closure residual.

To allow for higher performance and predictable composition, a convex approximation of the FC metric
is constructed that preserves the equilibrium point in the original control surface (a similar quadratic
controller for ¢, can be derived by differentiating Equation 5 with respect to ¢;). The gradient on
which the controller will be based on is then computed over the quadratic approximation function:

FC

e €EFpCc — 6;-0
—| =2—0—== 7
20l, =0 —0) g
where €% is the force closure error for 8, = 6} and 6} is the angle § in which contact & minimizes ¢p¢:
A
6; = —tan™! (ﬁ) X 8
k Bog ( )

3.4.3 Moment Closure Controller

Reasoning in terms of surface curvature, a scaled version of the FC controller can capture the local
s'hape of tPe sufﬁcxenr_:y metric for all positive and negative curvatures: the scaling constant is propor-
tional to ., where r is the radius of curvature. However, as r — oo the FC gradient vanishes, since
forces remain constant on planar surface facets. The moment closure (MC) controller minimizes the
moment residual by adjusting each contact position on the local surface facet. We use the perpendicu-

lar of a plane, (7o, 8o, $0o), to parameterize the contact plane. Figure 4 illustrates the parameterization
and the geometry from which the wrench gradient is derived.

The forces transmitted through any planar f.ace are constant at all contact positions on that face. The
moments applied to the object, 7 = 7 x f, vary linearly with surface coordinate and pass through
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Figure 4: The Moment Closure Model derived from a Parametric Object Plane

zero where the perpendicular passes through the plane. The resulting wrench model is:

wy = f; = —cos(f)cos(¢o) wy = mg = —ry8in(¢o)cos(fo) + r4sin(fo)
wy = fy = —sin(f)cos(¢o) ws = my = —1y3in(¢o)sin(fo) — rcos(6o) (9)
wy = fz = _Sin(¢0) Wg = mM;= 7‘0003(¢o),

where (7,7,) are the surface coordinates of the contact in the plane. Note that this approximation
yields constant contact forces which implies that control is derived from the moment diagrams exclu-
sively; thus the designation “moment closure”. The moment closure sufficiency metric can be written
as follows:

eMc = D €mo (10)

2
. 1
Gﬁc = [tw; - 7—1' E w;I

The controller based on the gradient of €c is locally convex in surface coordinates, but not in polar
coordinates. We developed a convex controller in polar coordinates using a quadratic controller with
the same equilibrium state as the original convex metric, similarly to the convex FC controller. The
planar surface coordinate where the gradient of epc with respect to 7y vanishes is given by

B h
The = = |ntme— Y mai (sin(do)cos(60)) [ntmy—Emw] (sin(do)sin(8o))x
i ik i#k
: _
+ | ntm: — Y M| (cos(do))s
| i#k i
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The corresponding contact coordinate of this minimum is:

9; = tan™! [ﬁ’ﬁ] (11)
To
so that, e
Oe|™" _ gtme — o (12)
006 {4 (6x — 6%)

A similar result for the MC controller in the ¢ direction can be derived by differentiating Equation 11
with respect to ¢.

3.4.4 Common Characteristics

The FC controller is based on contact positions exclusively. The contacts navigate the surface of the
continuous Gaussian sphere, and the resulting controller is globally convex. The MC controller consid-
ers both contact position and normal; the resulting control surface is piecewise convex. Each controller
encodes a model of how local contact geometry transforms contact forces into contact wrenches, but
no explicit model of the object itself is ever required - only local sensory information. Moreover, it
is possible to assign an independent asynchronous controller to each contact. As a consequence, the
complexity of the composite controller grows linearly with the number of contacts.

3.5 Grasp Evaluation Metric

In order to establish a benchmark with which to evaluate controller performance, a more complete
metric is derived. The objective is to ensure an independent and more realistic evaluation of the grasp
configurations produced by a particular control composition policy. This grasp evaluation metric
considers frictional forces, and permits variable magnitude contact forces. A natural approach is
to measure the quality of the null space associated with the given grasp configuration using, for
instance, its rank as the quality measure. However, qualitatively different grasp configurations can
look deceptively similar in terms of rank of null space, due in part to the fact that rank does not
capture unisense wrench constraints and because rank only guarantees marginal (or infinitesimal)
ability to suppress perturbations. To discriminate among grasp configurations with the same rank,
the magnitude of both normal and tangential forces can be used as the distinguishing feature.

Basing grasp stability on friction forces is frequently undesirable, because friction is hard to model
and uncertain: slip may occur as contacts move from one region over the object surface to another.
In addition, all tangential forces require a complementary normal force and are therefore less efficient.
To evaluate a grasp configuration, one needs to evaluate the resulting distribution of normal and
tangential forces in the grasp. Many researchers have solved this problem using linear or quadratic
programming; the implementation described here uses linear programming.

For each contact, the normal force N and the associated tangential (friction) force T are constrained
SO as:

- Normal forces must be compressive forces, with norm || N ||, > 1;

“ | T [l2<Il N ||l2 (Coulomb friction coefficient px < 1).
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Besides the natural constraints to the grasping task expressed above, null grasp constraints must also
be satisfied; for n contacts:
. 1 &
t—=» w;=0
"

The objective function to be minimized is the sum of the norms of all forces involved in the grasp:

=Y I Nillz + I T I

=1

The set of linear constraints may not be satisfiable for a given contact geometry. If they can be
satisfied, the final normalized grasp score is defined as

4
Se = Z-1. (13)

High values of S¢ denote that either the system is relying heavily on tangential forces to stabilize the
grasp (in which case the normal forces would also be large), or the contact forces are not balanced
among the fingers, resulting in excessive normal forces in some fingers.

Grasp configurations will be evaluated as either “good” or “bad” based on the metric Sg. The decision
of where to position the cutoff line between “good” and “bad” configurations is completely arbitrary.
Figure 5 shows several grasp configurations and the corresponding scores, as computed by Equation
3.5. In this work, grasps with Sg < 0.4 are considered to be “good”, or successful.
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Figure 5: Distinct grasp configurations and respective scores Sg.

3.6 Control Composition

The force closure (FC) and moment closure (MC) controllers were composed into a grasp controller
through knowledge-based and learning-derived composition strategies, as follows.

3.6.1 Knowledge-Based Heuristic Composition

Knowledge-based composition schemes assume that control composition can be 9ncoded by a collection
of simple activation rules. Such rules partition the state space into several regions, and different sets
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of controllers are activated simultaneously within different regions. Human experts are responsible for
determining the activation rules, or shaping/profiling the decision surfaces.

In the grasp synthesis domain, a sensible heuristic rule is to address force residuals first, using a globally
convex controller to take the system to the neighborhood of a grasp solution where the resulting forces
over object are close to desired, and then refine contact positions to address moment errors, through
the use of a locally convex controller. In terms of the local wrench domain models, the switching from
the FC to the MC controller implies switching from a constant curvature model of the object surface
(FC controller) to a model assuming zero local curvature (MC controller) - a planar facet. The final
contact gradient after composition is

Oemc
06 -

Oe
Ve = arc Fgc + apmc

d

Implementation: In the Luce’s rule* formulation, the activaction coefficients yel and apc are
determined based on the relative significance of each controller to the task, measured in terms of the
current error €. In our implementation, the coefficients arc and ayc were computed by

exp(kpcepc + b)
exp(kpcépc + b) + exp(koeMC - b)
amc = l-oarc,

where kpc = 4, 000, b= —10, and ko =0.

arc

The constants on the equations above are selected so as to give priority to the FC controller in the
initial phase of the grasp. The MC controller is activated after erc decreases below a preset threshold.

Knowledge-based heuristic composition can efficiently encode domain expertise, it is computationally
inexpensive, doesn’t require memory, and may have general applicability, depending on the quality of
the heuristic rules. Moreover, this scheme yields convergence/completeness results for some classes of
objects (see Appendix B).

3.6.2 Learning-Derived Composition

Learning methods have been extensively used in control. In (3], Barto presents an overview of connec-
tionist methods applied to control of dynamical systems. Anticipatory control and system identification
(forward, inverse, and differential models) are typical applications that benefit from the estimation
and association capabilities offered by learning methods. Likewise, learning methods can associate
past control actions with controller performance over time, effectively building a control policy or
composition scheme that can be proved to be optimal under certain circumstances.

More sophisticated approaches to learning involve some kind of estimation of system performance.
given the current state, and using such estimation to refine future control policies:

+ In .[4] Barto, Sutton, and Anderson describe an estimator of future system performance that
is incrementally built through a learning process. After a number of trials, the estimator is
able to correlate the present state to the expected final reinforcement. Using the expected
reinforcement value, the control policy is continuously refined, from random action selection at
first, to optimal action selection after convergence. Notice that this approach deals with the

. “Luce’s rule was originally formulated in the Game Theory domain to mediate competition between rival hypothesis.
Given the subjective evidence for each hypothesis, Luce’s rule determines hypothesis utility based on a set of parameters
that weigh the relative importance among all hypotheses.

20



temporal credit assignment problem, where reinforcement is to be associated with past actions.
Usually, the reinforcement signal is only available after a sequence of control actions, and a
fraction of credit or blame is to be assigned to each action.

- In [22], Liu and Asada construct a forward model of the system that maps the current state and
action vectors to an estimation of system performance. This estimator is built incrementally,
using on-line data provided by the system. Once an accurate estimation is available, the approx-
imate mapping from actions to performance index is used to refine the current control strategy,
and overall system performance improves over time.

- In [30], Salganicoff and Bajcsy use Projection Pursuit Regression (PPR) to approximate the
probability distribution of reinforcement in the state space, augmented by the action vector.
The authors claim that the required number of training instances scales better with the state
space dimensionality for the PPR technique than for most multivariate function approximation
methods. Training consists of presenting patterns < s,a,r >, respectively state, action, and
reinforcement. Once a good approximation is available, the associative function is queried with
a partial pattern, consisting only of the state information, and a range of actions that maximizes
the reinforcement is returned.

Storing and Retrieving Associations: An issue as important as how to associate reinforcement
and actions is the issue of how to store and retrieve such associations. Neural networks are a natural
choice, because of their capacity of smooth function approximation. However, they are not the only
choice. In [30], a 2*—tree is used to store the mapping from system state to expected reinforcement. In
this scheme, the granularity of the representation is variable, depending on the local characteristics of
the function being represented. Moore [27] has also used such scheme for its efficiency in representin

multidimensional state spaces. In another attempt to overcome the dimensionality issue, Atkeson [2

proposed the use of locally weighted regression in memory-based robot learning. For each query, a
local model is built based on the closest points in the state space: similar experiences influence the
choice of the next action more than dissimilar ones. No model persists in memory: there is no global
model and local models are formed specifically to answer a query.

Learning-derived composition techniques are very powerful and have wide applicability. Through
learning, controllers can be constructed by composing atomic actions (Section 2) or sophisticated
control algorithms. In our implementation, the policy on which controller to activate next is derived
using Q-learning over a number of trials. No previous information is given about the utility of each
controller; the composition scheme is completely random at first. By exploring the whole state-action
space and rewarding “good” solutions/penalizing solutions corresponding to failures, this procedure
incrementally computes the expected reward of taking each action for all states, effectively computing
the activation policy that maximizes future rewards.

State Representation: In the first grasp controller implementation, grasp state is based on ob-
ject geometry (see Section 2), not allowing for the encoding of generalizable control policies.” Both
knowledge-based and Q-learning implementations use a state representation based on the error met-
rics associated with the regulators: S =< erc,€pmc >, where epc and €pc are computed respeptwely
by Equations 5 and 11. It is our belief that this representation scheme offers better generalization
than the pure geometric scheme, because it is based on general measures of task accomplishment: the
controllers’ error metrics.

The standard Q-learning implementation requires discretization of both state and action spaces. The
range of each state variable erc and €p¢ was discretized into 30 bins, resulting in a state space with
900 states. A logarithmic scale was used to help distinguishing states corresponding to low values of
erc and epc; given that for most grasp configurations of interest the values are in the range [0,1],
state S is encoded as:

S = < G'FC’ GIIWC >,
€rc = 14.5log(max(0.01,erc)/ 0.01)
€ye = 14.5log(max(0.01,epc)/ 0.01) (14)
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Thus, if erc < 0.01, then €xc = 0; if epc = 1.0, then €pc = 29; similarly for €y ¢ and €vc-

Action Space: In terms of action discretization, we decided to restrict the activation policy to a
“bang-bang” type activation profile. Since the system composes 2 controllers, the combined gradient
can be expressed as

O¢ e
Ve = aFC_aFTC + aMC_aA;fC1

where arc and ayc are either 0 or 1 (but not simultaneously 0).

Trial Description: In each trial, four contacts are randomly placed on the object surface. The
composite controller executes up to convergence, or for 300 control steps, whichever comes first.
Convergence is achieved if every contact has not moved more than 0.0005 radians during the last control
step. The limit on the number of steps was set to avoid possible instabilities on the control activation
policy during learning. After convergence or 300 control steps, the resulting grasp configuration is
scored using Equation 3.5.

Training: The system was trained over 500 epochs; each epoch consisted of 90 grasp trials on the
9 objects shown on Figure 6. The objects were presented in a random, fixed order for training. Ten

grasp trials were executed for each object in the training sequence. A total of 45,000 grasp trials were
attempted (5,000 trials per object).

(Y] e)
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(Y
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Figure 6: Objects used in our experiments: (a) Triangle, (b) Irregular Triangle, (c) Square, (d) Rect-

angle, (e) Trapezoid, (f) Pentagon, (g) Irregular Pentagon, (h) Hexagon, and (i) Irregular Hexagon.
Update equation:

Q(st,a:) = (1 — @)Q(sr,a¢) + (R + 7 max Q(3¢4+1)),

where a = 0.02 and v = 0.9. After each control step, the Q-table was updated, using the update
equation above with R = 0. Once the trial is finished, the Q-table is updated with R = —10 or R = 10,
depending how the final grasp configuration was classified (respectively, as a failure or as a success).

Action selection: Actions are selected stochastically, according to a Boltzmann probability distribu-
tion over the Q-values associated with each action. The temperature varied in the range [20.0, 0.005].
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3.6.3 Results

Figure 7 is the plot of average failure rate as a function of the number of training epochs for the

Q-learning implementation. This plot was smoothed by averaging the raw data over a 10-epoch wide
sliding window.
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Figure 7: Average failure rate during training. Each epoch consists of 90 grasp trials, or 10 grasp
trials per object. The plot was smoothed by averaging raw data over a 10-epoch wide sliding window.

The performance of both the Q-learning and the knowledge-based controllers was sampled over 200

grasp trials for all objects in the training set. As before, each trial would proceed until convergence
or up to 300 control steps. Table 1 shows the average failure rate for both controllers.

Table 1: Average failure rate per object, for grasp controllers derived using Luce’s rule and Q-learning.

Failure Rate (%)

Object Knowledge-based | Q-learning
composition composition
Triangle 17.00 14.50
Square 20.50 9.00
Pentagon 0.00 0.00
Hexagon 0.00 0.00
Irreg. Triangle 20.50 22.00
Rectangle 12.00 3.50
Trapezoid 2.00 2.50
Irreg.Pentagon 18.50 23.00
Irreg.Hexagon 0.20 0.50
Average 10.06 8.33
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3.6.4 Discussion

Table 1 illustrates that in terms of on-line performance, neither implementation has a distinct advan-
tage. An important result one can draw from Table 1 is the existence of a single, fixed composition
policy applicable to all objects in the test set. It supports the notion of the declarative nature of the
control specification and the suitability of the adopted state representation across the complete set of
objects.

The Q-learning based controller has slightly better overall performance. Nevertheless, it is important
to remember that the choice of constants used in the knowledge-based composition did not involve
any exhaustive search over all possible switching functions. No memory is required for the knowledge-
based grasp controller, that can be characterized as a computationally inexpensive, efficient grasping
engine.

The Q-learning implementation explored the action space during training for all states and objects,
and in principle it should yield an optimal strategy. Yet, some failures were observed; those failures
can be attributed to:

1. Incomplete control repertoire: control composition can be viewed as function approximation
based on a finite control basis. It is hard to guarantee that the current control repertoire is
complete, or capable of generating solutions for any possible context.

2. Switching instabilities: limit cycles may arise from coupling effects between constituent con-
trollers, negatively affecting overall performance.

3. Suboptimal composition functions can degrade system performance. Learning algorithms are
powerful tools in deriving provably optimal control policies, but some of its working assumptions
(e.g., completely observable states) may not hold for the current problem. Moreover, our goal is
to develop a control strategy that generalizes well to varying object geometries, while Q-learning
aims at reducing the average grasp error over a finite set of objects. Some performance deficit
results in specific grasps when robustness is sought over a broad context range.

Regardless of the learning algorithm chosen, issues related to finite training sets, finite memory, or
inherent limitations of the representation scheme chosen (neural nets, state-action tables) can affect
performance. Therefore, the best approach is to substitute the current learning problem by an easier
one, provided the final objective -~ control composition - is still accomplished.
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4 Extending Control Composition through Pre-Imaging

Pre-imaging aims at enhancing an existing control policy through the opportune activation of metalevel
control actions. Such metalevel control actions are activated whenever the current system state is
associated to unsuccessful patterns of interaction between the existing predictable, asymptotically
stable controller and the environment. Pre-imaging supports continual monitoring of the evolving
system, and reactive compensation for deficient solutions.

The use of predictable control actions to reduce problem complexity bears resemblance to Lozano-
Pérez [23] approach to the automatic synthesis of fine-motion strategies, in which the final goal was
propagated backwards through the actions of the underlying generalized impedance controller, for a
number of discrete steps. In each pre-imaging step, the set of goal states increased until it includes
the start state. When this happens, there exists a sequence of control actions that achieves the
goal. The approach organizes the fine motion plan around the predictable behavior of the generalized
damper control module. Notice however that in their work no estimation is involved because complete
knowledge about the geometry and uncertainties is assumed; also, the associated planning procedure
is completely off-line.

4.1 The Pre-Imaging Concept

By assumption, the existing controller (or baseline controller) is predictable and stable; its success pre-
image region is defined as the union of all states ultimately leading to successful solutions, according
to the criterion established in Section 3.5. More formally, consider X as the state space over which
the baseline controller C is defined. Given state z € X, define y = Sc(x) as the successor state of
due to the action of controller C. Let r(z,t) = {y : y = S&(z)} represent the set of reachable states
from the initial state x € X after time ¢. The set of reachable states R(t) where the system can be
encountered at time ¢, assuming continuous control action since ¢ = 0, can now be defined as the
closure of r(z,t) for all states x € X. Clearly, R(0) = X: at time ¢t = 0, the controller C' has not
acted upon the system, and any state z € X can be the initial state. With the passage of time, the
equality between the sets is transformed into a containment relation R(t) € X. As ¢t — oo, the system
state converges to one attractor state a; = R(fw), a: € A, where A is the set of system attractors.
The attractor a; may correspond to a satisfactory solution, in which case it is labeled as a success
attractor, and all intermediate states en route to it are considered to be part of attractor a;’s success
pre-image. Similarly, every state en route to a failure attractor a; belongs to a;’s failure pre-image
region.

Once a map relating state to failure expectation is available, it can be used to enhance the performance
of the baseline controller: whenever failure is predicted, an alternative control action is to be applied
to the system to revert failure expectation. This control action (referred to as the pre-image control
action) complements the baseline controller, acting as a metalevel controller and can be viewed as a
primitive mechanism for skill refinement.

4.2 Failure/Success Prediction and Control Composition

The map relating system state to failure expectation can be incrementally constructed over a number
of trials with the use of standard supervised learning algorithms. Its construction encompasses learning
to recognize those regions of the state space in which the baseline controller provides adequate action
sequencing. Such learning problem is considerably easier than building a composition policy from
scratch, as done by the Q-learning procedure (Section 3.6.2). Note that pre-imaging avoids the problem
of searching in the universe of possible control policies (of exponential size on the number of control
modules to compose); instead, pre-imaging constructs a success/failure prediction function. Rather
than assigning credit for trial success to individual actions in each state (as the Q-learning procedure
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does), pre-imaging assigns success expectaction to regions of the state space.

Intuitively, learning to classify a given state as belonging to the success pre-image region is not a
hard problem, because of (1) the topology of the region, and because (2) exact classification is not
required. First, the convergent, asymptotically stable baseline control policy partitions the state space
into domains of attraction corresponding to success and failure attractors, grouping together states in
both success and failure pre-images; very few states will belong to the boundary between failure and
success regions. Such grouping or clustering constrains the topology of the map to be learned and
facilitates learning.

The second simplifying aspect in control pre-imaging is its robustness with respect to erroneous suc-
cess/failure predictions. As long as no attractor state corresponding to a failure is classified as belong-
ing to the success pre-image region, the system will eventually trigger the pre-image control action,
which will presumably bring the system to the success pre-image region.

4.3 PI-Based Grasp Controller

Figure 8 depicts the block diagram for the grasp controller used in our experiments. The baseline
controller used in the implementation was the knowledge-based controller, described in Section 3.6.1.

Baseline Actions
Controller _’< ; >_ —

Pre-Image .
Actions W

State

+ triggers
F/S Predictor

1

Figure 8: Grasp controller.

Failure/Success Predictor: The F/S predictor module computes success expectation, given the

current system state. The Failure/Success (F/S) predictor was implemented as a neural network

with two units for input of state information, three hidden units (one hidden layer) and one output

unit (success expectation). Both the hidden and the output units were logistic units; the squashing

tf;tﬁnctio_n hfizmployed was the bipolar sigmoid function. Standard backpropagation was used to update
e weights.

The F/S predictor was trained over 10 epochs, using the same scheme described for the Q-learning
based grasp controller: each epoch consisted of 90 grasp trials, on 9 different objects. A total of 900
grasp trials were attempted, or 100 trials for each object.

In the beginning of each trial, four contacts were positioned randomly on the object’s surface. From
this point on, the controller would proceed to convergence or until the 300** control step, whichever
event comes first. Once the trial was over, the grasp solution was labeled as either failure or as success.
and this label was attached to all states visited in that particular trial. At the end of each epoch, a

26



fraction® of all visited states and respective labels was presented in random order as training instances
to the F/S predictor module.

Pre-Image Actions: In the event of failure prediction, some corrective action must be taken. Con-
ceptually, there are two alternatives: (1) corrective actions can be designed for the specific problem, or
(2) corrective actions can be computed using the predictor module itself. The predictor module effec-
tively maps state to expected reinforcement; if implemented by a neural network, the forward model
constructed can be used to compute how expected reinforcement varies with respect to state variables.
This technique has been used before [19, 22], to refine the performance of an existing controller.

Our implementation employs the first option: once failure is predicted, the pre-image action adds a
zero mean, gaussian noise signal, bounded to [—0.05,0.05] radians (standard deviation o = 0.0167),
to the current control gradient. We shall see that this small perturbation works efficiently to divert
the system towards states upstream of successful grasp configurations.

4.4 Results

Figure 9 is the plot of average failure rate as a function of the number of training epochs, for the
Pl-based grasp controller (plot (a)) and the knowledge-based controller (plot(b), averaged over 500
epochs). For comparison purposes, the corresponding plot for the Q-learning based controller and is
also shown (plot (c)). In all cases, an epoch consists of 90 grasp trials, or 10 grasp trials for each
object in the object set. The F/S predictor module is used following the 10** epoch to activate the
pre-image control action.
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Figure 9: Average failure rate, for (a) PI-based controller, (b) knowledge-based controller, and (c)
Q-learning based controller. Each epoch consists of 90 grasp trials, or 10 grasp trials per object. Plots
are smoothed by averaging raw data over a 10-epoch wide sliding window.

Figure 10(a) displays a typical path in state space, for the knowledge-based controller during the
four contact grasp of a square object. Starting from the contact configuration shown in (c), the
controller drives the system from the initial state in the right upper corner (corresponding to high

5A number of training instances corresponding to success states was discarded such that both success and failure
states would have roughly the same representation on the set of training instances.
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force and moment closure errors) to a failure attractor (marked by an “X"). Figure 10(b) shows the
corresponding path for the PI-based controller. Departing from the same initial configuration, the
controller manages to converge to a success attractor (marked with “O”). Notice that object geometry
affects the relation between epc and eys¢c, affecting both the shape of the path in state space and the
position and number of success and failure attractors.

Initial configuration
/\ (both paths)

oif E Final configuration
(know.-based controller)
s 1 e ) Final configuration
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MC error

MC error
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®
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Figure 10: Paths for (a) knowledge-based controller (converging to failure attractor), and (b) for
the PI-based controller (converging to success attractor); (c) initial and final configurations, for both
paths.

Figure 11(a) shows the output of the F/S predictor module over the state space (higher values denote
greater failure expectation). As shown, failure expectation is high for great values of eyc. Figure
11(b) shows the relative frequency each state in the state space is visited, for the knowledge-based
controller attempting a four contact grasp of a square object. The two peaks correspond to the success
and failure attractors; not surprisingly, the failure attractor is in the failure pre-image region. The final
grasp configuration for both the failure and success attractors are also shown. Figure 11(c) shows the
corresponding plot for the PI-based controller. Notice that only the peak corresponding to satisfactory
solutions is present — no unsatisfactory solution was generated.

(a) (b) ()

Figure 11: (a) Failure expectation, as a function of state. Relative frequency each state is visited for
(b) knowledge-based controller and (c) PI-based controller. The grasp configurations corresponding
to the failure and the success attractors are also shown in (b).

After the training stage, the performance of the knowledge-based, Q-learning, and Pl-based controller
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Table 2: Average failure rate per object, for different implementations and experiments.

Failure Rate (%)

Object Knowledge-Based | QL | PI-Based Controller
Controller (a) (b) | (¢ (d)
Triangle 17.00 14.50 | 0.00 1.00
Square 20.50 9.00 | 0.00 0.00
Pentagon 0.00 0.00 | 0.00 0.00
Hexagon 0.00 0.00 | 0.00 0.00
Irreg. Triangle 20.50 22.00 | 2.50 2.50
Rectangle 12.00 3.50 | 0.00 0.00
Trapezoid 2.00 2.50 | 0.50 0.00
Irreg.Pentagon 18.50 23.00 | 0.00 0.50
Irreg.Hexagon 0.20 0.50 | 0.00 0.00
Average 10.06 8.33 | 0.33 0.44

yvasT aislesged for the four contact null grasp task of planar objects. Several experiments are summarized
in Table 2.

Knowledge-Based and Q-Learning Based Controller: For comparison, the results obtained for
the knowledge-based controller and the Q-learning based controller in Section 3.6.3 are repeated in
columns (a) and (b) of Table 2.

The F/S predictor module was trained under two different conditions: for the first condition, it was
trained for a total of 900 grasps, or 100 grasp trials per object. All objects in the object set took
part on the training stage. For the second condition, a total of 500 trials were performed on 5 objects
(triangle, square, trapezoid, irregular pentagon, and irregular hexagon).

For both conditions, the resulting grasp controllers were subsequently tested over 200 grasp trials for
each object in the object set. The corresponding average percent failure rates are listed under columns
(c) and (d), respectively for training over all objects and training over 5 objects. In these experiments,
each grasp trial would proceed for at most 300 control steps, or until convergence.

Grasp Configurations: Besides comparing failures rates, it is important to check the grasp configu-
rations generated by each controller. Figure 12 displays all grasp configurations generated by different
control composition schemes, namely knowledge-based (baseline controller), Q-learning derived com-
position, and the PI-based composition. For each grasp configuration, the corresponding grasp score
(Equation 3.5) and the percentage of trials in which the configuration was generated is reported.

4.5 Discussion

The results in Table 2 show that the Pl-based grasp controller performs remarkably well under the
experimental conditions. All objects in the set can be grasped with fewer than 300 cox_ltrol steps, with
exception of the irregular triangle and the trapezoid. Also, training over a reduced object set does not
significantly affect system performance.

Control pre-imaging is efficient in terms of number of learning trials per object until convergence:

it required 100 trials per object, compared to 5,000 for the Q-learning implementation. Such effi-
ciency increase can be credited to the use of prior system expertise as a starting point, even if such
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Figure 12: Configurations generated by different composition schemes. The number immediately on
the right of the object is the corresponding grasp score; the percents to the right reflect how many times
the particular grasp configuration was generated using the baseline (knowledge-based) composition,

Q-learning derived composition, and composition through control pre-imaging, respectively from top
to bottom.
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existing system expertise is far from perfect. According to Figure 9, the performance delivered by
the knowledge-based controller (in terms of average failure rate) is only matched by the Q-learning
implementation after approximately 300 epochs. Also, it is important to emphasize that control pre-
imaging involves a different learning problem - it identifies successful patterns of interaction between
the existing controller and the object, rather than building a control policy from ground zero.

The results in Table 2(d) indicate that a very good composition policy can be derived even if a subset
of the objects is used to train the F/S predictor module; the resulting composition policy has general
applicability over this set of convex objects.

One can evaluate grasp controllers by computing their average score over all objects:

ZfSGs
1

where 7 is the number of objects in the training set, m is the number of different grasp configurations for
each object, f is the frequency the grasp configuration was generated, and Sg the corresponding grasp
score. For the objects in the training set, the knowledge-based controller has a score of S = 0.172;
for the Q-learning controller, S = 0.189. The PI controller overall score is Sg = 0.138. Therefore,
the knowledge-based controller produces grasp configurations with better scores in average than the
Q-learning controller; however, the Q-learning controller fails less than the knowledge-based controller,
according to our success/fail criteria.

o=

3=
HM:

Notice that pre-imaging was designed to generate successful configurations, not necessarily the optimal
ones. Therefore, the overall score reflects the decision to label every grasp configuration with Sg < 0.4
as a success. It is plausible that by lowering the threshold (e.g., S¢ < 0.3) a better overall score Sg
could be obtained, at a cost of extended training and/or a more sophisticated F/S predictor module.

The results in Section 2 indicate that learning a control function using atomic actions as the building
blocks may be implausible for our objectives; the results in this section suggest that control pre-
imaging can provide an efficient alternative to learning from scratch a composition function for each
individual controller. The unique aspect of our work is the synergy between control and learning:
we have shown how learning augments an existing controller, and how the its control actions can be
exploited to speed up the learning process. :
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5 Experimental Implementation

The grasp controller was used within the context of a pick-and-place task, where several control
modules were integrated into a system capable of performing autonomous, collision-free reaching and
grasping of wood blocks placed over a table at arbitrary positions.

Figure 13: Experimental setup, showing the GE P50 robot arm and the Utah/MIT hand carrying an
object with a top grasp.

5.1 Task Description

The task consisted of grasping one wood block, positioned among several others over a table, lifting
and placing it at another point on the table. Both the object and the delivery point are specified
by the user by clicking a mouse on the overhead image of the cluttered table. This is the only user
intervention in the system that is otherwise completely autonomous.

Both the FC and MC controllers were developed based on the assumption that normal and position for
each contact were available, ideally through tactile feedback. In this experiment, no tactile feedback
was available; vision was used to derive contact normal and position information. Figure 13 shows the
experimental setup. Grasps are performed by a Utah/MIT hand, attached to a GE P50 robot arm.

Objects: The wood blocks were approximately 20 cm in height, and with maximum distance between
edges of 5 cm (for the rectangle). All objects were prisms with polygonal bases ranging from triangles
to hexagons, in their regular and irregular versions.
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Figure 14: Finite state machine for controller sequencing.

5.2 Control Architecture

Several control modules were assembled together for this task, and these control modules were se-
quenced through a finite state machine, shown in Figure 14.6 A complete description of every module
is beyond the scope of this document: in what follows, we give a brief account of each control module:

Select/Model: In the beginning of the task cycle, the total number of objects and their approximate
position on the table is determined by analyzing the overhead image of the table and objects. The user
starts the cycle by selecting the object to be grasped; this selection is done directly on the overhead
image, by clicking on the object image. The Hough edge detection algorithm is then used to extract
a 2D object contour model, which is extruded in the z direction. The object contour is modelled as
ahp_olygon, and the vision algorithm provides with the object centroid, number of edges and overall
shape.

Coarse Reach: Harmonic path computation [10] is used to compute a path from the current arm
configuration to a configuration where the hand is close to the object. All objects are mapped as
obstacles on a four-dimensional c-space, as well as the table and the robot itself. Harmonic functions
are formal control surfaces with no local minima that permit multiple goals and that avoid all observed
obstacles. It can be used to navigate the hand/arm through a cluttered environment as well as to
navigate the hand/arm/object in this environment. The path computed determines whether a top or
lateral grasp will be executed; the user does not specify the final approach strategy. :

Fine Reach: Focus shifts from macroscopic collision avoidance to controlling the contact configuration
between the hand and the object. Due to c-space discretization, the coarse reach will not necessarily
converge with the hand in a position in which the reachability criterion is satisfied for all fingers. The
fine reach module is another harmonic motion controller that postures the hand so as to minimize the
distance between the fingertips and points projected over the object surface.

Posture Control: Typically, the fine reach module will position the fingers in a bad kinematic
configuration. The posture control module (described in [16]) reconfigures the arm such as to maximize
the hand manipulability, while maintaining the current fingertip positions. The combined effect of
transitioning back and forth between the fine reach and posture control module is to approach the
hand to the object, while keeping the fingers in a good kinematic posture.

5The finite state machine integrates the research effort of many individuals in the Laboratory for Perceptual Robotics
at UMASS, namely C. Connolly, M. Huber, R. Grupen, K. Souccar, and the author.
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Wrench Closure: Once all fingers can reach the object, the grasp controller is activated until
convergence, or until the the reachability criterion is no longer satisfied. In the latter case, the system
transitions back to the posture control module, adjusting the arm posture. In the wrench closure
module, the reachability criterion was extended to mark as unreachable configurations in which finger
links penetrates the object. After a number of transitions between both modules, the system reaches
a convergent grasp configuration, in which the object is within reach of all fingers, and the arm is
positioned such as to maximize the hand manipulability. The system transitions then to the grasp
object module.

Grasp Object: This module drives the fingers from their approach configuration (fingers completely
extended) to the virtual finger configuration synthesized by the grasp controller.

Deliver: At this point, the user is prompted to enter a delivery point to which the object should be
moved. Again, this selection is done directly on the overhead image. The path is then computed by
the same harmonic path planning algorithm used in the coarse reach module. Once the delivery is
finished, the hand releases the object and the system returns to the Select/Model module, waiting for
the next user command.

5.3 Experimental Results

It is extremely hard to characterize the performance of one of the component control modules (in
our case, the grasp controller) in isolation. Overall, system performance was very robust, even in the
presence of woes that plague every real world implementation: imprecise object models, discretization
errors, calibration drifts, and kinematic model imprecision. Figure 15 shows a top grasp of an object
with pentagonal base, and a lateral grasp of an object with rectangular base; both grasps are shown
from different perspectives.

Over the course of a number of experiments, no structural problem (i.e., deficits in control partitioning)
was detected. Failures would result after a sequence of mishaps, typically starting with a bad object
model, followed by an imprecise grasp action, that ultimately would cause the object to wobble and
fall after being delivered. Most of the time, imperfect models would not prevent the system from
executing a secure grasp and delivery.
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Figure 15: Grasps synthesized by system. Top row shows two perspectives of the lateral grasp of a

rectangular prism, while bottom row shows the top grasp of a pentagonal prism.
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6 Conclusion and Future Work -

A very efficient grasp controller for general 3D shapes was tested empirically on convex objects. It is
able to synthesize grasp configurations through successive, locally optimal configuration refinements,
given position and normal of each contact. The grasp controller itself consists of a set of independent
controllers (one for each contact) of complexity O%-?rz) on the number of contacts. Despite its inexpensive
implementation and minimal requirements in terms of sensory information, it manages to generate
stable grasp configurations for all objects in the training set within a bounded number of iterations.

The existence of formally derived, highly competent grasp controllers is what distinguishes our ap-
proach from other grasp synthesis approaches. These controllers provide for an operational state space
representation for grasping, structure and simplify control composition, and ultimately enhance gener-
alization across the problem domain. Furthermore, as demonstrated in Appendix A, these controllers
make possible the use of optimal control techniques in problem domains traditionally out of their scope
(e.g., grasp synthesis). For the first time, optimal control techniques were demonstrated in the grasp
synthesis problem, establishing a connection to a large body of literature and methods, yet to be fully
reviewed.

This whole thesis was developed to address deficits in composition-based control architectures, pro-
viding context sensitivity and incrementally extending controller competency. By identifying regions
of the state space in which the grasp controller is prone to fail, the PI technique links the state space
and controller, simplifying the partitioning of the state space and the composition problem. It also
provides a primitive skill acquisition mechanism for incremental incorporation of new controllers to
existing control structures. The method is efficient in terms of memory and number of training in-
stances required. Overall, the results obtained suggest that predictable, efficient control structures for
complex systems can be constructed from formally designed control modules.

Future Work: There is more to grasp synthesis than placing the contacts at the right position on
the object’s surface. The proposed contact configuration may be rendered infeasible by manipulator
kinematics, the required forces over the object for stable grasp may not be deliverable by the manip-
ulator, and there are also issues related to dynamic characteristics of the grasp. A nice way to verify
how our approach scales with the number of controllers would be to augment the composite controller
with an extra controller to address the manipulator prerogatives in the grasp synthesis process.

Another important extension is to build a grasp controller for both convex and concave objects. It
appears possible to extend the current framework by developing a grasp controller that incorporates
local curvature information about the object surface. Curvature can be estimated locally either by
vision algorithms or contact estimators, but these possibilities are still to be explored.
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A Control Composition as an Optimal Control Problem

All alternatives to the control composition problem discussed in this paper assumed that only partial
information about the object is available: the moment closure controller just requires position and
normal of each contact, and the force closure controller requires only contact positions. Although this
is probably the most accurate scenario for control of real-world complex systems, one can do better if -
complete or very good models about the problem is available, using optimal control techniques.

In this appendix, the composition problem is solved optimally, with respect to time. The objective
is to demonstrate once again the utility of the grasp controllers discussed previously — because such
controllers are available, the optimal control problem can be formulated. Also, portraying the grasping
of an object as an optimal control problem serves to illustrate yet another solution strategy to the
grasp synthesis problem.

A.1 Problem Description

In order to keep the presentation clear, a small and somewhat constrained version of the grasp synthesis
problem was chosen to illustrate our point. There is no impediment to using the technique discussed
below to the unrestricted grasping problem, involving grasps with n moving contacts. For the general
control composition problem, the only requirement is differentiability of the metric being optimized
and the constituent controllers. See [7] for a introduction to Optimal Control Theory.

Figure 16: (a) Initial configuration (b) Final configuration.

The problem consists in finding out how to change the activation of both the force and moment closure
controllers, such as to minimize the number of control steps required to take the system from the initial
to the final configuration (see Figure 16). For simplicity, we will consider that just one contact moves
over the object surface, while the other stays fixed at its initial position. Also, we will assume that
the activation for the moment closure controller is constrained to be (1 — a), where a € [0,1] is the
activation for the force closure controller.

A.2 Problem Formulation

Maximize T
V= / —ewo(0) dt
1]
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Subject to

o) = -k (aely - 2oucl))
6(0) = 0.0, 6(T)unknown

a € [0,1]

In the formulation above, ewc is the wrench closure error (Equation 11). If the task is to achieve null
grasp of a square with two contacts then

(2tané - 1)?
+
16
where F is a constant corresponding to the force error incurred in positioning the moving contact in

the various faces of the square. For the face corresponding to § = 0, E = 1; for faces corresponding to
0 =m/2 and 8 = 37/2, E = 0.5, and for the face corresponding to § = 7, E = 0.

ewc(f) =E

Similarly, erc is the force closure error, expressed as
erc(0) = 0.5 x (1 + cos(6 — 3)),

being G the angle for the fixed contact. In the development that follows, the first and second derivatives
of ewc and epc with respect to 6 will be required:

d Ewce _ 2tanf -1
dfd = 4cos?6

d’ewe _ 8+2(tanf —1)sin26
ez 16 cos* 6

déro = -0.5sin(8 - B)
dé

% = —0.5cos(8 - B)

The Hamiltonian function for the problem can now be expressed as
dé

t)—.
) dt

The costate variable ) is an auxiliary variable required by the method [7]. The Maximum Principle
conditions are

H(t,0,a,)) = —ewc(s) + A

H(t,0,0",)) > H(t0,a,)) Vtel[0,T]| (15)
a(t) = 68—11
_ derc() dewc(9)
- k(a 200 4 (1~ )2t ) (16)
2
+ A(ad;€;20+(1— )2 ) (17)
MT) = 0
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Equation 15 means that the resulting Hamiltonian H is to be maximized over time, and a*(t) is the
activation policy that maximizes it. Notice that selecting a such that %—5 = 0 does not cover all cases,

because of the constrained range of values o can assume — it might be the case that o* corresponds
to one value in the limits of the closed interval {0, 1], for example. And this is the case for the problem

we are interested in, because 2% does not depend on o:

oH (déFc_dt'wc)
da do do

Therefore, the time optimal policy for this particular problem implies switching a from 0 to 1 and
back. This optimal pattern can be easily computed by integrating Equations 16 and 17 above over
time:

1. Initialize \;

2. Compute 2&; if 2£ > 0, select o = 1; otherwise, make o = 0;
3. Compute 6,,, = 6,At;

4. Compute A¢y; = /'\gAt;

5. Check for convergence on §; return to (ii) above if not converged.

A.3 Results

In all results, we used A(0) = 5, and At = 0.01. The method is not sensitive to the values chosen for
these parameters; an ample range of values can be used. However, selecting a low initial value for A
may result in solutions corresponding to local minima. The fixed contact is stationed at § = —0.46365

radians.
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Figure 17: Evolution of § with time.

Figure 17 shows how @ varies with time. Starting from 8(0) = 0.0, the contact progresses steadily to
the optimal solution 8(T) = 3.6052 radians. Figure 18 shows the optimal activation pattern for o as
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a function of time. Figure 18 also displays the corresponding areas on the object surface where the
force closure controller was selected; for the white areas, @« = 1. Gray areas correspond to where in
the object the moment closure controller was selected (a = 0).
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Figure 18: Time optimal activation pattern during the grasp. a = 1 corresponds to full activation of
the force closure controller, while o = 0 corresponds to full activation of the moment closure controller.
In the inset, gray areas correspond to where in the object’s surface a = 0; white areas mark the areas
where a = 1.

A.4 Discussion

Notice that, as long as the metric chosen to be optimized doesn’t depend on the intermediate activa-
tions a(t), the time optimal activation policy will always be a bang-bang type solution, no matter the
object being grasped.

Another interesting aspect is the fact that this approach also yields an effective grasp controller:
just by evaluating %—g one can decide on the next activation . What remains to be determined is
how robust is this controller with respect to object geometries, and uncertainties on actuation and
sensory information. Because this approach essentially involves integration over time, it is not clear
how to revise the control history incrementally: presumably, a object model is being continuously or
periodically updated, and sensory data may yield discontinuities in the state information. How to
accommodate such changes in the control scheme is yet to be determined.
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B Knowledge-based Controller Characterization

The Luce’s rule formulation (see Section 3.6.1) used in the implementation of the knowledge-based
controller is an approximation to the following discrete composition rule

if (epc > T

i~

arpc 1.0

Cpme = 0.0
else

arFc 0.0

ayc = 1.0,

where 7 is a threshold set to an arbitrarily small valué. The decision of setting 7 to a small value
reflects a domain-derived heuristic, namely to give precedence to FC controller over the MC controller.
As 7 — 0, the only convergent solutions allowed are those corresponding to grasp configurations in
which both ez¢ and epc are minimized by the current contact configuration. Notice that the decision
rule adopted constrains the set of possible solutions. Figure 19(a%ughows grasp solutions that are
not generated due to the heuristic nature of the composition rule adopted; Figure 19(b) shows the
equivalent configurations generated instead.

Figure 19: (a) Grasp solutions excluded due to the composition rule adopted. (b) Corresponding
solutions generated by the knowledge-based controller.

Formally, the universe of possible solutions corresponds to the solutions of the following system of
non-linear equations:

([ tpo + L300, cos(6:)cos(¢:) = 0

try + L S0, sin(6;)cos(¢;) = 0
tfz + ;l;- E?:l sm(d:,) =0 (18)

| tme = & Sy e =0

tmy — % Y1 Myi =0

L tmz — %z:;:l Mz =0

The number of contacts n, task vector ¢, and the particular object geometry determine the number
of solutions, ranging from no solution to infinite solutions. In most situations, the system exhibits
a great deal of redundancy, admitting an infinite number of solutions. However, it is hard to show
the existence of solutions without duly specification of the task vector, the class of objects, and the
number of contacts n.
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B.1 Convergence Properties

Assuming ¢ = 0 and the class of regular polygons, it is possible to show that knowledge-based controller
always converges to the optimal solution, for 2 contacts.

Theorem B.1  For the class of regqular polygons and n = 2, the knowledge-based controller wll
always converge to a solution that globally minimizes emc, as expressed in Equation 11.

Proof: The proof consists in showing that (a) the system initially converges to a FC solution, and then
(b) it converges to a MC solution while keeping erc = 0. The generated solution minimizes globally
Equation 11 because no moment residuals are present, while the force residuals of two-fingered grasps
cannot be eliminated for polygons with an odd number of edges.

Part (a) follows from the properties of the modified FC controller, that is convex and unimodal over
the whole domain by construction (as expressed by Equation 7); part (b) is proved in Lemma .1.

Lemma .1 Following convergence to a FC solution, the knowledge-based controller will always con-
verge to a MC solution while keeping epc = 0.

Proof: For the conditions stated in Theorem B.1, Equations 18 are reduced to

Tlocos(6) = 0
Tl psin(8) = 0

E::O m.i = 0'
The first two equations are satisfied for 8, = 6, + 7, as can be readily verified.

For convenience, the edges of the regular polygon are numbered from 0 to n—1, in the counterclockwise
direction. Without loss of generality, it is assumed that contact 0 is positioned in edge 0, following

convergence of the FC controller. Given that 6, = 6, + 7, contact 1 is positioned in edge Lﬂ"z"ﬂilj.
The respective moments for contacts 0 and 1 are

My = T'ta-n(go - enO)
Mz, = rta.n(91 - 0,;1),

where 6,9 and 6,, are the normal angles for the convergent edges of contacts 0 and 1. From Figure
20, it is easy to see that 6,0 = Z, and 0,, = £ + %[ﬂf’;"ilj

In order to show convergence to a MC solution, it is sufficient to evoke the convexity of the MC
controller, and prove that there exist a solution 85 such that 85 € (0,...,2r/n) (i.e., the MC controller
will drive the contacts to a stable configuration without ever causing the contacts to change edges).
Such a solution is achieved when

0,,1 T T 61 T T
. )=+ ——- =, 2+ —+= 2
(65, 67) (2 +2n 2’ 2 +2n+2) (20)

After verifying that (65,07) is a solution for Equations 19, one must show that 83 € (0,...,27/n).
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Figure 20: Generic regular polygon.
Lemma .2 63 € (0,...,27/n).

Proof: Observe that 8,, € [m,...,2Z[2] + Z], V6 € [0,...,27/n], n > 3. Substituting the lower
bound of 8, in Equation 20:

0.1 T T T T T
= — —_—— > - —_—— —
6 2 Tm 222 ;w2

T
g > — > 0.

0 = 92pn 0

Similarly, replacing 6,; by its upper bound yields an upper bound for 65 :

0,1 T T _ TN T T 0w
- — nl — < = AN sz
% 2 tam 2 SRttt 3
= I4+I-Z
n 2 n 2
For n even:
T .n T T ™M T w
L] < = —_ e == e —_— —
b = n[2]+n 2 n2+n 2
. T
00 S E.
For n odd:
T.n T T T T
* < Z[= o _- - i o=
b = nl-2‘I n 2 n(|‘2J+1) 2
_ @ mpy_x _ el 7
T n n'2 27 n n 2 2
2 T 27
< — . — <20
b5 < n 2n< n

To conclude the proof of Lemma .1 and Theorem B.1, it remains to show that the actions of the MC
controller preserve epc = 0, as contacts move from (6, 6:) to (6g,6;). It suffices to show that the MC
controller moves both contacts by the same amount, therefore preserving the relation 8, = 6, + 7.
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Lemma .3 Both contacts in any two-fingered grasp configuration over a regular polygon have the
same MC gradient, for the null grasp task.

Proof: Equation 12 computes the MC gradient for both contacts. The difference (epc —€}4c) between
the error associated with the current grasp configuration and the error due to force residuals is the
same for both contacts. Thus, the proof resides in showing (6o — 65) = (6, — 67).

As it turns out, 6] = 6 4+ Yi_ 0, and 07 = 8 + T i 0n; therefore, (6 — 65) = (6, — 6}) =
Tizo(0i — 6n:) O

Notice that Lemma .3 does not hold for the non-convex version of the MC controller; however, a
modified version of the non-convex controller, in which both contacts are moved according to the
minimum MC gradient of all contacts, would still preserve the relation 6, = 8 + 7 and the validity of
Theorem B.1.

The approach above can be extended to prove the completeness of the knowledge-based controller for
three contact grasps of regular polygons. However, as the number of contacts grows, the family of
force closure solutions expands, increasing the complexity of completeness proofs. No counter example
to demonstrate that the knowledge-based controller is not complete has been found, for the null grasp
task involving a variable number of contacts; a completeness proof for an arbitrary number of contacts
remains as future work.
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