
Designing a Family of Coordination Algorithms

Keith S. Decker and Victor R. Lesser
Department of Computer Science

University of Massachusetts, Amherst, MA 01003
DECKER@CS.UMASS.EDU

UMass Computer Science Technical Report 94–14
August 9, 1995

Abstract

Many researchers have shown that there is no single best organization or coordination
mechanism for all environments. This paper discusses the design and implementation of an
extendable family of coordination mechanisms, called Generalized Partial Global Planning
(GPGP). The set of coordination mechanisms described here assists in scheduling activities for
teams of cooperative computational agents. The GPGP approach has several unique features.
First, it is not tied to a single domain. Each mechanism is defined as a response to certain
features in the current task environment. We show that different combinations of mechanisms
are appropriate for different task environments. Secondly, the approach works in conjunction
with an agent’s existing local planner/scheduler. Finally, the initial set of five mechanisms
presented here generalizes and extends the Partial Global Planning (PGP) algorithm. In
comparison to PGP, GPGP schedules tasks with deadlines, it allows agent heterogeneity, it
exchanges less global information, and it communicates at multiple levels of abstraction. We
analyze the performance of several GPGP algorithm family members and one centralized upper
bound reference algorithm, using data from simulations of multiple agent teams working in
abstract task environments. We show how to decide if adding a new mechanism is useful,
and suggest a way to prune the search for an appropriate combination of mechanisms in an
environment.

A shorter version of this paper appeared in the Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS-95), San Francisco, June 1995. This work was supported by DARPA
contract N00014-92-J-1698, Office of Naval Research contract N00014-92-J-1450, and NSF contract
IRI-9321324. The content of the information does not necessarily reflect the position or the policy of
the Government and no official endorsement should be inferred.

1 Introduction
This paper presents a formal description of the implementation of a domain independent
scheduling coordination approach which we call Generalized Partial Global Planning (GPGP).
The GPGP approach consists of an extendable set of modular coordination mechanisms, any
subset or all of which can be used in response to a particular task environment. Each mechanism
is defined using our formal framework for expressing coordination problems (TÆMS [8]). GPGP
both generalizes and extends the Partial Global Planning (PGP) algorithm [10].

Our approach has several unique features:

Each mechanism is defined as a response to certain features in the current subjective task
environment. Each mechanism can be removed entirely, or can be parameterized so that
it is only active for some portion of an episode. New mechanisms can be defined; an initial
set of five mechanisms is examined that together approximate the original PGP behavior.
Eventually we intend to develop a library of reusable coordination mechanisms. The
individual coordination mechanisms rest on a shared substrate that arbitrates between
the mechanisms and the agent’s local scheduler in a decision-theoretic manner.

GPGP works in conjunction with an existing agent architecture and local scheduler. The
experimental results reported here were achieved using a ‘design-to-time’ real-time local
scheduler developed by Garvey [13].

GPGP, unlike PGP, is not tied to a single domain. GPGP allows more agent heterogene-
ity than PGP with respect to agent capabilities. GPGP mechanisms in general exchange
less information than the PGP algorithm, and the information that GPGP mechanisms
exchange can be at different levels of abstraction. PGP agents communicated com-
plete schedules at a single, fixed level of abstraction. GPGP mechanisms communicate
scheduling commitments to particular tasks, at any convenient level of abstraction.

The GPGP approach views coordination as modulating local control, not replacing it. This
process occurs via a set of domain-independent coordination mechanisms that post constraints
to the local scheduler about the importance of certain tasks and appropriate times for their
initiation and completion. An example of a GPGP coordination mechanism is the one that
handles simple method redundancy. If more than one agent has an otherwise equivalent
method for accomplishing a task, then an agent that schedules such a method will commit to
executing it, and will notify the other agents of its commitment. If more than one agent should
happen to commit to a redundant method, the mechanism takes care of retracting all but one
of the redundant commitments.

By concentrating on the creation of local scheduling constraints, we avoid the sequentiality
of scheduling in the original PGP algorithm that occurs when there are multiple plans. By
having separate modules for coordination and local scheduling, we can also take advantage of
advances in real-time scheduling to produce cooperative distributed problem solving systems
that respond to real-time deadlines. We can also take advantage of local schedulers that have
a great deal of domain scheduling knowledge already encoded within them. Finally, our
approach allows consideration of termination issues that were glossed over in the PGP work
(where termination was handled by an external oracle). Nothing in TÆMS the underlying

1

task structure representation, requires agents to be cooperative, antagonistic, or simply self-
motivated.

Besides the obvious connections to the earlier PGP work, GPGP builds on work by
von Martial [20] in detecting and reacting to relationships (such as von Martial’s “favor”
relationship). GPGP also uses a notion of social commitments similar to those discussed by
[2, 19, 1, 15]. Durfee’s newer work [9] is based on a hierarchical behavior space representation
that like GPGP allows agents to communicate at multiple levels of detail. The mechanisms
presented in this paper deal with coordination while agents are scheduling (locating in time)
their activities rather than while they are planning to meet goals. This allows them to be
used in distributed scheduling systems, agenda-based systems (like blackboard systems), or
systems where agents instantiate previous plans (like case-based planning systems). The focus
on mechanisms for coordinating schedules is thus slightly different from work that focuses
on multi-agent planning [14, 11]. Shoham and Tennenholtz’s ‘social laws’ approach [18] can
be viewed as one which tries to change the (perceived) structure of the tasks by, for example,
restricting the agents’ possible activities. Intelligent agents might use all of these approaches at
one time or another.

The next section will briefly re-introduce our framework for representing coordination
problems, and summarize the assumptions we make about an agent’s internal architecture.
We then describe the GPGP substrate and five coordination mechanisms. Previous work has
shown how the GPGP approach can duplicate and extend the behaviors of the PGP algorithm
[5]; Section 4 summarizes several new results that are reported in [4] concerning this approach’s
performance, adaptability, and extendibility. We conclude with a look at our future directions.

1.1 Representing The Task Environment

Coordination is the process of managing interdependencies between activities [17]. If we view
an agent as an entity that has some beliefs about the world and can perform actions, then the
coordination problem arises when any or all of the following situations occur: the agent has
a choice of actions it can take, and that choice affects the agent’s performance; the order in
which actions are carried out affects performance; the time at which actions are carried out
affects performance. The coordination problem of choosing and temporally ordering actions
is made more complex because the agent may only have an incomplete view of the entire task
structure of which its actions are a part, the task structure may be changing dynamically, and
the agent may be uncertain about the outcomes of its actions. If there are multiple agents in
an environment, then when the potential actions of one agent are related to those of another
agent, we call the relationship a coordination relationship. Each GPGP coordination mechanism
is a response to some coordination relationship.

The TÆMS framework (Task Analysis, Environment Modeling, and Simulation) [8] rep-
resents coordination problems in a formal, domain-independent way. We have used it to
represent coordination problems in distributed sensor networks, hospital patient scheduling,
airport resource management, distributed information retrieval, pilot’s associate, local area net-
work diagnosis, etc. [4]. In this paper we will describe an agent’s current subjective beliefs

These five mechanisms are oriented towards producing PGP-like ‘cooperative team’ behavior. Mechanisms
for self-interested agents are also possible.

2

about the structure of the problem it is trying to solve by using the TÆMS framework [8, 4].
For this purpose, there are two unique features of TÆMS. The first is the explicit, quantitative
representation of task interrelationships as functions that describe the effect of activity choices
and temporal orderings on performance. The second is the representation of task structures at
multiple levels of abstraction. The highest level of abstraction is called a task group, and contains
all tasks that have explicit computational interrelationships. A task is simply a set of lower-level
subtasks and/or executable methods. The components of a task have an explicitly defined effect
on the quality of the encompassing task. The lowest level of abstraction is called an executable
method. An executable method represents a schedulable entity, such as a blackboard knowledge
source instance, a chunk of code and its input data, or a totally-ordered plan that has been
recalled and instantiated for a task. A method could also be an instance of a human activity at
some useful level of detail, for example, “take an X-ray of patient 1’s left foot”.

A coordination problem instance (called an episode) is defined as a set of task groups,
each with a deadline , such as . Figure 1 shows an objective task
group and agent A’s subjective view of that same task group. A common performance goal
of the agent or agents is to maximize the sum of the quality achieved for each task group
before its deadline. A task group consists of a set of tasks related to one another by a
relationship that forms an acyclic graph (here, a tree). Tasks at the leaves of the tree represent
executable methods, which are the actual instantiated computations or actions the agent will
execute that produce some amount of quality (in the figure, these are shown as boxes). The
circles higher up in the tree represent various subtasks involved in the task group, and indicate
precisely how quality will accrue depending on what methods are executed and when. The
arrows between tasks and/or methods indicate other task interrelationships where the execution
of some method will have a positive or negative effect on the quality or duration of another
method. The presence of these interrelationships make this an NP-hard scheduling problem;
further complicating factors for the local scheduler include the fact that multiple agents are
executing related methods, that some methods are redundant (executable at more than one
agent), and that the subjective task structure may differ from the real objective structure.

2 Summary of the GPGP algorithm family approach
This section will provide a quick overview of the GPGP approach. Figure 2 shows a simple
two-agent example that we will use. Each agent has as part of its architecture a belief database,
local scheduler, and coordination module. The local scheduler uses the information in the
belief database to schedule method execution actions for the agent in an attempt to maximize its
performance. We add to this a coordination module that is in charge of communication actions,
information gathering actions, and in making and breaking commitments to complete tasks in
the task structure. The coordination module consists of several coordination mechanisms, each
of which notices certain features in the task structures in the belief database, and responds
by taking certain communication or information gathering actions, or by proposing new
commitments. The coordination mechanisms rest in a shared coordination module substrate
that keeps track of local commitments and commitments received from other agents, and that
chooses from among multiple schedules if the local scheduler returns multiple schedules.

The word ‘objective’ refers to the fact that this is the true, real structure.

3

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

facilitates relationship

agent

T
min

T3
max

T1
max

T2
min

T4
max

B4

A1 B1

B3

Objective Task Group

T
min

T1
max

A1

Agent A initial subjective view Agent B initial subjective view

T
min

T3
max

T1
max

T2
min

T4
max

B4

B1

B3

Figure 1: Agent A and B’s subjective views (bottom) of a typical objective task group (top)

In these environments, the agents attempt to maximize the system-wide total utility (a
quantity called ‘quality’, described later) by executing sequences of interrelated ‘methods’. The
agents do not initially have a complete view of the problem solving situation, and the execution
of a method at one agent can either positively or negatively affect the execution of other methods
at other agents. We will show examples of the effect of the environment on the performance
of a GPGP family member, and show an environment where family member A is better than
B, and a different environment where B is better than A. We will return to the demonstration
of meta-level information being more useful when there is a large amount of variance between
episodes in an environment.

Here is a short example intended only to give the reader a feel for the overall approach.
In Figure 2, both agents have executed an initial information gathering action, and have
their initial views of the task structure (everything in the agents’ belief database except for the
shaded tasks (Tasks 2, 5, D and E), and the relationships touching the shaded tasks). One
of the coordination mechanisms (Mech. 1, update non-local views) performs an information
gathering action to determine which tasks may be related to tasks at other agents (“detect
coordination relationships”). These tasks are then exchanged between the agents, resulting in
the belief databases shown in the figure (including the shaded tasks). Other mechanisms react
to the task structure. One mechanism (Mech. 5, handle soft predecessors) notices that Task 2
at Agent Y Task 5 at Agent X. In order that Agent X might schedule to take advantage
of this, Agent Y’s mechanism makes a local intermediate deadline commitment to complete
its Task 2 by time 7 with minimum quality 45 (you and I may infer that Y intends to execute
Method B, but that local information is not a part of the commitment). A commitment is
made in two stages: first it is made locally to see if it is possible as far as the agent’s local
scheduler is concerned, and then it is made non-locally and communicated to the other agents
that are involved. Note that the deadline on the non-local version of this commitment is later
(time 8) to take into account the communication delay (here, 1 time unit). Similarly, Agent

4

Agent Y

Coordination
Module

Local
Scheduler

Local
Scheduler

Coordination
Module

Agent XBelief
Database

Belief
Database

T
max

T1
min

T4
max

T2
max

T3
min

T5
max

B
7

45

C
5

35

E
5

40

A
8
20

T
max

T1
min

T4
max

T2
max

T3
min

T5
max

D
5

40
F
8
30

T
max

T1
min

T4
max

T2
max

T3
min

T5
max

B
7
45

C
5
35

D
5
40

E
5

40

F
8
30

A
8
20 Q-effect: 0.5, D-effect: 0.5

Deadline: 25

B
7

45

E
5

40

A
8

20

Finish = 8
Quality = 20
Violations = Cmt 1, no alternative

Finish = 12
Quality = 45
Violations = none

Commitment 1: Deadline 7, Quality 45

Non-Local Commitment 2: Deadline 6, Quality 40

Finish = 7
Quality = 45
Violations = none

B
7

45

Scheduling
Constraints

Schedules and
alternatives

Non-Local Commitment 1: Deadline 8, Quality 45

Commitment 2: Deadline 5, Quality 40

Results,
Non-local views,
Commitments

Objective
Task Group

Subjective
Task Group

Objective task or method
in the environment

Subjective representation of
another agent's task
(non-local view)

T
min

local task with
quality accrual function min

subtask relationship

enables relationship

local method (an executable task)

facilitates relationship

name
duration
quality

Y

Y Y

YX X

D
5

40

F
8

30

Finish = 16
Quality = 45
Violations = none

Idle 3

Schedules and
alternativesScheduling

Constraints

E
5
40

D
5
40

Figure 2: An Overview of Generalized Partial Global Planning

X has a mechanism (Mech. 3, handle simple redundancy) that notices that either agents X or
Y could do Task 4. Agent X does eventually commit to this task (the process is a bit more
complicated as will be explained later) and communicates this commitment to Agent Y.

In both cases the agents’ local schedulers use the information about the task structure they
have in their belief database, and the local and non-local commitments, to construct schedules.
The local scheduler may return multiple schedules for several reasons we explain later. Each
schedule is evaluated along the dimensions of the performance criteria (such as total final quality
and termination time) and for what (if any) local commitments are violated. If a commitment
is violated, the local scheduler may suggest an alternative (for instance, relaxing a quality or
intermediate deadline constraint). The coordination module chooses a schedule from this set,
and handles the retraction of any violated commitments.

2.1 The Agent Architecture

We make few assumptions about the architecture of the agents. The agents have a database that
holds their current beliefs about the structure of the tasks in the current episode; we represent
this information using TÆMS. The agents can do three types of actions: they can execute
methods from the task structure, send direct messages to one another, and do “information
gathering”. Information gathering actions model how new task structures or communications
get into the agent’s belief database. This could be a combination of external actions (checking
the agent’s incoming message box) and internal planning. Method execution actions cause
quality to accrue in a task group (as indicated by the task structure). Communication actions
are used to send the results of method executions (which in turn may trigger the effects of

5

various task interrelationships) or meta-level information.
Formally, we write to mean agent subjectively believes at time (from

Shoham[19]). We will shorten this to when the particular agent or time is not important.
An agent’s subjective beliefs about the current episode include the agent’s beliefs about task
groups, subtasks, executable methods, and interrelationships (e.g.,

).
The GPGP family of coordination mechanisms also makes a stronger assumption about the

agent architecture. It assumes the presence of a local scheduling mechanism (to be described in
the next section) that can decide what method execution actions should take place and when.
The local scheduler attempts to maximize a (possibly changing) utility function. The current
set of GPGP coordination mechanisms are for cooperative teams of agents—they assume that
agents do not intentionally lie and that agents believe what they are told. However, because
agents can believe and communicate only subjective information, they may unwittingly transmit
information that is inconsistent with an objective view (this can cause, among other things,
the phenomena of distraction). Finally, the GPGP family approach requires domain-dependent
code to detect or predict the presence of coordination relationships in the local task structure.
In this paper we will refer to that domain-dependent code as the information gathering action
called detect-coordination-relationships; we will describe this action more in Section 3.2.

2.2 The Local Scheduler

Each GPGP agent contains a local scheduler that takes three types of input information
and produces a set of schedules and alternatives. The first input is the current, subjectively
believed task structure. Using information about the potential duration, potential quality, and
interrelationships, the local scheduler chooses and orders executable methods in an attempt to
maximize a pre-defined utility function. In this paper the utility function is the sum of the
task group qualities , where denotes the quality of at time as
defined in [8]. Quality does not accrue after a task group’s deadline.

The second input is a set of commitments . These commitments are produced by the
GPGP coordination mechanisms, and act as extra constraints on the schedules that are produced
by the local scheduler. For example, if method 1 is executable by agent and method 2 is
executable by agent , and the methods are redundant, then one of agent ’s coordination
mechanisms may commit agent to do method 1. Commitments are social—directed to
particular agents in the sense of the work of Shoham and Castelfranchi [1, 19]). A local
commitment by agent becomes a non-local commitment when received by another agent

. This paper will use two types of commitments: is a commitment to ‘do’
(achieve quality for) and is satisfied at the time when ; the second type

is a ‘deadline’ commitment to do by time and is satisfied at the time
when . When a commitment is sent to another agent, it also implies
that the task result will be communicated to the other agent (by the deadline, if it is a deadline
commitment).

The third input to the local scheduler is the set of non-local commitments made
by other agents. This information can be used by the local scheduler to coordinate actions
between agents. For example the local scheduler could have the property that, if method
is executable by agent and is the only method that method at agent (and

6

agent knows this), and , then for every schedule
produced by agent , (in other words, agent only schedules the
enabled method after the deadline that agent has committed to.

A schedule produced by a local scheduler will consist of a set of methods and start
times: . The schedule may include idle time, and the
local scheduler may produce more than one schedule upon each invocation in the situation
where not all commitments can be met. The different schedules represent different ways
of partially satisfying the set of commitments. The function returns the set
of commitments that are believed to be violated by the schedule. For violated deadline
commitments the function returns an alternative
commitment where such that if such a exists, or
NIL otherwise. For a violated commitment an alternative may contain a lower minimum
quality, or no alternative may be possible. The function returns the estimated
utility at the end of the episode if the agent follows schedule and all non-local commitments
in are kept.

Thus we may define the local scheduler as a function returning a set
of schedules . More detailed information about this kind of interface
between the local scheduler and the coordination component may be found in [12]. This
is an extremely general definition of the local scheduler, and is the minimal one necessary
for the GPGP coordination module. Stronger definitions than this will be needed for more
predictable performance, as we will discuss later. Ideally, the optimal local scheduler would
find both the schedule with maximum utility and the schedule with maximum utility
that violates no commitments . In practice, however, a heuristic local scheduler will
produce a set of schedules where the schedule of highest utility is not necessarily optimal:

.

3 Five GPGP Coordination Mechanisms
The role of the coordination mechanisms is to provide information to the local scheduler that
allows the local scheduler to construct better schedules. This information can be in the form
of modifications to portions of the subjective task structure of the episode or in the form of
local and non-local commitments to tasks in the task structure. The five mechanisms we will
describe in this paper form a basic set that provides similar functionality to the original Partial
Global Planning algorithm as shown in [5]. Mechanism 1 exchanges useful private views of
task structures; Mechanism 2 communicates results; Mechanism 3 handles redundant methods;
Mechanisms 4 and 5 handle hard and soft coordination relationships. More mechanisms can
be added, such as one to update utilities across agents as discussed in the next section, or to
balance the load better between agents. The mechanisms are independent in the sense that they
can be used in any combination. If inconsistent constraints are introduced, the local scheduler
will return at least one violated constraint in all its schedules. Since the local scheduler typically
satisfices instead of optimizes, it may do this even if constraints are not inconsistent (i.e. it
does not search exhaustively). The next section describes how a schedule is chosen by the
coordination module substrate.

7

3.1 The GPGP Coordination Module Substrate

All the specific coordination mechanisms rest on a common substrate that handles information
gathering actions, invoking the local scheduler, choosing a schedule to execute (including
dealing with violated or inconsistent commitments), and deciding when to terminate processing
on a task group. Information gathering actions include noticing new task group arrivals and
receiving communications from other agents. Information gathering is done at the start of
problem solving, when communications are expected from other agents, and when the agent
is otherwise idle. Communications are expected in response to certain events (such as after
the arrival of a new task group) or as indicated in the set of non-local commitments .
This is the minimal general information gathering policy. Termination of processing on a task
group occurs for an agent when the agent is idle, has no expected communications, and no
outstanding commitments for the task group.

Choosing a schedule is more complicated. The agent’s local scheduler may return multiple
schedules because it cannot find a single schedule that both maximizes utility and meets all
commitments. From the set of schedules returned by the local scheduler, two particular
schedules are identified: the schedule with the highest utility and the best committed
schedule . If they are the same, then that schedule is chosen. Otherwise, we examine
the sum of the changes in utility for each commitment. Each commitment, when created, is
assigned the estimated utility for the task group of which it is a part. This utility may be
updated over time (when other agents depend on the commitment, for example). We then
choose the schedule with the largest positive change in utility. This allows us to abandon
commitments if doing so will result in higher overall utility. The coordination substrate does
not use the local scheduler’s utility estimate directly on the entire schedule because it is
based only on a local view. The coordination substrate may receive non-local information that
places a higher utility on a commitment than it has locally.

For example, at time agent may make a commitment on task that
results in a schedule . initially acquires the estimated utility of the task group of which
it is a part, . Let . After communicating
this commitment to agent (making it part of , agent uses the commitment
to improve to 100. A coordination mechanism can detect this
discrepancy and communicate the utility increase back to agent , so that when agent
considers discarding the commitment, the coordination substrate recognizes the non-local
utility of the commitment is greater than the local utility.

If both schedules have the same utility, the one that is more negotiable is chosen. Every
commitment has a negotiability index (high, medium, or low) that indicates (heuristically) the
difficulty in rescheduling if the commitment is broken. This index is set by the individual
coordination mechanisms. For example, hard coordination relationships like that
cannot be ignored will trigger commitments with low negotiability. If the schedules are still
equivalent, the shorter one is chosen, and if they are the same length, one is chosen at random.

After a schedule is chosen, if is not empty, then each commitment
is replaced with its alternative . If the commitment was

made to other agents, the other agents are also informed of the change in the commitment.
While this could potentially cause cascading changes in the schedules of multiple agents, it
generally does not for three reasons: first, as we mentioned in the previous paragraph less

8

important commitments are broken first; secondly, the resiliancy of the local schedulers to
solve problems in multiple ways tends to damp out these fluctuations; and third, agents are
time cognizant resource-bounded reasoners that interleave execution and scheduling (i.e., the
agents cannot spend all day arguing over scheduling details and still meet their deadlines). We
have observed this useful phenomenon before [4] and plan to analyze it in future work.

3.2 Mechanism 1: Updating Non-Local Viewpoints

Remember that each agent has only a partial, subjective view of the current episode. The
GPGP mechanism described here can communicate no private information (‘none’ policy, no
non-local view), or all of it (‘all’ policy, global view), or take an intermediate approach (‘some’
policy, partial view). The process of detecting coordination relationships between private and
shared parts of a task structure is in general very domain specific, so we model this process
by a new information gathering action, detect-coordination-relationships, that takes some fixed
amount of the agent’s time. This action is scheduled whenever a new task group arrives.

The set of privately believed tasks or methods at an agent (tasks believed at arrival time
by only) is then task , where is the set of all
agents and is the arrival time of . Given this definition, the action detect-coordination-
relationships returns the set of private coordination relationships

between private and mutually believed tasks. The action does
not return what the task is, just that a relationship exists between and some otherwise
unknown task . For example, in the DVMT, we have used the physical organization of agents
to detect that Agent A’s task in an overlapping sensor area is in fact related to some unknown
task at agent B (i.e.) [5]. The non-local view coordination mechanism
then communicates these coordination relationships, the private tasks, and their context: if

and then and will be communicated by agent to the set of
agents .

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

facilitates relationship

agent
T

min

T3
max

T1
max

T2
min

T4
max

B4

A1 B1

B3

Objective Task Group

T
min

T1
max

T2
min

T4
maxA1 B1

Agent A's view after communication from B

T
min

T3
max

T1
max

T2
min

T4
max

B4

A1 B1

B3

Agent B's view after communication from A

Figure 3: Agents A and B’s local views after receiving non-local viewpoint communications via mechanism 1
(shaded objects). Figure 1 shows the agents’ initial states.

For example, Figure 3 shows the local subjective beliefs of agents and after the
communication from one another due to this mechanism.

9

The agents’ initial local view was shown previously in Figure 1. In this example, and
are two elements in Agent B’s private set of tasks , (the
facilitation relates a private task to a mutually believed task), and is completely
local to Agent B (it relates two private tasks). At the start of this section we mentioned that
coordination relationships exist between portions of the task structure controllable by different
agents (i.e., in) and within portions controllable by multiple agents. We’ll denote the
complete set of coordination relationships as ; this includes all the elements of and
all the relationships between non-private tasks. Some relationships are entirely local—between
private tasks—and are only of concern to the local scheduler. The purpose of this coordination
mechanism is the exchange of information that expands the set of coordination relationships

. Without this mechanism in place, will consist of only non-private relationships,
and none that are in . Since the primary focus of the coordination mechanisms is the
creation of social commitments in response to coordination relationships (elements of),
this mechanism can have significant indirect benefits. In environments where tends
to be small, very expensive to compute, or not useful for making commitments (see the later
sections), this mechanism can be sucessfully omitted.

3.3 Mechanism 2: Communicating Results
The result communication coordination mechanism has three possible policies: communicate
only the results necessary to satisfy commitments to other agents (the minimal policy); com-
municate this information plus the final results associated with a task group (‘TG’ policy),
and communicate all results (‘all’ policy). Extra result communications are broadcast to all
agents, the minimal commitment-satisfying communications are sent only to those agents to
whom the commitment was made (i.e., communicate the result of to the set of agents

.

3.4 Mechanism 3: Handling Simple Redundancy
Potential redundancy in the efforts of multiple agents can occur in several places in a task
structure. Any task that uses a ‘max’ quality accumulation function (one possible semantics
for an ‘OR’ node) indicates that, in the absence of other relationships, only one subtask needs
to be done. When such subtasks are complex and involve many agents, the coordination of
these agents to avoid redundant processing can also be complex; we will not address the general
redundancy avoidance problem in this paper (see instead [16]). In the original PGP algorithm
and domain (distributed sensor interpretation), the primary form of potential redundancy
was simple method redundancy—the same result could be derived from the data from any of
a number of sensors. The coordination mechanism described here is meant to address this
simpler form of potential redundancy.

The idea behind the simple redundancy coordination mechanism is that when more than
one agent wants to execute a redundant method, one agent is randomly chosen to execute
it and send the results to the other interested agents. This is a generalization of the ‘static’
organization algorithm discussed by Decker and Lesser [6]—it does not try to load balance, and
uses one communication action (because in the general case the agents do not know beforehand,

Such a policy is all that is needed in many simple environments.

10

without communication, that certain methods are redundant). The mechanism considers the
set of potential redundancies

method . Then for all methods in the current schedule at time , if the method is
potentially redundant then commit to it and send the commitment to (non-local
agents who also have a method in):

See for example the top of figure 4—both agents commit to their methods for .
After the commitment is made, the agent must refrain from executing the method in

question if possible until any non-local commitments that were made simultaneously can arrive
(the communication delay time). This mechanism then watches for multiple commitments
in the redundant set and if they appear, a unique agent is chosen randomly (but identically
by all agents) from those with the best commitments to keep its commitment. All the other
agents can retract their commitments. For example the bottom of figure 4 shows the situation
after Agent B has retracted its commitment to . If all agents follow the same algorithm,
and communication channels are assumed to be reliable, then no second message (retraction)
actually needs to be sent (because they all choose the same agent to do the redundant method).
In the implementation described later, identical random choices are made by giving each
method a unique random identifier, and then all agents choose the method with the ‘smallest’
identifier for execution.

Initially, all commitments initiated by the redundant coordination mechanism are
marked highly negotiable. When a redundant commitment is discovered, the negotiability of
the remaining commitment is lowered to medium to indicate the commitment is somewhat
more important.

3.5 Mechanism 4: Handling Hard Coordination Relationships
Hard coordination relationships include relationships like that indicate that

must be executed before in order to obtain quality for . Like redundant methods,
hard coordination relationships can be culled from the set . The hard coordination
mechanism further distinguishes the direction of the relationship—the current implementation
only creates commitments on the predecessors of the relationship. We’ll let

indicate the set of potential hard predecessor coordination relationships. The hard
coordination mechanism then looks for situations where the current schedule at time will
produce quality for a predecessor in , and commits to its execution by a certain deadline
both locally and socially:

The next question is, by what time (above) do we commit to providing the answer?
One solution, usable with any local scheduler that fits our general description in Section 2.2,

The detection of redundant methods is domain-dependent, as discussed earlier. Since we are talking here
about simple, direct redundancy (i.e. doing the exact same method at more than one agent) this detection is very
straight-forward.

11

T
min

T1
max

T2
min

T4
max

facilitates(T4,T1,0.5,0.5)
A1
5

100

B1
5

100

T
min

T3
max

T1
max

T2
min

T4
max

facilitates(T4,T1,0.5,0.5)

B4
4
50

A1
5

100

B1
5

100

B3
5

100

Agent A's view after communication from B Agent B's view after communication from A

duration

quality

B3

Schedules:

B4

A1

t=5

B1

t=2 t=13

Commitments made from A to B:

Do(A1,100) [Mech #3]
Commitments made from B to A:

DL(T4,50,5) [Mech #5]

Do(B1,100) [Mech #3]

T
min

T1
max

T2
min

T4
max

A1
5

100

B1
5

100

T
min

T3
max

T1
max

T2
min

T4
max

B4
4
50

A1
5

100

B1
5

100

B3
5

100

Agent A's view after recieveing B's commitments Agent B's view after receiving A's commitments

duration

quality

B3

Schedules:

B4

A1

t=5t=2 t=10

Commitments made from A to B:

Do(A1,150) [Mech #3]
Commitments made from B to A:

DL(T4,50,5) [Mech #5]

Figure 4: A continuation of Figures 1 and 2. At top: agents A and B propose certain commitments to one another
via mechanisms 3 and 5. At bottom: after receiving the initial commitments, mechanism 3 removes agent B’s
redundant commitment.

is to use the such that . In our implementation, the local
scheduler provides a query facility that allows us to propose a commitment to satisfy as ‘early’
as possible (thus allowing the agent on the other end of the relationship more slack). We take
advantage of this ability in the hard coordination mechanism by adding the new commitment

"early" to the local commitment set , and invoking the local
scheduler to produce a new set of schedules . If the preferred, highest
utility schedule has no violations (highly likely since the local scheduler can simply
return the same schedule if no better one can be found), we replace the current schedule with
it and use the new schedule, with a potentially earlier finish time for , to provide a value for

. The new completed commitment is entered locally (with low negotiability) and sent to
the subset of interested other agents.

If redundant commitments are made to the same task, the earliest commitment made by
any agent is kept, then the agent committing to the highest quality, and any remaining ties are
broken by the same method as before.

Currently, the hard coordination mechanism is a pro-active mechanism, providing infor-

12

mation that might be used by other agents to them, while not putting the individual agent to
any extra effort. Other future coordination mechanisms might be added to the family that are
reactive and request from other agents that certain tasks be done by certain times; this is quite
different behavior that would need to be analyzed separately.

3.6 Mechanism 5: Handling Soft Coordination Relationships

Soft coordination relationships are handled analogously to hard coordination relationships ex-
cept that they start out with high negotiability. In the current implementation the predecessor
of a relationship is the only one that triggers commitments across agents, although

relationships are present. The positive relationship indi-
cates that executing before decreases the duration of by a ‘power’ factor related to

and increases the maximum quality possible by a ‘power’ factor related to (see [8] for
the details). A more situation-specific version of this coordination mechanism might ignore
relationships with very low ‘power’. The relationship is negative and
indicates an increase in the duration of and a decrease in maximum possible quality. A
coordination mechanism could be designed for (and similar negative relationships)
and added to the family. To be pro-active like the existing mechanisms, a mechanism
would work from the successors of the relationship, try to schedule them late, and commit to
an earliest start time on the successor. Figure 4 shows Agent B making a commitment to do
method , which in turn allows Agent A to take advantage of the
relationship, causing method to take only half the time and produce 1.5 times the quality.

4 Experimental Results
We do not believe that any of the mechanisms that collectively form the GPGP family of
coordination algorithms are indispensable. What we can do is evaluate the mechanisms on
the terms of their costs and benefits to cooperative problem solving both analytically and
experimentally. This analysis and experimentation takes place with respect to a very general
task environment that does not correspond to a particular domain. Doing this produces
general results, but weaker than would be possible to derive in a single fixed domain because
the performance variance between problem episodes will be far greater than the performance
variance of the different algorithms within a single episode. Still, this allows us to determine
broad characteristics of the algorithm family that can be used to reduce the search for a
particular set of mechanism parameters for a particular domain (with or without machine
learning techniques; see Section 5). We will also discuss statistical techniques (e.g. paired-
response simulations) to deal with the large between-episode variances that occur when using
randomly-generated problems.

4.1 GPGP Simulation: Issues

Our model of an abstract task environment, used in these experiments, has ten parameters;
Table 1 lists them and the values used in the experiments described in the next two sections.

Our earlier work focussed on the analysis of distributed sensor network task environments [6, 7].

13

Figure 2 shows a small example task group.

Parameter Values (facilitation exps.) Values (clustering exps.)
Mean Branching factor (Poisson) 1 1
Mean Depth (Poisson) 3 3
Mean Duration (exponential) 10 (1 10 100)
Redundant Method QAF Max Max
Number of task groups 2 (1 5 10)
Task QAF distribution (20%/80% min/max) (50%/50% min/max)

(100%/0% min/max)
Hard CR distribution (10%/90% enables/none) (0%/100% enables/none)

(50%/50% enables/none)
Soft CR distribution (80%/10%/10% facilitates/hinders/none) (0%/10%/90% facilitates/hinders/none)

(50%/10%/40% facilitates/hinders/none)
Chance of overlaps (binomial) 10% (0% 50% 100%)
Facilitation Strength .1 .5 .9 .5

Table 1: Environmental Parameters used to generate the random episodes

The primary sources of overhead associated with the coordination mechanisms include
action executions (communication and information gathering), calls to the local scheduler,
and any algorithmic overhead associated with the mechanism itself. Table 2 summarizes the
total amount of overhead from each source for each coordination mechanism setting and the
coordination substrate. represents the length of processing (time before termination), and

is a general density measure of coordination relationships. We believe that all of these
amounts can be derived from the environmental parameters in Table 1, they can also be
measured experimentally. Interactions between the presence of coordination mechanisms and
these quantities include: the number of methods or tasks in , which depends on the non-
local view mechanism; the number of coordination relationships or the subsets
(redundant coordination relationships), (hard predecessor coordination relationships),

(soft predecessor coordination relationships), which depends on the number of tasks
and methods as well; and the number of commitments , which depends on each of the
three mechanisms that makes commitments.

Mechanism setting Communications Information Gathering Scheduler Other Overhead
substrate 0 idle
nlv none 0 0 0 0

some detect-CRs 0
all detect-CRs 0

comm min 0 0
TG 0 0
all 0 0

redundant on 0 0
hard on 0
soft on 0

Table 2: Overhead associated with individual mechanisms at each parameter setting

14

4.2 General Performance Issues

We examined the general performance of the most complex (all mechanisms in place) and
least complex (all mechanisms off) members of the GPGP family in comparison to each other,
and in comparison to a centralized scheduler reference implementation (as an upper bound).
We looked at performance measures such as the total final quality achieved by the system,
the amount of work done, the number of deadlines missed, and the termination time. The
centralized schedule reference system is not an appropriate solution to the general coordination
problem, even for cooperative groups of agents, for several reasons:

The centralized scheduling agent becomes a possible single point of failure that can cause
the entire system to fail (unlike the decentralized GPGP system).

The centralized scheduling agent requires a complete, global view of the episode—a view
that we mentioned earlier is not always easy to achieve. We do not account for any costs
in building such a global view in the reference implementation (viewing it as an upper
bound on performance). We do not allow dynamic changes in the episodic task structure
(which might require rescheduling).

The centralized reference scheduler uses an optimal single-agent schedule as a starting
point. The problem of scheduling actions in even fairly simple task structures is in NP,
and the optimal scheduler’s performance grows exponentially worse with the number of
methods to be scheduled. Since the centralized reference scheduler has a global view and
schedules all actions at all agents, the size of the centralized problem always grows faster
than the size of the scheduling problems at GPGP agents with only partial views and
heuristic schedulers.

We conducted 300 paired response experiments, using the three algorithms. “Balanced”
refers to all mechanisms being on, with partial non-local views and communication of com-
mitted results and completed task groups. “Simple” refers to all mechanisms being off, with no
non-local view and broadcast communication of all results. “Parallel” refers to the centralized
reference scheduler that uses a heuristic parallelization of an optimal single agent schedule using
a complete global view. The experiments were based on the same environmental parameters
as the facilitation experiments (Table 1). There are several important things to note about this
class of environments:

The size of the episodes was kept artificially small so that the centralized reference
scheduler could find an optimal schedule in a reasonable amount of run time.

The experiments had very low (10%)numbers of relationships and a low (20%)
number of MIN quality accrual functions because they penalize the simple algorithm—
we demonstrate this in Section 4.4.

Deadline pressure was also kept low (it also makes the simple algorithm perform badly).

In our experiments, the centralized parallel scheduler outperformed our distributed, GPGP
agents 57% of the time (36% no difference, 7% distributed was better) using the total final
quality as the only criterion. The GPGP agents produced 85% of the quality that the centralized

15

parallel scheduler did, on average. These results need to be understood in the proper context—
the centralized scheduler takes much more processing time than the distributed scheduler and
cannot be scaled up to larger numbers of methods or task groups. The centralized scheduler also
starts with a global view of the entire episode. Table 3 shows the results for all four measured
criteria by summarizing within-block (paired-response) comparisons. For total final quality
and number of deadlines missed, “better” simply refers to an episode where the algorithm in
question had a greater total final quality or missed fewer deadlines, respectively. With respect
to method execution time (a measure of system load) and termination time, “better” refers to
the fact that one algorithm produced both a higher quality and missed fewer deadlines than
the other algorithm, or if the two algorithms were the same, then the better algorithm had a
lower total method execution time (lower load) or terminated sooner.

We also looked at performance without any of the mechanisms; on the same 300 episodes
the GPGP agents produced on average 1.14 times the final quality of the uncoordinated agents.
Coordinated agents (“balanced”) execute far fewer methods because of their ability to avoid
redundancy. The redundant execution of methods proves a much more hindering element to
the uncoordinated agents when acting under severe time pressure [4]. Table 4 summarizes the
results.

Parallel better Balanced Better Same Significant?
Total Final Quality 57% 7% 36% yes

Method Execution Time 80% 7% 13% yes
Deadlines Missed 1% 1% 98% no

Termination Time 67% 15% 18% yes

Table 3: Performance comparison: Centralized Parallel Scheduler vs. Balanced GPGP Coordination and Decen-
tralized DTT Scheduler

Simple better Balanced Better Same Significant?
Total Final Quality 8% 21% 71% yes

Method Execution Time 12% 72% 16% yes
Deadlines Missed 0% 4% 96% yes

Termination Time 9% 58% 33% yes

Table 4: Performance comparison: Simple GPGP Coordination vs. Balanced GPGP Coordination

Termination within two time units was considered “the same” because the “balanced” algorithm has a fixed
2-unit startup cost. The average task duration is 10 time units.

16

4.3 Taking Advantage of a Coordination Relationship: When to Add a New
Mechanism

A practical question to ask is simply whether the addition of a particular mechanism will benefit
performance for the system of agents. Here we give an example with respect to the soft coordi-
nation mechanism (Mechanism 5), which will make commitments to facilitation relationships.
We ran 234 randomly generated episodes (generated with the environmental parameters shown
in Table 1) with four agents both with and without the soft coordination mechanism. Because
the variance between these randomly generated episodes is so great, we took advantage of the
paired response nature of the data to run a non-parametric Wilcoxon matched-pairs signed-
ranks test [3]. This test is easy to compute and makes very few assumptions—primarily that the
variables are interval-valued and comparable within each block of paired responses. For each
of the 234 blocks we calculated the difference in the total final quality achieved by each group
of agents and excluded the blocks where there was no difference, leaving 102 blocks. We then
replace the differences with the ranks of their absolute values, and then replace the signs on the
ranks. Finally we sum the positive and negative ranks separately. A standardized Z score is then
calculated. A small value of Z means that there was not much consistent variation, while a large
value is unlikely to occur unless one treatment consistently outperformed the other. In our
experiment, the null hypothesis is that the system with the soft coordination mechanism did
the same as the one without it, and our alternative is that the system with the soft coordination
mechanism did better (in terms of total final quality). The result here was , which is
highly significant, and allows us to reject the null hypothesis that the mechanism did not have
an effect.

4.4 Different Family Members for Different Environments

In this section we show a particular example of how different family members do better and
worse in different environments. We will concentrate on two distinct family members—the
‘modular agent’ archetype (all CR modules on, non-local views, communicate commitments
and completed task groups), and the ‘simple agent’ (no CR modules on, no non-local views,
broadcast all completed methods). The environmental parameter we will vary (derived from
the screening data collected in Section 5) is QAF-min, the percentage of tasks that have min as
their quality accumulation function (‘AND’ semantics). Our hypothesis was that the modular
agents would do better than the simple agents as QAF-min increased (as more tasks needed to
be done). We ran 250 paired-response experiments at 5 levels of QAF-min (0, 0.25, 0.5, 0.75,
1.0) with enables-probability varying also at the same 5 levels, no time pressure, overlaps of 0.5,
5 task groups, and 4 agents per run. The performance (in terms of total final quality) of the two
coordination styles was significantly different by the Wilcoxon matched-pairs signed-ranks test
(199 different pairs, ,). More interestingly, we can see the difference
in performance widening with the value of QAF-min. Figure 5 shows the probability of one
coordination style or the other doing better (calculated simply from the frequencies) plotted
verses the value of QAF-min. This allows you to see graphically the difference in the styles as
QAF-min changes.

17

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Modular Agent

Simple Agent

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Qaf-Min

Pr
ob

ab
ili

ty
 o

f d
oi

ng
 b

et
te

r

Figure 5: Plot of the probability of the modular or simple coordination styles doing better than the other (total
final quality) verses the probability of task quality accumulation being MIN (AND-semantics)

4.5 Meta-level Communication: Return to Load Balancing through Dy-
namic Reorganization

Another question we have examined is the effect of task structure variance on the performance
of load balancing algorithms. This work is a logical follow-on to the analysis of static, dynamic,
and negotiated reorganization detailed in [6]. A static organization divides the load up a
priori—in the case below, by randomly assigning redundant tasks to agents. A one-shot dynamic
reorganization, like that analyzed in [7], assigns redundant tasks on the basis of the expected
load on other agents. A meta-level communication (MLC) reorganization assigns redundant
tasks on the basis of actual information about the particular problem-solving episode at hand.
Because it requires extra communication, the MLC reorganization is more expensive, but the
extra information pays off as the variance in static agent loads grows.

A MLC coordination mechanism (mechanism 6) can be implemented in GPGP. Many
such implementations are possible; the one that we chose works by altering the way redundant
commitments are handled. When a commitment is sent to another agent, it is modified to
include the current load of the agent making the commitment (to be precise, the amount of work
for the agent in the current schedule). Whenever a decision about redundant commitments
need to be made at another agent (in mechanisms 3, 4, and 5—simple redundancy, hard, and
soft successor relationship handling) the load of the agents with the redundant commitments
are taken into account at the point where ties would have been broken randomly. The agent
with the lowest load keeps the commitment instead. If the loads are equal, the tie is broken
randomly as before.

The effect of this mechanism on the general GPGP environments when agents use the
default Design-To-Time scheduler is minimal. The heuristics used by the DTT scheduler are
focused at providing the highest possible total final quality for the agent without violating
deadlines—this is not the same as terminating quickly, and the scheduler has no heuristics to
prefer earlier termination times (nor, frankly, should it have them). In a randomly-generated
task environment, where the methods are assigned to agents randomly (and therefore, somewhat
evenly) there is rarely any significant change in termination time.

18

However, if you recall one of our results from [6, 7], you will remember that MLC
coordination is most useful in environments with high variance in the task structures presented
to agents. We can look at our experiments in this light, by calculating an endogenous input
variable for each run that represents the amount of variance in redundant tasks (the ones that
would potentially be eligible for a load-balancing mechanism decision). Figure 6 shows how
the probability of terminating more quickly with the MLC load balancing algorithm grows as
the standard deviation in the total durations of redundant tasks at each agent grows.

Pr
ob

ab
ili

ty
 T

er
m

in
at

io
n

is
B

et
te

r w
/ L

oa
d

B
al

an
ci

ng

0

0.25

0.5

0.75

1

0 10 20 30 40 50
Initial STD of Redundant Tasks

Expected probability

Actual probability

Figure 6: Probability that MLC load balancing will terminate more quickly than static load balancing, fitted using
a loglinear model from actual TÆMS simulation data.

5 Exploring the Family Performance Space
Finally, we looked at the multidimensional performance space for the family of coordination
algorithms over four different performance measures. At the most abstract level, each of the
five mechanisms are parameterized independently (the first two have three possible settings and
the last three can be ‘in’ or ‘out’) for a total of 72 possible coordination algorithms. We applied
two standard statistical clustering techniques to develop a much smaller set of significantly
different algorithms. The resulting five ‘prototypical’ combined behaviors are a useful starting
point when searching for an appropriate algorithm family member in a new environment.

The analysis proceeded as follows: we generated one random episode in each of 63 ran-
domly chosen environments, and ran each of the 72 “agent types” on the episode (4536 cases).
We collected four performance measures: total quality, number of methods executed, number
of communication actions, and termination time. We then took this data and standardized
each performance measure within an environment. So now each measure is represented as the
number of standard deviations from the mean value in that environment. We then took sum-
mary statistics for each measure grouped by agent types—this boils the 4536 cases (standardized
within each environment) into 72 summary cases (summarized across environments). Each
of the 72 summaries correspond to the average standardized performance of one agent-type
for the four performance measures. We then used both a hierarchical clustering algorithm

19

-2.0

-1.0

0.0

1.0

2.0

Balanced Mute Myopic Simple Tough

-3

-2

-1

0

1

2

Balanced Mute Myopic Simple Tough

C
om

m
un

ic
at

io
n

A
ct

io
ns

M
et

ho
d

Ex
ec

ut
io

n
A

ct
io

ns

-3.0

-2.0

-1.0

0.0

1.0

2.0

Balanced Mute Myopic Simple Tough
-3

-2

-1

0

1

2

3

Balanced Mute Myopic Simple Tough

To
ta

l F
in

al
 Q

ua
lit

y

To
ta

l M
iss

ed
 D

ea
dl

in
es

Figure 7: Standardized Performance by the 5 named coordination styles.

(SYSTAT JOIN with ‘complete linkage’) to produce the following general prototypical agent
classes (we chose one representative algorithm in each class):

Simple: No commitments or non-local view, just broadcasts results.

Myopic: All commitment mechanisms on, but no non-local view.

Balanced: All mechanisms on.

Tough-guy: Agent that makes no soft commitments.

Mute: No communication whatsoever

Figure 7 shows the values of several typical performance measures for only the five named
types. Performance measures were standardized within each episode, (i.e. across all 72 types).
Shown for each are the means and 10, 25, 50, 75, and 90 percent quantiles. All algorithms’
performances are significantly different by Tukey Kramer HSD except for: Method Execution

Distances are calculated between the farthest points in each cluster. Other distance measures (Euclidean,
centroid, or Pearson correlation) gave similar results.

This algorithm makes no commitments (mechanisms 3, 4, and 5 off) and communicates (mechanism 2)
only ‘satisfied commitments’—therefore it sends no communications ever!.

20

(Simple vs. Mute), Total final quality (Balanced vs. Tough), Deadlines missed (simple vs.
mute) and (balanced vs. tough).

We are also analyzing the effect of environmental characteristics on agent performance.
Figure 8 shows an example of the effect of the amount of overlap (method redundancy) on
the number of method execution actions for the five named agent types. Note again that the
balanced and tough agents do significantly less work when there is a lot of overlap (as would
be expected). The performance of the tough and balanced agents is similar because (from
Table 1) 1) the algorithms only differ in the way that they handle facilitation, and 2) only half
the experiments had any facilitation, and when it was present was only at 50% power.

M
et

ho
d

Ex
ec

ut
io

n
A

ct
io

ns

-3

-2

-1

0

1

2

-0.1 0.1 0.3 0.5 0.7 0.9 1.1
Overlap

Balanced

Tough

Myopic

Mute
Simple

Figure 8: The effect of overlaps in the task environment on the standardized method execution performance by
the 5 named coordination styles (smoothed splines fit to the means).

A linear clustering algorithm, SYSTAT KMEANS, produces a similar result as hierar-
chical clustering, and also produces the mean value of each performance measure for each
group. For example, the non-communicating agents have a high negative mean "number-of-
communications" (-1.16; remember these were averaged from standardized scores) but execute
more methods on average and produce less final quality. They also terminate slightly quicker
than average. The "balanced" group, in comparison, communicates a little more than average,
executes many fewer methods (-1.29—way out on the edge of this statistic), returns better-than-
average quality and about average termination time. This is reasonable, as ‘avoiding redundant
work’ and other work-reducing ideas are a key feature of the original PGP algorithm replicated
by this set of mechanisms.

6 Conclusions and Future Work
This paper discusses the design of an extendable family of scheduling coordination mechanisms,
called Generalized Partial Global Planning (GPGP), that form a basic set of coordination

21

mechanisms for teams of cooperative computational agents. An important feature of this
approach includes an extendable set of modular coordination mechanisms, any subset or all
of which can be used in response to a particular task environment. This subset may be
parameterized, and the parameterization does not have to be chosen statically, but can instead
be chosen on a task-group-by-task-group basis or even in response to a particular problem-
solving situation. For example, Mechanism 5 (Handle Soft Predecessor CRs) might be “on”
for certain classes of tasks and ‘off ’ for other classes (that usually have few or very weak soft
CRs). The general specification of the GPGP mechanisms involves the detection and response
to certain abstract coordination relationships in the incoming task structure that were not tied
to a particular domain. We have used TÆMS to model a simple distributed sensor network
problem, the original DVMT domain, and a hospital scheduling environment. A careful
separation of the coordination mechanisms from an agent’s local scheduler allows each to better
do the job for which it was designed. We believe this separation is not only useful for applying
our coordination mechanisms to problems with existing, customized local schedulers, but also
to problems involving humans (where the coordination mechanism can act as an interface
to the person, suggesting possible commitments for the person’s consideration and reporting
non-local commitments made by others).

The GPGP coordination approach as described in this paper has been fully implemented
in the TÆMS simulation testbed. Significant experimental validation of the GPGP approach is
documented in [4]. This paper showed how to decide if the addition of a new GPGP mechanism
was useful. It showed the general performance of two GPGP family algorithms compared to a
centralized parallel reference algorithm; GPGP with all mechanisms on produces 85% of the
quality of the centralized reference scheduler in a random environment. Such performance
is reasonable and we feel could be made even better by developing better local scheduling
algorithms and new coordination mechanisms.

We also demonstrated how a feature of the task environment (the probability of task quality
accumulation being MAX) can cause different GPGP family members to be preferred. We
also discussed a sixth mechanism, a load balancing mechanism that communicates meta-level
information, and showed that it was somewhat more useful when the variance in duration of
the agents’ overlapping tasks was high. This section thus ties-in back to the discussion in [6, 7]
on the usefulness of meta-level communication (in this case, the transmission of local load
information) when the inter-episode variance (in this case, in the initial agent loads) is high.

Finally, we gave a sense of the performance space of the five broadly-parameterized mech-
anisms using a clustering technique. Clustering can be a useful method for dealing with large
algorithm spaces to prune search for an appropriate combination of mechanisms. Such meth-
ods may also lead to ways to learn situation-specific knowledge about the application of certain
mechanisms in certain situations (perhaps using case-based reasoning techniques).

We believe that GPGP can become a reusable, domain-independent basis for multi-agent
coordination when used in conjunction with a library of coordination mechanisms and a
learning mechanism. We intend to develop such a library of reusable coordination mechanisms.
For example, mechanisms that work from the successors of hard and soft relationships instead
of the predecessors, negotiation mechanisms, mechanisms for behavior such as contracting, or
mechanisms that can be used by self-motivated agents in non-cooperative environments. Many
of these mechanisms can be built on the existing work of other DAI researchers. Future work will
also examine expanding the parameterization of the mechanisms and using machine learning

22

techniques to choose the appropriate parameter values (i.e., learning the best mechanism set
for an environment). Finally, we are also beginning work on using the GPGP approach in
applications ranging from providing human coordination assistance to distributed information
gathering.

References
[1] C. Castelfranchi. Commitments:from individual intentions to groups and organizations.

In Michael Prietula, editor, AI and theories of groups & organizations: Conceptual and
Empirical Research. AAAI Workshop, 1993. Working Notes.

[2] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3):213–261, 1990.

[3] W. W. Daniel. Applied Nonparametric Statistics. Houghton-Mifflin, Boston, 1978.

[4] Keith S. Decker. Environment Centered Analysis and Design of Coordination Mechanisms.
PhD thesis, University of Massachusetts, 1995.

[5] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algorithm.
International Journal of Intelligent and Cooperative Information Systems, 1(2):319–346,
June 1992.

[6] Keith S. Decker and Victor R. Lesser. An approach to analyzing the need for meta-level
communication. In Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, pages 360–366, Chambéry, France, August 1993.

[7] Keith S. Decker and Victor R. Lesser. A one-shot dynamic coordination algorithm for
distributed sensor networks. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 210–216, Washington, July 1993.

[8] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex computa-
tional task environments. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 217–224, Washington, July 1993.

[9] E. H. Durfee and T. A. Montgomery. Coordination as distributed search in a hierarchical
behavior space. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1363–1378,
November 1991.

[10] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework for
distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics,
21(5):1167–1183, September 1991.

[11] E. Ephrati and J.S. Rosenschein. Divide and conquer in multi-agent planning. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 375–380,
Seattle, 1994. AAAI Press/MIT Press.

23

[12] Alan Garvey, Keith Decker, and Victor Lesser. A negotiation-based interface between
a real-time scheduler and a decision-maker. CS Technical Report 94–08, University of
Massachusetts, 1994.

[13] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. IEEE Transactions
on Systems, Man, and Cybernetics, 23(6):1491–1502, 1993.

[14] B. Grosz and S. Kraus. Collaborative plans for group activities. In Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence, Chambéry, France,
August 1993.

[15] N. R. Jennings. Commitments and conventions: The foundation of coordination in
multi-agent systems. The Knowledge Engineering Review, 8(3):223–250, 1993.

[16] V. R. Lesser. A retrospective view of FA/C distributed problem solving. IEEE Transactions
on Systems, Man, and Cybernetics, 21(6):1347–1363, November 1991.

[17] Thomas W. Malone and Kevin Crowston. Toward an interdisciplinary theory of coor-
dination. Center for Coordination Science Technical Report 120, MIT Sloan School of
Management, 1991.

[18] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artificial agent
societies (preliminary report). In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 276–281, San Jose, July 1992.

[19] Yoav Shoham. AGENT0: A simple agent language and its interpreter. In Proceedings
of the Ninth National Conference on Artificial Intelligence, pages 704–709, Anaheim, July
1991.

[20] Frank v. Martial. Coordinating Plans of Autonomous Agents. Springer-Verlag, Berlin, 1992.
Lecture Notes in Artificial Intelligence no. 610.

24

