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Abstract

Covariance information can help an algorithm search for predictive causal mod-
els and estimate the strengths of causal relationships. This information should not
be discarded after conditional independence constraints are identified, as is usual in
contemporary causal induction algorithms. Our FBD algorithm combines covariance
information with an effective heuristic to build predictive causal models. We demon-
strate that FBD is accurate and efficient. In one experiment we assess FBD’s ability to
find the best predictors for variables; in another we compare its performance, using
many measures, with Pearl and Verma’s 1c algorithm. And although FBD is based on
multiple linear regression, we cite evidence that it performs well on problems that are
very difficult for regression algorithms.
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1. Causal Induction

Everyone knows correlation does not imply causation and nobody denies that a strong
correlation often suggests a causal relationship. We usually follow up the suggestion with an
experiment: if z and y are correlated, and y changes when z is manipulated, then z causes
y. But what if we cannot run an experiment? What if we can only observe a relationship
between = and y? Then it will be difficult to say whether = causes y or vice versa, and we
will be unable to say whether something else is causing = and y, both. Thus, some assert
that causal inferences without experiments are impossible (e.g.[6]).

As Pearl and Verma point out, though, we cannot spend our lives running controlled ex-
periments, and sometimes we do infer cause from associations: “...the question remains how
causal knowledge is ever acquired from experience.” [11] Pearl and Verma have designed and
implemented algorithms to infer causal relationships given only correlational (covariance)
information [11, 10]. Spirtes, Glymour, Scheines and their colleagues have developed several
algorithms with similar goals and underlying. principles [14]. In fact, there have been several
efforts in AI (e.g.[7, 4]) dating back to Simon [12] to induce causal relationships from obser-
vational data. All rely on conditional independence in one way or another. Crudely, if z and
y are conditionally independent given z, then either z causes both z and y or z sits between
z and y in a causal chain.

Another approach, dating back to Sewall Wright’s path analysis, is closely related to
multiple linear regression (9, 13, 5]. Historically, path analysis was used to estimate the
strengths of causal influences in a causal model. Someone still had to propose a causal
model, but path analysis could provide measures of how well it fit the data. Algorithms
based on conditional independence do not estimate strengths of causal relationships. In fact,
they use quantitative information only to infer boolean conditional independence constraints,
from which they produce causal models that are consistent with the constraints. To estimate
strengths of causal influence, these models (and the covariance matrices from which they are
derived) are handed off to a statistical package such as LISREL or EQS [8, 2].

We claim that covariance information can guide the search for causal models, estimate
the strengths of causal relationships, and yield predictive causal models. It shouldn’t be
thrown away after conditional independence constraints are identified. We have developed
an algorithm that builds a predictive model for a dependent variable, then builds predictive
models for the predictors, and so on, until it runs out of variables to predict. A simple,
intuitive, effective heuristic decides which variables to use as predictors at each level of the
model. We will describe the algorithm and the sense in which its models are causal, and we
will present the results of two experiments, including an extensive comparison with Pearl
and Verma’s IC algorithm.

2. Multiple Regression and the FBD Algorithm

Multiple linear regression builds predictive models given a dependent variable (or “pre-
dictee”) and a set of predictors. A regression model estimates the value of a predictee as a
weighted sum of predictors, and the weights are called regression coefficients. Their mag-
nitudes depend on the units of measurement of the predictors; for instance, if a predictor



is age in months, then the regression coefficient will be smaller than if age was measured
in years. To compare regression coefficients without fussing about units of measurement,
variables are often standardized so their means are zero and their standard deviations are
one. To standardize a variable, subtract its mean from each value and divide by its standard
deviation: X; = (z; — T)/s. After standardizing variables, a regression model has this form:

= ﬂX;XI; + ﬂx:-Xz.' + s + ,BX.Xk.

for standardized predictors X, Xs,...X,. The coefficients Bx, are called beta coefficients
and they have a causal interpretation given shortly.

Multiple regression finds beta coefficients so that the regression model is the best possible
in the least squares sense of minimizing 3%, (Y; - Y) A set of predictors accounts for some
fraction of the variance in the dependent variable. We denote the variance S$Siym—the
summed, squared deviations of values of Y from their mean. If the regression model always
made accurate predictions, if ¥; — Y; was always zero, then we'd say the model accounted
for 100% of the variance in Y. In general, though, the residuals Y; — Y; are not zero, and
the sum of the squared residuals (called SS.,,.,) is some fraction of the total variance in Y.
Ideally SSerror Will be very small. The proportion R? = ($Siat — S Serror)/ S Stotar is 1.0 if
the regression model accounts for all the variance in Y.

Note that regression models are only one level deep, in the sense that the predictors
point directly to the dependent variable, as opposed, say, to X; predicting X; which in turn
predicts Y. This is unfortunate because regression models have many advantages: they
are predictive, least-squares models; and beta coefficients can be compared to each other,
and they have a causal interpretation. The FBD algorithm constructs multi-level regression
models; for example, Figure 1.b is the one it built to fit the data generated by 1.a. Before
we describe it in detail, let’s consider the sense in which multi-level regression models are
causal models.

2.1 Beta Coefficients as Strengths of Causal Influence

If you subscribe to one notion of what a “cause” is, then beta coefficients are strengths
of causal influence. Suppes [15] posits three requirements for = to cause y: z and y must
covary, ¢ must precede y, and other causes of y must be controlled. For instance, you flip a
light switch 100 times and record that on 99 occasions, the light turns on; this is covariance.
Moreover, the light never goes on before you flipped the switch; this is precedence. You
consider the possibility that you are willing the light to go on and switch- flipping is merely
incidental, but when you strap your arm to a chair and intone “the light will go on,” nothing
happens. This is control. The big problem for philosophers, economists, Al researchers, and
others, is whether you can infer that flipping the switch caused the light to go on if you
cannot run a control condition as just described. Some people say yes, some say no, but
all acknowledge that statistical control can play a similar role to experimental control. One
example of statistical control is the partial correlation coefficient, the correlation between two
factors when the influences of other factors are held constant. For example, the correlation
of shoe size and language ability is very high, but the partial correlation of these factors
when age is held constant is roughly zero. Beta coefficients are partial in the same sense.



A beta coefficient Bx, represents the influence of a predictor X; on Y when the influences
of all other predictors are held constant. And because betas are coefficients of standardized
variables, they are in the same units of measurement, so if By, = .8 and Bx, = .4, then X,
has twice the influence on Y that X, has.

Thus a regression model is causal according to Suppes’ criteria: If X and Y don'’t covary,
then Bx = 0. If X is the predictor and Y the dependent variable, then in the regression
model X precedes Y (the model could be wrong, of course; the point is it includes precedence
relationships as Suppes requires). Finally, Bx provides a statistical version of control.

2.2 Finding Good Multi-level Models

The FBD algorithm is told which variable is at the root of a causal model (e.g., var-9 in
Figure 1) and it is also given a dataset that includes variates of this variable and potential
predictors. It finds a subset of predictor variables that explain the predictee (e.g., it selected
1,5,7 and 8); then it backs up and treats each of these predictors as a new predictee. Note
that the set of predictors doesn’t change from one level to another; hence 8 and 5 both
predict 9 and also 7, which itself predicts 9.

We assess the goodness of predictors as follows: Let Y be the predictee and X, X>,... X
be predictors. A beta coefficient Gx; measures the strength of influence of X; on Y when the
influences of all other predictors are held constant, and a correlation coefficient ryx; is the
total influence of X; on Y. Thus, ryx; — Bx, is the influence of X; on Y that is due to X;’s
relationships with other predictors, and

vy — Bx
; =
Ty, X;

is the proportion of X;’s influence on Y that is not direct. For example, the correlation
between variables 5 and 9 (see Figure 1) is r5p = .58 and, when 9 is regressed on all eight
predictors, B59 = .53. Hence, wsg = (.58 — .53)/.58 = .086, which means only nine percent of
5’s influence on 9 is due to its relationships with other predictors: 5 is a good predictor. The
FBD algorithm selects predictors that have w scores less than a threshold, T,,. However, it
sometimes happens that both ry,x; and B, are very small, and w; is, too, even though X; has
almost no influence on Y. Thus, if Bx; is less than a threshold T}, we discard X;. Predictors
that survive these two tests are subjected to two more: A set of predictors must account
for at least some of the variance in the predictee, so we require R? for the regression of the
predictor on the set to exceed a threshold, Tga. Finally, each member of the set of predictors
should not be conditionally independent of the predictee, given the other members.! Because
this conditional independence test did not affect FBD’s behavior we will discuss it no further
here, and present the algorithm without it.

1We found, however, that the sets of predictors selected by w scores were always consistent—no member
was rendered conditionally independent of the predictee by the other members. A single member often
rendered another conditionally independent of the predictee, but never was a member made conditionally
independent by all the other members. Possible explanations for this phenomenon, and their consequences
for the control of causal induction algorithms, are discussed in [3).



3. The FBD Algorithm

Briefly, here is the FBD algorithm. Let wxy and Bxy denote X’s w and [ scores when
X is used as a predictor of Y, and let T,,, T and Tg, be thresholds as described above. Set
predictees =Y and predictors = X;,X,,..., X}

For each predictee y€ predictees
Find a set p C predictors such that
R: > Tra
for every z € p:
a link from z to y would not create a cycle
Wey < T,
. ﬂw > Tg
Add the elements of p to predictees
Remove y from predictees
If predictees is empty, stop

Note that this algorithm runs fwo regressions for each predictee: The first—with all
potential predictors—yields beta coefficients that are used to calculate w scores and select
good predictors. The second— run with the set of surviving good predictors—yields beta
coefficients that are interpreted as strengths of causal influence. Typically, a coefficient is
higher in the second regression than in the first, but this is not always so, and occasionally
it drops below Tjg. In the current version of the algorithm, we keep the predictor anyway.
This is why the link from 4 to 8 in Figure 1 has a value of .066, even though T was set at
.1 for the trial.

The FBD algorithm is quite fast. Because it must perform a multiple regression on each
of the variables encountered, its time complexity depends on the calculation of the regression
coefficients. This is O(n?), giving a time complexity of O(n*) for the algorithm. In practice,
it takes less than 15 seconds to build models of 6 to 9 variables (100 variates per variable)
on a Sparc 10.

4. Experiments with the FBD Algorithm

The experiments reported here used a set of 60 target models (see [3] for experiments
with a more extensive set). Models included 6, 9 or 12 variables. A target model is a directed
acyclic graph with weights on its links and a set of 100 data that are probably sufficient to
recreate the model given only the data. Datasets are only “probably” sufficient to recreate
models because the data are generated by random sampling, and it’s always possible that a
dataset will fit some other model better than it fits the one it is supposed to fit (see sec 4.2.3).
The procedure for generating models is described in [3] and is similar to the procedure in
[14].

4.1 Experiment 1. Does FBD Choose Good Predictors?

Because FBD works backwards—first predicting the dependent variable, then predicting
the predictors—its ability to choose good predictors is crucial. Let R% be the proportion of



variance in Y accounted for by a regression model that includes all the predictors in P. Let
p and g be disjoint subsets of P. In general, R} > R2, but this does not mean we should
include elements of q as predictors: they might contribute very little to R% and would serve
more usefully as predictors of one or more elements of p. Imagine we want to select the
best three predictors for Y, that is, a set w such that R2 > R2 for any sets v # u of size
three. We could find the set u by exhaustive search, but this will usually be enormously
expensive. Instead, the FBD algorithm uses w scores to rank predictors, selecting those with
w < T,. Imagine the algorithm selects three predictors for inclusion in p. Are these the best
predictors, or is there another set of three such that R2 > R3? The following experiment
suggests that the algorithm selects sets that are nearly as good as the best sets.

We asked how well w scores selected predictors for the dependent variable in each of our
60 models. Call the dependent variable Y and, for a 12 variable model, the predictors are
P = {Xi,...,Xu}. We find the best k predictors of Y by running regressions of ¥ on all
possible subsets of size & of P. The best subset, denoted p-best(k), is the one with the
highest R?. Next we select a subset of k predictors using w scores. The batch discarding
method regresses Y on Xj, ..., X, calculates w for each of these predictors, and selects the
k predictors with the best w scores. This set is denoted p-batch(k). The iterative discarding
method repeatedly regresses Y on a set of predictors, discarding the predictor with the worst
w score, until only k predictors remain, denoted p—iter.(k). If w scores select good predictors,
then p-best(k), p-batch(k), and p—iter.(k) should contain the same predictors, and if they
don’t, then p-batch(k) and p—iter.(k) should account for nearly as much of the variance in
Y as p-best(k).

Table 1 shows how many predictors p-batch(k) and p—iter.(k) have in common with
p-best(k). For 12-variable models and k = 5, the mean number of predictors shared by p-
batch(k) and p-best(k) is 3.15, and, for p—iter.(k) and p-best(k) this number is 3.375. Thus,
when batch discarding selects five variables, roughly two of them (on average) are not the
best variables to select. On the other hand, Table 2 shows that the variables in p-batch(k)
and p-iter.(k) account for almost as much of the variance in Y as those in p-best(k). Let
R:_b“t(k) be the variance in Y that is “available” to predictors in p-batch(k) and p-iter.(k).
For instance, if the best k predictors account for only 50% of the variance in Y, then we
want to express the predictive power of p-batch(k) as a fraction of 50%, not 100%. Table 2
therefore contains the ratios R} _saten(i)/ Rp—pest(y 304 R3_er i)/ R _peas(r)- For example, for
12-variable models and k = 5, the predictors selected by batch discarding account for 85%
of the available variance in Y, on average, and those selected by iterative discarding account
for 86%.

Batch and iterative discarding do not find exactly the same predictors as exhaustive
search for the best predictors, but the ones they find account for much of the available
variance in the dependent variable. Bear in mind that exhaustive search for the best k of
N variables requires N-choose-k multiple regressions with k predictors, whereas iterative
discarding requires N — k multiple regressions with between N and k + 1 predictors, and
batch discarding requires just one regression with N predictors. Thus, batch discarding finds
predictors that are nearly as good as exhaustive search, with a fraction of the effort.

We wondered whether something simpler than w scores, such as sorting by beta coeffi-
cients, would perform as well. We discovered that in most cases, beta coefficients selected
the same predictors as w scores, but sometimes they recommended different sets with bad



R? scores. We can see why (and also why w is preferable) by considering four cases:

High r,,, high Bxy: In this case w is small in absolute value and X will be accepted
as a predictor. Similarly, 8 is high, so by this criterion X will also be accepted as a
predictor. Since X should be accepted in this case, both w and 8 do the right thing.

High r.,, low Gxy: Here, w is large in absolute value and 8 small, so both statistics will
reject X, which is the right thing to do.

Low rgy, high Bxy: Here, w is large in absolute value so X will be rejected. However, its
B score suggests accepting it. The correct action is to reject X because the only way
to get, say, 7y = 0 and Bxy = .8 is for X’s direct influence (.8) to be cancelled by its
indirect influence (-.8) through other predictors. We want predictors that have large
direct influence and small indirect influence, so we ought to discard X. In this case, 8
coefficients make the wrong recommendation.

Low r.y, low Bxy: In this case, w is small but FBD will discard X as a predictor because
B is small.

4.2 Experiment 2: Performance of FBD on Target Models

We now consider the quality of the models FBD builds from datasets. We assessed eigh-
teen different measures of its performance, summarized in Table 4 and, for most of these
measures, compared FBD’s performance with that of Pearl and Verma’s IC algorithm [11].
The algorithms differ in three important ways. First, FBD is told which variable is the root
of each target model, whereas the IC algorithm is given no such information.? Second, FBD
runs regressions to find good predictors whereas the IC algorithm works with conditional
independence relationships, only. Third, FBD models contain only directed links, and they
all have the causal interpretation given in section 2.1; whereas models produced by the IC al-
gorithm contain directed links that are considered “genuine causes,” as well as other directed
links and undirected links. Many of the measures in Table 4 make sense only for directed
 links, so, unless otherwise noted, undirected links found by the 1C algorithm are ignored for
the purpose of calculating these measures.

* We ran FBD and the IC algorithm on the test set of 60 models described in section 4.. The
procedure for FBD was straightforward: we told it the dependent variable for each model
and gave it the datasets for the target models and scored the models it returned. FBD’s
parameters (section 3.) were T, = 1.0, Tg = 0.1, Tg2 = 0.1, and we used batch discarding
of predictors (section 3.). The IC algorithm takes as input a covariance matrix for all the
variables in a dataset and, from this, it infers conditional independence relationships. We
tried several settings of its parameters, obtaining the best results (reported here) with a
separating set of size one and a partial threshold of .1.

The measures in Table 4 will be easier to understand in the context of Figure 1. For
brevity we will refer to the target model (Fig.1.a) as TARGET-0, FBD’s model (Fig.1.b) as

2Thus, IC solves a more difficult problem than FBD. We are not claiming one algorithm is “better” than
the other. We include results for the Ic algorithm only so we can compare ours to another, established
algorithm.



FBD-0, and IC’s model (Fig.1.c) as IC-0. The latter two models are referred to as inferred
models.

4.2.1 Dependent R.

The dependent variable in TARGET-0 is 9 and it has five predictors. FBD found four
of them. R? for the dependent variable for FBD-0 is .625. This is almost identical to R?
for TARGET-0, .628, which suggests that the fifth variable—the one FBD missed—explains
virtually none of the variance in 9. In fact, looking at TARGET-0, we see that 84 = —.058,
confirming our suspicion that it contributes little. FBD dropped it because 8, < Tg. For 1c-0,
R? is .336; relatively low because we require a directed link between variables to consider
one a predictor of another. (If nodes connected to the dependent variable by undirected
links are also counted, then R? is .582 for 1c-0). Table 4 shows that FBD’s average scores
for Dependent R? hover around .75, and IC’s scores range from .3 to .45, depending on the
model size. (If we count undirected links, then IC’s average scores range from .6 to .81.)

4.2.2 Nopenalty AR?.

We summarized FBD’s ability to predict all the variables that it should as follows: Let
V be a variable in the target model that has other variables pointing to it; calculate R?
for V in the target model and R? for V in FBD’s model. Take the absolute value of the
difference of these scores. Then take the mean absolute difference over all such variables
in the target model. For example, in TARGET-0, variables 9, 8 and 6 should be predicted,
so the Nopenalty AR? score is the mean of three absolute differences in R? scores. This
statistic assesses no penalty for nodes that shouldn’t be predicted but are, such as 1 and
7 in FBD-0. On average, the mean absolute difference between the target model R?s and
FBD R?s ranges from .13 (for 6-variable models) to .19 (for 12-variable models). For the IC
algorithm the mean absolute differences are all roughly .35. If undirected links are allowed
(see above) then these differences are smaller. Because this statistic measures mean absolute
differences, it could be high if the target R%s are higher than the inferred model R2s, or vice
versa. In practice, the former was far more common. Thus we can interpret this statistic as
saying that FBD models account for 13% to 19% less of the variance in predictees than do
target models, on average.

4.2.3 A Correlation.

Another way to assess whether a model is faithful to data is to calculate the predicted
correlations between variables in the model and see how well they compare with the actual
correlations in the data. The rules for predicting correlations come from path analysis [16):
The weight of a path between two variables is the product of the weights on the links along
the path, and the predicted correlation is the sum of the weights of all legal paths. For
example, the predicted correlation between 2 and 7 in FBD-0 is the sum of the weights of
three paths 2,6,7; 6,8,7; and 2,6,8,7. If two variables point to a third and no path exists
between them (e.g., 5,8 in FBD-0) then their predicted correlation is their actual correlation.
We cannot calculate predicted correlations for the IC algorithm because it’s unclear how to
interpret undirected links. A Correlation is the mean absolute difference between predicted



and actual correlations for every pair of variables in a model. For FBD-0, A Correlation
is very good, .036. The average score over all test models was not much higher, however,
ranging from .047 to .065 as model size increases.

Because A Correlation summarizes differences between predicted and actual correlations,
we can assess it for target models just as for FBD models. Surprisingly, A Correlation
is actually higher for the target models than for FBD models, as shown in Table 3. If
this seems impossible, recall that datasets are generated by randomly sampling variates in
simultaneous equations that represent path models. Thus it is possible to get a dataset that
doesn’t correspond very well to the target model, and the opportunity arises for FBD to build
a model that fits the data better than the target model does.

In fact we would argue that FBD-0 is a better model of its dataset than is TARGET-0, even
though the data were generated from TARGET-0, and not only because of A Correlation:
The link in FBD-0 from 4 to 1 is “wrong” in the sense that it doesn’t appear in TARGET-O,
but it is “right” in the sense that 4 accounts for much more variance in 1 than in 9. It’s
worth keeping this example in mind as we consider other measures of FBD’s performance,
particularly the incidence of “correct” and “incorrect” links.

4.2.4 Total Links.

The mean numbers of links in 6-, 9-, and 12-variable target models were 10.8, 17.1, and
28.8, respectively. Some of these were correlation links; most were directed. The mean
numbers of links in inferred models were, by model size, 9.18, 18.0, and 30.0, for FBD
respectively; and 12.9, 26.1, and 43.2, respectively, for 1c. All FBD links are directed; the
figures for IC include all the links it found, including undirected links. Roughly seven links
per IC model were directed, irrespective of the model size, so the number of undirected links
in IC models rose from roughly 6 to 36 as the model size grew from 6 to 12 variables.

4.2.5 Correct Links, Incorrect Links.

A correct link is one that appears in both a target model and a corresponding inferred
model. For example, the correct links for FBD-O are 1 —+ 9,8 =+ 9,5 29,7 = 9, 6 — 8,
2 — 8, 3 — 6. Note that FBD-0 should have a link between 4 and 9. It failed to get one of
the eight directed links in the target model, hence it’s Correct % Links score is 7/8 = .875.
(Note that this statistic is not equal to the ratio of Correct Links over Total Links in the
target model, because Total Links includes correlations. This statistic is correct directed
links divided by total directed links.) _

A link is wrong if it does not appear in the target model. In FBD-0, wrong links are
4-51,4—-56,4—-7,4—+>88—->75—->76=—7 2— 6. For 1C-0 the incorrect links
are 5 > 7,1 —8,4— 8,6 — 3. A link can be “wrong” in two ways: If the target model
includes a link X — Y and an inferred model includes Y — X, instead, then the latter is
a Wrong Reversed Link (e.g., 6 — 3 in IC- 0). If an inferred model contains ¥ — X and
the target model doesn’t include a directed link from X to Y then the inferred link simply
shouldn’t be there, and it is called a Wrong Not Reversed Link.

An algorithm could score well on Correct Links by adding many links to a model, most
of which are wrong. One measure of this tendency is the ratio of wrong links to correct links.



For example, for 6-variable models, FBD added .76 wrong links for every correct one; and for
9- and 12-variable models it added 1.18 and 1.66 wrong links, respectively, for every correct
one. The IC algorithm has slightly higher numbers, 1.47, 1.5 and 2.17, respectively.

The story told by these numbers is familiar: a relatively conservative algorithm will make
fewer mistakes and get fewer correct links than a more liberal one. The IC algorithm gets 3.3
links correct and 3.8 links wrong, on average; while for FBD the numbers are 8.7 and 10.3.
Interestingly, the IC algorithm numbers do not depend on model size: it labels approximately
seven links per model as directed, irrespective of model size. Consequently, the percentage
of links it draws that are correct (Correct%) declines as models get bigger. The same is true
of FBD, though the proportional effect is smaller.

4.2.6 Distance 1, 2 and 3.

When visually comparing two causal models, we might consider a missing link to be
irrelevant if there is a directed path between the two variables in question. For example,
FBD-0 is missing a link between 4 and 9, but it includes a path from 4 to 1 to 9. Thus,
4 does influence 9 in FBD-0, just not directly. The Distance 1 score is the percentage of
directed links in a target model that are also in the corresponding inferred model. It is equal
to Correct%. The Distance 2 score is the percentage of directed links in the target model
for which there is a directed path of length 2 in the derived model. It is .125 for FBD-0
because one of eight direct links is represented by a path of length two, as described earlier.
Similarly, the Distance 3 score tells us how many links in the target model are represented
as paths of length 3 in the inferred model. When scoring the IC algorithm, we looked at
directed links, only. Roughly 10% to 13% of the direct links in FBD models are represented

by paths of length two or three; fewer for IC models, probably because they included fewer
directed links.

4.2.7 Dependent Links, Colliders, Total.

These statistics measure whether an inferred model reflects the dependence relationships
that hold between variables in the target model. We look at both direct and conditional
dependencies in the target and inferred models. Pearl and Verma state, “[When all relevant
variables are included in the model,| two causal models are equivalent iff their dags have
the same links and the same set of uncoupled head-to-head nodes.” [11] To measure this
notion of equivalence, we compare each inferred model to the target model, and calculate
number of correct links, the number of correct head-to-head (collider) nodes, and the total
number of correct dependencies and colliders. (For IC, undirected links counted toward the
dependence score, and directed links, only, counted toward the collider score.) Each score
is then transformed to a percentage of the maximum number possible for the model; for a
model with n variables, there are n(n —1)/2 such possibilities. FBD and IC both perform well
and very similarly; they capture the dependency structure of the data with equal felicity.



5. Discussion of Experiment Results

We wanted to know two things: Does FBD build good predictive models, and how accurate
are its models? Experiment 1 told us that when FBD must select k predictors, it chooses
some but not all of the best k predictors. Consequently, its predictors account for 73% to
100% of the variance in the dependent variable that is accounted for by the best predictors.
Experiment 1 was an “in vitro” study, however, because it didn’t test FBD on complete
models and it compelled FBD to select k predictors. Experiment 2 complements the results
of Experiment 1: FBD’s R? scores for the dependent variable were roughly 75% as high as
those of the target models, and FBD models accounted for 15% less variance in all predictees,
on average, than did the target models. In comparison, IC accounted for 35% less variance
in all predictees, on average, not allowing undirected links, or 22% less, allowing undirected
links.

As noted earlier, ACorrelation scores represent the ability of a model to predict the
empirical correlations among variables in a dataset. They were very good (i.e., low) for FBD.
We think this probably is a consequence of using w scores to select predictors. Recall that w
favors predictors for which Bxvy is a big fraction of rxy. It follows that predicted correlations,
which are derived from f coefficients, are a big fraction of the actual correlations if the Jé]
coefficients are a big fraction of the correlations, as w requires.

Recall, a set of predictors is not accepted unless it accounts for at least some fraction of
the variance in the predictee (section 2.). For the previous results, this fraction was .1. When
we raised it to .5, we got the data in Table 5. We did not expect the higher threshold to
affect Dependent R? but we were surprised by how little it affected NopenaltyAR?. With the
higher threshold, FBD models accounted for 19% less variance in all predictees, on average,
than did the target models.

The R? threshold had bigger effects on FBD’s accuracy: With a low threshold (Table 4)
FBD got 1.2 links wrong for every link it got right, on average; with the higher threshold
(Table 5) it got .72 links wrong for every one correct. Not surprisingly, the higher threshold

resulted in fewer links overall; the nice surprise was the increase in accuracy. As noted
 earlier, FBD got more correct links and also more wrong ones than the IC algorithm. This
remains true even with the higher R? threshold.

We were particularly interested in the number of WrongReversed links in FBD models.
Suppose X; and X, are being considered as predictors of Y, and imagine X, predicts both
Y and X, in the target model. Now, if X, is accepted as a predictor for Y but X; is not
(because wx,y < T,,) then when FBD looks for predictors for X,, it will probably select X;.
(If X, causes X, then X; will often be a good predictor of X,.) This phenomenon will
show up as a WrongReversed link. Forty-three percent of wrong links were reversed in FBD
6-variable models (Table 4). This proportion dropped to 26% and 27% for 9- and 12-variable
models, respectively. Evidently, this phenomenon is a weakness of the FBD algorithm, but
we have some evidence that it doesn’t get worse as models get bigger and, in any case, it
accounts for less than half of the links FBD gets wrong. These results are affected little by
increasing the R? threshold (Table 5), which isn’t surprising, considering that high thresholds
discard entire sets of predictors, whereas this phenomenon is observed when one predictor
from a set is discarded incorrectly.

A different view of accuracy is given by Dependencies and Colliders scores, which rep-
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resent how well a model accounts for the dependencies and conditional dependencies in a
dataset. Overall, FBD performed as well or better than IC on this measure, and the figures
were affected little by the R? threshold.

Linear regression is not popular, currently, with the causal induction community. One
reason is that many relationships are not linear, but this concern can often be addressed
by transforming one’s data beforehand [5]. A more subtle issue, raised by Glymour, Spirtes
and Scheines, is that beta coefficients are unstable, especially when unmeasured or latent
variables influence them. Selecting variables by their w scores lessens this problem. We
have obtained good results with models Glymour et al. [14, page 240] show are difficult
for ordinary regression; see [1].® Nevertheless, most causal induction algorithms attempt
to build models that are consistent with conditional independence relationships, and they
discard quantitative covariance information once these relationships are inferred.

Yet FBD, based on linear regression, performed as well as IC, based on conditional inde-
pendence, when we measured its ability to account for dependencies in the data. One reason
is that w scores provide much the same information as conditional independence tests: Be-
cause s are partial, low w is akin to finding high correlation and low partial correlation,
which is basically the conditional independence test in IC. In addition to its strong depen-
dency scores, though, FBD also built strongly predictive models. We are not claiming FBD is
“better” than IC because they solve different problems. Surely, though, these results suggest
regression deserves a closer look. .

3FBI3 chose the correct predictors 88% of the time. Variables from the set of correct predictors were
always included; the remaining 12% is due to not choosing the entire set of correct predictors. When FBD
could have incorrectly chosen variables whose relationships with the dependent variable were due to latent

variables or correlations with predictors, they were rejected 82% of the time. 39% of those rejections were
due to w pruning.

11



[T Vars. [ 1p — batch(k) Np —best(k) | | | p—iter.(k) Np — best(k) |
512 3.15 (1.16) 3.375 (.86)
59 3.65 (.49) 3.7 (.52)
56 5.0 (0) 5.0 (0)
412 2.3 (.57) 2.3 (.74)
49 3.05 (.36) 3.08 (.53)
46 3.33 (.23) 3.33 (.23)
3|12 1.48 (.61) 1.68 (.58)
39 2.18 (.46) 2.18 (.51)
36 2.28 (.36) 2.33 (.33)

Table 1: Means and (Standard Deviations) of the size of the intersections

” k I Vars. | Rz—batch(k)/Rg—but(k) I R:-iter.(k)/R:—but(k) ||

5[ 12 845 (.03) .86 (.023)

59 194 (.006) .94 (.005)

56 1.0 (0) 1.0 (0)

4|12 80 (.04) 82 (.03)

29 94 (.008) .94 (.005)

4|6 91 (.01) 91 (.01)

3|12 73 (.06 80 (.04)

39 91 (.02 92 (.01)

3|6 88 (.03 89 (.03)

Table 2: Means and (Standard Deviations) of the R? ratios

| Measure | 6vars | 9vars [ 12vars ||
DependentR? | .768 (.163) | .833 (.109) | .832 (.168)
ACorr. 1064 (.054) | 063 (.054) | 098 (.089)
TotalLinks 10.8 17.1 28.8

Table 3: Target Model Statistics
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FBD IC
Measure [| 6vars | 9vars | 12vars 6vars | 9vars | 12vars
["Dependent R2 .74 (.189) | .795 (.145) [ .745 (.276) || .326 (.389) | .451 (.338) | .303 (.363)
Dep.R*w/corr. .603 (.31) [ .811 (.12) | .739 (.216)
NopenaltyAR? 113 (.089) | .137 (.081) | .193 (.126) || .347 (.128) | .345 (.137) | .348 (.095)
NoPen.R*w/corr. .199 (.104) | .124 (.063) | .172 (.063)
ACorr. 1047 (.02) | .054 (.03) | .065 (.03)
TotalLinks 9.18 18.0 30.0 12.9 26.1 43.2
CorrectLinks 5.6 (1.60) | 8.85 (2.96) | 11.6 (4.11) || 2.65 (2.06) | 3.4 (2.19) | 3.75 (2.71)
Correci% 1666 (.192) | .681 (.164) | 543 (.221) || .293 (.18) | .272 (.19) | .165 (.11)
WrongLinks 3.6 (1.19) | 9.1 (2.32) | 18.3 (5.86) || 2.75 (1.41) | 3.85 (2.37) | 4.9 (2.49)
WrongReversed || 1.55 (1.28) | 2.4 (1.63) | 5.0 (3.69) || 1.55 (1.05) | 1.35 (1.27) | 2.0 (1.30)
WrongNotRev. || 2.05 (1.23) | 6.7 (2.51) | 13.3 (5.74) || 1.2 (1.06) | 2.5 (2.09) | 2.9 (1.8)
Wrong/Correct. || .76 (.55) | 1.18 (.61) | 1.66 (.83) || 1.48 (.944) | 1.50 (1.11) | 2.17 (2.10)
Distancel 666 (.193) | .682 (.166) | .543 (.221) || .293 (.180) | .272 (.194) | .165 (.108)
Distance? 1002 (.099) | .084 (.071) | .107 (.071) || .016 (.041) | .013 (.028) | .031 (.041)
Distance3 1013 (.039) | .015 (.036) | .023 (.030) || 0 (0) 1005 (.020) | .004 (.012)
Dependencies 667 (.155) | .722 (1) | .691 (.09) || .630 (.109) | .739 (.095) | .707 (.077)
Colliders 757 (.13) | .721 (.08) | .689 (.071) || .707 (.134) | .756 (.071) | .741 (.095)
Total 783 (.17) | .693 (.109) | .626 (.105) || .657 (.161) | .642 (.095) | .595 (.1)

Table 4: Means and (Standard Deviations) of the results from Experiment 2

| Measure | 6vars | 9vars | 12vars ||
DependentR? | .723 (.235) | .795 (.146) | .725 (.313)
NopenaltyAR® | .175 (.097) | .167 (.087) | .235 (.123)
ACorr. 1046 (.037) | .057 (.049) | .065 (.036)
TotalLinks 6.35 12.95 23.1
CorrectLinks | 4.55 (2.28) | 8.2 (3.24) | 10.45 (4.89)
Correci% 53 (.25) | 62 (.16) | .46 (.22)
WrongLinks 1.8 (1.64) | 4.75 (2.81) | 12.65 (6.38)
WrongReversed | .95 (1.23) | 1.35 (1.66) | 4.35 (3.69)
WrongNotRev. | .85 (1.04) | 3.4 (1.76) | 8.3 (3.71)
Wrong/Correct. | .4 (.48) .63 (.42) | 1.2 (.76)
Distancel 535 (.247) | .619 (.165) | .462 (.219)
Distance? 041 (,08) | .073 (.071) | .088 (.081)
Distance3 006 (.025) | .006 (.018) | .015 (.026)
Dependencies | .62 (.17) | .75 (.10) | .70 (.09)
Colliders 76 (.13) | .75 (.10) | .70 (.09)
Total 69 (27) | 71(12) | .64 (.09)

Table 5: Results from Expt 2 R?Threshold = .5
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FBD is available as part of the CLASP/CLIP package. If interested, please contact David
Hart (hart@cs.umass.edu).
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