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Abstract

This paper presents a compact Petri net representation for concurrent programs with explicit task-
ing and rendezvous style communication that is efficient to construct. These Petri nets are based
on task interaction graphs and are called TIG-based Petri nets (TPN)s. They form a compact
representation by abstracting large regions of program execution and summarizing the informa-
tion from those regions that is necessary for performing program analysis. We present a flexible
framework for checking a variety of properties of concurrent programs using the reachability graph
generated from a TPN. We also discuss the applicability of state space reduction techniques to
TPNs. We present experimental results that demonstrate the benefit of TPNs over alternate Petri
net representations.
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1 Introduction

An important goal of software engineering research is to provide cost-effective techniques that allow
developers of concurrent software to gain confidence in the quality of their programs. Towards this
end many researchers [16, 17, 14, 7, 3] have investigated state reachability analyses. Theoretical
results on the complexity of basic questions about concurrent software [15] imply that reachability
analysis can be prohibitively expensive. Recent experimental results [17, 12, 2] suggest that reach-
ability analysis that considers the entire concurrent program is practical only for small to medium
size programs of moderate complexity. One approach to extending the applicability of reachability
analysis, called state space reduction, is to [3, 12] create a more compact program representation
that preserves only the information necessary to analyze a restricted class of properties.

In this paper, we describe a Petri net representation for concurrent programs, with explicit tasking
and rendezvous style communication, called TIG-based Petri nets (TPN)s. This representation
summarizes large regions of program execution and makes available information from those regions
that is important for program analysis. The result is a representation that is compact and unlike
reduction techniques, has no loss of information. This representation appears to be amenable to
reachability analysis for larger programs than previously proposed Petri net reachability techniques.
TPNs are also amenable to property specific state space reduction techniques.

Given the large amount of information required to reason about properties of concurrent pro-
grams, there is a fundamental choice about where this information is encoded. It can be explicitly
represented in the program representation or in the analysis algorithms that operate on the rep-
resentation. Choosing the former increases the space requirements of analysis but simplifies the
algorithms; the later decreases space requirements but increases algorithm complexity. The major
limiting factor in performing reachability analysis is the construction of the reachability graph. Our
hypothesis is that using a program representation that reduces the size of the reachability graph at
the expense of increased cost in analysis of reachable program states, will allow practical analysis
of programs for which reachability analysis is otherwise impractical. To evaluate this hypothesis
we have constructed a set of tools to gather data on TPNs and reachability graphs generated from
TPNs.

In the following section we give a brief overview of Petri nets and TIGs. Section 3 shows how a
TPN is constructed and discusses the semantic content of TPN places and transitions. Section 4
describes analysis of state reachability properties using TPNs. We discuss how reachability analysis
of TPNs differs from reachability of most other Petri net representations. We also describe how
reductions can be applied to TPNs. In section 5 we describe a prototype toolset that we have built
to evaluate the TPN representation. We present experimental data on the size of the reachability
graphs generated from TPNs and on the cost of checking the graph for desired properties. Section
6 mentions directions for future work.

2 Overview

This section defines general Petri net and TIG terminology and introduces a simple example to
illustrate the concepts presented in the paper. We assume that the concurrent programs being
represented are Ada tasking programs. In principle the representations and algorithms described

are applicable to programs written in any procedural programming that supports explicit tasking
and rendezvous style communication.



Petri Nets

Petri nets are a formalism used for modeling concurrent systems[9]. A Petri net is a directed
bipartite graph with nodes called places and transitions. Typically, places are drawn as circles and
transitions as bars. The edges of the graph are called arcs. Arcs are labeled with a positive integer
representing their weight. A marking is an assignment of an integer to each place in the net and
represents the number of fokens at that place. Tokens are drawn as black dots inside of places. A
marking is given by a k-vector, M, where k is the number of places in the net and M(z) denotes
the number of tokens at place i. Formally, a Petri net is a tuple (P,T,F,W,M;), where P is the set
of places, T is the set of transitions, F C (P x T) U (T x P) is the set of arcs, W is a function
assigning weights to arcs, and M, is the initial net marking. In this paper all of the Petri nets
discussed are ordinary, having arc weights of 1, and safe, having a maximum of 1 token per place.
Associated with each transition is a set of input places, places at the head of incoming arcs, and
output places, places at the tail of outgoing arcs. A transition is enabled if each input place of
the transition is marked with at least as many tokens as the weight given on the associated input
arc. A transition fires by removing tokens from each input place and adding tokens to each output
place. A transition may not fire unless it is enabled.

In [7, 11, 5] Petri nets have been used to model and analyze concurrent programs that use
rendezvous style communication. The reachability graph of such a Petri net has been used to
perform analysis of Ada tasking programs [11, 7).

Task Interaction Graphs

TIGs have been proposed by Long and Clarke [4] as a compact representation for tasks. TIGs divide
tasks into maximal sequential regions, where such task regions define all of the possible behaviors
between two consecutive task interactions. The TIG abstraction hides control flow information
internal to a task, leading to a smaller graph than a traditional control flow graph. A task interaction
is any point where the behavior of one task can be influenced by the behavior of another task. To
support efficient analysis, task regions summarize groups of exiting task interactions for which the
same control flow path through the region is taken into edge groups®. Task interactions are blocking
if their execution is unavoidable given a particular control flow path through the task region. An
example of non-blockinginteractions are accept statements in a select statement with an else branch.

Formally, a TIG is a tuple (N, E, S, T, L, C), where N is the set of nodes representing task regions,
E is the set of edges representing task interactions, S is the start node, T is the set of terminal nodes,
L is a function assigning labels to edges, and C is a function assigning code fragments to nodes.
The start node represents the region where task execution begins and the terminal nodes represent
regions where task execution potentially ends. Each node has a fragment of code associated with
it that represents Ada statements in the task region plus two non-executable statements, ENTER
and EXIT, that mark region entry and exit points. The ENTER and EXIT statements take a
description of the task interaction as an argument and ENTER takes a second argument describing
the successor TIG node. The edges of a TIG are labeled with the tasking interactions that cause
transitions from one region to another. The tasking interactions we consider are Ada entry calls
and accept statements. There are four distinct kinds of tasking interactions: starting an entry call,

3The situation is somewhat more complicated as not all control flow choices are relevant. Only the branch choices
made at conditional statements on which entry calls and accept statements are control-dependent are necessary for
accurate analysis.



task body T1is task body T2 is

begin begin
loop loop .
select T1.E1;
accept E1; T1.E2;
or end loop;
accept E2; end T2;
end select;
end loop;
end T1;

Figure 1: Ada tasking example

C(1) = ENTER(TASK_ACTIVATE);
task body T1 is
begin
loop
select
EXIT(ACCEPT_START(E1),2);

or
EXIT(ACCEPT_START(E2),3);

end select;
end loop;
end T1;
C(2) = ENTER(ACCEPT_START(E1)); C(3) = ENTER(ACCEPT_START(E2));
EXIT(ACCEPT_END(E1),4); EXIT(ACCEPT_END(E2),5);
C(4) = loop C(5) = loop
select select
EXIT(ACCEPT_START(E1),2); EXIT(ACCEPT_START(E1),2);
ENTER(ACCEPT_END(E1)); or
or EXIT(ACCEPT_START(E2),3);
EXIT(ACCEPT_START(E2),3); ENTER(ACCEPT_END(E2));
end select; end select;
end loop; end loop;
end T1; end T1;

Figure 2: Code fragments for task T1 of example

ending an entry call, starting an accept statement, and ending an accept statement. It is necessary
to model both the start and end of a rendezvous explicitly because accept bodies are themselves
task regions that perform sequential computation that must be captured in the representation.
Figure 1 presents a simple Ada program that will be used as an example throughout the rest of
the paper. Task T1 consists of 5 sequential regions. To illustrate the idea of maximal sequential
regions, consider the initial region of T1. Region 1 enters at the beginning of the task and exits
at the select statement. There are two exits out of this region. The first exit is on the start of
the accept for E1 and the second is on the start of the accept for E2. The code fragments for
task T1 are given in figure 2. The TIGs for tasks T1 and T2 are given in figure 3, where an entry
call is denoted by the task and entry name and an accept is denoted by the entry name alone.
Given that regions represent all sequential execution paths between pairs of consecutive tasking



Figure 4: Reduced TIGs for example

interactions, it is possible for distinct TIG nodes to contain the same program statements. When
EXIT statements are duplicated in this way, multiple TIG edges may be used to represent a single
Ada communication statement in the source program. This is illustrated by the duplication of the
statement EXIT(ACCEPT_START(E1),2) in regions 1, 4 and 5 of task T1 in figure 3. Note that a TIG
represents a single task instance. The potential behaviors of a collection of tasks can be modeled
by matching edges from different TIGs, whose labels represent calls and accepts of the same task
entry.

If the accept statement of a rendezvous has no accept body then we can reduce the size of the
TIG representation without loss of information. A single interaction, comprising both start and
end of a rendezvous, is used to model such an accept statement and any entry calls made on it.
Since the accept statements given in task T1 of figure 1 have no accept bodies, the TIGs for tasks
T1 and T2 can be reduced as shown in figure 4.

3 TIG-based Petri nets

We propose a Petri net model for Ada tasking programs that is constructed from a set of TIGs
and therefore hides the details of task control flow. A TPN maintains a strong relationship with
the set of TIGs; each place in the Petri net has a one-to-one correspondence with a tasking region
and each transition represents a potential task interaction. TPNs can be constructed quite simply
by creating a transition for each pair of TIG edges whose labels represent a call and accept on the
same task entry and by making the source and destination regions of these edges the input and
output places of the new transition. More precisely:



Input: a set of TIGs
Output: (P,T,F,W,M;) a Petri-net
Algorithm:
WH=1
for each node, n, in the set of input TIGs
create a place and add it to P
end for
for each edge, c, in the set of input TIGs that represents an entry call
for each edge, a, in the set of input TIGs that represents an accept
if L(c) is a call to task entry L(a) then
create a tramsition, t, and add it to T
add the following arcs to F:
(place(head(c)), t)
(place(head(a)), t)
(t, place(tail(c)))
(t, place(tail(a)))
end if
end for
end for
M, = mark each place corresponding to a TIG start region with 1 token

The head and tail functions access the source and destination of a TIG edge, L(e) is the label
for TIG edge e, and place returns the TPN place associated with a given TIG region. The
resulting Petri nets are ordinary, by definition, and safe, as Mo has only values of 0 or 1, and for
all transitions ¢, |input places of ¢| = |output places of ¢| = 2, so the number of tokens is preserved
across transitions. We note that Pezzé, Taylor and Young [10] independently developed a similar
algorithm for constructing Petri nets from labeled flow graphs.

This algorithm constructs a Petri net that overestimates the possible task interactions of the
program. All potential task interactions are included as a result of the simple and efficient matching
of TIG edge labels, but some of these interactions can never be executed. From the algorithm
description it is clear that the cost of constructing a TPN from a set of TIGs is dependent on
the product of the number of calling and accepting TIG edges. For all of the examples discussed
in section 5 this product is less than 10000 and as a result the TPN construction is quite fast in
practice.

As we can see from the above algorithm the total number of places in a TPN is the sum of the
number of nodes of the TIGs representing the program. A single Ada task may have a number of
entry calls and accept statements, these may be either a synchronizing rendezvous, where an accept
has no body, or a remote procedure call (RPC), where an accept has a body. Consider a task with
Csynen Synchronizing entry calls, ¢,,c RPC entry calls, @,y,s synchronizing accept statements and
a,pc RPC accept statements. The TIG representing such a task has < 2(c,pc) + 2(aype) + Coynch +
@synch + 1 nodes. There is a TIG region for every task interaction contained in the modeled task,
except for the interaction that represents task termination. An RPC rendezvous models start and
end interactions separately and contributes two regions to the TIG. A synchronizing rendezvous
models start and end interactions as a single interaction and contributes a single region to the TIG.
The interaction modeling task activation contributes an additional region to the TIG. We note



region before region before
call-start accept-start

rendezvous-gstart

region between call-start region between accept-start
and call-end and accept-end

rendezvous-end

region after region after
call-end accept-end

Figure 5: TIG-based Petri net representation for Ada rendezvous

that this is a strong upper bound. Furthermore this bound demonstrates that the number of TPN
places is linear in the number of communication statements in the program.

In this algorithm, a TPN transition is created for each syntactic matching of edge labels. Ideally
this would correspond to a syntactic matching of each pair of call and accept for the same task
entry in the source code. However, there may be multiple TIG nodes that represent task regions
on separate branches of a control flow statement. At the point where control flow merges, each of
these TIG nodes must have an edge to the common successor TIG node. The potential for having
multiple TIG edges corresponding to a single call or accept statement in the source program results
in extra TPN transitions. There are pathologic examples where the number of TPN transitions
used to represent communication through a given task entry is quadratic in the number of call
and accept statements of that entry in the program. We note that many of these transitions are
unreachable, and hence do not contribute to the complexity of TPN based reachability analysis.

Figure 5 illustrates the Petri net fragment that represents a single Ada rendezvous between a
calling and accepting task. In the case of multiple callers this fragment is replicated with the
accepting task participating in all potential rendezvous.

Continuing with our example, figure 6 illustrates the TPN constructed from the reduced TIGs in
figure 4 where the executable transitions and arcs are in bold. This example illustrates a number of
the benefits of the TPN representation. Each task communication has a simple representation as a
single TPN transition that has a calling and accepting input place and two output places. There is
a single marked place in the set of places associated with each task in the program that keeps track
of individual task states. We have found that this regular structure of TPNs simplifies reasoning
about the correctness of the TPN representation and TPN based analysis. TPNs are smaller than
some other Petri net representations, for the above example the Ada-net, as defined by Shatz et.
al. [11], would have 21 places and 16 transitions as compared to 6 places and 9 transitions for
the TPN in figure 6. As we will see in section 5, in practice TPNs and the reachability graphs
generated from them are smaller than Ada-nets and Ada-net generated reachability graphs.

4 Analysis using TPNs

Petri nets have been used for simulation, visualization, modeling and analysis [8]. We are primarily
interested in analysis, so the appropriate measure of worth of the TPN representation is its suit-
ability for analysis. TPNs are atypical of Petri net representations in that they implicitly represent
control flow merge and branch points within a TPN place. In contrast most Petri net representa-
tions [7, 5, 11, 14] explicitly represent control flow merge and branch points using special purpose



Task T1: Task T2:

Figure 6: TIG-based Petri net for example

(14) (2 5) (3 6)

Figure 7: Reachability graph from Reduced TIGs and TPN for example

places and transitions. While the complexity of some structural Petri net analyses may depend
on the size of the net [8], it is not a strong factor in determining the cost of reachibility analysis.
Empirical data presented in section 5 bears this out. To judge the effectiveness of a representation
for reachability analysis we need to consider both the size of the generated reachability graph and
the cost of checking properties on that graph. In the remainder of this section we discuss these

issues and how TPNs can be reduced prior to and during reachability analysis in the spirit of [12]
and [3].

4.1 Reachability

Young et. al. [17] discuss separating the construction of the reachability graph from the process of
checking a particular property. Experimental evidence suggests that construction of the reachability
graph is the limiting factor in performing state reachability analyses. If we can construct the
reachability graph it is often practical to check the property of interest by traversing the graph.
We adopt this separation of generation and checking in our analysis.

The TPN reachability graph is generated using standard Petri net techniques [7]. The structure
of TPNs is such that the number of marked places in any TPN marking is equal to the number of
tasks in the program. So, TPN markings can be represented as an array of elements of length equal
to the number of tasks in the program rather than as a bit vector of length equal to the number
of Petri net places, which is needed for general ordinary, safe nets. The reachability graph for the
TPN in figure 6 is given in figure 7, where nodes represent TPN markings.



Checking whether a program exhibits a desired property involves defining a property predicate
that decides whether a TPN marking satisfies the property in question. The predicates must be
defined to be conservative in the sense that they never return false when a marking corresponds to
a state in which the desired property is true. To illustrate we discuss checking whether a marking
corresponds to a program deadlock state and whether a marking corresponds to a violation of a
region of exclusive access.

Freedom from deadlock is checked by determining whether some combination of the individual
task states represented by the marked TPN places corresponds to a program deadlock. Conceptually
we need to look at all of the possible control flow choices that can be made in the task regions
associated with the marked TPN places. If we find a set of control flow choices such that no pair
of tasks can successfully communicate, then the current TPN marking corresponds to a deadlock.
To improve the efficiency of analysis TPN places summarize, through their associated TIG regions,
the control flow choices that need to be considered to determine deadlock markings. Members of
non-blocking exiting edge groups from a TIG region can never contribute to a program deadlock
as they can always be bypassed. Thus, we restrict our attention to blocking edge groups. A TPN
marking corresponds to a potential program deadlock if there is some combination of outgoing edge
groups from the TIG regions of the marking, such that no pair of edges from these edge groups are
matching communications . We formulate this condition as a deadlock property predicate. For
each exiting, blocking edge group of each TPN place we compute a pair of bit-vectors of length
equal to the number of task entries in the program. A value of 1 in the ith bit of the accept-vector
indicates that the TPN place has an outgoing edge that accepts the ith task entry. A value of 1 in
the jth bit of the call-vector indicates that the TPN place has an outgoing edge that calls the
jth task entry. We use bit-wise or, ™, and bit-wise and, N"*, operations over collections of bit
vectors in the following algorithm.

Input: TPN marking M = [n,,ng,---,n]
Output: True if the marking may correspond to a potemtial program deadlock
Algorithm:
for each combination, C, of blocking, exiting edge groups from M
all-accepts := U:‘.G‘G accept-vector of p
all-calls := U:'éc call-vector of p
if (all-accepts ™ all-calls) = (0,--+,0) then
return TRUE
end if
end for
return FALSE

To illustrate, consider the deadlock property applied to the reachable TPN marking (2, 5) in figure
7. For this example, see figure 6, TPN place 2 has a single exiting, blocking edge group whose
value is {Accept(E1), Accept(E2)} with an accept-vector of (1,1) and an call-vector of (0,0)
and TPN place 5 has a single exiting, blocking edge group whose value is {Call(T'1.E2)} with
an accept-vector of (0,0) and an call-vector of (0,1). The single edge group combination

3 A degenerate case of this condition is that terminal reachable TPN markings, i.e., markings that have no successor,
correspond to potential program deadlocks, since the set of edges in any edge group combination is empty there can
be no pair of edges in it that correspond to matching communications.



considered by the deadlock predicate for TPN marking (2, 5) computes the bit vector expression
(((1,1) v (0,0)) A ((0,0) v (0,1))) = (0,1) so the predicate returns FALSE.

This algorithm is exponential in the size of the TPN marking, which is always equal to the
number of tasks in the program, where the base of the exponent is related to the number of exiting
blocking edge groups. Young et. al. [17] have shown that this problem is NP-hard, but they
have found through experimentation that for many programs checking this condition is practical.
In contrast to TPNs, Petri nets that explicitly represent control flow can use a test for terminal
reachable markings as a conservative property predicate for checking deadlock.

The need for exclusive access to selected regions of program execution is common in concurrent
programs. We develop a flexible property predicate for checking violation of a mutual exclusion
properties. Collections of tasks within a program may arbitrate exclusive access to regions of
execution within each task by using semaphore tasks, or similar constructs. We call such a collection
an arbitration group. A program may consist of many arbitration groups and an individual task may
be a member of multiple arbitration groups. Ideally a region of mutual exclusion is a represented
by a TPN place with a single input transition, representing acquisition of the semaphore, and a
single output transition, representing release of the semaphore. When there is a program error,
such as an omitted acquire or release operations, the region in the source code may span a number
of TPN places. If there are m arbitration groups in the program we can associate with each TPN
place a bit vector, called in-region, of length m. A 1 in the ith bit of this vector indicates that
the TPN place is part of or contains a task region associated with the ith arbitration group. A
bit value of 0 indicates that the TPN place is not in a region of mutual exclusion. We use bit-wise
and, N, over a set of bit vectors in the following algorithm.

Input: TPN marking M = [ny,n3,---,m]
Output: True if the marking may correspond to a violation of exclusive
access to a region associated with some arbitration group.
Algorithm:
result := ﬂ:-'f:.‘l_",‘ in-region of M[i]
return (result = (0,---,0))

¢

The result computed by this algorithm provides sufficient information to point the user at regions
of source code that may be in violation of mutual exclusion properties. If we make the assump-
tion that the number of arbitration groups is reasonable, e.g., less than 128, then the bit-vector
operations used in the predicate are efficient. Checking this property predicate for a given TPN
marking requires time that is linear in the number of tasks in the program. A number of other
co-executability properties can be checked using similar property predicates, e.g., critical races.
:his type of property predicate can also be applied to Petri nets that explicitly represent control
ow.

As discussed in section 1, TPN based analysis represents a tradeoff in encoding information in the
program representation versus analysis algorithms. In section 5 we will see that TPN reachability
graphs are relatively small. The two property predicates described above illustrate that checking
properties of a TPN marking can range in cost from linear to exponential in the number of tasks.
Checking properties of reachable TPN markings for which efficient predicates are available provides
the benefit of TPN reachability graph compaction without increase in the cost of analysis. It remains

to be seen whether the additional cost of checking the deadlock predicate is compensated for by
TPN reachability graph compaction.



4.2 TPN based Reduction

The goal of reduction techniques is to make reachability graphs smaller. Reductlons can be applied
prior to or during reachability graph generation.

The theory of Petri net reductions [8] allows a given net to be replaced by a dlﬂ'erent net where this
reduced net maintains certain desired properties of the original net and has a smaller reachability
graph. Net reductions typically replace a selected Petri sub-net with a new sub-net. The key to
net reductions is the preservation of the desired properties. Reachability analysis of some Petri net
representations can test for the existence of terminal markings to conservatively detect program
deadlock. A net reduction must preserve this information so that each reachable terminal marking
of the original net corresponds to some reachable terminal marking of the reduced net. Recent
experimental data has demonstrated that net reduction techniques are an effective approach to
extending the size of programs for which deadlock checking is practical[2, 12].

Unfortunately, program deadlocks are not conservatively represented by the set of reachable ter-
minal TPN markings, so we cannot directly apply existing deadlock preserving Petri net reductions.
However, net reductions can be developed that are applicable to TPNs. For deadlock preserving
reductions the idea is that if we can find a necessary condition for our deadlock property predicate
to hold, and test for that condition over parts of the TPN, then when we find the condition is false
we know that the part of the TPN we tested cannot participate in a reachable TPN marking that
corresponds to program deadlock. We discuss two reductions: synchronizing accepts and forced
commaunication pair. The first is formulated as a net reduction and the second is formulated as a
reduction that can be applied during reachability graph construction.

The synchronizing accept reduction preserves all information in the reduced net, including pro-
gram deadlocks. When all accept statements for a given task entry have an empty body we can
eliminate all ACCEPT_END and ENTRY_CALL_END transitions that correspond to accepts and
entry calls of that task entry. We also merge each output place of those transitions with the input
place in the same task. This is equivalent to the TIG reduction mentioned in section 2. This reduc-
tion cannot take place until all potential communication partners are known. Since communication
partners are explicitly represented in TPNs we have all the necessary information to perform this
reduction prior to construction of the reachability graph.

The forced communication pair reduction preserves program deadlocks in the reduced TPN.
This reduction makes use of knowledge about the representation of deadlocks in TPNs and the
semantics of the deadlock property predicate. If there are a pair of TPN places that each have
a single common output transition, this transition must represent the execution of a blocking call
and accept statement to the same task entry. The task regions associated with the TPN places
each have a single blocking exit edge group and those groups each contain a single edge. Every
edge group combination for any TPN marking in which this pair of places is marked must contain
the pair of exiting blocking edge groups mentioned above. This pair of edge groups has matching
call and accept edges, therefore the deadlock property predicate can never return TRUE for any
TPN marking containing such a pair of places. If we collect and record all pairs of TPN markings
that constitute a forced communication pair then, during reachability analysis when a marking is
encountered for which both places of such a pair are marked, we can skip that reachable marking
and generate its successors directly. As with the synchronizing accept reduction the reason we can
detect forced communication pairs prior to reachability graph construction is because all possible
communication partners are explicit in the TPN. This reduction can be generalized to more than a
pair of TPN places. For example, if there is a set of TPN places where all of the output transitions

10



Example Tasks _Places Transitions Stat-es Arcs Places  Transitions  States Arcs
TPN TPN  TPN TPN Adanet Adanet  Ada-net Ada-net

DARTES opt 31 528 668 * * * * * *

Q 18 245 231 * * * * * ¥

BDS 14 105 131 * *

BDS opt 14 93 112 * * 263 220 - -

Hartstone 5 46 27 29 29

Hartstone opt 5 46 27 29 29 * * * *

Gas-13 7 53 73 566 897

Gas-1 3 opt 7 35 62 323 526 157 141 79153 293490

Gas-15 9 79 137 11831 24004 :

Gas-1 5 opt 9 53 120 6304 13397 313 309 - -

Phils 3 6 43 36 268 576

Phils 3 opt 6 25 24 84 186 72 54 18300 79083

Phils 5 10 71 60 11744 42440

Phils 5 opt 10 41 40 1653 6130 120 g0 - -

Phils 7 14 99 85 - -

Phils 7 opt 14 57 56 32063 166502 * * * *

RW 2/1 4 29 56 85 163

RW 2/1 opt 4 17 48 41 119 93 92 - -
“RW 2/2 5 34 78 383 900

RW 2/2 opt 5 20 66 175 692 - - - -

RW 2/3 6 39 100 1413 3835

RW 2/3 opt 6 23 84 609 3031 - - - -

RW 3/2 6 39 95 1339 3644

RW 3/2 opt 6 23 81 579 2884 138 143 - -

RW 5/2 8 48 120 15221 50060

RW 5/2 opt 8 28 111 5811 40660 - - - -

RW 2/5 8 48 144 16433 53775

RW 2/5 opt 8 28 120 6229 43571 - - - -

Figure 8: Unreduced TPN and Ada-net data

have input places in the given set we can apply similar reasoning as above. This would allow the
reachability graph of programs with multiple callers blocking on an entry for which there is a single
blocking accept statement to be reduced.

We are currently developing a TPN net reduction for forced communication pairs. Compaction of
the reachability graph is accomplished by adding transitions to the net that bypass all markings that
contain the communication pair. We have found the regular structure of TPNs to be advantageous
in developing and reasoning about the conservativeness of reductions.

5 Experimental Evaluation

We have constructed a set of tools to evaluate the suitability of TPNs for analysis of realistic
programs. This toolset is built from components produced by the Arcadia consortium. At present
the TPN tools are immature and we are only able to gather data on the size of the generated
reachability graphs. The cost of checking property predicates can only be estimated based on
information extracted from the TIG representation.

We first present data on the size of unreduced TPNs and the generated reachability graphs for

11



a number of examples in figure 8 *. In this table we use the symbol - to indicate that the tools
were unable to build the reachability graph for the example and the symbol * to indicate that
no experimental data is available. DARTES and BDS are both large simulation programs [6].
They contain entry calls and accept statements nested within complicated control flow structures.
DARTES consists of 31 tasks and BDS consists of 14 tasks, none of the tasks are identical in
structure. Q is an instance of a client-server based inter-process communication facility. It consists
of 18 tasks and contains complicated control flow structures in which communication statements are
nested. Hartstone is a benchmark driver that has a very regular structure [6]. Gas-1 are versions
of the one pump gas-station example without deadlock and with the operator task unrolled to
accept separate customer entries. Phils are versions of the basic dining philosophers example with
deadlock. RW are versions of the readers/writers example presented in [1]. The numbers next to
the example names indicate the scale of the problem. For the gas station this is the number of
customers, for dining philosophers the number of philosophers and forks, and for readers/writers
the number of reader and writer tasks. We indicate with opt that the TPN has been optimized
using the synchronizing accept reduction.

We compare TPNs to the Ada-nets generated using the TOTAL system [11]. Ada-nets explicitly
encode program control flow in the net and as such represent a contrast to TPNs in terms of the
tradeoff between encoding information in the program representation versus the analysis algorithms.
TOTAL is one of the few Petri net based systems for analyzing Ada tasking programs for which a
mature implementation and experimental data are available. Experiments using the TOTAL system
were conducted for BDS, versions of Gas, Phils and the readers/writers examples {2, 12]. The size
of reachability graphs generated from unreduced Ada-nets, along with data on the sizes of the
unreduced nets in terms of places and transitions [13] are given in figure 8, next to the comparable
TPN experimental results. We note that the number of arcs in a TPN is always 4 times the number
of transitions, as each transition has 2 input and 2 output places. For many unreduced Ada-nets,
the number of arcs is less than 4 times the number of transitions. The two examples for which data
is available from reachability analysis of unreduced Ada-nets and TPNs are the 3 customer Gas-1
and 3 dining philosophers. Comparison of this data illustrates the reachability graph compaction
that can be gained by using TPNs, as the number of states and arcs in the reachability graphs
are two orders of magnitude less for TPN generated graphs. Although the maximum capacity of
the TOTAL toolset is not stated, programs whose reachability graphs are as large as 200000 states
and 750000 arcs have been analyzed [2]). If we assume that reachability graphs are at least that
large for the examples where reachability graphs for unreduced Ada-nets could not be generated,
then the results we obtained for those examples show a compaction on the order of two orders of
magnitude.

A major limiting factor in performing reachability analysis is the ability to construct the reach-
ability graph and in this respect TPNs are superior to Ada-nets. Comparing TPNs and Ada-nets
is fair because they represent equivalent amounts of program information. While early work on
analyzing Ada-nets relied on reachability of unreduced nets [14, 11], more recent work [2, 12] has
demonstrated that if we are interested in analyzing programs for deadlock freedom, Petri net re-
duction techniques are capable of significantly extending the size of problems for which reachability
analysis can be performed. Comparing analysis based on reduced TPNs and reduced Ada-nets is

4 Analysis results for Q and BDS have not been presented as there are known bugs in one of the front end tools
that affect these examples. These bugs are being fixed and we expect data for these examples to be included in the
final revision of this paper.
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“Example Task Name Max Blocking Exiting  Total Entries
Edge Groups
BDS (product) . 32 18
BDS
Graphics_x_Display
Mouse_Buffer_x_Save
Mouse_x_Char_In
Mouse_x_Char_In_GenReports
Rocket_x_Control_Type
Rocket.x_Rocket_Guide.1
Rocket_x_Rocket_-Guide_2
Simulate_x_RDL_x_Guide_Buf
Simulate.x RDL_x_Report_Buf
Simulate_x RDL_x _Rock_Sup
Simulate_x_Sensor_x_Targ.Sup
Statusx_Update
Targetx_Track
Target_x_Track Data

[ R I S S o B I Sl O X

Figure 9: Worst case number of blocking edge combinations for BDS

not possible at present because TPN reductions have not been fully implemented.

In section 4 we describe two property predicates. The deadlock predicate requires that in the
worst case we check all combinations of blocking exiting edge groups associated with a TPN mark-
ing. If we consider the number of blocking, exiting edge groups for each TIG node, we can compute
the maximum number of edge group combinations that the deadlock predicate must consider for
any reachable TPN marking. We summarize this data for a number of the examples from figure 8.
We also give the total number of task entries in the program, as this determines the practicality
of the bit-vector operations used in implementing property predicates. Data for the 14 tasks of
the BDS program are given in figure 9. Data for the other examples are given in figure 10. The
product indicates the number of combinations of communication statements that would need to be
considered for a TPN marking in which each marked place had the maximum number of blocking
exiting edge groups. Its clear that the cost of checking the TPN deadlock predicate may vary,
sometimes widely, with the program under analysis. The nesting of communication statements
within complex control flow statements in the BDS example is clearly the most problematic. We
note that these are indications of the worst case cost of checking the deadlock predicate. In fact, for
the BDS system, in 3 of the 5 tasks with maximum edge group values of 2 that maximum occurs
for a single TIG region. In the other 2 tasks it occurs in less than 3 TIG regions. This is suggestive
that the average cost of checking the deadlock predicate over the set of reachable TPN markings
for the BDS program is much less than the worst case. Furthermore, the number of task entries
for these examples is small enough so that the bit vector operations used in property predicates
execute in constant time. In contrast to the BDS example, the fork and philosopher tasks of the
Phils examples have no complicated control flow. Because of this, all choice among potential com-
munication events is encoded explicitly in the TPN, so we could just look for terminal reachable
TPN markings to conservatively detect deadlock for these examples.
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Example Task Name Max Blocking Exiting Total Entries

Edge Groups
Hartstone (product) 1 10
T[L..5) 1
Hartstone 1 _
Gas-1 w/k Customers (product) k+2 2k-+4
Operator k+2
Pump 1
Customer 1
Phils w/k Forks and Philosophers (product) 1 2k
Fork 1
Philosopher 1
RW w/ n Readers and m Writers (product) 1 4
Reader 1
Writer 1
Controller 1

Figure 10: Worst case number of blocking edge combinations
6 Conclusion

In this paper, we have presented a Petri net representation for tasking programs based on task
interaction graphs that is efficient to construct. We have developed an upper bound on the number
of places of these TIG-based Petri nets. Comparison with existing Petri net representations for
Ada tasking programs provides evidence that the number of places in TPNs is relatively small. We
have noted that in the worst case the number of TPN transitions corresponding to communication
over a given task entry is quadratic in the number of syntactic calls and accepts of that entry in
the program. Experimental evidence shows that in spite of this bound, TPNs are typically smaller
than Petri nets that explicitly represent program control flow. More importantly for analysis, the
reachability graphs generated from TPNs are also smaller, in some cases dramatically smaller.

It has been suggested that no one technique is suitable for analysis of all properties of all con-
current programs. TPNs bring elements of Petri net and TIG based reachability analysis together.
They represent a different tradeoff between encoding information in the program representation
versus analysis algorithms than has traditionally been made for Petri net representations. This
paper has presented preliminary data to investigate our hypothesis that choosing a representation
that reduces the size of the state space at the cost of checking properties of program states is more
practical than reachability analysis using representations that are more explicit. For a class of
properties, that includes checking for violations of mutual exclusion, the benefit of our approach is
clear. More experimentation is required to assess whether the tradeoff is beneficial for properties
that are more costly to check.
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