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Abstract

Three different algorithms for qualitative obstacle detection are presented in this
paper. Each one is based on different assumptions. The first two algorithms are aimed
at yes/no obstacle detection without indicating which points are obstacles. They have
the advantage of fast determination of the existence of obstacles in a scene based on the
solvability of a linear system. The first algorithm uses information about the ground
plane, while the second algorithm only assumes that the ground is planar. The third
algorithm continuously estimates the ground plane, and based on that determines the
height of each matched point in the scene. Experimental results are presented for real
and simulated data, and performances of the three algorithms under different noise
levels are compared in simulation. We conclude that in terms of the robustness of

performance, the third one works best. -
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1 Introduction

Obstacle detection is an important issue in mobile robotics. Intuitively, anything that ob-
structs the motion of a vehicle is an obstacle. However, making a precise definition is
surprisingly difficult. If the ground were a perfect plane, then an obstacle point could be
defined as any point higher than a fixed value. A more complete analysis would involve the
slope of the surface of a potential obstacle, which is not considered here. In general, there will
be variations in the ground height occuring at different scales. At the smallest scale, there
are bumps and indentations which are on the order of a few inches high. At intermediate
scales, the road may have a crown, may be banked, or may have large bumps, and at large
scales, there are hills and long ramps. Depending on the environment, an obstacle detection
algorithm may need to handle all of these variations. Qualitative obstacle detection here is
related to qualitative 3D reconstruction, because it determines whether a set of points can
be approximated by a plane (known or unknown).

One of the questions that is examined in this paper is the role of knowledge in detect-
ing obstacles. Three different algorithms have been developed which make use of different
knowledge of the visual sensors and the environment; they are compared with respect to
robustness to noise. Using knowledge can usually improve the robustness of a system pro-
vided the knowledge is accurate. The first algorithm assumes that the ground is planar
and its equation is known. Using this information together with the intrinsic and extrinsic
parameters of the cameras, a linear system of equations is derived. The existence of a point
not on the known ground plane (i.e. a potential obstacle) implies that the system is not
solvable. One of the drawbacks of this algorithm is that errors in the equation of the ground
plane due to camera tilt, grades, or hills in the road as well as noise in image measurements
can cause the a.lgorithni to fail. The second algorithm does not use quantitative knowledge
about the environment. It assumes that the ground is planar, but its equation as well as
the camera parameters are unknown. This algorithm also reduces the obstacle detection
problem to determining the solvability of a linear system. The third algorithm adaptively
updates its knowledge of the environment by estimating the ground plane over a sequence
~ of partially calibrated stereo pairs. This algorithm estimates the height above the ground

plane for all points in a region of interest in an image. Faugeras [5] and Hartley [11] have



independently shown that from uncalibrated stereo one can recover 3D structure up to a
family of projective transformations. This paper shows that it is possible to recover partial
metric information from partial calibration.

From the experiments with real and simulated data which are presented in Section 5,
it is seen that the adaptive algorithm is the most robust with respect to noise. However,
there is still potential value in using the other algorithms. One of the limitations on the
speed of a mobile robot is how fast it can detect obstacles given the available resources.
These resources can be computational (how long it takes to run the algorithm) and sensor
hardware (which cameras or other sensors are devoted to this task). The third algorithm
requires stereo processing and computes the heights of each of the feature points, while
the first two algorithms use monocular views and compute a single statistic for all of the
points combined. In each of the algorithms, we assume that the correspondences have been
computed. One could imagine that even if a vehicle had two cameras, resources could be
saved by using the first or second algorithm until an obstacle is detected. Then, the vehicle
could slow down 6r stop and use the third algorithm to compute the location of the obstacle
and plan a path around it. |

Because of its practical interest, obstacle detection has received widespread attention
in the research literature[2, 3, 4, 15, 16, 17, 18, 9, 13, 14]. Most existing algorithms for
detecting obstacles use active range sensors, stereo, or optical flow. For example, Nelson
.and Aloimonos[15] used flow field divergence for obstacle detection and avoidance in visual
navigation. Daily et al[2, 3] used a laser range sensor to detect obstacles. Enkelmann[4]
approached this problem by evaluating the difference between the calculated optical flow
and the predicted model-based flow. Young et al[18] again presented another way to detect
obstacles based on flow information. Both of these methods assume the vehicle motion is
pure translation, which may not be true in real environment. More recently, Matthies and
Grandjean([9, 13, 14] attacked the problem for real-time vehicle navigation by using stereo
maps.

Throughout this paper, the following notation will be used. Let p denote the calibrated
image vector for the left camera (in stereo) or for the first camera (in motion) represented

in homogeneous coordinates. Let p’ denote the calibrated image vector for the right camera



(stereo) or for the second camera (motion) represented in homogeneous coordinates. P
denotes the corresponding 3D point. Upper case is used for 3D coordinates, and lower case
is used for the 2D coordinates. Hence, p = (z,y,1)7, and P = (X,Y, Z)7, etc. Boldface is
used to denote vectors or matrices; nonboldface characters denote scalar variables. Thus, n
denotes the normal vector of a plane, and n denotes the number of feature points in a set. We.
use t = (tx,ty,t z)T to denote the translation vector between two cameras, and R to denote
the 3 x 3 rotation matrix between the two camera coordinate systems. = (Qx,Qy, 2z)T
is the rotation vector between two cameras, whose three components are the rotation angles
with respect to the three axes. M = (27,¢7)7 is the motion parameter vector between two

cameras. The symbol <= is used to represent “correspondence” relationship.

2 Obstacle Detection with a Known Ground Plane

In this section, we assume that the ground plane equation with respect to the first camera
is known, the rotation between the first and the second cameras is small, and the intrinsic
calibration of the camera is known. This algorithm can be applied to stereo images, where
the first and second images are the left and right images of the stereo pair. It can also be
applied to a motion sequence where the two images are taken at different time instants from
a monocular camera in motion. We call this algorithm the known ground plane algorithm
(KGP).

Given an arbitrary 3D ground plane point P with respect to camera motion/stereo, we

know that the velocity/displacement of P is:

P=QxP+t (1)

Given the intrinsic camera parameters, the projection can be modeled as a calibration
transformation followed by a pin-hole camera projection. By projective geometry, the rela-

tionship between the 3D point P and its corresponding 2D image point p is:

Substituting these equations into Eq.1, together with the ground plane equation:



kxX +kyY + kzZ = 1, (3)

produces the following matrix equation of the flow of point p:

( z )=( —zy 1+2® —y kxz+kyy+kz 0 —z(kxz + kyy + kz)

Y —(1+9%}) =2y =z 0 kxz + kyy + kz —y(kxz + kyy + kz)

(4)

The above relation can be abbreviated as:

p=HM (5)

Here we regard H as a linear function, which transforms a motion parameter vector M into
a flow vector for p, when the image of a ground plane point is given. Thus, if there are n

ground plane points p,, ..., P, in the image plane, then

P H,
N Y (6)
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Eq.é is abbreviated as:

DM =b | (7)

It is assumed throughout the paper that there are at least three ground plane points.
An obstacle point is one which is above some fixed distance from the ground plane. For an
obstacle point in the first image, there must be a corresponding ground plane point which
shares the same line of sight. These two points will have distinct images in the second
image unless the motion is a pure rotation around the line of sight of the point in the first
image and/or a pure translation along the line of sight. In either case, the flow value of .
the point under consideration will be zero, which is easily detected (other points will have
non-zero flow values). Assuming that all such zero-flow points have been eliminated, then
each obstacle point will have a different flow value from the corresponding ground plane
point. Now suppose we partition the point set into two subsets: one composed of ground

plane points, and the other of obstacle points. Under this assumption, Eq.7 becomes

(2)m=(3) ®

where the subsystem with subscript 1 denotes ground plane points, and the subsystem with
subscript 2 obstacle points. Now if we replace the obstacle points with their corresponding

ground plane points which share the same lines of sight with them, another linear system

(22)= () L

If we assume that the ground plane points are non-collinear, then the linear system in Eq. 7

can be obtained:

‘has a unique solution using only the ground plane points. This is a subsystem of both Eq.8
and Eq.9. If they both have solutions, then the linear systems must be the same. However,

since by # b/, it follows that the two linear systems Eq.8 and Eq.9 cannot be satisfied at

the same time.



A linear system i.ike Eq.7 has solution iff Rank(D) = Rank(Db). Thus, we have proved
the following proposition:

Proposition: The n points are all ground plane points iff the linear system Eq.7 has a
solution; that is, iff Rank(D) = Rank(Db).

A practical problem with this proposition is how to calculate the rank of these matrices
in the presence of noise. The rank of a matrix is the same as the number of non-zero
singular values in the singular value decomposition (SVD). To test if the two matrices have
the same number of non-zero singular values, the ratios of the appropriate corresponding
singular values are used. We always assume that the number of feature points in a scene is
no less than 3 and they are not collinear. It can be easily shown that if there are at least
three non-collinear points, the matrix D will be full rank, i.e. Rank(D) = 6, so none of the
singular values will be zero. If there is at least one obstacle point, Rank(Db) = 7, which
means the linear system Eq.7 is inconsistent; otherwise, Rank(Db) = 6, which means that
the linear system is consistent. Thus, the problem in this case is to decide whether or not the
smallgst singular value of Db is zero. However, since the real da.ta..a.re always corrupted with
noise, together with the problem of numerical processing, the computed singular values are
always non-zero. Let oyin(D) be the smallest singular value of matrix D, and oy (Db) be
the smallest singular value of matrix [Db]. A feasible criterion for determining if Rank(D)

= Rank(Db) is to check if the ratio m%)g— is sufficiently large. Based on our simulation

Tmin( )

analysis under different noise levels, and our experimental results on real images in Section 5,
a threshold § between 5 to 10 on this ratio value is sufficient to detect obstacle points 1 ft.
or more off the ground plane. Note that this criterion is the most conservative one, since a
singular value of a matrix is always less than or equal to the corresponding singular value of
its augmented matrix [8]. Let A; > A; > ...Ag be the six singular values of matrix D, and
M1 > 72 2 ...z be the seven singular values of the augmented matrix (Db). Hence, we have

-~

M2AM 2N 2A 2. 207

Therefore, the value of %: is the most conservative criterion for detecting if the two matrices,

D and (Db), have rank 6.
Based on the above analysis, the basic steps of the algorithm are:



For each set of image correspondences (either stereo pair or motion pair),
o build the linear system defined in Eq.7;

¢ compute the singular values of matrices D and [Db];

: Tmin D M . .
. if v——bg— > 4, no obstacle is detected; else, report obstacle;

min( )

In the very rare case that all the n points are collinear in 3D, the above algorithm could
be modified. In this case, matrix D would be singular, and Rank(D) = Rank(Db) =i < 6
iff the n points lie on a line on the ground plane. If there are obstacle points, then Rank(Db)
= 1+ 1. Thus, instead of using the ratio between the smallest singular values of D and [Db],

one would first determine 7, then determine the consistency of the linear system by checking

ai(D
(DB > 4.

This algorithm assumes that the internal calibration is known, the ground plane is locally
flat, and the plane equation with respect to the first camera is known (in other words, the
external calibration of the first camera is known). It only gives a binary decision for the
detection of obstacles from a pair of images. The algorithm in the next section removes the

requirement of knowing the ground plane equation. In Section 5, an analysis of the choice

of the threshold 4 is given for simulated data.

3 Obstacle Detection with Unknown Ground Plane

This algorithm uses a similar method to the algorithm in the previous section, although it
does not require a priori knowledge of the ground plane equation, or the internal or external
camera calibration. Like the above algorithm, it assumes the ground plane is locally flat,
it can be applied to either stereo pair or motion images, and it only gives yes/no answer
for obstacles. We call this algorithm the unknown ground plane algorithm, which is
abbreviated as UGP. Clearly, this algorithm is more general than the previous one, but
KGP will perform better if one has good a priori estimates for the parameters. Section 5
shows how the two algorithms compare in practice.

Since we are using a pinhole camera model, the 3D coordinates of a point P; can also be

used to represent the image point p; in homogeneous coordinates. Using the ground plane



equation, it is easy to show([7] that given an arbitrary ground plane point, p; <= p;/, there

is an invariant 3 by 3 matrix:

A=HR+tnT (10)

such that

kip' = Ap; (11)
where H is the height of the focal point of the first camera, R is the rotation between the
two cameras/instants, ¢ is the translation between the two cameras/instants, n is the normal
vector of the ground plane with respect to the first camera coordinate system, and k; is a
scale factor of the point pair p; <= p;’, which accounts for the fact that the representation
in homogeneous coordinates is not unique.

Since A can be normalized up to a factor that is “absorbed” into k;, let

81 82 83
A=| 84 8 3¢ (12)

87 8g 1

T; 8 82 383 T
kil v/ | =] 84 35 s6 Yi (13)
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Eliminating k;, we have:
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The above equations were derived for the pinhole camera model, but they actually hold in
general, if the two images are obtained from cameras with the same internal parameters (e.g.

monocular motion or stereo with two identical cameras). Let C be the internal calibration

matrix [6], and $ and p’ be the uncalibrated 2D vectors for the first and second cameras,

respectively. We have

r=Cp (15)

and

p'=Cp (16)

By substituting p and p' in Eq. 11 with $ and p’, respectively, we have

kp'; = C"1ACp; (17)

Obviously, the linear system Eq. 14 is still valid. The only differences are that the
definition of the unknown vector changes to the elements of C~! AC instead of elements
of A, and now z;,y; and z;,y;’ refer to the uncalibrated image vectors. That is why this
algorithm does not need internal calibration.

Assuming that there are at least three ground plane points visible, the following propo-
sition is the basis for the algorithm. The proof is similar to that of the propositiox.l in the
previous section.

Proposition: Given n point correspondences p; <= p’, i = 1,...,n, they are all ground

plane points iff the following linear system is consistent:

(&)

zz 1 1 0 0 0 —=za. —yiz ::2 z,’

0 0 0 23 1 1 —=zy' -y : v’
o= -~ (18)

Th Yn 1 0 0 0 —znz, —ynz,.’/ 35 2,

0 0 0 Zp Yn 1 _3nyn' _ynyn’ 3: ynl

\ 2 /



t.e. the rank of the coefficient matriz is equal to that of the augmenied matriz of this linear
systeni.

In this case, the equality in rank can be interpreted as a coplanarity constraint. The
remainder of the algorithm is identical to the KGP algorithm; however, the dimensionality
of the system is greater.

Note that both of these algorithms utilize a singular value decomposition to determine
if a linear system is consistent, under the assumption that the ground plane is a true plane.
In practice, the road surface may have bumps and dents. Thus, the surface may not satisfy
the coplanarity constraint. Although we can use a lower threshold to tolerate this kind
of variation of the road surface, the simulation results in Section 5 show that when the
noise increases, the ratio value decreases dramatically. That means these two algorithms are
sensitive to noise. The next section describes an algorithm based on 3D reconstruction that

seems to be more robust in the presence of noise.

4 Obstacle Detection Based on Ground Plane Estima-
tion |

Since roads may have hills and curves, the orientation of the local ground plane may be
changing with time. The algorithm presented in this section is one which can adapt to these
changes. Estimation of the ground plane is done in such a way that the 3D heights of points
with respect to the plane can be estimated from partially calibrated stereo. The previous
two algorithms measure the deviation of the data from a planar configuration (known or
unknown). This algorithm examines the heights of all of the points. Since ground plane
points will not necessarily have height zero, it is necessary to use a threshold to distinguish
between ground plane points and obstacle points. For sake of clarity, we call the estimated
unknown ground plane the reference plane. The algorithm for computing the heights is based

on the following assumptions: -

¢ There is no translation component between the two uncalibrated stereo cameras along
the Z direction (focal axis direction) of the first camera coordinate system, i.e. £z = 0.

This is what is meant by partially calibrated stereo. Information about the absolute pose

10



of these cameras (e.g. pan/pitch/tilt angles) and the other two translation components

(e.g. baseline between the two cameras) is not required.
o The height H of the first camera above the reference plane is known.

In addition to the above assumptions, we also assume that if there is a nonzero rotation
between the two cameras, then the internal camera parameters are known. In practice, we

aligned the two cameras and did not determine the internal parameters.

4.1 Derivation of the Algorithm

This algorithm is called the estimated ground plane algorithm, and is abbreviated EGP.
Each 3D point P, is at a height h; from the reference plane. If h; is 0, this point is exactly
on the plane; if h; is positive, this point is above the reference plane; if h; is negative, this
point is below the plane. Now we can preset a threshold J, such that any point with its
height |h;| < 85 is regarded as a ground plane point. In this way, we view the ground plane
as a plank with thickness 24, instead of a precise plane. If the road actually lies within this
plank, then the height of obstacle that can be detected will depend on §,. In the worst case,
an obstacle which lies in an indentation will need to have height at least 2§, to be outside
this volume.

Let p; and p;’ be the two corresponding images of P, in the two image planes, respectively.
Note that P; has the same motion parameters (R,t) with respect to the two cameras and
the same plane orientation n as those points on the reference plane. It can be shown[7] that

the relationship between p; and p;’ is:

ki'dip/ = (d:R + tn")p; (19)
where d; is the distance from P; to the origin of the camera coordinate system in the left
image in the direction of n, and k;' is a scale factor, which is defined as the ratio of the two

depths of the same physical point P; viewed at the left and right camera coordinate systems,

ie.
k' == (20)
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Clearly, we have

di=H—k (21)

where H is the height of the left camera above the reference plane. Thus,

k! (H — hi)pi' = [(H — ki) R + tn7]p; (22)

We define the state vector § to be the vector consisting of the eight elements of the
matrix A in Eq.12. Note that this vector combines information about the ground plane and
the transformation between cameras. Assuming we know the matrix A, then for an arbitrary
3D point P; = (X;,Y;, Z;)T, with its corresponding image point at the left image plane p;,
there must be a corresponding 3D reference plane point Q; = (Xo, Yoi, Zg;)¥ which shares
the same line of sight with P; in the left image plane (see Fig. 1). The image point p;" of
thjs reference plane point Q; in the right image plane can be obtained by using Eq. 11:

k'p" = Ap; (23)

After eliminating k;", the right image coordinates are:

n_ 81%i + Sayi + 83

i 24
87%; + sgy; + 1 (24)
o _ 84%i + 85Y:i + S (25)
' 37%; + sgy; + 1
Thus, we have:
k,‘"Hp,'” = (HR + tnT)p; (26)
where k;" is the scale factor corresponding to p; <= p;".
Combining Eq.22 and Eq.26:
k'(H — k)pi' — k" Hp;" = —h;Rp; (27)

12



Let R;, Rz, R3 be the row vectors of R, i.e. R = (R, Rz, R3)7, and t = (tx,ty,tz)7.

Since we have

Rﬁp;ﬁp;'

Q: = p; = p"

by the definition of k; as defined in Eq. 20,

Z! t
ki'=—=Ra’Pi+—z (28)
; Z;
ZQ." itz
N — = - p; 29
k; Za: Ry -p: + Zor (29)

Based on the matrix A, we can solve for the rotation R and the translation #>. However,
with unknown Z; and Zg;, if tz # 0, k' and k;" remain unknown. Thus, Eq. 27 is not
sufficient to solve for h;, since the three equations are not independent. If ¢z = 0, which is

the case we assume, with known relative rotation R, k;' and k;” can be determined from

k'=k" = Ry - p; (30)

Therefore, using Eq. 27, the solution for A; is:

b = (Ba-pi)pd — (Rs - pi)pi”
' (Rs - p:)p — Rp;

Here we follow the convention that the quotient of two vectors is the vector of quotients of

H (31)

their corresponding elements. Thus, Eq. 31 can be written as follows:

h;

N Ry i -1
Rl ~ e
- g — 4yt 2P _ . -1
= (y; Yi )(R;% y:) H

3With given A, the rotation R and the translation ¢ can be completely recovered in a closed-form
solution[19]. The accuracy of the recovered parameters, however, highly depends on the accuracy of the
camera internal parameters, especially the coordinates of the principal point, according to the experimental
results in [19]. That is why we usually use known relative rotation, especially the alignment of the two
cameras in practice, which also has the advantage of independence of the camera internal calibration, as
shown in the text.

(32)
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This solution looks very simple. It does not require the absolute pose information of the
cameras such as pan/pitch/tilt angles, nor does it reéu.ire orientation and distance of the
baseline between the two cameras.

A special case (which is perhaps the most frequently encountered) occurs when the two
cameras are aligned. Alignment means that the optical axes of the two cameras are parallel,
but the baseline not necessarily aligned with the horizontal or vertical axes of each of the '
cameras. In fact, the baseline can be any line in X — Y plane. In this case, R = I, where I

is an 3 x 3 identity matrix. Thus, Eq. 32 is simplified as:

J__m oo
b= g Y ¥y (33)

z! — vi' —yi

Note in this case, even internal calibration is not necessary, because z;,z;,z;” and
¥i,yi',yi" can be represented in terms of any arbitrary uncalibrated camera coordinate sys-
tem.

Now the remaining question is how to estimate the state vector S, i.e. A. Assuming
there are no obstacles in the first few image pairs, an initial estimate of the state vector can
be obtained by solving an overconstrained linear system using least mean squares. For every
subsequent stereo frame, this state vector is updated based on the information obtained from

that frame. Hence, the algorithm can be expressed as:

e The first pair of images is assumed to have only ground plane points. The overcon-

strained linear system (Eq. 18) can be solved using least mean squares.

e For current frame i, use the current estimate of the state vector up to the last frame

A;_,%* to estimate the height of each point j in the current frame i, h:',-, then form a

ground plane point subset:

Si = {Py : Ihij] < &n}

Based on S;, compute the state vector A; and covariance matrix A; of the current

frame; then refine the state vector A;** and its covariance matrix A;** using a

Kalman Filter:

- 14



Aibeat = (A,‘b”t)-l[(Ai_lb“t)—lA,'_lb“t + Ai_lAi] (34)

Aibcnt = [(A'_but)—l + A;_l]-l (35)

e Based on A;**, recalculate the height ﬁ,-j of each point j at this frame; report obstacles
for any point P;; if |hi;| > 6n

There is another point that needs to be addressed. The above algorithm works well if
the ground plane is flat globally. In practice, this may not be true, and there may be hills at
different scales. Hills at large scales can be accommodated by weighting previous estimates
so that the Kalman Filter only accumulates its history from the last n frames. Experimental

results show that this modified version works much better for real road scenes.

4.2 Error Analysis

In this section, the stability of the estimate of the height h; for each point P; based on Eq. 31

is analyzed. In general, there are four sources of error which contribute to the error in A;:

e measurement error of the physical height of the cameras, H;
o localization error of the 2D image points p;, p;’, p;";
o deviations of the ground plane points from the reference plane;

e measurement error of the relative rotation between the two cameras;

The relative error of camera height H is on the order of a percent or two in practice.
Since h; is linearly proportional to H, the contribution to the relative error in.h; will be the
same. Thus, we are not taking this into account. The contribution of the error of localization
of the image points is complicated, especially the error of p;”, which is a function of the state
vector in the Kalman Filter, as is the contribution of the error of the deviations of the ground
plane points from the reference plane. To simplify the problem, we are not considering these

last two error sources here. Instead, we leave the analysis of these errors under different

15



Gaussian noise levels to Section 5 based on simulation. Thus, the following error analysis
only considers the error in relative rotation. Since it is assumed that the stereo cameras are
aligned, i.e. the relative rotation is approximately zero, our analysis is done only in this case.
An analysis for the general case of relative rotation is similar.

Expanding Eq. 31 in terms of Taylor’s series at R = I, we have:

hi = (Rs - pi)pi’ — (Rs - pi)pi" h;

(Rs - p;)pi' — Rp; ] BRI + [B_R] R=I(R ~I)+O((R-I)*  (36)

Let us define the rotation matrix as:

T11 T2 T3
R= T21 T22 T23

T31 T32 Ts3

By ignoring the higher order terms in Eq. 36, we have the error of the estimated height:

Bhs = [”iﬁt]R;I(R_I)
= (zi(ziAra + yiDrsy + Arsg) — (z:Aryy + yiArie + Arig)) (2 — z') "3 (2" — ') H
| (37)
There are nine elements in the matrix r;;,1,5 = 1,2,3. However, there are only three
degrees of freedom for a rotation: the camera relative roll/pan/tilt angles. This makes it

possible to express the relative error in height from Eq. 37 as (see [12]):

Ah; z,-(a:.-” - 2,-')

~

H (zi — z:')?

Clearly, the relative error increases as depth increases, because the term z; — z;’ is inversely
proportional to depth. However, since we always focus our attention on the central part of
each image, and since |z;" — z;/| < |z; — |, for typical values within our focus-of-attention

window as z;,y; ~ 102, |z; — z;'| ~ 102, the relative error is:

Ah; _2
|5~ 10
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The experimental results presented in Section 5 indicate that this bound is consistent
with the actual relative error. A simulation analysis for the performance of this algorithm
under different levels of noise, as well as the false-positive and false-negative probabilities

with respect to the different thresholds of heights is also presented there.

5 Experiments

This section compares the three algorithms with respect to robustness in the presence of
noise in real and simulated image sequences. We address the question of what is the smallest
obstacle that can be reliably detected for a given level of noise. The simulation only adds
noise of the type produced by small scale deviations from the ground plane. The real image
sequences, of course, include all normal sources of noise such as misalignment of cameras,
errors in camera calibration and knowledge of the ground plane as well as bumps, indentations
and errors in the optic flow/disparity.

The simulated data consisted of 10 ground plane points and an obstacle point at a distance
of 20 ft. from the camera. The height of the obstacle point was varied from 0 ft. to 6.5 ft. The
height of the camera was 3.55 ft., which is the actual height of the camera when mounted on
the vehicle used to generate the experimental results. In addition, the displacement vectors
were multiplied by Gaussian noise, which is equivalent to random fluctuations in the heights
of the ground plane points, and thus could be interpreted as bumps and depressions in the
gound plane. For the given height of the camera and a +10.0% noise level, the maximum
variation in the height of the ground plane points induced by this noise would be 0.355 ft.
The simulation was done to determine for each algorithm and each level of noise, the smallest
obstacle that could be detected. For an obstacle to be detectable, there must be a decision
rule which will find all positive instances and will not produce too many false alarms. In
other words, it is safe to allow a few false positives, but the probability of a false negative
(failure to detect an obstacle) must be so close to zero as to never arise in practice.

The simulation results for the KGP algorithm are shown in Fig. 2. The statistic for
. . . . omin(D . . .
detect bstacl t min .
etecting obstacle points is the ratio value m The graph shows how this ratio varies

with the height of the obstacle point and the level of noise. In order for an obstacle point of
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a given height (or greater) to be detectable, one should be able to draw a horizontal line that
separates the ratio value for that height from the ratio value when the height is zero. We can
see clearly from Fig.2 that for those points with heights greater than 1 ft., the ratio values
are very close to 1, and are almost unaffected by noise. However, for levels of noise greater
than +10.0%, it will be impossible to choose a threshold that would distinguish ground-
plane points from obstacle points. Even for smaller levels of noise, it will be impossible to
distinguish ground-plane points from obstacle points with heights less than 1 ft. Based on
the simulation, a threshold of this ratio value between 5 and 10 would be able to correctly
detect obstacles with height above 1 ft. up to +5% noise. For obstacles with heights less
than 1 ft., even +2.0% noise would be a problem. It seems from the results that the ratio
increases slightly with the height of the obstacle. This needs to be investigated further.

Fig. 3 shows a similar simulation for the UGP algorithm. Clearly, the general perfor-
mance of this algorithm with respect to increased noise levels is worse than that of KGP.
This is because the KGP used knowledge about the environment which was valid in the
simulation. However, for points higher than 2 ft., the UGP algorithm can still correctly
detect them, up to noise level of +5.0%. Satisfactory threshold values are between 5 and 10.
For obstacle points with heights less than 2 ft., no satisfactory threshold can be found when
the noise level is larger than +1.0%.

Fig.4 shows the simulation results for the EGP algorithm. The plot shows the relative
error of the estimated height as a percentage of the actual 3D camera height. From this figure,
we can see that with the increase in noise level, the relative error increases also, which is
consistent with our intuition. The robustness of this algorithm can also be seen from this
simulation. When noise is increased to +-10.0% level, the relative error in height is still within
+5.0%. Note that in this Figure, the same noise was used in each of the experimental runs;
only the amplitude of the noise changed. To determine the probabilities of false positives
and false negatives, we ran our simulation 10 times with different seeds for each obstacle
height and for each noise level. The false-positive probability is defined as the probability
of the maximum height of ground plane points being above the threshold. False-negative
probability is defined as the probability of the height of the obstacle point being below the
threshold. Fig.5 shows the frequencies of false positives and false negatives as a function of
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threshoid for different obstacle heights and different noise levels. We are interested in finding
a threshold such that the probabilities of false negatives and false positives are as small as
possible. In general, one might allow some small number of false positives in order to detect
smaller obstacles. For this paper, only ten trials were run for each of the parameter settings,
so we looked for a threshold such that no false positives or negatives were obtained. For
example, Fig.5(a) shows these frequencies for a noise level of +1.0% and for a variety of |
obstacle heights. A satisfactory threshold is 0.03 ft. because the frequency of false positive
curve is zero for this value. If the obstacle height is 0.05 ft. or more, then the frequency of
false negatives is also zero, and that is the smallest obstacle that can be effectively detected
in this case®. On the other hand, if the noise level is increased to +10.0%, and the frequency
of a false positive is still required to be zero, then one can only detect obstacles that are
higher than 0.45 ft. Note this is a big improvement over the 1 ft. height for KGP and 2
ft. for UGP. This fact indicates that EGP is the most robust algorithm of the three with
respect to small-scale variation in the ground height.

All the algorithms have been tested for real image data. Fig.6 shows the left image of a
hallway scene with some boxes as obstacles. The height of cameras, H, is 3.55 ft. above the
ground plane. The right image is similar and is not shown. We arbitrarily chose 38 feature
points in this image, as shown in the picture, and obtained their flow values with respect
to the right image by Anandan’s algorithm(1). Using all 38 points in the linear system, the
singular values of the matrices D and [Db] of KGP are listed in Table 1. From the table,
Omin(D) = 0.01689 and omin(Db) = 0.01667, respectively. Thus, the ratio value is 1.01,
which is very close to 1. On the other hand, using only the ground plane points, the singular
values are shown in Table 2. Now omin(D) = 0.01202 and opmin(Db) = 0.001744, and their
ratio value is 6.897.

We also tested the same point set for the UGP algorithm. With this algorithm, we don’t
need the camera internal parameters, nor do we need the external calibration information.
Table 3 shows the SV’s for the two matrices of the linear system with all the 38 points. The
ratio of the two minimum SV’s of the two matrices is 1.025. Table 4 shows the SV’s for the

3The observation that no false negatives occurred in 10 trials means that one can state that the probability
of such an event is at most 0.26 with a confidence level of 0.95. One would need more trials to get a better
upper bound on this probability.
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two matrices of the linear system with only the ground plane points. The ratio value this
time is 6.594. Both algorithms were able to detect obstacles. Looking at the values, it seems
that they performed about the same. This suggests that sources of error other than those in
the variation in heights of ground plane points were significant and calibration and a prior:
knowledge of the ground plane may not be useful in improving qualitative obstacle detection
in this case.

Fig. 7 is a sample of a sequence stereo picture of a real road scene with obsta.cles,' taken
by the stereo cameras onboard the Mobile Perception Lab[10]. The height of cameras, H, is
7.8 ft. Again, here we only show the left image for each stereo frame. EGP was run on this
sequence. The first three image pairs Fig. 7(a), (b), (c) are used to give an initial estimate of
the state vector which includes information about the ground plane. It is assumed that there
are no obstacles in these scenes. Fig. 7(d) is a frame with five cones (ground truth height is
2.35 ft.) and a box (ground truth height is 1.50 ft.) on the road as obstacles. Fig. 7(e) is
the next frame with the same qbstacles. Table 5 lists the results of the EGP algorithm for
frames (d) and (e). The goal is to show how the iterative estimation of the ground plane and
other parameters improves with the number of frames and how this reduces the errors in
the estimation of the heights of the six obstacle points that were detected. The first pair of
columns shows the estimates of the absolute and relative errors (respectively) in the heights
of the obstacles using the initial estimate of the state vector from the first three frames. The
second pair of columns shows the estimates based on the updated state vector from frame
(d). The third pair of columns shows the estimates of the heights of the points in frame
(e) using the state vector estimated from frame (d). The last pair of columns shows the
estimates of the points in frame (e) based on the state vector updated from frame (e). From
the data shown in this table, we can see that both absolute and relative errors monotonically
decrease as the vehicle approaches the obstacles, and more frames are used. The relative

error is of the same order as in the simulation.

6 Conclusion

The work presented in this paper compares three different algorithms for obstacle detection

using pairs of images. These algorithms use different information about the environment.
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The KGP assumes knowledge of the ground plane and camera parameters. The UGP only
assumes that the ground plane can be approximated by some plane. The EGP uses Kalman
filtering to estimate the ground plane. The simulation results predict that just on the basis
of noise in the heights, if the ground plane really were known precisely, the first algorithm
would be better than the second. However, the experiments on indoor scenes show that
the performance of the two algerithms is comparable. One explanation is that errors in
estimating the camera parameters and ground plane are significant compared to the errors
from variation in the heights of ground plane points, or that quantization errors dominate.
In future experiments, we hope to be able to compare these algorithms on rougher terrain
to determine if the a priori information would be useful in those cases. |

In terms of robustness with respect to ground plane variation, the simulation shows that
the EGP algorithm is the best. This algorithm does have many other advantages as well
since it is adaptive to changes in the ground plane and the Kalman filter updates are fast
to compute. However, this algorithm assumes that partially calibrated stereo cameras are
available as resources, and either of their heights is known. When this information is not
available, other algorithms such as UGP or KGP may be sufficient. Note that although
the EGP algorithm only requires partial calibration, it is still able to recover the heights of

points above the ground plane.
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Table 1

Singular values of the linear
system by all points in Fig. 6

SV’s of D SV’s of [Db)
6.226e+0 6.227e+0
6.219e+0 6.219e+0
6.495e—1 6.497e—1
1.095e—1 1.096e—1
8.573e—2 8.723e—2
1.689e—2 2.729e—2
1.667e—2 '
Table 2

Singular values of the linear system
by all ground plane points in Fig. 6

SV’s of D SV’s of [Db]
4.650e+-0 4.651e+0
4.634e+0 4.634e+-0
4.487e—-1 4.488e—1
4.057e-2 4.507e-2
3.814e-2 - 4.041e-2
1.202e—-2 1.214e-2
1.744e-3
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Figure Ql: The geometry of an arbitrary 3D point P, and its corresponding ground plane 3D
point Q;
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Figure 2: Simulation results of a 3D point located at 20 ft. based on KGP.
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Figure 3: Simulation results of a 3D point located at 20 ft. based on UGP.

25



relative error in %

noise-free -o—
+-1.0% noise -+--
+-2.0% noise -B---
+-3.0% noise -
+-5.0% noise -&--

+-10.0% noise -%--

height in ft.

Figure 4: Simulation results of a 3D point located at 20 ft. based on EGP.
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Figure 5: False-positives (f.p.) and false-negatives (f.n.) with respect to threshold for
different obstacle heights (o.h.). (a) noise level £1.0% where ©: f.p; +: f.n. with o.h. 0.05
ft.; O: fn. with o.h 0.10 ft.; x: f.n. with o.h. 0.15 ft.; (b) noise level +5.0% where O: f.p;
+: fn. with o.h. 0.05 ft.; O: fin. with o.h 0.10 ft.; x: f.n. with o.h. 0.15 ft.; A: f.n. with
o.h. 0.20 ft.; *: f.n. with o.h. 0.25 ft.; (c) noise level +:10.0% where <: f.p; +: f.n. with o.h.
0.05 ft.; O: f.n. with o.h 0.10 ft.; x: f.n. with o.h. 0.15 ft.; A: f.n. with o.h. 0.40 ft.; *: fin.

with o.h. 0.45 ft.;
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Figure 6: The left image of a hallway box scene

Table 3
Singular values with all
points based on Coplanarity

SV’s of D SV’s of [Db]
7.215e+5 7.215e+5
1.754e+5 1.754e+5
1.950e+3 1.950e+3
7.316e+2 7.839e+2
3.008e+2 4.434e+2
1.285e+2 1.286e+2
1.602e+0 2.067e+1
5.468e—1 1.062e+0
5.335e—1
Table 4

Singular values with all ground
plane points based on Coplanarity

SV’s of D SV’s of [Db]
4.672e+5 4.672e+5
6.183e+4 6.183e+4
1.408e+3 1.408e+3
3.838e+-2 4.099e+2
1.706e+2 2.469e-+2
7.016e+1 7.016e+1
9.909e—1 1.317e+1
2.888e—1 6.133e—1
4.380e—2
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Figure 7: A sample of a stereo sequence. The right images are not shown here. (a) - (c) are
the first three images which show the scene without obstacle. (d) is a scene with obstacles.
(e) is the next frame with the same obstacles.
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Table 5
Height estimate errors
Note: Absolute error in ft. Relative error in %

Point | (d) predict | (d) estimate | (e) predict | (e) estimate
Labels | Abs [ Rel | Abs | Rel | Abs | Rel | Abs | Rel

|1 [0.50 [21.3% | 0.30 [ 12.8% | 0.23 | 9.8% | 0.11 | 4.7%

0.36 | 15.3% | 0.14 | 6.0% | 0.20 | 8.5% | 0.13 | 5.5%

0.32 | 13.6% [ 0.09 | 3.8% | 0.21 | 8.9% | 0.15 | 6.4%

0.21 | 8.9% |0.07 | 3.0% |-0.01 |-0.4% | 0.0 0.0

0.23 | 9.8% [0.10 | 4.3% |-0.08 | -3.4% | -0.05 | -2.1%

DO |

0.19 | 12.7% [ 0.13 | 8.7% | -0.11 | -7.3% | -0.07 -4.7%
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