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ABSTRACT
ISSUES RELATED TO DYNAMIC SCHEDULING IN REAL-TIME SYSTEMS
SEPTEMBER 1993
Fuxine WANG
B.S., EAST CHINA ENGINEERING INSTITUTE
M.S., BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS
PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Krithi Ramamritham and Professor John A. Stankovic

Dynamic scheduling in real-time systems involves dynamically making a sequence
of decisions concerning the assignment of system resources to real-time tasks. Tasks
may have arbitrary time constraints, different importance levels, and fault tolerance
requirements. Unfortunately, making these scheduling decisions is difficult, partly
because the decisions must be made without the full knowledge of the future arrivals
of tasks and partly because scheduling has to deal with many complex issues, e.g.,
multiprocessors and fault tolerance. Many existing algorithms, such as the Earliest
Deadline First algorithm, cannot provide performance predictability for this dynamic
scheduling problem.

This dissertation presents a set of solutions, in the form of both theory and
algorithms, with the goal of providing performance predictions and guarantees for
three different scheduling problems.

First, we provide a worst case analysis for algorithms that dynamically schedule
independent tasks, where tasks are assumed to have different values. We derive

performance bounds for both uniprocessor and dual-processor on-line scheduling. A



set of threshold-based scheduling algorithms is found. These are shown to be better
than the popular Earliest Deadline First algorithm.

Secondly, for scheduling tasks with additional resources, we study dynamic
scheduling algorithms based on the ability to generate feasible schedules and the
quality of the generated feasible schedules, expressed in terms of the schedule length.
Based on the analysis of two known algorithms, namely, list scheduling and the Spring
heuristic scheduling algorithm, a set of new algorithms is developed and shown to
possess better performance.

Thirdly, for scheduling tasks with fault-tolerance requirements, assuming that re-
Liability of task execution is achieved through task replication, we present an approach
to mathematically determine the replication factor for tasks. The goal is to maximize
the total performance index, which is a performance-related reliability measurement.
We present a technique based on a continuous task model and show how it very

closely approximates discrete models and tasks with varying characteristics.
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CHAPTER 1

INTRODUCTION

1.1 Scheduling in Real-Time Systems

Real-time systems are defined as those systems in which the correctness and perfor-
mance of the system depend not only on the logical results of the computation, but
also on the time at which the results are produced. Examples of real-time systems are
command and control systems, flight control systems, space shuttle avionics systems,
and robotics systems. These real-time systems are large, complex, and adaptive.
Designing and implementing dependable and predictable real-time systems are impor-
tant research issues, because failure of these systems may result in high risks and
enormous costs.

In a complex real-time system, there exist many time-constrained activities which
control the behavior of the system. These activities are abstracted as real-time tasks.
The main timing constraint for a real-time task is a deadline. Generally, tasks may
share system-level resources, e.g., CPUs of a multiprocessor, and user-level resources,
such as shared data structures; tasks may have precedence constraints; and tasks
may have fault-tolerance requirements. It is a difficult problem to construct a fea-
stble schedule for tasks with these complex constraints, such that each task will
complete before its deadline, receive all requested resources, avoid potential conflicts
in accessing the resources, and satisfy all precedence constraints and fault-tolerance
requirements. Research into real-time task scheduling involves the study of various

algorithmic approaches to resolve these problems.
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Most theoretic results on real-time task scheduling are based on the early analysis
work for periodic and aperiodic task scheduling. For periodic task scheduling the-
ory, the paper by Liu and Layland [53] analyzes uniprocessor scheduling for the rate
monotonic scheduling algorithm, an optimal fixed priority scheduling algorithm for
periodic tasks, and for the earliest deadline first scheduling algorithm, an optimal dy-
namic priority scheduling algorithm for periodic tasks. For aperiodic task scheduling,
the earliest deadline first (EDF) scheduling algorithm and the least laxity first (LLF)
scheduling algorithm are two main algorithms found in the early analysis work. Both
algorithms have been shown to be optimal for work conserving uniprocessor schedul-
ing with independent tasks, in the sense that, for any task arrival pattern, if a feasible
schedule exists, both EDF and LLF are guaranteed to find it [29, 76].

For periodic task scheduling, recent extensions to the basic algorithms include
aperiodic task servers (78], task synchronization [65], imprecise computation [55],
and multiprocessor scheduling [30]. For aperiodic task scheduling, recent extensions
include the best-effort scheduling algorithm with a value function for each indepen-
dent task [58], the “planning” based heuristic scheduling approach to handle real-time
tasks with additional resource requirements on multiprocessors [70, 91], and the im-
precise computation technique [52].

Most theoretical real-time scheduling results are based on a static system model.
Very few results are based on the dynamic model. Real-time systems built using static
scheduling approaches have difficulty dealing with the dynamics and uncertainties
of the environment and adapting to changes in application requirements, hardware
and software structures. Therefore, dynamic scheduling is an important component
in designing adaptive and flexible real-time systems. This dissertation focuses on
dynamic scheduling. The exact meaning of dynamic scheduling and the scope of this

dissertation will be presented in the following section.
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1.2 Dynamic Scheduling — Contributions

Algorithms for dynamic scheduling in real-time environments involve dynamically
making a sequence of decisions concerning the assignment of system resources to
real-time tasks. We assume that the system resources include processors and other
additional resources, such as shared data structures, and the tasks are aperiodic and
have timing constraints, values to represent importance, and other requirements,
such as fault-tolerance. There are two types of scheduling algorithms, best effort and
guarantee-oriented [73]. As new tasks arrive, a best effort approach simply puts the
new tasks into a task ready queue and executes a task with the highest priority or
with the best value among all ready tasks. On the other hand, a guarantee-oriented
approach provides a schedulability analysis whenever new tasks arrive, and generates
new feasible schedules accordingly. If a scheduling algorithm fails to find a feasible
schedule, the system may take a number of actions to reduce the workload, such as,
to reject some tasks. Compared to the best effort approach, a guarantee-oriented
scheduling algorithm has higher overhead, but it provides a degree of predictability.

In this dissertation, we will first conduct a worst case analysis for dynamic best
effort scheduling algorithms to determine what is the best level of performance guar-
antee which can be provided by the algorithms. By using worst case analysis, we
study the ratio between the performance of an on-line algorithm and the performance
of a clairvoyant algorithm, and determine the performance bound of the on-line al-
gorithm. For example, the performance bounds for EDF and LLF are zero. As we
will show in Chapter 3, some (best effort) algorithms can provide a higher perfor-
mance bound than the performance bounds for EDF or LLF. We are also interested
in finding the highest performance bound among all possible scheduling algorithms.

Turning to the guarantee-oriented approach, determining the feasibility for a set of

tasks is a difficult problem, as the majority of the real-time scheduling problems have
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been proven to be NP-hard or NP-complete in the strong sense [34, 37]. There are
two ways to deal with the problem. One uses an exhaustive enumeration algorithm,
such as branch and bound or dynamic programming. The other uses approximation
algorithms. Due to their large execution overheads, exhaustive enumeration algo-
rithms are not applicable in dynamic situations. It is an important research issue
to find good approximation algorithms. In Chapter 4, we analyze the worst case
performance characteristics for a set of heuristic algorithms that schedule tasks that
have both time constraints and resource requirements.

In the guarantee-oriented dynamic scheduling approach, even with a good heuris-
tic scheduling algorithm, we may not be able to guarantee all tasks, because it is
possible that there exists no feasible schedule for the task set. Thus, another issue
is to decide that which tasks will be favored and which tasks will be rejected when
the system is overloaded. In particularly, if tasks have fault-tolerance requirements,
we would like to increase tasks’ redundancy to achieve higher reliability, which will
easily cause system overload. Therefore, in Chapter 5, we present a technique for
performance-related reliability analysis for determining tasks’ redundancy levels. The
result of this analysis provides us a way to balance both reliability and performance
and to construct a proper workload.

To summarize, this dissertation deals with three issues related to dynamic schedul-

ing:
e the worst case analysis of on-line scheduling,

o the bound analysis of heuristic algorithms for tasks with resource requirements,

and

e the performance-related reliability analysis for determining tasks’ redundancy

levels.
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Our results provide designers of dynamic real-time systems guidelines in designing
scheduling algorithms that suit certain design and performance requirements and in
evaluating their performance. In the remainder of this section, we discuss these three

aspects in detail.

1.2.1 Worst Case Analysis of On-Line Scheduling

Consider the problem of on-line scheduling which makes a sequence of decisions
dynamically by assigning system resources to real-time tasks. If a task request is
successfully scheduled to completion, the value associated with the task is obtained;
otherwise a value of zero is obtained. A real-time system is said to have a loading
factor b if and only if it is guaranteed that there will be no interval of time [t.,t,)
such that the sum of the computation times of all tasks having deadlines within this
interval is greater than b (£, —t,). A real-time system is overloaded if the loading
factor b is greater than 1. On-line scheduling is a difficult problem, where the main
difficulty is caused by overload. Overloads cannot be avoided easily, especially in
dynamic and uncertain environments such as in robotics, which requires its control
subsystem to adapt to a dynamic environment. It would be too costly to construct
a system such that overload will never occur and/or inefficient or even impossible to
construct a schedule a priori in such a system.

During overloads, many known algorithms e.g., EDF and LLF, do not perform
well. To study the performance of scheduling algorithms, we may compare the perfor-
mance of an on-line algorithm with the performance of a clairvoyant algorithm. The
clairvoyant algorithm is an ideal optimal off-line algorithm with full knowledge of the
future arrivals of tasks. The lower bound on the performance of an on-line scheduling
algorithm, A, can be defined in the following way: If over all task arrival sequences,
the smallest value of the ratio of the values obtained by A and the values obtained by

the clairvoyant algorithm is By, then By is the lower bound on the performance of
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A. For example, the lower bound for EDF or LLF is zero. If, for a given scheduling
problem, the largest value of B, for all A is B, then B is the upper (performance)
bound of the scheduling problem. In other words, the upper bound of the on-line
scheduling problem is the highest lower bound among all on-line algorithms.

In this dissertation, we consider both uniprocessor on-line scheduling and dual-
processor on-line scheduling. Tasks can have the same value density or different value
densities, where value density is defined as the ratio between the value of a task and
its computation time. We now summarize our main results in this area.

In the case of uniprocessor on-line scheduling, if tasks have the same value den-
sity, we show that the performance upper bound is 1/4. Another interpretation of
the result is that, in the worst case, an on-line algorithm is only able to complete
the amount of work which is 1/4 of the work completed by a clairvoyant algorithm.
We also show that 1/4 is a tight bound by constructing an on-line algorithm, called
Threshold-1 (T'D,) algorithm, which achieves the bound. T'D; guarantees no less
than 1/4 of the value obtained by a clairvoyant algorithm for any request sequence.
This means that T'D, has the best lower bound among all on-line algorithms. There-
fore T'D, is an optimal on-line scheduling algorithm under overload, and furthermore,
it has the same performance as LLF and EDF when there is no overload.

The above result can be further extended to the cases in which tasks have different
value densities. Let 4 be the ratio of the highest and lowest value densities of tasks.

We prove that the upper bound for the on-line scheduling problem is
!
T+1+42,~4
As a special case, if 4 is 1, the upper bound is 1/4, which is the result mentioned
above. If 4 is 2, the upper bound is 1/5.828.
For the dual-processor case, we prove an upper bound of 1/2. This bound is
shown to be tight in the special case when all the tasks have the same value density

and zero laxity.
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1.2.2 Bound Analysis of Heuristic Algorithms for Tasks
with Resource Requirements

Here, we consider dynamic scheduling for tasks with additional resources in a multi-
processor system. Whenever new tasks arrive at the system, the scheduler combines
the new tasks with all existing tasks which have not been serviced yet and generates
a new feasible (non-preemptive) schedule. This scheduling problem can be shown to
be NP hard. So good heuristic scheduling algorithms with low overheads must be
adopted in practice. We focus on two important performance measures for evaluating
a heuristic scheduling algorithm. The first is the ability of an algorithm to generate a
feasible schedule. This ability is commonly characterized by the mean behavior of the
algorithm, which can be measured either by a probability model or by a simulation
study. For simple systems, the probability model works well. For complex systems,
simulation is commonly used as is the case here. The metric used is mean success
ratio (SR), defined in the following way. Given N task sets which are generated
according to certain distributions where each task set is known to have at least one
feasible schedule, let N4 be the total number of task sets for which algorithm A finds

feasible schedules. Then

sl
The second measure is the quality of the feasible schedules generated by an algorithm.
Quality may refer either to the mean behavior or the worst case behavior of the
algorithm, where behavior is characterized by metrics such as schedule length and
earliness (the time interval between a task’s completion time and its deadline). In
this dissertation, we deal with the worst case behavior and use the schedule length
metric. Schedule length is an important characteristic of a schedule for tasks in a

real-time system for the following reasons:
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e For real-time task scheduling, if one algorithm generates a shorter schedule
than another algorithm, it means that, in general, the first algorithm can more

easily accommodate tasks with shorter deadlines than the second algorithm.

o If the schedule length is shorter, it is a more efficient schedule and it is likely
that there is more execution time remaining at the end of the schedule which
can be used for executing other tasks, such as diagnostic tasks, or handling

future tasks, in the case of dynamic arrivals.

We define a schedule length bound of one algorithm relative to an optimal algorithm
in the following way. Let z be any instance of task sets to be scheduled, L,(z) be the
schedule length of a scheduling algorithm A for instance z, and Lo(z) be the schedule
length of an optimal scheduling algorithm® O for z. If there exists a constant B, such
that

La(=)

—t <
To(z) = B, for all z,

then B is called the bound for algorithm A. B is tight if it can be reached.

In this dissertation, we first show that list scheduling has a good bound on sched-
ule lengths but it is not as successful in finding feasible schedules, while the so-called
H scheduling algorithm is highly successful in finding feasible schedules but its sched-
ule length bound is not as good as that of list scheduling. So we combine the good
properties from both list scheduling and the H scheduling algorithm into a general-
ized heuristic scheduling algorithm, called Hj, where 2 < k < m. The Hj, algorithm
schedules tasks according to their dynamically determined priorities while attempt-
ing to keep at least k processors busy whenever possible. If it is not possible to keep
k processors busy, then it will keep as many processors busy as possible. Our main

results include:

1The optimal algorithm produces feasible schedules with the minimum schedule length.



9

e The schedule length bound of Hj for tasks with the same computation time is

m ko1
-5 + )
k ng J
where 2 < k < m. The schedule length bound of Hj for tasks with arbitrary

computation times is
m+1

2 ?
where 2 < k < m. In both cases, the complexity is O(n*+!7) for 2 < k < m,

and O(n?r) for k = 2, where n is the number of tasks;

o Using simulation studies of three algorithms, H,, the H scheduling algorithm,
and list scheduling, we show that the H, algorithm has almost the same mean
behavior in the ability to find feasible schedules as the H scheduling algorithm,
and both are much better than list scheduling. The scheduling overheads of H
and H; are about the same, while the worst case schedule length bound for H,
1s about a half of the worst case schedule length bound for H. Therefore, H,

is the best candidate for multiprocessor real-time task scheduling among these

three algorithms.

1.2.3 Performance-Related Reliability Analysis for
Determining Tasks’ Redundancy Levels

Many real-time systems have both performance requirements and reliability require-
ments. Performance is usually measured in terms of success in completing tasks on
time. Reliability is determined by hardware and software failure models. In many
situations, there are tradeoffs between task performance and task reliability. Thus, a
mathematical assessment of performance-reliability tradeoffs is necessary to evaluate
the performance of real-time fault-tolerance systems.

Consider a system with m processors and n tasks. We must decide what level
of redundancy should be assigned to the tasks such that both reliability and per-

formance requirements are met. In particular, suppose a task T; provides a reward
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V; if it completes successfully once it is guaranteed, a penalty P; if it fails after be-
ing guaranteed, and a penalty @; if it is not guaranteed. Let R; be the reliability
of a guaranteed task T; and F; be its failure probability, with R; = 1 — F;. R; is
mainly affected by the redundancy level for a task T; and the failure model for the
processors. Then, we define a performance index for the system such that it takes
the tasks’ penalties, rewards, and reliabilities into account. The performance index

PI; for task T; is defined as

pr. = | Viki— BF; if T is guaranteed
| @ if T; is not guaranteed.

The performance index PI for the task set is defined as
PI = i: PI.
i=1

Given this definition of performance index, if we increase the redundancy level
for T;, we can increase its probability R; of completing before its deadline, that is,
decrease the probability that the task will fail after being guaranteed. But this will
reduce the number of tasks that can be guaranteed in the first place and so will in-
crease the penalties due to task rejection. Thus, clearly, there are tradeoffs involved
between the fault tolerance of the system, the rewards provided by guaranteed tasks
that complete successfully, and the penalties due to tasks that fail after being guar-
anteed or that fail to be guaranteed. Therefore, some way needs to be found that
maximizes rewards while minimizing penalties.

In this dissertation, we will derive a new task configuration strategy with the goal
of maximizing the performance index which considers deadline-related performance

measures as well as fault-tolerance related requirements. Our main results are

o By using the powerful analysis tool of functional variations, we are able to
reveal a simple and elegant principle called iso-reliability which says that the

best task configuration strategy is to maintain a constant system reliability at

ol
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each point in time throughout a mission if tasks have the same reward and
penalty rates and the mission length is much larger than the intervals in which

tasks are expected to be executed.

e We show that the continuous model is a good approximation for the discrete
model. Thus, applying the results for the continuous model, we can handle a

discrete task model in which tasks have arbitrary computation times.

e We show that the same analysis approach can be further extended to handle

tasks having different reward rates and penalty rates.

e Also, our model is not limited to hardware reliability given by constant failure
rate functions as in most other models since we do not depend on the memo-

ryless property.

1.3 Organization of the Thesis

This dissertation studies issues related to dynamic scheduling in real-time systems.
In this section, we describe how the dissertation is organized. Chapter 1 presents
the research problems, objectives, contributions, and the organization of the disser-
tation. A survey of various task scheduling approaches is presented in Chapter 2. In
particular, we present the state of the art concerning independent task scheduling,
task scheduling with resource requirements, and task scheduling with fault-tolerance
requirements. Chapter 3 deals with the worst case analysis of on-line scheduling al-
gorithms. In Chapter 4, we discuss the scheduling of tasks with additional resource
requirements and analyze a set of heuristic scheduling algorithms with respect to the
quality of the generated feasible schedules. We also discuss the insights gained from
the analysis. In Chapter 5, we discuss the scheduling of tasks with fault-tolerance
requirements. In particular, we focus on the issue of determining the redundancy

levels of tasks. We present a technique based on a continuous task model and show
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how it very closely approximates discrete models and tasks with varying character-
istics. We summarize the dissertation in Chapter 6 by discussing our contributions

and outlining some possibilities for future research.
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CHAPTER 2

LITERATURE SURVEY

Scheduling is a very old research area and there are many results from the study of
manufacturing systems, transportation systems, process control systems, and general
computer systems without timing constraints. Two books on computer program
scheduling theory [25, 37] provide excellent background readings. Here we only focus
on real-time task scheduling. In the following sections, we survey the state of the
art in real-time task scheduling in three sub-areas: independent task scheduling,
task scheduling with resource requirements, and task scheduling with fault-tolerance
constraints. Readers may refer to [85] for a background on real-time systems. [85]
also covers real-time scheduling and fault-tolerance.

In a real-time system, the scheduling of tasks and resources involves two main
components, feasibility analysis and schedule construction [73]. Feasibility analysis
of a set of tasks is the process of verifying whether the timing requirements of these
tasks can be satisfied, usually under a given set of constraints. Feasibility analysis
can be performed off-line, on-line, or not performed at all. Schedule construction is
the process of generating actual task schedules, which can be done either statically

or dynamically.

13
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2.1 Independent Task Scheduling

In this section, we discuss scheduling algorithms which use the off-line feasibility
analysis first; we then discuss some on-line scheduling algorithms with the on-line fea-
sibility analysis or without the feasibility analysis step. Both uniprocessor scheduling
and multiprocessor scheduling are surveyed.

For uniprocessor scheduling algorithms using the off-line feasibility analysis, prior-
ity based algorithms have been extensively studied and analyzed. There are two types
of priority based algorithms: static and dynamic. A static priority based algorithm
assigns priorities to tasks a priori and tasks’ priorities are fixed afterwards, while a
dynamic priority based algorithm assigns priorities to tasks dynamically so that it
1s possible for a given task to have different priorities before it actually completes
execution.

For periodic task scheduling, it has been shown that Rate Monotonic (RM)
scheduling algorithm is optimal among all static priority scheduling algorithms [53]
and Earliest Deadline First (EDF) and Least Laxity First (LLF) are optimal among
all dynamic priority scheduling algorithms [53, 61]. Here optimality is defined as
follows. If there exists a feasible schedule for a given set of tasks, the optimal algo-
rithm will be guaranteed to find it. For all three algorithms, although the feasibility
analysis is performed off-line, the schedule construction is performed either statically
or dynamically. EDF or LLF guarantees to schedule a task set if its utilization is
no greater than 1.0 by assigning tasks’ priorities dynamically, assuming task dead-
lines are determined by task periods. RM assigns priorities inversely proportional
to task periods, and guarantees to schedule a task set if its utilization is no greater
than 0.693 [53], which is called as the performance bound, assuming task deadlines
are determined by task periods. The average performance bound of RM is about

0.88 for periods drawn from a uniform distribution [50]. If the system load changes,
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such as a mode-change in an avionics control system, the feasibility analysis must be
performed on-line upon each mode change [72).

For aperiodic task scheduling, EDF and LLF are again optimal. Both algorithms
use off-line feasibility analysis but construct schedules dynamically. For a given task
set, if tasks have the same arrival times but different deadlines, EDF generates a
non-preemptive schedule, while LLF requires preemptions. The optimality of both
algorithms still holds if tasks have the same deadlines but different arrival times.
If both arrival times and deadlines are arbitrary, both EDF and LLF may require
preemptions. The performance bound for EDF or LLF is 1.0 [53].

Many extensions have been made to the RM algorithm. For example, aperiodic
tasks can be handled by the RM algorithm with the deferrable server and the sporadic
server [78]. Other important extensions will be discussed in the following sections.

For the multiprocessor scheduling algorithms using the off-line feasibility analysis,
there are no simple optimal algorithms. The general approach is to first partition
tasks among application processors and then have each processor apply a uniprocessor
optimal scheduling algorithm (28, 30]. For periodic tasks, the partitioning problem
is similar to a bin-packing problem, which is NP-complete, and there exist several
approximation algorithms and their analysis can be found in the papers on bin-
packing [33, 41].

Now let us consider some on-line scheduling algorithms, which have been studied
extensively. Dertouzos and Mok studied multiprocessor on-line scheduling of real-
time tasks [29]'. They showed that, in the case of multiprocessors, no scheduling
algorithm can be optimal and guarantee all tasks without a priori knowledge of task
deadlines, computation times, and arrival times. Hence, researchers are developing

new scheduling algorithms which try to maximize the total task value. It is again a

1Their results first appeared in 1978 [62).
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difficult problem, because it can be shown that there exists no optimal algorithm for
this new metric.

Locke developed an algorithm called Best-Effort (BE) for multiprocessor schedul-
ing, by using time-dependent value functions to schedule real-time tasks {58]. BE
does not perform the feasibility analysis. For uniprocessor scheduling, BE behaves
the same as EDF when the system is not overloaded. During overloads, BE sheds
tasks with the lowest-value-density-first approach. Although BE has been shown to
have a good average performance, it does not perform well in the worst case.

Biyabani, Stankovic, and Ramamritham proposed two algorithms for uniprocessor
scheduling in a real-time distributed environment and showed that they perform
well through a simulation study [15]. They assumed that tasks have both timing
constraints and importance values. The two algorithms use an on-line feasibility
analysis. If the system is not overloaded, these two algorithms behave the same as
EDF. If the system is overloaded, their algorithms shed tasks with less importance
values. These two algorithms differ only in how they remove lower importance tasks.
In the first algorithm, lower importance tasks are removed one at a time and in strict
order from low to high importance. The second algorithm also removes tasks with
the lower importance value, but does not follow the strict order found in the first
algorithm. Again, the two algorithms do not perform well in the worst case.

Because no optimal algorithm exists for on-line scheduling to maximize the total
task value, researchers have turned to a new analysis method, the worst case bound
analysis, which provides very good insight into scheduling algorithms. To evaluate a
particular on-line scheduling algorithm, the worst-case of a scheduling algorithm is
compared with all possible competing algorithms, including the idealized clairvoyant
algorithm (one that knows about the future task arrivals).

Baruah et al. designed an on-line scheduling algorithm called D* for uniprocessor
scheduling {10], which is a modified version of EDF. All tasks are assumed to have
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the same value density. The D* algorithm has been shown to have a low bound of
0.2, while the low bound for EDF or LLF is zero. If the system is never overloaded,
D* will guarantee service to all tasks. Furthermore, the algorithm experimentally
compares well with Locke’s Best-Effort scheduler.

Recently, Baruah and Rosier studied the upper bound of uniprocessor scheduling
problem [11]. Although they did not derive a tight bound, their work does provide
an important base for others.

Besides the real-time on-line scheduling problem, there are many other on-line
problems. The recent theoretical development of on-line algorithms has established
a Theory of On-Line Algorithms which compares the relative power of on-line and
off-line (or clairvoyant) algorithms. Sleator and Tarjan analyzed list searching and
paging problems [75]. Manasse, McGeock, and Sleator presented results on the K-
sever problem. Each on-line decision is to choose one server from K available servers
to serve a request in a metric space. Other work on the theory of on-line algorithms
can be found in [13, 14, 19, 26, 42].

Our work on dynamic scheduling of independent tasks is a further extension to the
earlier results. We will establish the upper bound for on-line uniprocessor scheduling
and consider some other extensions, such as, tasks with variable value densities and

dual-processor scheduling.

2.2 Scheduling with Resource Requirements

Tasks may require both processor resources and other resources such as shared data
structures. The shared resources can be protected by semaphores or locks, which
we refer to as the locking approach, or by avoiding conflicts based on conflict-free
schedules, which we refer to as the lock-free approach. The locking approach provides
a model to simplify scheduling algorithm design, because the scheduling algorithm

does not need to consider the shared data structures and resources explicitly. But the
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locking approach may cause blocking during task execution. On the other hand, the
lock-free approach complicates task scheduling, since the additional resources which
represent the shared data structures protected by critical sections must be handled
by a scheduling algorithm explicitly. In this section, we first consider the scheduling
algorithms based on locking, which are mainly designed for scheduling of periodic
tasks based on off-line feasibility analysis. Then we consider scheduling algorithms
based on the lock-free approach, which are mainly designed for scheduling based on
the on-line feasibility analysis.

The RM algorithm enhanced with a static priority ceiling protocol studied in [65]
and the EDF algorithm enhanced with a dynamic priority ceiling protocol reported
in [24] are examples of the locking approach. To achieve good performance with a
priority ceiling protocol, the size of critical sections is assumed to be small compared
to the size of tasks and the worst case execution times of critical sections are known.
In general, the priority ceiling protocols are too pessimistic for some applications,
because they must account the worst case blocking time for every task in a critical
section. The basic RM with a priority ceiling protocol is not flexible for a dynamic
environment, and hence a mode change protocol is discussed in [72].

In the lock-free approach, the scheduling problem is modeled as scheduling tasks
with additional resource constraints. Without deadline constraints, scheduling tasks
to minimize the schedule length [16, 37] on multiprocessor is a NP-hard problem.
Therefore, many heuristic algorithms have been developed [32, 33, 34, 35, 45]. Most
heuristic algorithms are similar to list scheduling, which orders tasks into a priority
list and selects tasks based on their priorities. With deadline constraints added to
tasks, the problem has been studied extensively by the Spring research group of
University of Massachusetts at Amherst during last several years [67, 68, 69, 70,
86, 91, 92, 93]. The basic idea is the following. For a given set of processes, the
Spring Software Generation System (SGS) [63] analyzes them and partitions each
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process into a set of tasks. Tasks are non-preemptable scheduling entities in the
Spring system. SGS may identify additional resources needed by a task, and these
additional resources could be the data structures protected in critical sections. Then
the Spring scheduler uses a heuristic function based on tasks’ deadlines, resource
requirements, and computation time. Hence, both timing constraints and resource
constraints are taken into the consideration explicitly. The primary performance
criterion is the guarantee ratio, which is defined as the number of times a heuristic
scheduling algorithm finds feasible schedules among all tested task sets where it is
known that a feasible schedule exists for each set.

There are some advantages with the lock-free approach. It can be applied to
more complicated concurrent programming models besides critical sections, it does
not require assumptions about the worst-case size of critical sections, and thus avoids
the pessimistic worst case blocking time in the priority ceiling protocol.

Our work on scheduling with task synchronization is a further extension to the
lock-free approach used in the Spring real-time system. We will develop new schedul-
ing algorithms with the ability to find feasible schedules of good quality, measured
in terms of the schedule length, of the generated feasible schedules.

2.3 Task Scheduling with Fault-Tolerance
Constraints

In this section, we first survey fault-tolerant programming models. Then some real-
time fault-tolerant task scheduling algorithms are discussed. Readers may read the
paper by Stankovic, which surveys some real-time scheduling approaches with fault-
tolerance constraints [83].

Many fault-tolerant program models can be applied to real-time systems. Fault-
tolerance is an active research area. Several papers [2, 3, 27, 47, 57| provide general

summaries of fault-tolerance research, while [1, 80] focus on software fault-tolerance
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research. [40] provides the recent opinions of a group of experts in fault-tolerance. In
the remaining parts of this chapter, we survey some popular fault-tolerant program
models, task scheduling with fault-tolerance requirements, and performance-related
reliability measurements.

Many fault-tolerance mechanisms have been developed in the last three decades.
Each has different advantages and disadvantages based on different fault assumptions.
Here we categorize these assumptions into three groups. The first group assumes that
software is fault-free and the only faults are from hardware component failures. The
second group assumes that faults may come from both software design faults and
hardware component failures. The third group assumes that faults come from the
events in which application programs miss their deadlines. Let us discuss each group
in detail.

To tolerate hardware failures only, there are several fault-tolerant approaches to

improve the delivered services:
e Retry,
¢ N-Modular-Redundancy (NMR), and
e Error Recovery (ER).

Retry involves reissuing the failed action in the hope that it will be successful.
It makes use of temporal redundancy to recover from transient faults or after the
system eliminates the consequence of errors. Although it is simple and cheap, it
cannot recover from an error caused by a permanent hardware fault. Further it
assumes that multiple runs of a program do not generate multiple effects to the
system or the environment. A recent work using Retry is reported in [71].

NMR is a spatial redundancy approach. It replicates a program with N copies.
Each copy is executed on a different processor. The results generated by N copies are

voted upon. When N is three, NMR becomes Triple Modular Redundancy (TMR).
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TMR is widely used in many fault-tolerance systems, such as Fault-Tolerant Mul-
tiprocessor (FTMP) for avionics [77], IBM 9020 [39], and JPL-STAR computer [5].
Some systems use more flexible voting schemes allowing more than three modules
to participate in voting, such as Software Implemented Fault-Tolerance (SIFT) com-
puter [77] and Multicomputer Architecture for Fault-Tolerance (MAFT) [87]. One
special feature of SIFT is that the voting is done under program control, rather
than through hard-wired circuitry [7]. Care must be taken with the NMR approach
to avoid generating multiple external effects to other modules or the environment.
Also, NMR consumes N times more system resources even if there are no faults in
the system.

Recovery refers to the action of eliminating the effect of a fault or error [3].
Common techniques include backward error recovery [36], such as using log files and
checkpoints, and forward error recovery. Recovery techniques are intimately related
to the issues of fault latency and fault confinement. In general, the longer it takes to
detect a fault, the more recovery work is required. Furthermore, fault confinement
techniques must be used to block spreading of the fault as much as possible.

Backward error recovery involves the maintenance of recovery points, which in-
troduce overheads during normal system functioning. Also, upon the occurrence of
a failure, certain actions may have to be undone before the system state is restored
to an earlier error-free state. Thus, in this case, recovery entails time and resource
overheads. Since the system is restored to a previous state and some tasks are un-
done, this implies that any interaction with the environment by the “undone” tasks
should be undoable. This will not always hold in real-time systems. A problem of
an opposite nature occurs with forward error recovery. Forward error recovery may
cause the system to move from the error state to a new correct state. This implies

that certain expected interactions with the environment may not occur.
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The next group of fault-tolerance mechanisms assumes that faults may come
from both software design faults and hardware component failures. It is hard to
distinguish the faults caused by software and the faults caused by hardware in many
situations. But if provisions exist to deal with software design faults, the faults
from hardware component failures can be handled in the same fashion using the
fault-tolerant mechanisms we discussed below. There are three approaches to deal

with software faults:
¢ Recovery Block (RB),
e N-Version Programming (NVP), and
o Resourceful Systems (RS).

All three approaches employ multiple versions of programs.

RB uses an on-line acceptance test to determine which version to believe [38, 44].
It has the following structure: ensure T by BI else by B2 ... else by Bn else error,
where T is the acceptance test, B! is the primary block, and Bk, 2 < k < n, are the
alternative blocks. The execution order of blocks in actual implementation can be
sequential or parallel.

NVP executes all versions and votes upon their results [4, 23]. It has three steps
during the execution: (1) invoking each of the versions; (2) waiting for the versions
to complete their execution; (3) comparing and acting upon the N sets of results.
Some experiments of NVP are reported in [6, 43], which show several advantages of
NVP. But there are shortcomings with this method, which are summarized in [1].

Resourceful System (RS) is a generalization of the RB approach to software
fault-tolerance [1]. Systems are resourceful if they can determine whether they have
achieved their goals and, if not, to develop and carry out alternative plans. RS pos-

sesses three properties: (1) functional richness, (2) an explicit testable goal, and (3)
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an ability to develop and to carry out plans for achieving its goals. Some similar
ideas can be found in other research areas, such as in real-time Al [84].

In the third group of fault-tolerance mechanisms, the timing properties of soft-
ware modules are used. For example, a Deadline Mechanism can be used to select the
proper version of a software module which meets a known deadline 3, 22]. The Mono-
tonic Algorithm approach is based on an iterative method so that system scheduling
has a certain range of selections to trade off time and precision of a software module
with a deadline constraint [52, 55]. This same idea is used in the Mandatory-Optionals
work [74], which does not require iteration. These imprecise computation models are
summarized in [56]. The mechanisms in this group provide a basis to let the system
scheduler select a proper version of the corresponding software module, such that
the events of missing deadlines are avoided. However, to use these mechanisms, a
cost and/or reward functions must be associated with the software modules. Then
the system scheduler tries to minimize the total cost or maximize the total reward,
which is a non-trivial problem.

The fault-tolerant mechanisms of the three groups discussed so far can be com-
bined. For example, Multi-Primary-Voting and Multi-Ghost-Backup is used in [46].
N Self-Checking Programming combines both temporal and spatial redundancy [48).
Multi-Language Versions combines NVP and RB [64].

Now let us consider some real-time fault-tolerant task scheduling algorithms, with
both static scheduling and dynamic scheduling.

For static scheduling, Krishna and Shin considered a multiprocessor scheduling
problem which takes fault-tolerance constraints into consideration explicitly [46].
Each task consists of several primaries and several ghosts. Primaries vote upon
their computational results. The ghosts are passive backups. They assume that
there exists an optimal allocation algorithm to assign fault-tolerant tasks to differ-

ent application processors, and that there exists an optimal scheduling algorithm for
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each processor. They developed a new scheduling algorithm in conjunction with the
optimal scheduling algorithm to obtain an optimal schedule when enough ghosts are
incorporated into the schedule to sustain the required number of processor failures.
A dynamic programming technique is used to derive fault-tolerant schedules. The
whole scheme is supposed to apply to static fault-tolerant task scheduling, because
the dynamic programming algorithm is an expensive algorithm.

Liestman and Campbell considered fault-tolerant task scheduling based on a dead-
line mechanism [51). Their scheme guarantees that a primary algorithm will make
its deadline if there is no failure, and that an alternative algorithm (of less precision)
will complete by the deadline if there is a failure. For most of the tasks, both primary
and alternative algorithms are guaranteed with resources reserved. Their scheduling
algorithm tries to increase the system performance by re-using the resources assigned
to alternatives.

Ramamritham investigated the techniques used for fault-tolerance in distributed
systems and discussed their applicability to the Spring real-time system [66]. Some
ideas about scheduling fault-tolerant tasks with respect to distribution, multiprocess-
ing, and communication in Spring are presented.

In distributed systems, a node may die or lose a part of its computational
power because the failures of components. It is important to rebalance the load
across the whole system and keep the system stable. This problem has been stud-
ied by Stankovic [82]. He developed and compared various distributed schedul-
ing/reallocation algorithms for tasks running on a distributed environment. The
algorithms include Focused Addressing, Bidding, Local Preemption, and Global Pre-
emption. The stability of the Bidding algorithm has also been analyzed in [81].
Distributed scheduling is not considered in this dissertation, although it is a very

important issue.
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Finally, it is important to quantify both performance and reliability in fault-
tolerance systems. In general, performance-related reliability models use a state-
based approach by assigning some kind of performance value or reward to a sys-
tem’s various working configurations. Using continuous-time Markov chain model, a
degradable multiprocessor is expressed as an n-state process with state space as 0,
1, .-+, n. State 0 represents the system failed state and state 1 through n represent
various working configurations. Each working state 1 is associated with a reward rate
;. Solving this Markov chain model would yield the probability that the system is
in different working state at time ¢. For example, p;(t) is the probability that the
system is in state 7 at time ¢. Let 7; be the time spent by the system in configuration
1 over the mission length L. Then

n
ng = L.
i=1

Beaudry introduced measures such as computation reliability and computation
availability for degradable multiprocessors [12]. Beaudry’s model is built on the
Markov reward process. If the reward r; is interpreted as the amount of useful com-
putation unit over time units e.g., instructions/second, in state i, then the expected

computing power at time ¢ is

i pi(t) - 7.

i=1

The concepts in Beaudry’s model were generalized by Meyer, who introduced per-
formability [60], which is the probability distribution function of accumulated system
performance. The performability of the system over the mission time ¢ is the distri-
bution of the accumulated reward

n

Z’I‘;Ti.

i=1
Performability is an important performance metric and has been widely used to

analyze fault-tolerant systems.
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Lee and Shin introduced an active reconfiguration strategy for a degradable mul-
timodule computing system [49]. They recognized that the system should reconfigure
itself after a certain amount of mission time has passed, even without any failure.
Their model is also a state-based approach which is represented as a Markov reward
process. The rewards are determined by different system configurations, and the

reliabilities are determined by two factors:

o the hardware modules’ reliabilities where the modules are assumed to have

constant failure rates, and

o the probabilities that the system cannot recover from module failures under

certain configurations.

Their objective was to maximize the (expected) accumulated rewards, which can be
considered as a specific instance of the performability measure introduced by Meyer.
Their solution is composed of a set of feasible schedules organized in a two-dimension
table. Each feasible schedule in the table corresponds to a different task configuration.
The table is then used on-line by the system to choose at during the mission time.
Such an active reconfiguration is a very good idea to increase performance.

For the state-based approaches discussed thus far, tasks and task scheduling are
implicitly accounted for within a system state. The number of states would explode
when considering all possible subsets of tasks, their redundancy levels, and all possible
feasible schedules. This may not be a major problem for small static systems. But,
in a dynamic system, we cannot afford to use any time-consuming algorithm such as
dynamic programming to exhaustively search for a solution and we cannot generate
task schedules off-line because we do not have enough task information to make
these scheduling decisions. To reduce computational complexity, we must look for an
alternative. Our main idea is to focus on the key factor which affects both system

reliability and performance. This key factor here is task schedules. The ability to
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construct feasible task schedules depends on tasks’ redundancy levels which mainly
affects system reliability and on the tasks themselves which mainly affects system
performance.

Our work on task scheduling with fault-tolerance constraints is a further exten-
sion to the performance-related reliability assessment. We provide a fast method
to determine the optimal redundancy levels of tasks without explicitly referring to
states and without using any expensive algorithms for exhaustive search. Also our
method is not limited to hardware reliability given by constant failure rate functions

as in most other models, since we do not depend on the memoryless property.



CHAPTER 3

WORST CASE ANALYSIS OF ON-LINE SCHEDULING

3.1 Introduction

The problem of on-line scheduling in real-time environments is to dynamically make
a sequence of decisions by assigning system resources to real-time tasks. This deci-
sion must be made without a priori knowledge of future tasks. System resources are
processors, memory, and shared data structures!, and the tasks are assumed to be
independent and preemptable, and have arbitrary arrival times, computation times,
deadlines, and importance values. If a task request is successfully scheduled to com-
pletion, a value equal to the task’s execution time is obtained; otherwise a value of
zero is obtained. Because a scheduling decision is made without @ priori knowledge,
the outcome of the decision is not fully predictable. So, the objective is to maximize
the value accrued from tasks that complete on time.

If overloads are known to be impossible, then the Earliest-Deadline-First algo-
rithm (EDF) can be applied. Intuitively, when a task is preempted, since we have a
future knowledge that overloads will never occur, we have 100% confidence that the
remaining portion of the task can be completed before its deadline. Many real-time
systems do not have such future knowledge. One example is robotics, which requires
its control subsystem to adapt to a dynamic environment. It would be too costly
to assume that overload will never occur and/or inefficient to construct a schedule a

prioriin such a system. Therefore, on-line scheduling is important in such real-time

1Only processors are considered in this chapter.
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systems, and on-line scheduling is more practical than off-line scheduling because
overload will occur in many systems. Overload happens in many practical systems

because
e the environment changes;
o there is a burst of task arrivals; or
e a part of the system fails.

Hence, on-line scheduling is necessary to shed task load. Without overload, simple
algorithms, such as EDF and Least-Laxity-First (LLF), perform very well. However,
with overload, it is more difficult to construct a good on-line algorithm to compete
with a clairvoyant algorithm, as it will be clear from the following. A clairvoyant
algorithm is an ideal optimal off-line algorithm with full knowledge of the future
arrivals of tasks.

The lower bound on the performance of an on-line scheduling algorithm, A, can
be defined in the following way: If over all task arrival sequences, the smallest value
of the ratio of the performance of A and that of the clairvoyant algorithm is By, then
B, is the lower bound on the performance of A. If, for a given scheduling problem,
the largest value of B4 for all A is B, then B is the upper (performance) bound of
the scheduling problem.

In this chapter, we consider both uniprocessor on-line scheduling and dual-
processor on-line scheduling. Tasks have either the same value density or different
value densities, where value density is defined as the ratio between the value of a task
and its computation time.

In the case of uniprocessor on-line scheduling, if tasks have the same value density,
we show that the upper bound on performance is 1/4. Another interpretation of the
result is that, in the worst case, an on-line algorithm is only able to complete the

amount of work which is 1/4 of the work completed by a clairvoyant algorithm. We
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also show that 1 /4 is a tight bound by constructing an on-line algorithm, called
- Threshold-1 (T'D,) algorithm, to reach the bound. T'D; guarantees no less than 1/4
of the value obtained by a clairvoyant algorithm for any task request sequence. This
means that T'D; has the best lower bound among all on-line algorithms. Therefore,
TD, is an optimal on-line scheduling algorithm under overload, and furthermore, it
has the same performance as LLF and EDF in case of non-overload.

The above result can be further extended to the cases in which tasks have different
value densities. Let 4 be the ratio of the highest and lowest value densities of tasks,

we prove that the upper bound of the on-line scheduling problem is

1
TTIrIA
As a special case, if 4 is 1, the upper bound is 1/4, which is the result mentioned
above. If 4 is 2, the upper bound is 1/5.828.

For the dual-processor case, we prove an upper bound of 1/2. This bound is
shown to be tight in the special case when all the tasks have the same density and
zero laxity.

The remainder of the chapter is organized as follows. Section 3.2 presents some
notations, assumptions, and examples. Section 3.3 presents some useful properties
of a family of integer sequences. These are useful in deriving the upper bound of the
on-line scheduling problem. In Section 3.4 we study uniprocessor on-line scheduling
by assuming that all tasks have the same value-density. This assumption is removed
in Section 3.5. Section 3.6 extends the discussion to systems with dual-processors.
We show that the upper bound for the dual-processor on-line scheduling problem is
1/2 if all tasks have the same value density. This bound is tight if the tasks all also

have zero laxity. We conclude the chapter in Section 3.7.
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3.2 Assumptions and Example

A computer system is assumed to be either a uniprocessor or a dual-processor,
which serves a sequence of tasks. Let R be an arbitrarily task request sequence,
{1, T3, ...,Ta}, where n can be arbitrary large. Task T; is defined by (a;, c;, di, v:),

where
e a; — its arrival time,
e ¢; — its computation time,
o d; — its deadline,

e v; — the value obtained by the system if the task completes its execution
before its deadline, otherwise its value is zero. The ratio between task’s value
v; and its computation time ¢; is called the value density, which is an important

parameter used in the scheduling algorithms.

The laxity of task T; is defined as d; — ¢; — a;. We assume tasks are aperiodic,
independent, and preemptable without penalty (it helps to calculate the bound even
though it is not a realistic assumption). A preempted task can be resumed on any
available processor. We also assume that a; < a;;;, where 1 < i < n. Further, the

system does not have the information about the tasks before they arrive.

Definition 3.1: Let R be an arbitrary task request sequence. A is an on-fine
scheduling algorithm if it knows T; only at time a;. A clairvoyant algorithm, C,
is an ideal optimal off-line scheduling algorithm, which knows all tasks in R a

prioTi.

Definition 3.2: Let R be an arbitrary task request sequence, A be an on-line
scheduling algorithm, and C be a clairvoyant algorithm. V;(R) is the total value
obtained by A. V¢ (R) is the total value obtained by C.
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Definition 3.3: The lower bound, B, of an on-line scheduling algorithm, A, is

defined as
Va(R)
Ve(R)

where B, € [0, 1] because VR { V4(R) < Vo(R)}.
A lower bound is tight if it can be reached. The upper bound, B, of an on-line
scheduling problem is defined as

> By, for all R,

B > By, for all A.
An upper bound is tight if it can be reached.

Several examples will illustrate these terms and ideas.

Example 3.1: Let A be an on-line scheduling algorithm in a uniprocessor
system. A uses a simple strategy to make scheduling decisions: it uses EDF when
the system is underloaded, and it favors the tasks with larger value density during

overload, (this is the best-effort algorithm [58]). Let a task request sequence be
R={T,T:},
with its parameters specified in Table 3.1.

Table 3.1 Task parameters for Example 3.1

Tasks | ¢; ¢ d; v; ||
T: 0o 2 2 3
T, 1 100 101 100

At time 0, T; arrives and gets service. At time 1, T; arrives and the system
is overloaded. Algorithm A favors a task with a larger value density, which is T;.

Hence, T is rejected and is lost. The total value obtained by A is 3, and the total
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value obtained by a clairvoyant algorithm can be 100 (v2). The performance ratio
is

Va(R) _ 3

Ve(R) ~ 100°
If the computation time, the deadline, and the value of T, increase at the same

rate, then the ratio between V4(R) and V¢ (R) goes to zero.

Example 3.2: Let A be an on-line scheduling algorithm in a uniprocessor
system. A uses a simple strategy to make scheduling decisions: it uses EDF when
the system is underloaded, and it favors a task with larger value during overload

[15]. Let Let a task request sequence be
R= {TI! T{, T21 Tz'! T3: Ta’; T41 T;; TSJ Ts') TB: Tsl) T'h T';r T81 })
with its parameters specified in Table 3.2.

Table 3.2 Task parameters for Example 3.2

Tasks | a; ¢ d;i wv; || Tasks | a; ¢ d; wv;
Ty 0 10 10 10 Ty 0 9 11 9
T, 9 11 20 11 T, 9 10 21 10
T, |19 12 31 12 T; (19 11 32 11
T, |30 13 43 13 T, |30 12 44 12
Ts |42 14 56 14 T: |42 13 57 13
Te |55 15 70 15 Ty [55 14 71 14
T, |69 16 85 16 T; {69 15 86 15
Ts |84 16 100 16

Notice that the value densities of all tasks are the same, which is 1. The

schedule of a clairvoyant algorithm is simply in the following order:
(Tlli Té) T:;: TZ: TS’: Tsls T‘;a T8)7

with the total value 100. The algorithm A works as follows: At time 0, the
system is empty and T} and T7 arrive. T gets service and T} is discarded because

A favors the larger valued task during overload. (A does not know that T, will
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arrive, otherwise it will choose Tj.) At time 9, T; and T arrive and the system
is overloaded again, and T3 gets service because it is the task with largest value
among the current task sets. This pattern continues until T3 arrives at time 84.
The current running task is 77 with the same value as Ty, hence, algorithm A
does not make the switch. The total value obtained by A is 16 because only T

makes its deadline and all other tasks are lost. The performance ratio is

Va(R) _ 16
Ve(R) ~ 100°

The above task pattern can be used to construct a scenario with a task arrival

sequence with an arbitrary number of tasks, such that the ratio between V4(R)

and V¢(R) goes to zero.

From the above examples, we can observe a phenomenon which is common in
on-line scheduling. That is, an on-line algorithm sometimes makes some mistakes
because it lacks future knowledge. This is unavoidable. Also, both examples give a
zero performance bound in the worst case. But there exist other algorithms which
have non-zero performance bounds. Therefore, researchers are searching for on-line
scheduling algorithms with good lower bounds. The best one can reach the upper
bound of the problem, which will be shown in the following sections.

3.3 Constant-Ratio Sequences

In this section, we study a particular family of integer sequences, which will help us
construct worst case situation for on-line scheduling. In particular, the computation

times of a task sequence will correspond to such an integer sequence. The properties
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of this family are used in the proof of the upper bound of the on-line scheduling

problem in the next section. One example of the sequence in this family is
1,3,8,20,48,112, - .- (3.1)
which is defined by a recurrence relation, or difference equation:

Crt2 = 4(Cry1 — Ck)
with ¢g =1 and ¢; = 3.
In general, this family of integer sequences has a generic form:
Crea = B(Cks1 — Ck) (3.2)
with
=1 and =8-1.

When 8 = 4, it gives sequence (3.1). This family has some interesting properties,
which, to our knowledge, have not been studied in literature. We call these sequences

Constant-Ratio (CR) sequences because of the next property:

Property 3.1: [Constant-Ratio Property]

Ch—-1 1
= —. 3.3
;:0 cJ ﬂ ( )
Proof.
k k
d.¢ = cotei+ ) Ble-1—ci-z)
j=0 j=2
k k
= 1+(B-1)+8) ci-1—B) ci2
=2 j=2
k-2 k-2
= B+(Ber1+B8)Y ¢i)—(B+BD cj)
j=1 j=1
= Pep-s1.
Hence,
Ce-1 1
Z:.’;:O cj 6 .
(|
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We will use a CR sequence to construct a task request pattern, such that, in the
worst case, a clairvoyant algorithm is able to obtain a value which is close to E?:o Ch
while an on-line scheduling algorithm can only obtain a value c,—;. This is the main
reason for studying CR sequences.

Next, we show that a CR sequence is monotonically increasing if 3 > 4, by using

a rather standard method in the study of recurrence relations [54].

Property 3.2: [Monotonicity Property]

I8 >4,
SOE N -3 BVCAL T S L MYl CCR
2" 3 /8- 9) 2 2" 2/8E-10) 2 "
If6 =4,
= (g +1)2%, (3.5)
Proof. Given the recurrence relation (3.2):
cht2 = PB(crs1 — cx)
the corresponding characteristic equation is
22— Bz +PB=0.
Part 1: When 8 > 4, the characteristic equation has two distinct roots
zl=ﬁ+\/ﬂ2(ﬁ_—4) i zz:ﬁ—\/i(ﬂ——‘l).
It follows that
cx = Ao(ﬂ * ‘/@)k + Al(ﬁ — \[ﬁ;m)k. (3.6)
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With the boundary conditions
=1 and a=08-1,
the two constants can be determined as:
1 B-2 1 g-2
A=+ —F/—— and A =7 — ——.
2 2,/BB-9) 2 2/B(B-4)
Substitute Ao and 4, into (3.6) deriving (3.4).
Part 2: When 3 = 4, the characteristic equation has two identical roots:
T1 =22 = 2.
It follows that
ce = (Aok + A;)2". (3.7)
With the boundary conditions
=1 and a=8-1,

the two constants can be determined as:

1
=§ and A1=1.

Substitute Ao and 4, into (3.7) deriving (3.5). Furthermore, Equation (3.5) is clearly
monotonically increasing while k increases. If 8 > 4, the sequence defined by (3.2)
will increase faster than the case in which 8 = 4. This can be seen in Figure 3.1.
Therefore, the sequence is monotonically increasing while k increases, when g > 4.

This completes the proof. m
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Finally, we show that a CR sequence has an oscillation property if 8 < 4.
Property 3.3: [Oscillation Property]
If 8 <4,
2 k1
= -0 .

Ck m(\/a) cos(ké — 6,), (3.8)

where

6 = tan™! ﬂ and 6, = ta.n'l——'B——z.
8 VB4 - B)

Proof. The corresponding characteristic equation is
22 —Pz+p=0,

which has two distinct roots

_Bt+ifBa-p) . B-iyB-B)
2= 9 )

2

T

where 7 = /—1. It follows that

Ao(ﬂ * 5(4 —~ ﬂ))" + A1(ﬁ -t 2(4 ~#) )k (3.9)

Cp =

With the boundary conditions

=1 and a=0-1,
we have
A0+A1=1
and
. 4- . 4_
Ao(ﬁ+z\/z( By s a® z\/g( Bl 4y
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The two constants can be determined as:
1 i(B-2) 1, i(B-2)
Ag= = — —F/——= d A = -+ —/——=—.
T2 afsa-p T 272 /sa-p)
But
('B T §(4 A )t = (\/E)"(cos kO + isin k) (3.10)
and
ﬂ mal 2 )'= = (y/B)*(cos k6 — isin kf), (3.11)
where

6= ta.n‘lﬁ%.

Substitute Ao, A, (3.10), and (3.11) into (3.9):
o = (% - ﬁ%ﬁ::z_—)ﬁ—)(\/é)"(cos k6 + i sin k)
+(l —_ (B -2) )(\/— (cos k@ — i sin k6),
2 2\/m

or simply

———==sin k#).

k (cos kf + ———— —2
\/_) \/ﬂ( - B)

-1 ﬁ—'z

VB4 -B)

Crp = \/4_2—_ﬂ(\/E k1 cos(kﬂ - 01)

cr oscillates while k increases, because there exists a factor of the cos function of k

By defining

01 = tan

we have

and 0 while 0 < 8 < 2. o

Observation 3.1: As mentioned before, CR sequences are used to construct a
task request pattern, such that, in the worst case, a clairvoyant algorithm is able
to obtain a value which is close to 2 —o Ck While an on-line scheduling algorithm
can only obtain a value c;_;. The ratio between ¢;_; and 2,-=o ¢k is 1/8 according

to Property 3.1. Hence, the ratio decreases while 3 increases. But if 4 > 4, all
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sequences monotonically increase, which means that the value of tasks becomes
larger and larger. An on-line scheduling algorithm will simply make a switch
every time a more valuable task arrives. The ratio will be much better than 1/3
because the on-line scheduling algorithm gets the most valuable task. On the
other hand, when 3 is less than 4, the sequence begins oscillating. Whenever
Ck 2 Ck+1, the on-line scheduling algorithm cannot make the switch because it is
not worth it to switch to a less valuable task. Then, Property 3.1 can be used
to measure the performance ratio. Intuitively, the worst case happens when 3 is
very close to 4. Figure 3.1 shows the behavior of CR sequences with the different
values of 3 (beta in Figure 3.1).

3.4 Uniprocessor On-Line Scheduling for Tasks
with the Same Value Density

In this section, we assume that the value density of all tasks is a constant, and we
simply use the computation time of a task as its value. Under this assumption,
we prove that the upper bound of the uniprocessor on-line scheduling problem is
1/4, that is, no on-line algorithm has its lower bound better than 1/4. Then we
present a simple threshold algorithm with a guaranteed performance ratio of at least
1/4 compared to a clairvoyant algorithm. This is thus the best among all on-line
scheduling algorithms with respect to the lower bound.

We first consider a general framework for studying on-line scheduling algorithms.
The on-line scheduling problem can be considered as a “game” played by a player and
an adversary. Whenever the adversary posts certain tasks, with different values and
deadlines, the player examines these tasks and makes an on-line decision by applying
an on-line policy or algorithm, A, to pick some tasks and to reject others, such that
the total value obtained is as high as possible.
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To show the upper bound of the uniprocessor on-line scheduling problem, it is
sometimes necessary to consider the behavior of all algorithms on all possible input
patterns according to Definition 3.3. This is a very difficult job because it is not
practical to scrutinize all on-line scheduling algorithms. To avoid this, we use the
following approach in our proof. We first show that there exists a task request
sequence pattern from the adversary, such that, no on-line scheduling algorithm can
get a performance ratio higher than 1/4. Then we show that an on-line scheduling
algorithm, T'D,, has its performance ratio at least 1/4 for all task request sequences.
Consequently, the upper bound of the uniprocessor on-line scheduling problem is 1/4

by simply combining these two facts.

Lemma 3.1: There exists a task request sequence pattern, P, such that, no on-
line scheduling algorithm can get a performance ratio higher than 1/4 compared

to a clairvoyant algorithm.

Proof It is enough to prove that there exists P and an arbitrarily small §, such that,

Va(R) 1
—_ L - 3
VREP VA pHEi<g+é

Let A be an arbitrary on-line scheduling algorithm used by the player of the “game”.
The adversary uses two types of tasks: r-tasks and a-tasks with identical value

density, represented by
(arrival-time, computation-time, deadline)

as follows:
r-tasks : Ty = (¢, 1,t+ 1),
and
a-tasks : T2 =(ta,t+a),

where ¢ is time, and a and 7 are real to represent task size (computation time),

while 7 can be arbitrarily small and a will be specified in the following. These two

.

O
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task types have zero laxity, so the player is forced to make a decision immediately
whenever a task arrives.

At time 0, the adversary posts a r-task and an a-task:
Tg =(0,7,7), and Tg =(0,1,1).

The player has only two choices, Tj or Tj. If the player chooses Tg, T¢ will be lost.
The adversary will stop the game by not providing more requests. In contrast, the
clairvoyant algorithm simply chooses T}, and the ratio between the value obtained by
the on-line scheduling algorithm, which is , and the value obtained by the clairvoyant
algorithm, which is 1, is equal to 7/1 which is far less than 1/4.

If the player chooses T, then the adversary posts another r-task at time r:
T =(r,7,27).

Again the player has only two choices: switch or not. If the player aborts T} for T7,
the adversary will stop the game and the ratio will be far less than 1/4. If the player
keeps Ty, the game continues.

In general, while the player serves an a-task, r-tasks will keep coming one after
another. The adversary will stop the game whenever the player aborts the current
a-task for a 7-task.

Now we specify the arrival pattern of other a-tasks. The second a-task will be
T2°¢ at time 1 — 7. At that time, if the player does not abort the current a-task,
Ty, the game stops. There are no r-tasks arriving after T} completes. Therefore, the
player obtains the total value 1, while the clairvoyant algorithm gets the values from

T2=¢ and all 7-tasks between time 0 and 1 — 7. The ratio is
1 1

— < -+

I_r_e-gth
where § is a function of 7 and ¢, and § goes to zero as both 7 and € go to zero. On
the other hand, if the player aborts T for T{-¢, the game continues. r-tasks keep

coming one after another during the time the player serves T2-°.
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In general, if the player does not abort the current a-task for a r-task or if the
player aborts the current a-task for a new a-task, the adversary will keep posting
more 7-tasks and a-tasks. Each r-task follows the previous 7-task, and each a-task
is posted at the time just when the previous a-task can be completed.

The computation time of a-tasks are defined by the following recurrence relation:
co =1,
C; = ﬂ - 1,

Cri2 = ﬁ(ck+1 - Ck),

where

B=4-¢

and ¢g and ¢; correspond to T} and T7-¢ respectively.

According to Property 3.1 and Property 3.3, we have

Ck 1
E’;ﬂjcj =4_6. - (3.12)
and
¢ = 42_ ﬂ(\/E)*“ cos(ké — 6;),
where 8 =4 — ¢,
1 [4-8
§ = tan™!y [ ——,
il

and
1 ﬂ—2

8, = e e
Y 7w

Because c; has a factor of cos function of k and 6, and 8 # 0, § # 2x, therefore,
there exists k', such that

Cit! 2> Chlyl.

Hence, the size of a-tasks does not monotonically increase. Whenever the size of the

next a-task, ci41, is less than i, the adversary changes cpy1 to be the same size
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as ¢y, and stops posting more 7-tasks and a-tasks. At this moment, the player can
only choose one of the last two a-tasks with the same size, and obtains a total value

¢,. The clairvoyant algorithm gets the total value of

kl
(Z ¢;) + ¢, — k'r.

j=0
By Equation (3.12), we have
2 % 1
’ < < el 6,
(2?:0 Cj) +c, — kT (4 - ﬁ)c’k —kr — 4 +

where § is a function of 7 and ¢, and § goes to zero as both 7 and € go to zero.

In summary, the adversary uses a task request pattern, P, such that any on-line

scheduling algorithm used by the player has a performance ratio no more than 1/4.
a

Next, we show the 1/4 bound is reachable, that is, there exists a particular on-line
scheduling algorithm, T'D,, which has a performance ratio at least 1/4 for all task
request sequences, including the worst case pattern we used in the proof of Lemma
3.1.

To introduce the T'D, algorithm, we define some notation. Then we consider
several examples in order to understand the properties of T'D;. Finally, we present
the pseudo code of TD, in three versions. Each version has a set of different re-
strictions on the tasks’ parameters. In the first version, we assume that all tasks
have zero laxity. In the second version, we assume that tasks may have laxities
but all preempted tasks are discarded. In the last version, the above two restric-
tions are removed. For the purpose of showing that the 1/4 bound is reachable, our
first version of the T'D, algorithm is enough. But, tasks do have laxities in many
real-time applications. For the practical purpose, we extend the simple algorithm to
the second version by considering the scheduling decisions at tasks’ lastest start times
during overloads. Although these two versions have their performance bound as 1/4

they cannot complete 100% of the workload when the system is underloaded. As
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we mentioned before, EDF can complete the 100% of the workload when the system
is underloaded. Therefore, we would like to have an algorithm which has the same
performance as EDF during underloads but also has the same performance as the
second version of T'D; during overloads. This is our main motivation to design the
third version of the T'D, algorithm.

Technically, to prove the 1/4 bound is reachable for a given algorithm, we must
compare the schedule generated by the algorithm to the schedule generated by an
optimal algorithm. Instead of conmsidering the whole schedule, which may continue
infinitely, we partition the schedule into small pieces called time intervals which are
defined below. Using the notion of time intervals, the proof is simply to show that
the algorithm can complete the 25% of the work completed by an optimal algorithm
in any time interval.

Let ¢ denote current time. Let T; be an arbitrary task, T; = (a;, &, di, v:). a;, ¢, i,
and v; are the arrival time, computation time, deadline, and value of T; respectively

as defined in Section 3.2. Let [; be the latest start time of T;:

Definition 3.4: A time interval, or simply interval, at ¢t is a time segment
[t te) which comsists of a busy subsegment [¢;,¢s] followed by an optional idle
subsegment (t;,t.), where ¢, (¢, < t) is the time the system transits from an idle
state to a running state, ¢ (¢ < t;) is the time the system transits (or is expected
to transit) back from a running state to an idle state because a task completes

(or is expected to complete), and

te = max(tf, ma.X({dldsmrded}))

where {dlyiscardea} are the deadlines of all tasks discarded during the time sub-

segment [, ¢y].
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Definition 3.5: An interval is closed at ¢t whenever a task has completed in the

interval, otherwise, it is open.

Intervals may be separate, cascaded, or partially overlapping each other. We

present two examples to illustrate these terms and ideas.

i 1

Interval 1 o Interval 2

Figure 3.2 A closed interval and an open interval

Example 3.3: Assume Ty, T}, and T3 are three tasks with arrival times aq, a,,
and a; and deadlines dy, dy, and d; as showing in Figure 3.2. These three tasks
have zero laxity. Let ¢ be the current time. At time aq, Ty arrives and is served at
once, which opens Interval 1. Interval 1 is closed at time dy. At time a,, the next
task T} arrives and it is also served at once. The system opens the second interval,
Interval 2 [a;,d;). At time a,, T, arrives. Let us assume T is rejected at the
time a;. At current time ¢, T} is still running, so Interval 2 remains open, and is
expected to end at the time d;. In Figure 3.2, the shadowed areas represent tasks
which are either complete or running, and un-shadowed areas represent tasks that

missed their deadlines.

Example 3.4: Assume Ty, Ty, Ts, and T3 are four tasks with arrival times ao,

@1, @, and a3 and deadlines dy, d;, d;, and d3 as showing in Figure 3.3. Let ¢ be
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T

interval iq Interval 2 %

Figure 3.3 Two partially overlapping intervals

the current time. At the time ao, T arrives and is served at once, which opens
an interval [ag, a9 + ¢o), Where ¢y is the computation time of Tp. At the time
a1, Ty arrives. Assume T is discarded in favor of Tg. The interval [ag, a0 + ¢o)
is expanded to [ag,d;) to account for the effect of 7). At the time ag + co, To
completes and the interval [ao,d,;) is closed. This is Interval 1 in Figure 3.3. At
the time a3, T3 arrives and is served at once, which opens an interval [a;, a; + c3),
where c; is the computation time of T5. At the time a3, T3 arrives. Assume T
is discarded in favor of T3. The interval (a3, a; + ;) is expanded to [a;,d3) to
account for the effect of T3. At the time a; + ¢z, T completes and the interval
[a2,d3) is closed. This is Interval 2 in Figure 3.3. At the time ¢, the system is
idle and there is no open interval. Interval 1 and Interval 2 are overlapped each

other in this example.

In the proofs of the T'D, algorithm, the following sequences are used. Let A be an

arbitrary interval. The size of A depends on the tasks involved. The arrival pattern

...

€.



49

of these involved tasks determines how a sequence of intermediate open intervals

grows to the final closed interval A. Let

[ O R (3.13)

be a list of n tasks considered in A by the algorithm according the time sequence

and
(Aay, Aay, Agysy oo yAq,) (3.14)

be the corresponding interval list, where each A, is an interval when T}, is considered
by the algorithm and A,, = A. Let

(T1, T2, T, ..., T (3.15)

be a list of tasks executed by the system where each T; aborts another task, 1 < i < k,

and
(A1, A3, A, ...... y Ag) (3.16)

be the corresponding interval list. Both sequence in (3.14) and sequence in (3.16) are
monotonically increasing.

Now we are ready to describe the T'D, algorithm, which can guarantee a perfor-
mance ratio of 1/4. T'D, is used to prove that there is an on-line algorithm with a
lower bound of 1/4, which, in turn, is used to show that 1/4 is the tight bound of
the uniprocessor on-line scheduling problem. Hence, T D, is very simplified. But the
algorithm can be easily expanded to further improve its average performance.

In version 1 of TD,, we assume that all tasks have zero laxity. Therefore, a
scheduling decision must be made whenever a new task arrives. Its pseudo code is
shown in Figure 3.4, where A, records the current interval and v,,, is the value of
a running task. v,,, is set to zero when the system is idle. The correctness of version
1 of T D, guaranteeing a performance bound of 1 /4 is based on the following lemma

which shows that T'D; obtains at least 1 /4 of the value obtained by a clairvoyant
algorithm in each interval.
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whenever T, arrives {

update(Apyn);

if(‘Um < A"‘n/4) { Trun = Lnent) }
}

Figure 3.4 On-Line Scheduling Algorithm T'D, (version 1)

Lemma 3.2: In any interval, version 1 of T D obtains at least 1/4 of the value

obtained by a clairvoyant algorithm.

Proof. Let A be an arbitrary interval. Let sequences in (3.13), (3.14), (3.15), and
(3.16) be defined as before, where the sequence in (3.14) is corresponding to the
values of A,,n in the algorithm. We first use mathematical induction on the number

of task involved in the task sequence in (3.15) to prove

Vg > Ak/2. (3.17)

1. Basis of induction. For k = 1, it is trivial, because v; = A; (> 4,/2).

2. Induction step. Assume that k =1,

v > A,'/2. (3'18)
Because T; is aborted by T:.,
v; < Ajr /4 (3'19)
and
Aipr < Qi + v, (3.20)

Applying (3.20), (3.19), and (3.18) in order,
041 > v+ (Air — A))
> Vi + 4y — A
> v + 24 — A
= v+ A > A,

Thus the inequality (3.17) is true for any integer k.

[
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To show that version 1 of T'D; obtains at least 1/4 of the value obtained by a

clairvoyant algorithm in each interval, we consider two cases.

e Case 1: T,, = T, which means that no other tasks arrive after T;. By the
inequality (3.17),
v > AR/2 = A/2> A/4.

o Case 2: T,, # Ti, which means that there are tasks which arrived after T, and
were discarded. By the threshold rule,

Vi 2> Ac../4 = A/4.
a

In the next version, tasks may have laxities, but all preempted tasks are discarded.
A queue, Q, is used to hold tasks waiting for service and they are sorted by latest
start times in non-decreasing order. Figure 3.5 shows the pseudo code of version 2
of TD;. In version 2 of T'D,, whenever a new task arrives, it is inserted in Q first.
If the system is idle, it will execute the first task in Q and starts a new interval.
Otherwise, a scheduling decision is made when the latest start time of the first task
in Q is equal to the current time (or when the task’s laxity reaches zero). Hence,
only the first task in an interval may have laxity a.nd- all other tasks have zero laxity
because they are invoked at their latest start times. In a given interval, if the first
task has non-zero-laxity and is executed fully or partially by T'D;, then a clairvoyant
algorithm can execute this non-zero-laxity task after the interval while version 2 of
T D, cannot, because the task has been executed inside of the interval even though its
deadline may be larger than the end point of the current interval. So the clairvoyant
algorithm may obtain the value of the first task by scheduling it after the end of the
current interval and the all values inside of the interval by packing it fully with small

tasks. The maximum value which is obtainable after the current interval is bounded
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by the value of the first task. If we do not comsider this situation in version 2 of
TD,, the algorithm cannot guarantee 1/4 of the value obtained by the clairvoyant
algorithm. To deal with this problem, the algorithm uses a variable, potential loss
(p-loss), as a compensation. p_loss records the value of the first task in an interval,
which is the only task that may have laxity. The clairvoyant algorithm may obtain
the value which is proportional to the interval size plus the value of p-loss which is
bounded by the value of the first task.

The correctness of version 2 of T D, with respect to a performance bound of 1 /4
is based on the following lemma which shows that T'D; obtains at least 1 /4 of the

value obtained by a clairvoyant algorithm in each interval when a compensation is
added.

whenever (idle && not-empty(Q)) {
Trun = dequene(Q); p-l08s = Vpyn;
}

whenever (running && alarm(Q)) {
Thezt = dequeue(Q); update(A,yn);
if (run < (Apun + ploss)/4)
{Tﬂm = Tneat; }
}

Figure 3.5 On-Line Scheduling Algorithm T D, (version 2)

Lemma 3.3: Version 2 of TD; obtains at least 1/4 of the value obtained by a

clairvoyant algorithm in any interval with considering the compensation.

Proof. Let A be an arbitrary interval. Let sequences in (3.13), (3.14), (3.15), and
(3.16) be defined as before, where the sequence in (3.14) corresponds to the values of
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A,yn in the algorithm. We first use mathematical induction on the number of tasks

involved in the task sequence in (3.15) to prove
vk > (Ax + p-loss)/2. (3.21)
1. Basis of induction. For k =1, it is trivial, because
v = Ay = (A + p-loss)/2,

where p_loss = A;.

2. Induction step. Assume that k =1,

v; > (A; + ploss)/2. (3.22)
Because T; is aborted by T;,,,
v; < (Aipr + ploss)/4 (3.23)
and
Aipr < Ai + v (3.24)

Applying (3.24), (3.23), and (3.22) in order,

20541 > vip + (A — A))
> Uiy + 4v; — ploss — A;
> Vi1 + 2(Ai + ploss) — p_loss — A;
= Uiy + A + ploss

> A4 + ploss.

Thus the inequality (3.21) is true for any integer k.
To show that version 2 of T'D; obtains at least 1/4 of the value obtained by a

clairvoyant algorithm in each interval, we again consider two cases.
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e Case 1: T,, = Tk, which means that no other tasks compete with T}. By the
inequality (3.21),

v > (Aw+ploss)/2
= (A +ploss)/2

> (A + p-loss)/4.

o Case 2: T,, # Ti, which means that some tasks compete with T, and are

discarded. The threshold rule guarantees that
Vg 2 (Aq, + p-loss)/4.
]

It is enough to use version 2 of T'D; to demonstrate the performance bound of 1/4
is a tight bound for the uni-processor on-line scheduling problem. However, when it is
compared with EDF, there is still a small problem. If the system is underloaded, EDF
has a performance bound of 1 while T'D; has 1/4. It is better to design an algorithm
having a performance bound of 1 under non-overloads and 1/4 under overloads. This
is the motivation for the design of version 3 of T D;.

The new algorithm uses the Earliest Deadline First (EDF) rule when the system
is not overloaded. Therefore, T'D; guarantees a performance bound of 1 under non-
overloads. A queue, @, is used to hold tasks waiting for service and they are sorted
by deadlines. Because of the EDF rule, some tasks in Q may have been executed
partially. These tasks are called fragmented tasks, while other tasks are called regular

tasks. The interval definition is accordingly expanded as follows.

Definition 3.8: A time interval or simply interval at ¢ is a time segment [t;, ¢.)
and consists of a busy subsegment [t;, ¢4] followed by an optional idle subsegment
[t4,t.). It satisfies all the following conditions:
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oty (t, < t) is the time the system transits from an idle state to a running
state or the time the system switches from a running task to a regular task

with both tasks feasible;

oln [ty, 4], there is no such switch from a running task to a regular task with

both tasks feasible;

oty (t < t;) is the time the system transits (or is expected to transit) back
from a running state to an idle state, because some tasks complete (or is

expected to complete);

oAll fragmented tasks in Q can completed before their deadlines if they start
after t.; and

ot. = max(ts, max({dlfragmented}), max({dlgiscardea})), Where {dltragmentea}
are the deadlines of all fragmented tasks which are either discarded or com-
pleted and {dl,cardea} are the deadlines of all tasks discarded during the

time subsegment [ty, ¢y).

An interval is closed when a task completes and all involved fragmented tasks are

either completed or discarded, otherwise it is open.

There are some features in the new algorithm. Whenever a task from Q starts
execution, the algorithm guarantees that remaining fragmented tasks in the Q are
feasible if they start after the end point of the current interval. If an interval is
underloaded, only one task is actually involved in an interval. The tasks are com-
pleted in the order of their deadlines (the EDF rule). An open underloaded interval
may be aborted when the system switches to a new task with a smaller deadline
and both tasks are feasible. The preempted task becomes a fragmented task and is
put back to Q. The time consumed in the aborted interval will be counted as the
compensation in a future interval. (The compensation will be recorded in a variable,

p-loss, as in version 2 of TD,.) If an interval is overloaded, more than one task is
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involved in the interval, with their deadlines located within the interval. Let T.., be
a running task and Th.;: be a regular task in the queue. If I, < y, the algorithm
makes a scheduling decision at ln.z:. Some fragmented tasks, T fpqq, may also conflict
with Tpezt, which means that Ty,ey is 2 minimum subset of the fragmented tasks
removed from @ such that the T),..; and the remaining fragmented tasks in @ are
feasible. Therefore, the algorithm chooses either Tpyy and Tpag Or Tpeze based on a
threshold rule. If T, ¢ is discarded, the algorithm is expected to complete T.,, and
Tfrag in the current interval. If Tj,.,¢ wins, then T,y and Tfne, are discarded. The
algorithm maintains a conflict task set, T onfiict, Which consists of all T peq involved
in the interval that have not yet been discarded or executed. When a running task
completes, the system executes a fragmented task from T nfiie immediately if it is
not empty, otherwise, the interval is closed at this moment. A clairvoyant algorithm
may get extra values outside of an interval with, the total amount being bounded by
p-loss. So we must add this factor into the threshold rule as a compensation.
Figure 3.6 is the pseudo code of version 3. It applies the following threshold rule

under overloads:
gain + Vpyn + Va.lue(Tmﬂ.-cg) > _];
Apun + p-loss -4’

(3.25)

where gain is the value obtained from the tasks which have been completed in the
interval, Value(T onfiict) is the value obtained by executing Teonflict, Arun is the
current interval size, and p_loss is the sum of the previously aborted intervals which
relates to all involved fragmented tasks in the current interval.

The correctness of version 3 of T'D, with respect to guaranteeing a performance
bound of 1/4 under overloads and 1 under non-overloads is based on the following

lemma.

Lemma 3.4: In any interval, version 3 of T'D, has a performance bound 1 under
non-overloads and 1/4 under overloads, assuming all tasks have the same value

density.
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choose_one(Trun, Tnezt, Q)
{
“compute T con flict;”
update(p-loss); update(Apys);
if (“Rule in (3.25) is false”)
{ T,.,m = lnezt; d.isca.rd(Tmﬂ,-d); }
return(Tryn);
}
/* The event-triggered routines */
whenever (idle && not-empty(Q)) {
Tnest = remove_edf(Q);
Trun = choose_one(Null, Tpezt, Q);
}
whenever (running && alarm(Q)) {
Thezt = remove.alarmed. task(Q);
Trun = choose one(Tpun, Tnezt, @);

}
whenever (finish) {
if (empty(Teonftict))
“set system state to idle”;
else Trun = removeedf(Teonflict);
}

whenever (arrival) {

if ( (drun < dare) || idle )
insert(Tqrr, @);

else if (feasible (Tryn, Typr, “all fragments™)) {
insert(Tprun, Q);
Trun = Tarr;
“start a new interval, A,y,”;

} else
Trun = choose.one(Tryun, Turr, Q);

}
Figure 3.6 On-Line Scheduling Algorithm T' D, (version 3)
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Proof. In underloads, it is trivial to see that the algorithm follows the Earliest-
Deadline-First rule, which guarantees a performance bound of 1. The remaining part
of the lemma is proved as follows.

Let A be an arbitrary interval. Let sequences in (3.13), (3.14), (3.15), and (3.16)

be defined as before, where the sequence in (3.14) corresponds to the values of A

TUun

in the algorithm. It is possible that there are more than one task completions in
the task sequence in (3.15). We use mathematical induction on the number of tasks

involved in the task sequence in (3.15) to prove:

Vg > (Ak + 'p_loss;,)/z, (3.26)

1. Basis of induction. For k = 1, it is trivial, because v; = A, + p-loss;.

2. Induction step. Assume that k = 1,
v; > (A + p-loss;)/2. (3.27)
Because the system switches to Tj,;, the threshold rule in (3.25) is false, which
implies:
Vi + Vigr < (Aiy1 + p-lossiy)/4, (3.28)
where V;,; corresponds to Value(Teongiict) in (3.25). With the definition of the

interval and the property of the compensation, we have

A,'_H < A; + Vip1 + Vi (3.29)

and

ploss; + Viy1 > ploss;, (3.30)

Applying (3.29), (3.28), (3.27) and (3.30) in order,

i1 > v+ (A£+1 -Ai— Vi)

> vigr + (4(vi + Vig1) — plossipr) — Ai = Vi
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> i1+ 2(Ai + ploss;) — plossity — A; + 3Viyy
= (A; + vig1 + Vi) + 2(p-loss; + Viy1) — p-loss;yy
> Ai1 +2plossiyy — plossiy,

= Aiy1 +plossiy.

.Thus the inequality (3.26) is true for any integer k.

To show that version 3 of T D, obtains at least 1/4 of the value obtained by a

clairvoyant algorithm in each interval with the compensation p_loss, we consider two

cases.

o Case 1: T,, = Tk, which means that no other tasks arrive after T;. By the
inequality (3.26),

Ve > (Ar + plossi)/2 > (Ax + p-loss)/4.
o Case 2: T,, # T, which means that the system does not make any preemption

after T} in this interval. The performance bound of 1/4 is guaranteed by the
threshold rule in (3.25). a

Combining the above results, we have the following theorem.

Theorem 3.1: If all tasks have the same value density, then the upper bound
of the uniprocessor on-line scheduling problem is 1/4.

We have the following comments about the theorem.

o The assumption that the same value density on all tasks may not be practical.
However, it is an important special case of the model considered in the next

section. It provides a basis for analyzing more sophisticated models.

e If we interpret the task’s computation time as its value, then this theorem says
that, in the worst case, any on-line algorithm can only complete 1 /4 of the work

completed by a clairvoyant algorithm.
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o The theorem has another implicit assumption, which is that the computation
time of tasks can be arbitrarily small or large. This may not be true in practice.
The bound can be improved if the ratio between the largest and the smallest
computation times is bounded. For example, if the ratio is arbitrarily close to
1, the bound is also close to 1. The bound decreases while the ratio increases.

The bound converges to 1/4, as the ratio goes to infinity.

o Although T'D, is used to prove the theorem, version 3 of T'D; can be applied in
many real-time systems to substitute for the EDF scheduling algorithm. The
difference between EDF and T'D, is that EDF uses only information about
tasks’ deadlines while 7D, uses more information, such as, the size of the
current interval, the value of a running task, the value of the task that competes

for the processor resource, and tasks’ deadlines.

3.5 Uniprocessor On-Line Scheduling for Tasks
with Arbitrary Value Densities

In this section, we generalize the result of the last section to the case in which tasks
do not have the same value density.

Let 4 be the ratio between the highest value density and the lowest value density
of tasks. The actual value densities of tasks can be mapped to [1,4]. As in the proof
of Lemma 3.1 in last section, an adversary uses both a-tasks and 7-tasks to build a

worst case pattern of task request sequence. The adversary assigns a value density

E_
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1 to all a-tasks and a value density v to all r-tasks. The computation times of the

a-tasks are defined by the following recurrence relation:

cht2 = (B — 4 + 1)cks1 — Bek

with the boundary conditions as

and

a=p0-1.

(3.31)

The constant ratio property mentioned in Section 3.4 can be generalized to the

following form:

Property 3.1: [Constant Ratio Property]

Ch—1
1
Y2520 Ci + Ck

Proof. We use mathematical induction to prove

1
5

k-1
7Y ¢+ ek = Bek-s.
=0

1. Basis of induction. For k = 1, we have

Yo +e1 =7+ (8 —7) =8 = Beo.

2. Induction step. Assume that

k-1
Y Z c; + cx = Peg-1.

=0
We have

k k=1
1Y citern = (VY ci+vek) +((B -7+ 1)ck — Bepr)

Jj=0 j=0
k-1
= (v ¢j+ck) +Ber — Bera
=0
= Pcr-1 + Ber — P
= ﬂck.

Hence, Equation (3.32) is true for all & > 1.

(3.32)
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Lemma 3.5: Given v, there exists task request sequence pattern, P’, such
that, no on-line scheduling algorithm can get a performance ratio higher than
1/(v + 1+ 2,/7) compared to a clairvoyant algorithm.

Proof. The adversary uses a sequence of the a-tasks defined by the recurrence
relation (3.31) and presents them to the on-line scheduling algorithm in the similar
way as before, so that whenever the “game” is stopped, the performance ratio will
never be larger than 1/4.

The adversary wants the a-task sequence to have the following two features:

1. the “game” always stops; and

2. B is as large as possible.

The first feature requires that the value of the a-task sequence should oscillate. The

characteristic equation for (3.31) is
2 —(B-v+1z+8=0.

The oscillation occurs when the characteristic roots are complex numbers, which

happens if
B-v+1)-48<0. (3.33)

The inequality of (3.33) can be written as

(B=(r+1+27)B-(v+1-2y7)) <0,
which gives
T+1-2A<B<v+1+2/fy (3.34)
and
T+1=-27>8>v+1+2A. (3.35)
(3.35) is a contradiction and is discarded.

Therefore the largest possible value of 8 is (v + 1 + 2,/7) — ¢, which will be used by
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the adversary to construct the a-task sequence. Thus, the adversary has a strategy
to force every on-line algorithm to stop with a performance ratio not higher than

1/(v + 1+ 2,/7) compared to a clairvoyant algorithm. o

Lemma 3.8: Given 7, there exists an on-line scheduling algorithm, T D}, for
all input sequences of tasks, it has a performance ratio at least 1/(y + 1 + 2,/7)
compared to a clairvoyant algorithm.

Proof. Similar to the proofs of Lemma 3.2, 3.3, and 3.4 in last section, we may

construct an algorithm T'D; from T D, by using a new threshold, which is

1
y+1+2,~4’

to substitute to the old threshold 1/4. The basic idea is as follows. T'D; computes
the ratio between the total value obtained or obtainable by the algorithm in a time
interval and the total value obtained or obtainable by the clairvoyant algorithm in
the same time interval, and then compares this ratio to the above threshold to made
the decisions of task switches. For example, corresponding to version 1 of TD,, in a
given interval, the value obtained or obtainable by T'D) is vy, and the value obtained
or obtainable by the clairvoyant algorithm is bounded by y(t; —t5) + Value([t. — t;]),
where Value([t.—ty]) is the maximum value obtainable in the time segment of [t.—t;].
Using the same argument as before, it is easy to show that T'D; has the desired lower

bound. 0

Combining the above two lemmas, we derive the following theorem.

Theorem 3.2: If is the ratio between the highest and the lowest value density

of tasks, then the upper bound of the uniprocessor on-line scheduling problem is

1
y+1+2,A

We have the following comments about the theorem.
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e It is easy to verify that the upper bound is 1/4 when « is 1, which is the same
as the first result.

e When 7 increases, the upper bound decreases. This means that a clairvoyant
algorithm has a greater advantage over an on-line scheduling algorithm, be-
cause, in the worst case, the clairvoyant algorithm works on the highest value
density tasks while the on-line algorithm works on the lowest value density

tasks.

3.6 On-Line Scheduling on Dual Processors

We further generalize the previous results from uniprocessor to dual-processor on-line
scheduling in this section. We first show that the upper bound for the dual-processor
on-line scheduling problem is 1/2. Then we show that 1/2 is tight for tasks without
laxity.

There is a special feature of the dual-processor on-line scheduling problem which
distinguishes it from the uniprocessor on-line scheduling problem. With dual proces-
sors, the two processors can co-operate with each other. This kind of co-operation
may allow a dual-processor system to perform better than two separate uni-processor

systems.

Lemma 3.7: If tasks have uniform value density, then 1/2 is an upper bound

for the dual-processor on-line scheduling problem.

Proof. We show that there exists a worst-case sequence of task requests such that
no on-line scheduling algorithms may acquire a value more than 1/2 that obtained
by a clairvoyant algorithm.

We use a player-adversary model with the player as an on-line scheduling algo-
rithm. The adversary uses a task sequence pattern, P, to force the player to stop

the “game” within a limited time and to get a performance ratio no higher than
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(1/2+8) compared to a clairvoyant algorithm, where § can be arbitrarily small. The
adversary’s strategy is described as follows.
The adversary uses two types of tasks: 7-tasks and unit-tasks with identical value

density, represented by
(arrival-time, computation-time, deadline)

as follows:

T-tasks : Iy =(t, 7, t+7),

and

unit-tasks : T} =(¢,1,t + 1),

where ¢ is time. Both task types have zero laxity. Hence, the player is forced to make
a decision immediately whenever a task arrives.

At time 0, the adversary first posts two unit-tasks and two r-tasks. The player

has six choices:
@, {r}, {1}, {r, 7}, {n 1}, {1, 1},

where {r,1} represents the assignment of a 7-task and a unit-task to the two pro-
cessors and P represents an empty set. If the player chooses one from the first five
choices, the adversary stops posting new tasks, and the performance ratio can be
easily checked to be less than or equal to (1/2 + §) where § goes to zero as T goes to
zero.

If the player chooses the last choice, the “game” continues. The adversary will
post more pairs of 7-tasks in the time segment of [r,1 — 7]. The “game” will stop
whenever the player makes a switch from a unit-task to a r-task, and the ratio will
be less than or equal to (1/2 + §) when T goes to zero.

At time (1—7), if the “game” is not stopped, which means that the two processors
execute the two unit-tasks, the adversary posts two more unit-tasks and then stops

posting more tasks afterwards. This time, the player has three choices: not switching,
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switching one, and switching two tasks. In any of the three choices, the player obtains
a total value of 2, but a clairvoyant algorithm obtains a total value (4 — 27) from all
T-tasks and two unit-tasks. The ratio is equal to (1/2 + §) as T goes to zero.

Therefore, there is no chance for the player to obtain a performance ratio higher
than 1/2.

Next, we show that 1/2 is tight for tasks without laxity by presenting a particular
dual-processor on-line scheduling algorithm to reach the 1/2 bound.

We need some notation first. Whenever the system is not idle, one of the two
processors is arbitrarily designated the “primary processor”(PP), and the other is
designated the “secondary processor”(SP). A task running on PP is guaranteed to
complete and will be called a primary task, denoted as Tp,. T, starts at time ¢,,
and is expected to complete at time ¢;,. A task running on SP is not guaranteed to
complete and will be called a secondary task, denoted as T,. T, starts at time ¢,,

and is expected to complete at time ty,. Let Tpers denote a newly arrived task.

Lemma 3.8: If tasks have the same value density and zero laxity, then 1/2 is

tight for dual-processors.

Proof. We show that, under the conditions that all tasks have the same value density
and zero laxity, there is a dual-processor on-line scheduling algorithm that achieves
the 1/2 bound.

In fact, the following algorithm is such an example. We simply call it DPS
(Dual-Processor Scheduling).

1.1 If a new task T,..¢ arrives and both processors are idle, assign Ti..: to an
arbitrary processor which becomes PP and the other processor becomes SP.
Accordingly, the task becomes primary task Ty, and will be served in [¢,,, ty,).

Furthermore, set both ¢,, and iy, to the current time, ¢.

L.
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1.2 During the period of [t,P, ts,), if a new task Ti.o¢ arrives, then assign Theoe to
SP if dpeze > ty, and discard Tpeze otherwise.

1.3 At time ¢4, T, is completes on PP. If SP is busy, switch the roles of PP and
SP.

We notice that, when PP works on a primary task, SP is treated as a helper, or
an assistant to PP. During the period of the execution of the primary task, SP always
executes the task with the latest deadline, so PP never worrys about a large task
that will be lost. Therefore, at the time the primary task completes, algorithm DPS
guarantees that (a) all tasks rejected in the period of [t,,, ts,) have their deadlines
less than or equal to ty,, which is the finish time of the secondary task; (b) both
the primary task and the secondary task will be completed in the period of [¢,,, ¢;,)
because SP changes to PP at time t;,. Hence, DPS obtains at least 1/2 of the value
obtained by a clairvoyant algorithm in the period of (t,,, ¢4,). The above argument
can be used repeatedly. If all tasks in the system are projected on a time axis, and
all tasks completed by DPS are projected on another time axis, these two projections
will be identical. A more rigorous mathematical induction on the number of tasks
can be easily applied here.

Therefore, under the conditions of identical value density and zero laxity, 1/2 is
tight, since it is both an upper bound and achievable. a

Combining the above two lemmas, we prove the following theorem:

Theorem 3.3: If all tasks have the same value density, then the upper bound

of the dual processor on-line scheduling problem is 1/2.

Compared to uniprocessor on-line scheduling, dual-processor on-line scheduling
has a higher performance bound 1/2, which is a 200% improvement over the bound
for uniprocessor on-line scheduling. The reason is that two processors can cooperate

with each other to guarantee that at least one processor does some productive work
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compared to a clairvoyant algorithm. For the designers of real-time systems, this
will be an important reason to choose a dual-processor based system instead of a
uniprocessor based system.

There are a number of important extensions which are still open, such as, on-line
scheduling for three or more processors and on-line scheduling for dual-processor with
tasks having arbitrary value densities.

3.7 Conclusions

In this chapter we have discussed the upper bound for any on-line scheduling algo-
rithm in a real-time environment, in which the overload must be handled quickly
and effectively. If all tasks have the same value density, the upper bound for the
uniprocessor on-line scheduling problem is 1/4. If tasks have different value densities
and the ratio between the highest and the smallest value density is v, the upper
bound for the uniprocessor on-line scheduling problem is 1/(y + 1 + 2,/7). We have
also presented the on-line scheduling algorithms, T'D; and T'Dj, to reach these two
upper bounds respectively. T'D, and T D, use a simple threshold rule to make on-line
decisions during the system overload periods. They can be easily implemented and
further optimized. The upper bound is doubled from 1/4 in uniprocessors to 1/2
in dual-processors, which means that, in the worst case, the value obtained from
a dual-processor system is twice the value obtained from two separate uniprocessor
systems. For the designers of real-time systems, this will be an important reason to

choose a dual-processor system instead of a uniprocessor system.

L
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CHAPTER 4

BOUND ANALYSIS OF HEURISTIC ALGORITHMS FOR
TASKS WITH RESOURCE REQUIREMENTS

4.1 Introduction

From the last chapter, we have known that a best on-line scheduling algorithm can
only complete the 25% of the work completed by an optimal algorithm in the worst
case, assuming tasks have the same value density and the system has only one pro-
cessor. The performance can be much lower if tasks are not preemptable and they
have additional resource requirements. In this chapter, we focus a different issue
and we consider guarantee-oriented multiprocessor scheduling algorithms for tasks
with additional resources. A guarantee-oriented algorithm generates a new feasible
schedule whenever there is a task arrives. To determine feasibility for a set of tasks
is a difficult problem and it has been shown to be NP-complete [32, 37] even for
much simpler models. There are two ways to deal with the problem. One uses an
exhaustive enumeration algorithm, such as branch and bound or dynamic program-
ming. The other uses heuristic algorithms. Due to their large execution overheads,
exhaustive enumeration algorithms are not applicable in dynamic situations. Hence,
it is an important research issue to find good heuristic algorithms.

Two important performance aspects must be considered to evaluate a heuristic
scheduling algorithm for hard real-time tasks. The first is the ability of an algorithm
to generate a feasible schedule. This ability is commonly characterized by the mean
behavior of the algorithm, which can be measured either by a probability model or

by a simulation study. For simple systems, the probability model works well. For

69
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complex systems, simulation is commonly used. In this chapter, we use simulation to
measure the ability of a scheduling algorithm to find a feasible schedule. The metric
used is mean success ratio (SR) defined in the following way. Given N task sets
which are generated according to certain distributions where each task set is known
to have at least one feasible schedule, let N4 be the total number of task sets for

which algorithm A finds feasible schedules. Then

N4
SR = N

The second aspect is the quality of the feasible schedules generated by an algorithm.
Quality may refer to either the mean behavior or the worst case behavior of the
algorithm, where behavior is characterized by metrics such as schedule length and
earliness (the time interval between a task’s completion time and its deadline). In
this chapter, we deal with the worst case behavior and use the schedule length metric.
Schedule length is an important characteristic of a schedule for tasks in a real-time

system for the following reasons:

o For real-time task scheduling, if one algorithm generates a shorter schedule
than another algorithm, it means that, in general, the first algorithm can more

easily accommodate tasks with shorter deadlines than the second algorithm.

o If the schedule length is shorter, it is a more efficient schedule and it is likely
that there is more execution time remaining at the end of the schedule which
can be used for executing other tasks, such as diagnostic tasks, or handling

future tasks, in the case of dynamic arrivals.

We define a schedule length bound of one algorithm relative to an optimal algorithm
in the following way. Let = be any instance of task sets tc be scheduled, L 4(z) be the
schedule length of a scheduling algorithm A for instance z, and Lo(z) be the schedule
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length of an optimal scheduling algorithm® O for z. If there exists a constant B, such
that
La(=)

247 <
To(z) = B, for all =z,

then B is called the bound for algorithm A. B is tight if it can be reached asymp-
totically. We simply use %g < B to represent the above inequality if there is no
ambiguity.

The remainder of this chapter is organized as follows. Section 4.2 describes our
problem, task model, terminology, and assumptions. Two known scheduling ap-
proaches, list scheduling and the H scheduling algorithm, are discussed in Section
4.3. In Section 4.4, we present the heuristic algorithm, H}, and analyze its schedule
length bounds for both uniform tasks, i.e., tasks with the same computation time
and non-uniform tasks, i.e., tasks with the arbitrary computation times. In Section
4.5, H,, which is a special case of Hy, is compared via simulation studies with the
two known algorithms: the H scheduling algorithm and list scheduling, with respect
to the ability to find feasible schedules. The practical insights gained by the analysis

are discussed in Section 4.6. We summarize the chapter in Section 4.7.

4.2 Task and Resource Models

The scheduling problem is to assign a set of real-time tasks to processors and addi-
tional resources, such that, all tasks meet their resource requirements and timing re-
quirements. More formally, the problem is characterized by a processor-resource-task
model given by {P,, P,, ..., Pn}, {R1, R, ..., R.}, and {1}, T3, ..., T}

{P., Ps, ..., Pp} is a set of m identical processors in a homogeneous multiprocessor
system. Each processor is capable of executing any task.

{R:1, Rz, ..., R} is a set of r resources such as data structures and buffers. In

general, resources are discrete and each resource may have multiple instances. To

1The optimal algorithm produces feasible schedules with the minimum schedule length.
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make the analysis easier, we assume that resources are continuous and renewable. A
resource is continuous if a task can request any portion of it. A resource is renewable
if its total amount is always fixed and the resources are not consumed by the tasks.
Resources can be used by tasks in two different modes: when in skared mode, several
tasks can use the resource simultaneously; when in ezclusive mode, only one task can
use it at a time.

{11, T3, ...,Tn} is a set of n tasks. Task T; is characterized by the following:
e ¢; — its worst case computation time,
e d; — its deadline,

o 7; = (r,7,...,7») — its resource requirement vector. Each r; has two com-
ponents: resource usage information and the amount requested. The resource
usage information has one of three values: not used, shared use, and ezclusive

use. Besides these resource requirements, each task requires one processor.

We assume tasks are aperiodic, independent, nonpreemptable, and ready to start
execution at the time of invocation of the scheduling algorithm. We also assume that
the resources requested by a task are used throughout the task’s execution time. If
all tasks have the same computation time, we call them uniform tasks, otherwise they
are non-uniform tasks.

With respect to schedule length, the above scheduling problem can be represented
as Plres--:,d;|Cmaez, by using the notation defined in [37], where P denotes that
processors are identical and the number of processors is a free parameter, res---
denotes that the number of résources, the resource sizes, and resource requirements
are free parameters, d; denotes that the task deadline is a free parameter, and Crnoz
denotes that the performance criterion is to minimize the maximum completion time.

In general, scheduling tasks with these characteristics is a hard problem. If there

are three processors, one resource, and a set of tasks with the same computation time
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and deadline, it is NP-complete to find a feasible schedule [34] and it is NP-hard
to find a minimum length feasible schedule [16]. Hence, only heuristic scheduling

algorithms are considered here.

4.3 List Scheduling and the H Scheduling
Algorithm

A very common heuristic algorithm used to determine feasible non-preemptive sched-
ules on multiprocessors is list scheduling [25, 37]. In list scheduling, every task has
a priority defined in some way (e.g., it can be based on deadline, value, resource
needs, or some weighted formula that combines several or all these features). In list
scheduling, tasks are arranged in some order on a list and when a processor is idle,
the list is scanned from the beginning to the end, the first task which does not vio-
late resource constraints is assigned to a free processor. We show later that while list
scheduling has a good worst case bound on schedule length, it does not have good
average case performance, because moving a low priority task up in the schedule
when higher priority tasks are blocked by resource constraints may sometimes cause
more important tasks to miss their deadlines.

Recently, another approach for determining feasible non-preemptive schedules on
multiprocessors has been developed [70, 91]. This algorithm, called the H scheduling

algorithm in this chapter, defines the priority of a task as
MT)=d; + W - b; (4.1)

where W(> 0) is the weight and J; is the earliest time at which task T} can be serviced
with respect to the current partial schedule, (i.e., at b; all the resources needed by
T; are available). (How to choose W is discussed in [70].) The smaller the value of
h(T;), the higher its priority. The sophistication of this priority calculation is greater
than is typically found in list scheduling (although nothing prevents a list scheduling
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algorithm from using the same definition of priority). However, it is important to
note that the H scheduling algorithm is not list scheduling, because given the priority
calculation, the H scheduling algorithm simply selects the highest priority task to
execute next. It does not, as list scheduling does, try to be greedy about the usage
of processor resources by searching the entire remaining list of tasks to be scheduled
to determine if any of them can be moved up and start to run in an earlier time
slot. Hence, the H scheduling algorithm focuses on maintaining the priority order
rather than being greedy about the usage of processor resources. This results in good

average case performance with respect to meeting deadlines but a poor worst case

schedule length bound.

Example 4.1: We consider the H scheduling algorithm reported in [91]. H uses
the heuristic function (4.1) to assign priorities to tasks. Let W = 6. Whenever
a task is added to the current partial schedule, H; re-computes the priority of
all remaining tasks because their b;s may change. Here we assume that the
algorithm does not backtrack, and we only consider the worst case behavior of H
with respect to schedule length.

Assume there are two processors, three tasks, and one resource which is used
only in exclusive mode. A task can request use of a fraction of the resource. The

task parameters are listed in Table 4.1.

Table 4.1 Task parameters for Example 4.1

task T1 Tz T3
computation time | 9 | 10 | 1

resource request | 0.5 { 0.5 | 1.0
deadline 9 |74 |11

H starts with an empty partial schedule. It computes the tasks’ priority:
h(Ty) = 9,h(Ty) = 74,h(T3) = 11, because b; = 0,1 < i < 3. So T is the
highest priority task and it is added to the (empty) partial schedule. Then H

£

g
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re-computes the priority for each remaining task: h(T2) = 74, h(T3) = 65, be-
cause b, = 0 and b3 = 9. Hence, T; is the next task added to the current partial
schedule. Now T3 is the only unscheduled task and is appended to the current
partial schedule. Thus, H; generates a schedule in the order

(T1, T5, T3)

in which the three tasks are executed sequentially. The optimal schedule however

has the following order

(11, T2, T3),

i.e., the first two tasks run in parallel. Thus, the schedule length ratio for this
example is 20/11. While this example produces a ratio of 20/11, in the worst
case, the schedule length bound for H is m (the number of processors) (89].

To further clarify the difference between the H scheduling algorithm and list
scheduling, we consider a particular list scheduling algorithm which uses the same
priority assignment as the one used in H,;. For the above task set, the first task
scheduled by list scheduling is T}, because it is the highest priority task among
all tasks which can start at time zero. Then, because one processor is still idle at
time zero, list scheduling tries to find a task that can start at time zero (this is
the main difference between the H scheduling algorithm and list scheduling). It
re-computes the priorities of the remaining two tasks. Although T} has the higher
priority, only T, can start at time zero and so list scheduling chooses T;. Finally,
T; is scheduled. Hence, in this example, the final feasible schedule is the same
as the optimal schedule mentioned above. In the worst case, the schedule length
bound for list scheduling is the minimum of (m + 1)/2 and r + 2 — (2r + 1)/m

(32], where m is the number of processors and r is the number of resources.
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In principle, given a heuristic function and a task set, the task priority list depends
on the tasks’ deadlines and resource needs. In performing a worst case analysis, a
particular priority ordering can be produced to generate a particularly bad situation
by adjusting the deadlines. In the rest of the chapter, we do not explicitly specify
deadlines, since we know that theoretically a feasible deadline assignment exists that
18 consistent with any given priority ordering.

In this chapter we develop a variation of the H algorithm called H; which com-
bines features of both the H algorithm and list scheduling, such that, it performs
well in finding feasible schedules and has a good schedule length bound.

4.4 A Generalized Heuristic Algorithm and
Its Schedule Length Bound

We consider a generalized heuristic scheduling algorithm in this section. This algo-
rithm is called Hj, where 2 < k < m. It combines features from both list scheduling
and the H scheduling algorithm. First, the H; algorithm is presented, then its sched-
ule length bounds are derived for both uniform tasks and non-uniform tasks.

4.4.1 Hj Scheduling Algorithm

H}, uses the same priority list as the H scheduling algorithm (H,), which means that
it uses the same heuristic function as in Equation (4.1), but tries to be greedy to a
certain degree with respect to processor usage, just like list scheduling. Hence, H;
schedules by priority while attempting to keep at least k processors busy whenever
possible. If it is not possible to keep k processors busy, then it will keep as many
processors busy as possible.

The H,, algorithm maintains a variable called ¢., which divides a partial schedule
into two portions: one portion is before t., and the other is after t.,. The first

portion satisfies the property that, in each sub-interval of this portion, either at least
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k processors are busy or less than k processors are busy; for those intervals where
there are less than k processors busy there will be a resource conflict if another task is
added. Formally, ., is set to the maximum possible value that satisfies the following:
In any sub-interval [z, y] of [0, ¢.,), (1) at least k processors are busy, or (2) less than
k processors are busy, but no other tasks can be scheduled in [z, y] because of resource
conflicts. Only in case (1) can a new task be added to the partial schedule which
completes before ¢.,. Therefore, the H}, algorithm simply applies the highest priority
first rule to schedule a task which can fit into the partial schedule before ¢.,. The
pseudo code of the H; scheduling algorithm is presented in Figure 4.1.

Let n be the number of tasks, r be the number of resources, and m be the number
of processors. The time complexity of Hj is O(n*+'r), where 2 < k < m, because,
if all processors are idle at ¢.,, the algorithm may need to find up to k tasks from
Sz which defined in Figure 4.1. This will require examination of up to ¢, C:_,
subsets?, where k is bounded by m. Each task can request up to r resource types
and their availability has to be considered in constructing the schedule. So the time
complexity is O(n*r). The algorithm may loop n times. This leads to an O(n**!r)
complexity. However, the time complexity of H, is O(n?r): At time t.,, either all
processors are idle or there is only one processor busy (by the definition of ¢.,). If
all processors are idle, the if-condition (all processors are idle at ¢, and k = 2) is
satisfied and one task will be selected. If there is only one processor busy, &' =
and only one task will be selected. So the complexity for each round is O(nr). The

algorithm may loop n times, so the complexity of H, is O(n?r).

Example 4.2: Let us consider H; and H; and show how they differ. Assume

that there are three processors, two resources, which are used only in exclusive

2
i!

17 (m=i)tit

which is the total number of combinations of n objects taken at i at a time. The complexity of

Ci-1is O(n*).

Ca-
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Initialize current partial schedule to null;
Consider all tasks unscheduled;
While (more tasks remain to be scheduled) do
Compute tasks’ priorities by a function H(T;) =d; + W - b;,
where W is an adjustable weight and b; is the earliest time at which task T} can be
serviced (70, 91]; (The lower the value of h, the higher the priority.)
Compute t., for the current partial schedule;

Partition unscheduled tasks into three sets:

Sl = {Tiibi'l‘ciﬁtc.,}:

Sz = {Ti:(bi <te)&(bi +ci>te,)},

Sz = {T, tb; > tc.},
where S is the set of tasks which can complete before t.,; S; is the set of tasks
which can start at or before ¢., but complete after t.,, and S3 is the set of tasks

which can start only after ¢, ; (S and 52 are not empty at the same time by the
definition of ¢, .)

Sort S; and Sa by priority;
If (S, is not empty)

then select a task with the highest priority and add it to the current partial schedule;
Else if (all processors are idle at t., and k == 2)
then add a task with the highest priority in S; to the current partial schedule;
Else

Let k' be the number of processors busy at ¢.,. Select the first subset of tasks of S,
from the following order, such that, all tasks in the subset can start at their earliest
start times, and add the subset to the current partial schedule:

lexicographically ordered (k — k')-subsets (i.e., subsets of size (k — k')) of tasks,

lexicographically ordered (k — &' — 1)-subsets of tasks,

lexicographically ordered 1-subsets of tasks.

(Here the lexicographic order is just the “dictionary” order according to task
priority. Such an order can be generated using the algorithm in [31, Page 31];)

Check the current partial schedule for feasibility;

If (the current partial schedule is not feasible)
then abort the algorithm;

end of while;

Figure 4.1 H, algorithm

£.
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mode, and five tasks. We use the heuristic function (4.1) to determine the priority.

The task parameters are shown in Table 4.2.

Table 4.2 Task parameters for Example 4.2

task T1 Tz T3 T4 Ts
comp. time | 10 |{ 10 | 10 | 20 | 20
request for R; [ 0.2 {0.4/0.4|0.8 /0.2
request for R, | 0.2 (0.4 0.4 (0.2 | 0.8
deadline 10 [ 40 [ 40 | 30 | 35

Let us consider H, first. In the beginning, t., = 0 and S, = {1}, T3, T3, T4, T5 }.
H; schedules T) first because T; has the highest priority among the five tasks.
Then each one of the remaining four tasks can be chosen to run in parallel with
Ty, and H; chooses T4, because it has the highest priority among them. Now
t,, = 10, S; = {Ts}, and S; = {T3,Ts}. H; schedules T; and it starts at 10.
Next, ¢, is 30, because no task can start before 30, and S; = {T3,T3}. So H,
schedules T, first and then it schedules T3, both tasks start at 30. The schedule
length is thus 40 and the final schedule is:

(Tl, T4, Ts, Tz, T3)

The schedule for Hj is simple. Let us consider the different subsets of tasks
in lexicographic ordering — given their priority order: (T, Ty, Ts, T2, T3). We are
seeking the largest subset up to size (k — k). Here k =3 and at ¢, = 0, ¥’ = 0.
T1,T3,T; is this subset. Hj schedules them first and they all start at 0. Then
te; = 10 and S; = {T4, Ts}. So H, schedules T and T; next and they start at 10.
The final schedule length is 30 and the final task order is:

(Tl,Tz,Ta;T4,T5).
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4.4.2 Analysis of the H; Algorithm for Uniform Tasks

The problem of scheduling uniform tasks with additional resources is similar to a
generalized bin packing problem studied in [33]. The difference between two problems
is that the number of “tasks” is unbounded in the bin packing problem, but it is
bounded by m - Lo in the multiprocessor scheduling problem, where m is number of

processors and Lo is the optimal schedule length. Let us look at an example first.

Example 4.3: Let m = 4, k = 3, and » = 4. Let the resources be: R;, R,
Ry, and R4, which are used only in exclusive mode. There are 24 tasks labeled
as follows:

{T.;j:1<i<4,1<j<6}

All tasks request one unit of computation time. For 1 < j <6,
each T ; requests 1/3 of Ry, 2/9 of Ry, 1/6 of R3, and 1/9 of Ry;
each T ; requests 2/9 of Ry, 1/3 of R;, 1/6 of R3, and 1/9 of Ry;
each T ; requests 2/9 of Ry, 2/9 of R,, 1/2 of R3, and 1/9 of Ry;
each Ty ; requests 2/9 of R;, 2/9 of R,, 1/6 of Rg, and 2/3 of Ry.
The deadlines of the tasks are such that Hj schedules the tasks in the following
order:

(T11, T2 T16i To0, T2y ooy T+ o+ 5 Ta1y T2y -+ + 5 Tag)-

In total, the T(1,i’s) take 2 units of time. The same is true of the T,;’s. These
together take 4 units of time. Because there is no other subset of three tasks
left in the remaining unscheduled tasks such that the subset can be scheduled
in parallel, T3 ;’s are scheduled next, 2 tasks in parallel each time. This takes 3
units. Finally, T} ;’s can only be scheduled in sequential order. This takes 6 units.
Thus the length of the schedule generated by the Hj algorithm is 13 time units.

E
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The optimal algorithm uses the following order:

The length of the schedule generated by an optimal scheduling algorithm is 6
time units, since it is able to keep all 4 processors busy all the time. Thus we

have:

This is the worst case schedule length indicated by Theorem 4.1 below.

Before we state and prove Theorem 4.1, certain lemmas are in order.
For any feasible schedule generated by the Hj, algorithm, we define:

B; = {all time intervals with i processors busy} and

I; = the sum of the length of all time intervals in B;,

where 1 < 7 < m. In our bound analysis, we add the length of each I; such that
2= I; reaches the maximum. The bound will depend on m, k and . We assume
that there are enough non-processor resources to construct a worst-case situation,
because it gives us the maximum schedule length bound. The analysis for other

cases is reported in [89).

Lemma 4.1: Under the uniform task model, any feasible schedule generated by
the H, algorithm has the following property:
J' .
3 ‘<o
=1 J

where 7 < k.

Proof: Assume that all tasks have unit computation time. Examining the number
of tasks in B, B,, - -+, B;, where 2 < j < k, we have E;Lli -I;<j-Lo.
Suppose this is not true. Then in the sets By, B,, ---, B;, the number of tasks

is more than j - Lo. Apply the pigeonkole principle, which says, for J Lo +1 balls
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and Lo boxes, there must exist one box with j + 1 or more balls. This means that
there must exist a subset of tasks with j + 1 or more tasks which can be executed in
parallel without any resource conflict. From the pseudo code for the Hj algorithm
we see that it would have scheduled the subset in one of the time interval sets B;,,,
Bjt2, +++, Bm and not in By, By, ---, B;. Therefore, this subset of tasks would not be
in the sets By, B,, -+, B;. This is a contradiction.

The lemma is derived by dividing both sides of the above inequality by 7. O

Using the above result, the following lemma can be derived, which gives us a

bound for H,.

Lemma 4.2: For uniform tasks,

LH,, E 1

=27

where m is the number of processors and 2 < k < m.

Note that for k = 2, the above bound is (m + 1)/2.

Proof: Partition any schedule of H into By, Ba, -+, Bm, and use I, I, --+, I, to
represent their lengths as defined before. We have

k-1 m k-1
Zi-I;-}-k'z};’ < Zz I+Zz - I; <Ez - I;
=1 i=k i=k =1

= ZciSm'Lo

i=1
where n is the number of tasks, ¢; is the computation time of task T, which is same

for all tasks. Noticing that Y7, I; = Lg, — Y%} I;, we have

=1
k-1 m k-1 k-1
(Zi°[i)+k'2I; = (Zi-Ii)-l-k(LH.—ZI,')
i=1 i=k =1 i=1
_<_ m- La.

E

E
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Rewriting the above inequality:

k-1
k-Lg, < m-Lo-I-Z(k—i)-I;.
i=1

We first analyze the term Y %=)1(k —4) - Ii:

=1

E(k—i)-I‘- = Z’ k- (-——

=1 =1
Since

G-9 = i

j=§j'(j+1),

k—1k-1

SikG-bE =Ty 'JH)

i=1 i=1 J—s

-1 J

S ) D

g B (J + 1)
k-1 k

- j—1j+1 Z;(J
!k
E— Lo, by lemma 4.1.

i=1

IA

So,

By rewriting the above inequality and cha.ngmg the index bound, the lemma is de-

rived. o

To show that the above bound is tight, we need the following lemma.

Lemma 4.3: For the Hj scheduling algorithm, there exists a case where, with
uniform tasks, the schedule length bound of

m &1
kga

can be reached. m is the number of processors, and 2 < k < m.
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Proof: For any given m, we can construct a case such that the bound is
reached. Consider a set of (d * m) tasks and m additional resources, where
d =LCM(2,3,---,k), (LCM() is the least common multiple function). The tasks

are

and the m resources are

Rl;Rh"'1Rvn1

which are used only in exclusive mode. Let

1 11
’”.’E’k—l’” 15;571_5}'

a4 =

1
{0'1)0'2’"'3a'k1ak+11"'safn} = {E’

Each T;; requests a; of R; and the remaining R; is uniformly divided among T} ;,
where 1 <!<m,l#i,and 1 <j<d.
Suppose the task deadlines are set®, such that, H} generates a feasible schedule

and selects the tasks in the following order:

(11,1, T12, -+, 11,05 T2, T2y T2y -+ s Tm1s Tmg2s *  +» Trmyd)- (4.2)
The optimal algorithm gives the following schedule:

(Tl.l, Ta,0 0 Tt Tl.z, T2y Tmzs o 3 Thay Tapay oo Tm.d)- (4-3)

Let us compute the schedule length for H; and the optimal algorithm. Let list (4.2)
be divided evenly into m segments of d tasks each. Each of the first (m — k + 1)
segments of tasks is scheduled by Hj, keeping k processors busy. The schedule length
for these segments is (m — k + 1) * d/k. The i-th segment of the remaining (k — 1)

3See the penultimate paragraph in Section 4.2.

£
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segments is scheduled by H; with a length of d/(k — ?) by keeping (k — Z) processors
busy. Hence the length of the schedule formed by the H) algorithm is:

_(m-k+1)-d d _d . d_d
La = P tratE2 Tttt

If list (4.3) is divided evenly into d segments of m tasks each, then each segment can
fit in one time unit and the length of the schedule generated by the optimal algorithm

is Lo = d. So the bound is reached, because

Lg, m—-k+1 1 1 1
Io = k TE-itr—zttatl
k
m 1
= —+E <.
k j=27

By combining lemmas 4.2 and 4.3, we have the following theorem.

Theorem 4.1: If all tasks have the same computation time, then the tight
bound for H} is

m k1
I+Z—.,

j=2J
where m is the number of processors and 2 < k < m.
For any given m, the above theorem gives us a sequence of bounds for different
values of k. So, if a scheduler is willing to spend more time, a better bound can be

guaranteed. In one extreme, let k = m. H,, has a bound of:

Zl.z]nm+7

j=1

where ¥ = 0.57721 ... is Euler’s constant.

4.4.3 Analysis of the H; Algorithm for Non-Uniform Tasks

Lemma 4.4: For non-uniform tasks,

LH" m+1
<
Lo — 2

where m is the number of processors and 2 < k < m.
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Proof: For the schedule generated by Hp, let B; and I; be as defined in the previous
subsection. Because I; accounts for one processor being busy and the remaining I;

account for at least two processors being busy,

L+2 )Y L £ Y a

=2 =1

The schedule length of Hy is Lg,. So 37, [; = Lg, — I,. Using an argument similar

to the one used in the proof of lemma 4.1, it can be shown that I; < Lo. Since,

1d

w16 <m- Lo,
n
L+2-(Lg,—-h) £ Y <m-Lo.
=1

Rewriting the above inequality:

2-Lg, -1,

IN

m-Lo,

2. Lg, - Lo

IN

m'LO:

2-LH,‘ (m-l-l)-Lo,
LH,‘ m+1
Lo 2

IA

IN

a

Lemma 4.5: For the H; scheduling algorithm, there exists a case where, with
non-uniform tasks, the schedule length bound of ™. can be reached. m is the

number of processors, and 2 < k < m.

Proof: For any given m, we can construct a case such that the bound is reached.

Let the tasks be
{T:,T:1<i<m-1}JU{T"}U{T/:1<i<m-1,1<j<k-2}

and the resources be
{Rla Rz, ceey Rm})

which are used only in exclusive mode. Further let C be a constant. Each T; and T

has the same computation time C and requests 1/2 of R; and ¢ of all other resources,

E_
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where 1 < i < m — 1. T" has a computation time of 2C and needs 2/3 of R, and
€ of all other resources. Each T,-j has cf = ¢, and requests e of every resource except
R;, where 1 <i<m —1,1<j < k-2 These small tasks are used for running in
parallel with two large tasks in the schedule generated by the Hj algorithm to keep
k processors busy. .

Suppose the task deadlines are set?, such that, H) generates a feasible schedule

and selects the tasks in the following order:
(Th T]t; Tlly lei ey le_zr Tzr TZ') T;: T;r X3 Tz —2)

vy Ty Ty, T, T2 Tk=2 7).

m-1'"m-1?"m-12 "1 *m-12

The optimal algorithm selects tasks from in the following order:
(T, 11, T2y ooy Tt Ty Tgy ooy Ty, T, T2, ..., TH2,

Ty, T3, T2, T, T2, ..., TR,

Pyt myCmo

In the optimal schedule, all T; tasks are scheduled to run in parallel and all T}
tasks are also scheduled to execute in parallel; both are scheduled to run in parallel
with T”. All the remaining tasks can be scheduled within a time interval (m—-1)-e
Thus the schedule length for the optimal schedule is Lo =2.-C +(m —1)-e. In
the schedule generated by the H; algorithm, the two large tasks, T; and T/, are
scheduled to execute in parallel with (k — 2) small tasks, T/, where 1 < j < k — 2
and 1 <i <m—1. Then T" follows because it is blocked by every pair of T; and 7.
So its schedule length is Lg, = (m -1)-C +2-C.

We have
Lg, _(m—l)-C+2-C_’m+1
Lo  2-C+(m-1)-¢ 2

,ase— 0. 0

Lemmas 4.4 and 4.5 lead to the following theorem.

4See the penultimate paragraph in Section 4.2.
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Theorem 4.2: If tasks have arbitrary computation times, then the tight bound

for Hy is (m + 1)/2, where m is the number of processors and 2 < k < m.

4.5 Comparing H;, H and List Scheduling
with respect to Success Ratio

The time complexity of Hj is relatively high when & > 2. Only H, has a time
complexity comparable to the H scheduling algorithm and list scheduling (both are
O(n?r), where n is the number of tasks and r is the number of resources). Also,
for non-uniform tasks, the schedule length bound does not improve when k& > 2.
Therefore, we mainly focus on H, in this section. In particular, we use simulation
to evaluate the performance given by the success ratios of the three algorithms: Hj,
the H scheduling algorithm and list scheduling, where the H scheduling algorithm is
based on [70] and the list scheduling algorithm applies the earliest deadline first rule
to construct its priority list. Clearly, what we are striving for is a scheduling algorithm
that is able to find a feasible schedule for a set of tasks, if such a schedule exists.
Obviously, a heuristic algorithm cannot be guaranteed to achieve this. However, one
heuristic algorithm can be considered better than another, if given a number of task
sets for which feasible schedules exist, the former is able to find feasible schedules for
more task sets than the latter. This is the basis for our simulation study. Ideally, we
would like to come up with a number of task sets, each of which is known to have
a feasible schedule. Unfortunately, given an arbitrary task set, only an exhaustive
search can reveal whether the tasks in this task set can be feasibly scheduled.
Therefore we take a different approach in our study here. We use the task genera-
tor which is used in [70], which can generate schedulable task sets where the number
of tasks in a task set can be very large. Also the tasks are generated to guarantee
the (almost) total utilization of the processors. The schedule generated by the task

generator is used only for the purpose of generating a feasible set of tasks which
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is then input to the scheduling algorithm, i.e., the scheduling algorithms have no
knowledge of the schedule itself but are only given the tasks and their requirements.

The following are the parameters used to generate the task set:

Probability that a task uses a resource, Use_P.

Probability that a task uses a resource in shared mode, Share_P.

- The minimum computation time of tasks, Min_C.

The maximum computation time of tasks, Max_C.

)

The schedule length, L, which controls the length of a simulation.

The schedule generated by this task set generator is in the form of a matrix which
has m + r columns and L rows. The first m columns represent m processors. The
remaining columns represent » resource types with one instance for each resource
type. Each row represents a time unit. The task set generator starts with an empty
matrix, then generates a task by selecting one of the m processors with the earliest
available time and then requests the » resources according to the probabilities speci-
fied in the generation parameters. The generated task’s processing time is randomly
chosen using a uniform distribution between the minimum processing time and the
maximum processing time. The task set generator marks on the matrix that the pro-
cessor and resources required by the task are used for a number of time units equal to
the task’s computation time starting from the aforementioned earliest available time
of the processor. The task set generator generates tasks until the remaining unused
time units of each processor, up to L, is smaller than the minimum processing time of
a task, which means that no more tasks can be generated to use the processors. Then,
the largest finish time of a generated task becomes the task set’s shortest completion
time, SC. As a result, we generate tasks according to a very tight schedule without
leaving any usable time units on the m processors between 0 and SC. However, there

may be some empty time units in the r resources. So the generated matrix can be
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approximated to be the schedule generated by an optimal scheduling algorithm with
respect to the feasibility and the schedule length.

So far we have discussed how task resource requirements and computation times
are determined. The issue of choosing task deadlines without any bias is addressed
now. In order to exercise the scheduling algorithms in scenarios that have different
levels of scheduling difficulty, we choose the deadline of a task in the task set randomly
between (1 + R) - f; and (1 + R) - SC, where f; is the task’s completion time in the
above matrix and R (the Relaxation Factor) is a simulation parameter indicating
the tightness of the deadlines. As we increase the value of R, it is not difficult to
see that the scheduler has a better and better chance to guarantee a task set. The
simulation program uses 10 seeds to generate task sets. The number of processors is
5 and the number of other types of resources is 12. There is one instance for each
type of resource. A task’s computation time is randomly chosen between Min_C (10)
and Max_C (40). There are two parameters to control task’s resource requests. One
is resource use probability, Use_P, which may vary from 0.1 to 0.7. The other is
shared probability, Shared_P, set to 0.5. There are about 40 tasks in each task set.
Our requirement on the statistical data is to generate 95% confidence intervals for
the success ratio whose half width is less than 6% of the point estimate of the success
ratio.

Figure 4.2 shows the effect of R on the success ratio. The performance of the H
scheduling algorithm and H, is much better than the performance of list scheduling,
e.g., at R = 0.2 and Use.P = 0.3, SR increases from 57.6% for list scheduling to
about 80.1% for the H scheduling algorithm and Hj, and at R = 0.2 and Use_P = 0.7,
SR increases from 24.8% for list scheduling to 57.3% for the H scheduling algorithm
and H,. Figure 4.3 shows the effect of resource contention by changing the probabil-
ity of task’s resource request. Again, the performance of the H scheduling algorithm

and H, are close and far better than the performance of list scheduling, e.g., when



0

SR

SR

100 —
90 -
80 L
70 -
60 -
50
I
ol /), H (Use_P=0.3)
0= = =0 H_2 (Use_P=0.3)
30 Awmm - H (Use_P=0.7)
O=——0 H_2 (Use_P=0.7)
20 e == List (Use_P=0.3)
T Li P=0.
10 = List (Use_P=0.7)
0 { | | |
00 01 02 03 04 05 06 07
R
Figure 4.2 Effect of R on three algorithms
100 A——A H

a0

70

FHcepu=5

50 - #resource = 12
Share_P = 0.5

40 - W=6
R=0.2

30

20

10 |~

0 ] L |
0.1 0.3 0.5 0.7

Use_P

Figure 4.3 Effect of resource contention on SR

91



92

Use_P = 0.5, SR increases from 30.0% for list scheduling to 63.0% for the H schedul-
ing algorithm and H,. In both figures, the differences between the H scheduling
algorithm and H, are within the 6% of confidence interval. These show that whereas
the H, algorithm has performance close to the H scheduling algorithm, it is much
better than the deadline-driven list scheduling algorithm.

4.6 Insights Gained from the Analysis

An initial goal of this work was to analyze the performance characteristics of the A
scheduling algorithm, especially its schedule length bound. The fact that this anal-
ysis led us to other algorithms, namely H; and then H,, indicates that a number of
practical alternatives to the H scheduling algorithm were discovered primarily be-
cause we undertook the analysis. In this section we consolidate the practical insights
gained from the analysis work.

Analysis showed that in the worst case, the length of the schedules produced by
the H scheduling algorithm will be m times of the length of an optimal schedule [89],
although on the average, the H scheduling algorithm is highly successful in finding
feasible schedules [89, 91]. On the other hand, list scheduling has a much better worst
case schedule length bound, almost half of the worst case schedule length bound of
the H scheduling algorithm. But list scheduling is not as successful in finding feasible
schedules.

The two algorithms differ mainly in the task selections during the scheduling
process. A task’s h() value consolidates the task’s deadline, and resource requirement
information. The H scheduling algorithm selects a task with the minimum A() value
among all unscheduled tasks, while list scheduling selects a task with the minimum
h() value among the unscheduled tasks which have the same earliest start time.
Thus, in list scheduling the task’s deadline is only a secondary factor. H; uses a task

selection procedure that has elements from both the H scheduling algorithm and list
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scheduling. It selects a task to keep at least two processors busy whenever possible,
otherwise its behavior is similar to the H scheduling algorithm. This change was
motivated by the the fact that, in general, list scheduling keeps more processors busy
at a given time than the H scheduling algorithm. This selection procedure of H,
helps produce a better worst-case schedule length bound for H; compared to the H
scheduling algorithm. At the same time, it has almost the same success as the H
scheduling algorithm in finding feasible schedules.

Can the bound of H; be reduced further by increasing the (polynomial time)
complexity of the scheduling algorithm? The development of H, was motivated by
this question. Hj is a generalized version of H, which keeps at least k processors busy
whenever possible. It turns out that the added time complexity of H; does not help
to reduce the bound ((m +1)/2). The reason is that, in the worst case, there may be
some tasks with very small computation times which contribute significantly to the
number of tasks running in parallel at scheduling decision points, but they do not
contribute much to the schedule length. If the ratio between the shortest task and
the longest task in a task set is closer to 1, it is likely that the bound of H; will be
smaller than (m+1)/2. In the extreme case, the ratio is one, which corresponds to the
uniform task model. The bound of Hj, then reduces from (m+1)/2 to m/ k+2§=2 1/7
as stated in Theorem 4.1. In practice, it is also very important to choose a proper k
to balance the time overhead, which increases with %, and the achieved bound.

One topic for future research is the characterization of the worst-case task charac-

teristics that produce the above bounds. This will help avoid the pessimistic bounds.

4.7 Conclusions

In this chapter we discussed the performance of heuristic algorithms for hard real-
time scheduling. Both the ability to generate feasible schedules and the quality of

the generated feasible schedules, expressed in terms of the schedule length bound,
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are important performance criteria. We studied the heuristic scheduling algorithm
H;, which attempts to keep k processors busy if possible. For tasks with the same
computation time, we showed that the bound is T + Z?:z %, where 2 < k< m
and m is the number of processors. For tasks with arbitrary computation times, the
bound is (m + 1)/2, where 2 < k < m. In both cases, the complexity is O(n**+'r)
for 2 < k < m, and O(n?r) for k = 2, where n is the number of tasks and r is the
number of resources. Simulation studies of three algorithms, Hj, the H scheduling
algorithm, and list scheduling, are reported. Results show that the H, algorithm
has almost the same mean behavior in the ability to find feasible schedules as the H

scheduling algorithm, and both are much better than list scheduling.
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CHAPTER 5

PERFORMANCE-RELATED RELIABILITY ANALYSIS
FOR DETERMINING TASKS’ REDUNDANCY LEVELS

5.1 Introduction

In real-time systems, static or dynamic schedulability analysis is used to guarantee
that tasks will meet their time constraints. A task is guaranteed subject to a set
of assumptions, for example, about its worst case execution time and the nature of
faults in the system. If these assumptions hold, once a task is guaranteed it can be
assumed to meet its timing requirements. Thus, the probability of a task’s successful
completion is affected by the probability with which the assumptions hold. In this
chapter, we focus on the fault-tolerance assumptions about the tasks in systems where
decisions are made statically, i.e., at system design time, even though the approach
developed in this chapter can be tailored to apply to systems that perform dynamic
schedulability analysis.

Consider a system with m processors and n tasks. We must decide what level
of redundancy should be assigned to the tasks such that both reliability and per-
formance requirements are met. In particular, suppose a task T; provides a reward
V; if it completes successfully once it is guaranteed, a penalty P; if it fails after be-
ing guaranteed, and a penalty Q; if it is not guaranteed. Let R; be the reliability
of a guaranteed task T; and F; be its failure probability, with R; = 1 — F;. R; is
mainly affected by the rédunda.ncy level for a task T; and the failure model for the

processors. Then, we define a performance index for the system such that it takes
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the tasks’ penalties, rewards, and reliabilities into account. The performance index

PI; for task T; is defined as

Tl - if T; is not guaranteed.

The performance index PI for the task set is defined as

PI=Y PL

i=1
Thus PI accounts for both performance requirements and reliability requirements
of real-time tasks. It provides us a base for achieving a mathematical assessment of
performance-reliability tradeoffs.

Given this definition of performance index, we need to know the reliability for
each scheduled task. Tasks’ reliabilities are affected by faults in both software and
hardware. Many fault-tolerance structures have been developed to tolerate these
two types of faults. For example, task replication and N-modular-redundancy are
commonly used to tolerate hardware faults, and recovery block and N -version pro-
gramming are commonly used to tolerate software faults. The quantitative models
for hardware reliability are well established [21], while the quantitative models for
software reliability are still not fully understood. So we focus on hardware faults
and the related quantitative reliability models. Furthermore, we only consider task
replication as the fault-tolerance approach.

If we increase the redundancy level for T}, we can increase its probability R; of
completing before its deadline, that is, decrease the probability that the task will fail
after being guaranteed. But this will reduce the number of tasks that get guaranteed
in the first place and so will increase the penalties due to task rejection. Thus,
clearly, there are tradeoffs involved between the fault tolerance of the system, the
rewards provi&ed by guaranteed tasks that complete successfully, and the penalties
due to tasks that fail after being guaranteed or that fail to be guaranteed. Therefore,

some way needs to be found that maximizes rewards while minimizing penalties.

b
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We use the term task configuration or configuring tasks to refer to the problem of
determining a task’s redundancy level. Once a task redundancy level is determined,
a task is said to be guaranteed if the given number of replicas of the task are all
scheduled to complete before the task’s deadline. The question we address in this
chapter is the following: What should be the level of redundancy associated with
each task so that the system’s performance, given by PI, is maximized, i.e., how
should a task redundancy level be determined for optimal performance?

The remainder of the chapter is organized as follows. Section 5.2 presents nota-
tions, assumptions, and the system model. We derive the optimal task configuration
strategy for a continuous model in Section 5.3. We discuss how to deal with a dis-
crete model with tasks having different computation times in Section 5.4. In Section
5.5 we discuss the effects of using integer functions to approximate the optimal task
configuration function which is a real valued function. In Section 5.6, we consider the
task configuration strategy with tasks having different reward/penalty parameters.
In Section 5.7, we discuss how to apply the task configuration theory in practice. We

conclude the chapter in Section 5.8.

5.2 System Model and Assumptions

In this section, we present the processor-task model first, followed by a discussion of
task configuration and task scheduling.

Formally, the problem is characterized by a processor-task model given by
{Py, P, ..., Pn} and {Th, T, ..., Tn}.

{P1, P,, ..., Py} is a set of m identical processors in a homogeneous multiprocessor

system’. Each processor is capable of executing any task. Processors may fail during

!The method developed in this chapter could be extended to a distributed system with m identical
processor nodes. The main difficulty dealing with the distributed system is that both communication
bandwidth and communication reliability should be considered as we compute task’s reliability. The
results of this chapter are based on a simpler system model which may provide a base to deal with
the issues related to systems involving communication among nodes.
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a mission and the failed processors are assumed to be fail-stop with failures being
independent. Processors are associated with the reliability function, R(t), and the

failure function F'(t), where ¢ is the time variable and
R(t)=1- F(¢). (5.1)

There are no restrictions on the reliability function. A simple example of the re-
liability function is an exponential function which is widely used to model many

fault-tolerance systems:

R(t)=1—-e,

where A is a constant representing the failure rate.
{T1, T3, ..., To} is a set of n aperiodic tasks to be configured and scheduled on m
processors in a time interval [0, L], where L is the largest deadline of the tasks. Task

T; is characterized by the following:

e e; — its ready time, which is the earliest time the task can start,

¢; — its computation time,

d; — its deadline,

e V; — its reward, if it is serviced successfully,

v; — its reward rate, derived as V;/c;,

o P; — its failure penalty, if it is scheduled and fails because of processor failures,
o p; — its failure penalty rate, derived as P;/c;,

e Q; — its rejection penalty, if it is rejected,

e g; — its rejection penalty rate, derived as Q;/c;.

£
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If task T is accepted, it gets a reward V; if it succeeds, and gets a failure penalty
P; if it fails. If task T is rejected, it gets a rejection penalty Q;. The scheduling
window for task T; is the time interval from its ready time e; to its deadline d;. To
simplify the analysis, we assume that tasks’ scheduling windows are relatively small
compared to L. Further, tasks are assumed to be independent. |

With the above processor-task model, our task configuration strategy assigns a
redundancy level, u;, to task T;, for 1 < i < n. Redundant copies of the same task
are assumed to be scheduled on different processors. So u; is bounded from above by
the number of processors, m, where 1 < 7 < n. A task is considered to have failed
only if all its redundant copies fail.

After the task set is configured, a task scheduling algorithm attempts to generate
a feasible schedule. Let u; be the number of redundant copies of task T; and t-': be its

scheduled finish time vector made up of finish times of each copy of T;:
ﬁ = (fl: fz,---: .fu.')) where fJ 5 di, 1 S] S Ui,

Then its reliability and failure probability are

R =1-F(fi)F(f2)--- F(fu) (5.2)
and
Fi = F(f)F(f2)- - F(fu)- (5.3)

Now we can define the performance indez PI; for task T;. If the task is feasibly
scheduled, i.e., guaranteed, it contributes a reward V; with a probability R; and a
failure penalty P; with a probability F;. Thus, we have

PI; = ViR; - P,F;

= cv;i —ci(vi + p)F. (5.4)
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On the other hand, if T} is rejected, the task contributes a rejection penalty Q;.

In this case, we have
PL; = -Q; = —cig;. (5.5)

Our goal is to maximize the total performance index PI,
PI=) PI. (5.6)
i=1
PI is mainly determined by tasks’ reliabilities and reward/penalty parameters.
Tasks’ reliabilities are determined by their redundancy levels which can be controlled
within the task configuration phase, but we cannot change tasks’ reward/penalty
parameters. We present a simple example to demonstrate the relationship of PI and

task redundancy level.

Example 5.1: Assume there is a multiprocessor with ten processors and there
are ten tasks with their parameters listed in Table 5.1. All scheduled tasks will
finish at time 10. If we assume each processor has a reliability of 0.9, then the
reliability of a task is 0.9 when its redundancy is one and it is 0.99 when its
redundancy ié two, etc. Table 5.2 shows the values of PI for different redundancy
levels (z). The maximum PI is reached when all scheduled tasks have their
redundancy levels at two (u = 2). According to PI, the redundancy level is not
enough if » < 2 and it is too much if u > 2. So the idea we are following in
the remainder of the chapter is to derive the optimal redundancy level required
at each time instance within L. Then, knowing this time-dependent optimal
redundancy level, we can determine how much load to shed and based on this we

can configure the task set accordingly (see Section 5.7).

Table 5.1 Task parameters for Example 5.1

Task e ca di |Vi P Q;
T3,T5,:--Tww|0 10 10|10 100 1

rasi
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Table 5.2 Relations between » and PI for Example 5.1

PI=30 PIJ,
10(10 * 0.9 — 100 * 0.1) = —10
5(10 * 0.99 — 100  0.01) — 5 ~ 40
3(10 * 0.999 — 100  0.001) — 7 ~ 23
2(10 = 0.9999 — 100 = 0.0001) — 8 ~ 12

1(10+(1-10"°)—100*10-°)) —9 ~ 1

—
ol |w|v|—]e

In the next section, we discuss how tasks’ redundancy levels can be derived as a
closed form formula. To achieve this, we will use a continuous model to represent
discrete tasks. Here we briefly present the basic idea. Consider a task T; with only
one copy scheduled to start at ¢, and to finish at ¢;. Its failure probability is F(t,),
because task T; can be executed successfully only if the processor does not fail up to

t,. Its performance index PI; is
ari — ci(i + pi) F(t2), (5.7)

where ¢; = t; — ¢;. In a continuous model, the performance index of the same task is

represented as an integral from t1 to ¢2:

[ = e+ P (53)

which is slightly larger than the one computed by (5.7) if F(¢) is a monotonically
increasing function (which is true in general because of hardware aging process).
Typically, the reliability function R(t) or, equivalently, the failure probability function

F(t) changes very slowly. Hence,
t2
GF(ts) ~ /‘ F(t)dt, (5.9)

and the value computed by (5.7) is about the same as the one computed by (5.8).
A similar argument applies for tasks with multiple copies. Once we have such a
continuous model, instead of considering the redundancy level for each task, we can

consider the redundancy level required at a particular time t. Later, we show that
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while this simplifies analysis, it does not result in any loss of accuracy in determining

task redundancy levels.

5.3 Basic Task Configuration Strategy

In this section, we assume that all tasks have the same computation time c¢ and
the same v, p, and g. We discuss a way to derive task configuration function u(t),
where u(t) represents the required redundancy level at time ¢, so as to optimize the
performance index. It is important to note that all these assumptions are relaxed in

the sections that follow. Specifically,

e In Section 5.4, a discrete task model is considered with tasks having differ-
ent computation times and it is shown that the continuous model is a good

approximation for the discrete model.

e In Section 5.5, we study the effects of converting u"(t), a real valued function,

into integer values of u(t) since, in practice, redundancy levels will be integers.

e In Section 5.6, we present an approach to handle tasks having different reward

rates and penalty rates, i.e., different values of v, p, and g for different tasks.

Because tasks’ scheduling windows are assumed to be small, all redundant copies
of task T: will be scheduled to finish around the same time. Let ¢ be the task finish

time. Its performance index PI; given in (5.4) becomes
PL = c(v — (v +p) F(t)*"), (5.10)

where u; = u(t), which is the redundancy level for T;.
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When c becomes very small, we can use a continuous model and use dt to represent

c. Equation (5.10) then becomes
PI; = (v — (v + p)F(t)*®)dt. (5.11)

On average, the number of tasks that can be scheduled in the time interval [t — dt,

t] is m/u(t). So the total performance index for the time interval [t — dt, ¢] is

(t)(v — (v + p)F(2)*®)dt. (5.12)
Thus, performance index for the tasks that can be accommodated is
* F(t)®)d 5.13
- )™ .
/.,u(t)(" (v + P)F(£)®)dt, (5.13)
and the penalty due to all rejected tasks is
q(C — / &), 5.14
where C is the total computation times of all tasks without counting their redundant
copies,
C= Z . (5.15)
i=1

Therefore, the total performance index is
L m
= [ = _ u(t)ygp _ )
PI /o u(t)(v +q—(v+p)F(t)"*)dt — qC. (5.16)

The task configuration problem is translated into a form of calculus of variations,

and we want to find the best u(¢) which maximizes PI. Let us define

Gt,u(t) = ;7500 +a = (v + A (). (5.17)

Then, the maximum PJ is determined by the following Euler equation according to

the theory of the calculus of variations [18]:

0G
3 =0 (5.18)
with the boundary conditions of 1 < u(t) < m. Equation (5.18) is the same as:
F(2)*®(1 = InF(£)2® =”+q, 5.19
(6191 - 1nF () = 222 (5.19)

where 0 < F(t) < 1
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Define
v+q=a
v+p

Let us explain the physical meaning of a. Suppose the rejection penalty rate ¢ = 0.

(5.20)

Assume that the failure penalty rate p is much larger than the reward rate v. The
latter is a reasonable assumption for many fault-tolerant systems because that is the
main reason we need redundancy. Then « is roughly the ratio of the reward rate v
and the failure penalty rate p. However, if ¢ > p, then a > 1 and it means that the
penalty for rejecting tasks is too high, so we should accept more tasks and reduce
the task redundancy. In this case, there exists no solution for Equation (5.19) and
the best configuration strategy is u*(t) = 1 by using one of the boundary conditions.

Table 5.3 shows the relations between v, p, g, and a. Case 1 corresponds to a
relatively low failure penalty rate while Case 5 corresponds to a relatively high failure

penalty rate.

Table 5.3 Relations between v, p, g, and «

Case | v P q a
1 |1 19 1 0.1
2 (1 199 1 0.01
3 (1 1999 1 0.001
4 |1 19999 1 0.0001
5 |1 199999 1 0.00001

If Equation (5.19) has a solution, it must satisfy the iso-reliability principle:
F(t)*9 = A,, (5.21)

where A, is a constant mainly dependent on a. It is easy to verify that this is indeed
the solution if we substitute F(t)“* by a constant (A,) in Equation (5.19) and
observe that both sides of the equation become constant, although we must choose
A, properly. The iso-reliability principle is the most interesting feature of this task

configuration problem. Its name was chosen to suggest the fact that A, represents



-

e

105

a level of tasks’ failure probability which should be kept as a constant. Thus, the
tasks’ reliability is also a constant with respect to (1 — A,).
Substituting (5.21) into (5.19) to determine A, and we have

Ay(1 - lnA,) = a. (5.22)

To search for the root, we may use a binary search algorithm such as the Bisection
algorithm or a fast converging algorithm such as the Newton-Raphson algorithm [59).
We can then derive the optimal task configuration strategy u"(t) by rewriting

(5.21),
InA.

u(t) = InF ()’

(5.23)

where 0 < F(t) <1 and 1 < u(t) < m.
In practice, we cannot control the failure function F(t), but we can control the
function u(t) during the task configuration stage. We make two observations that

are of significance from a practical viewpoint.

Observation 5.1: u*(t) changes slower than the failure function F(t), because,

in Equation (5.23), u*(t) is inversely proportional to InF(t), where 0 < F(t) < 1.

In practice, F(t) is likely to be a very slow function of ¢, so u*(t) is likely to be an

even slower function of ¢.

Observation 5.2: If F(t) is a monotonically increasing function, then u(t) is

a non-decreasing function, where 0 < F(t) < 1 and 1 < u*(t) < m.
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To see that the observation is right, we show that (u*(t))’ > 0. If F(t) is a mono-
tonically increasing function and 0 < F(t) < 1, then F'(t) > 0, InF(t) < 0 because
F(t) <1, and InA, < 0 because

0< F(t)*® =4, <1.

From Equation (5.23),

ooy _ g InAa o (-1) F'(¢)
@) = (Gre) = "=Gra) Fe) o

F(t) is likely to be a monotonically increasing function because of the hardware aging
process. Therefore, we can expect u*(t) to increase with time. This is demonstrated

in the following example.

Example 5.2: We plot u*(t) in Figure 5.1, 5.2, and 5.3 for three different L by
assuming that m = 10, F(t) = 1 — e~*, A = 0.0001. In these figures, each curve

corresponds to a different a. Here are some conclusions we can derive from these
figures:
® u” increases with ¢,

e u" increases slowly when a becomes larger,

o u” is flat for large & when ¢ is small, e.g., @ = 0.1, because u" hits the lower
bound 1. This means that, when the failure penalty rate is low, we do not

need any redundancy for tasks.

In this section, we have built the basic task configuration strategy, based on a con-

tinuous model assuming tasks have the same computation time and reward/penalty

1
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Figure 5.3 Optimal configuration strategy »*(t) with L = 10

rates v, p, and q. Specifically, we derived the optimal task configuration strategy

u”(t) in a simple closed form:
_ B
T InF(t)

where B is a constant, B = InA,, and F(t) is the failure function. In order to

u(t)

relax these assumptions, several extensions to this basic model are discussed in the

following sections.

pad
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5.4 Discrete Model

In this section, we extend the continuous model to a discrete model. This relaxes
the assumption that task computations are infinitely small as assumed in the last

section. We discuss two cases:
1. Tasks have the same computation time c;
2. Tasks have different computation times.

Tasks are assumed to have the same v, p, and ¢. This is relaxed in Section 5.6.
We consider case 1 first. Let L be divided equally into k equal sized intervals of
size c:

[tﬂ, tl]: [tl, tz], """ ) [tk—l: tk];

with £o = 0 and ¢, = L. Let u(¢;) be the average redundancy in the interval [t;_;, ;).
Then, Equation (5.16) becomes
=-¢C+ Z )(v +g = (v+ p)F(t:))e. (5.24)
t—l
Using the same analysis method, we can derive the optimal configuration strategy as

l'n.A
nF(t)

where 0 < F(t;) < 1,7 =1,2,---,k, and A, is the same as defined in (5.20). Table

u () = (5.25)

5.4 shows the relations between ¢ versus PI under three different L, where PI is

computed with the optimal configuration strategy, u™(¢;), for 1 < i < k. We assume

that m = 10, @ = (r + q)/(r + p) = 0.0001, and A = 0.0001. The table shows that,

for different values of ¢, the performance index PI is about the same for a particular

L, especially when L is large compared to c. This implies that the continuous model
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which assumed very small values for ¢ ably represents the discrete model with respect

to the performance index. So

L m u(t) k m
/o@(v+q—(v+p)F(t) i~ Y o

For the case 2, where tasks have different computation times, it is difficult to to

(v+q— (v +p)F(t:)8)e.  (5.26)

extend Equation (5.16) directly by using the similar method as in the case 1, because
tasks may have different finish times in any subinterval. But, notice that in Table 5.4,
for a given L, PI is almost the same for tasks with different computation times. So,
given the approximation in (5.26), we can use the continuous model to approximate

this case also to obtain the performance index.

Table 5.4 Relations between ¢ and PJ

c PI |L=1uoo PI |L=1oo PI |L=1o
10.0 | 2583.36988 | 423.31917 | 54.15487
1.0 | 2605.02754 | 437.06966 | 60.36285
0.1 | 2607.82060 | 439.25115 | 61.73948
0.01 | 2608.36467 | 439.49504 | 61.93850
0.001 | 2608.40129 | 439.55622 | 61.95905

5.5 Converting u*(t) into integer values of u(t)

The optimal configuration strategy u*(t) in (5.23) is a real valued function. In prac-
tice, tasks’ redundancies are integers. In this section, we show that the optimal task
configuration strategy u*(t) can be approximated by an integer function with a very
small loss with respect to the performance index PI.

We compare the performance index using u*(t) with the performance index using

the following integer functions which approximate w*(t):
e u_ceil(t) — the integer equal to or greater than u*(t);

¢ u_rint(t) — rounding u*(t) to an integer;

E

E_
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e uint(t) — choosing one of the two neighboring integers of u"(¢) which gives

the better performance.

Let PI(u(t)) be the performance index using strategy u(t). Comparing the perfor-
mance index PI using u*(t) to the performance index PI using u-ceil(t), urint(t),

and u_nt(t) respectively, it is not difficult to see that
PI(u*(t)) > PI(uini(t)) > {PI(uceil), PI(urint)}.

In Figure 5.4, 5.5, and 5.6, we plot u"(¢) and these three functions with L = 100.
Table 5.5 lists the ratios of the performance indices based on integer functions and
the the performance index using the optimal configuration strategy u*(t), for three
different L. Here, we assume that m = 10, @ = (v +q)/(v +p) = 0.0001, A = 0.0001,

and c = 1.

Table 5.5 Ratios of the performance indices using integer functions and PI(u")

L | PI(uceil)/PI(u") | PI(urint)/PI(u") | PI(uint)/PI(u")
1000 0.929 0.921 0.960
100 0.859 0.716 0.906
10 0.825 0.080 0.825

From Table 5.5, we conclude that u_in#(t) is the best candidate to represent u™(t)
with respect to the performance index PI. Also Figure 5.6 shows that u-int(t) has
the redundancy values 2 and 3 in relatively large time windows. This validates the
assumption we made earlier that the optimal task redundancy is highly likely to be

a constant within tasks’ scheduling windows.
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5.6 Configuring Tasks with Different
Reward /Penalty Parameters

In this section, we extend the basic task configuration model to allow tasks with

different v, p, and g. Let v(t), p(t), and g(t) be the average reward rate and the
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average penalty rates at ¢, computed from tasks whose scheduling windows include

t. The total performance index becomes

PI= [[{gmslot) + a) - 60 + 2P0 - W )
Define
Glt,u(6) = sto(t) + o(t) - (o0) + 2e)F ) - L2 (5.9)
Then, the maximum of PI is again determined by Euler equation:
‘Z—f =0, (5.29)

with the boundary conditions of 1 < u(t) < m. Equation (5.29) is the same as:
F()“(1 - InF(t)“®) = a(t), (5.30)

where 0 < F(t) < 1, 1 < u(t) < m, and

_ v(t)+q(t)
)= S +a0)

The solution for (5.30) is the optimal configuration strategy u*(t), which must satisfy

(5.31)

F()*®) = 4q(2), (5.32)

where 0 < F(t) < 1,1 < u"(¢) < m, and A,(t) depends on a(t). Rewriting the above

equation, we have

wi(t) = %. (5.33)
To compute function A4(t), we substitute (5.32) into (5.30):
Ax(t)(1 — InAq(t)) = aft). (5.34)

Thus, given ¢, 0 < t < L, we can compute a(t). From a(t), we can determine the
corresponding Aq(t). Table 5.6 lists 320 pairs of a(t) and A.(t), and from that and

(5.33), we can determine u"(t).
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a Aa a AS a ﬁ a Aa
0.06000001 0.00000000044 0.00000081 0.00000004522 0.00000161 0.00000009369 0.00000241 0.0000001438¢
0.06000002 0.60000000092 0.00000082 0.00000004581 0.00000162 0.00000009431 0.00000242 0.00000014448
0.00000003 0.60000000140 0.00000083 0.00000004641 0.00000163 0.00000009493 0.00000243 0.00000014511
0.00000004 0.00000000190 0.00000084 0.00000004700 0.00000164 0.00000009555 0.00000244 0.60000014575
[} 005 0.6¢ 02490 0.00000085 0.00000004750 0.00000265 0.00000009617 0.00000245 0.00000014638
0.60000006 0.00000000290 0.00000086 0.00000004818 0.0600C0166 0.00000009679 0. 46 1} )14702
0.00000007 0.00000000342 0.00000087 0.60000004878 0 a7 0.( 09741 0.00000247 0.00000014765
0.00000008 0.60000000393 0.00000088 0.00800004937 0.00000168 0.00000009803 0.00000248 0.00000014829
0.00000009 0.00000000445 0.00000089 0.00000004997 0.00000169 0.00000009868 0.00000249 0.00000014393
0.60000010 0.00000000497 0.00000090 0.000000050586 0.00000170 0.00000009937 0.00000250 0.00000014956
0.00000011 0.00000000549 0.00000091 0.00000005116 0.00000171 0.00000009989 0.000003251 0.00000015020
0.00000012 0.00000000602 0.00000092 0.60000005175 0.00000172 0.00000010051 0.00000252 0.00000015083
0.60000013 0.000000006065 0.00000093 0.0300000523% 0.60000173 0.00000010113 0.600003253 0.00000015147
0.00000014 0.0¢ 708 0 )94 0.00000008298 0.60000174 0.00900010175 0.00000254 0.00000018211
0.00000015 0.60000000763 0.00000095 0.00000003354 0.00000178 0.00000010237 0.00000258 0.00000015275
0 16 0.00¢ 15 0 )96 0 414 0.00000176 0.00900010299 0.00000258 0.00000015338
0 17 0.0¢ 0.00000097 0.060000005474 0.0000017T 0.00000010361 0.00000257 0.00000015402
0 18 0.0¢ 23 0 )98 0.00000005534 0.00000178 0.00000010424 0.00000258 0.00000015466
0 19 0.0¢ 7 0 )99 0 593 0.00000179 0.00000010486 0.00000259 0.00000015529
0.00000020 0.00000001031 0.00000100 0.60000005653 0.00000180 0.00000010548 0.00000260 0.00000015593
0.00000021 0.00000001088 0.00000101 0.00000005713 0.00000131 0.60000010610 0.00000281 0.00000015657
0.00000022 0.00000001141 0.00000102 0.00000005773 0.00000182 0.60000010673 0.060000262 0.00000015721
0.00000023 0.0¢ 1195 [} 103 0.00000005833 0.00000183 0.00000010735 0.00000263 0.00000015735
0.60000024 0.00000001250 0.00000104 0.00000005893 0.00000184 0.00000010797 0.060000264 0.00000015849
0.00000025 0.60000001308 0.00000108 0.00000005954 0.00000185 0.00000010860 0.00000285 0.00000015913
0.600000326 0.00000001360 0.00000106 0.600000068014 0.00000186 0.00000010922 0.00000266 0.00000018976
0.00000037 0.00000001416 0.00000107 0.0000C006074 0.00000187 0.00009010984 0.00000287 0.00000016040
0.60000028 0.00000001471 0.00000108 0.00000006134 0.00000188 0.00000011047 0.00000268 0.00000016104
0.60000029 0.00000001527 0.00000109 0.00000008194 0.00000189 0.00000011109 0.00000269 0.00000016168
0.00000030 0.60000001583 0.00000110 0.00000006254 0.00000190 0.00000011172 0.00000270 0.006000016232
0.00000031 0.00000001638 0.00000111 0 15 0. 191 0 11234 0.00000271 0.00000016296
0.00000032 0.00000001694 0.00000112 0 1£-1 0. 192 0.00000011297 0.000002372 0.00000016360
0.00000033 0.00000001750 0.00000113 0.00000006436 0.00000193 0.00000011359 0 T3 ) 16424
0.0000003¢ 0.00000001806 0.00000114 0.00000006486 0.00000194 0.00000011422 0 374 0 16488
0.00000038 0.00000001862 0.00000115 0.00000000556 [] 195 0 11484 0 275 0 16552
0.06000036 0.00000001918 0.00000118 ) 17 0. 196 0. 11547 0 76 0 16816
0.60000037 0.00000001974 0.00000117 0.00000006677 0.00000197 0.00000011609 0 277 0 16680
0.00000033 0.00000002031 0.00000118 0.00000006738 0.00000198 0 11672 0 278 0 16744
0.00000039 0.00000002087 0.060000119 0.00000006798 0.00000199 0.00000011735 0 79 0 16809
0.00000040 0.00000002144 0.00000120 0.00000006889 0. 200 0 11798 0 280 0 16373
0.00000041 0.00000002201 0.00000121 0.00000006920 (] 201 0 11860 0 1 0 16937
0.00000043 0.00000003257 0.00000122 0.00000006980 0.00000202 0.00000011923 0.00000282 0.00000017001
0.00000043 0.00000002314 0.00000123 0.00000007041 0.00000203 0.00000011936 0 3 0.( 17065
0.00000044 0.00000002371 0.00000124 0.00000007102 0.00000204 0.00000012048 0.00000284 0.00000017129
0.000000458 0.00000002428 0.00000125 0.00000007163 0.00000205 0 12111 1] 0.( 17193
0. 46 [¢] 2435 0.00000126 0.00000007223 0.00000208 0.000000123174 0.60000286 0.00000017258
0 47 O 02542 0 127 0.0¢ 7284 0 207 0.00000012237 0.00000287 0.00000017322
0 1] 0 2599 0.00000128 0.00000007345 0.00000208 0 12299 0 0.0000001 7386
0.00000049 0.00000002657 0 129 0. 7408 [} 209 0 12362 0 289 0.00000017450
0 0 0 )02714 0.00000130 0.00000007467 0. 10 0 12425 0 290 0.00000017515
0 1 0 002772 0. 131 0.00000007528 0. 211 0 12488 0 291 0.00000017579
[} 0 002829 0. 132 0.00000007589 0.00000212 0.00000012551 0.00000292 0.00000017643
0.06000053 0.00000002887 0.00000133 0.00000007650 0.00000213 0 13614 0 293 0.00000017707
0. 054 0 102944 0 134 0.00000007711 1} 214 0 12677 [] 294 0.00000017772
0 5 0 2 0.0000013%8 0.00000007772 0 18 0, 12740 0 205 0 )17836
0.00000056 0.00000003060 0.000001368 0.00000007833 0.000002168 0 12803 0 296 0 17901
0.00000087 0.00000003118 0.00000137 0.00000007394 0.00000217 0.00000012868 ] 297 [] 17965
0.00000058 0.00000003175 0.00000138 0.00000007955 0.00000218 0.00000012929 0 298 [1} 18029
0 0 233 0.00000139 0.00000008017 0.00000219 0.00000012992 1) 299 (-] 18094
0 0 291 0.00000140 0.00000003078 0.00000220 0.00000013055 0 0 18158
0 1 0 49 0 141 0.00000003139 0 21 0 13118 0.00000301 0.00000018222
0.00000062 0.00000003408 0.00000142 0.00000008200 0. 222 0 )13181 0.( 2 0 18287
0 83 [ 466 0.00000143 0.00000008282 0. 33 [ 13244 0 0 18351
0 4 0 a4 0 144 0.00000008323 [ [1} )13308 0.00000304 0.00000013416
0 L1 0 3582 0.00000145 0.00000008384 0 235 0 13371 0.( 05 0 18480
0.00000086 0.00000003641 0.00000146 0.00000008446 0.00000226 0.00000013434 0.00000306 0.00000018545
0. 7 0 3699 0. 147 0.00000008507 0 a7 1) 13497 0.0¢ T 0 18610
0.0¢ 0 3758 0 148 0.00000008568 0 28 [} 13861 0.0¢ 0 18674
0.00000069 0.000000038168 0.00000149 0.00000008630 0.00000229 0.00000013524 0.00000309 0.60000018738
0.00000070 0.00000003875 0.00000150 0.00000008692 0.00000230 0.00000013687 0.00000310 0.00000018803
0. n 0 0, 151 0.00000008753 0.60000231 0.00000013750 0.00900311 0.000000138363
0.00000072 0.00000003992 0.00000152 0.00000008815 0.00000232 0.00000013814 0.00000312 0.00000018932
0.¢ 73 [] 081 0. 153 0.00000008876 0.60000233 0.00000013877 0.00000313 0.00000018997
0.00000074 0 4109 0 154 0.00000008938 0.00000234 0.00000013940 0.00000314 0.00000019061
0.00000075 0.00000004163 0.00000155 0.00000008099 0.00000235 0.00000014004 0.00000315 0.00000019126
0.00090078 0.00000004237 0.00000156 0.00000009061 0.00000236 0.00000014067 0.000003168 0.00000019191
0.00000077 0 4206 1) 187  0.00000009123 0. 14 0 14131 0.00000317 0.00000019255
0.00000078 0.00000004345 0.00000158 (] 184 0. 0.6 14194 0.00000318 0.00000019320
0.00000079 0.00000004404 0.00000159 0. 16 0. 239 0 142357 0.00000319 0.080060019385
0.00000080 0.00000004463 0.00000160 0. 0. 40 0 14321 0.00000320 0.00000019450
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5.7 Applying the Results in Practice

In this section, we discuss how to apply this task configuration theory in a real-time
system. The basic idea is to derive the optimal task redundancy function u*(t)
first. Note that u*(¢) is determined only by the processor reliability function and
task reward/penalty rates. u*(t) is then approximated by a corresponding integer
function uint(t). Finally, by using u_ini(t), we can determine how many copies of
each task can be need to be scheduled.

If tasks to be configured have the same reward and penalty rates, e.g., the same
v, p, and g, the task configuration procedure becomes relatively easy, even if their
computation times are different. A, is computed by solving Equation (5.22) and F(%)
is determined from the failure properties of the hardware. We can then compute »*(t)
using Equation (5.23). Next, we use u_int(t) to approximate u*(t) as presented in
Section 5.5. In general, u_int(t) has a shape similar to the one plotted in Figure 5.6,
which is a step function. Thus, the computation for u_ini(t) can be easily speeded up,
by just computing each turning point of the step function u_ini(¢). For example, in
Figure 5.6, the redundancy levels are 1 for [0, 1), 2 for [1, 59), and 3 for [59, 100], and
the turning points occur at 1 and 59. Also, we may compute u_int(t) off-line to form
a table for on-line use. After u_init(t) is derived, tasks are assigned the redundancy
levels given by u_int(t) in the following way. If a task’s scheduling window covers two
different values of u.int(t), we assign the task the higher redundancy level. Otherwise,
we assign the task with a redundancy level determined by u_int(t). Note that this
is only an approximation because the optimal redundancy level required by a task is
determined by its scheduled finished time in the final schedule.

We can then schedule the tasks. If a scheduling algorithm can shed tasks during
scheduling, the task set is directly handed to the scheduling algorithm. Here we either

apply a heuristic-based algorithm using a heuristic function to determine which task

E_#A } \

E . .. .
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to select next as in [91] or use a bin-packing-based algorithm such as the one in [33].
In both cases, the remaining tasks are rejected after all available system resources
are consumed. If a scheduling algorithm cannot shed tasks during scheduling, e.g.,
the H, heuristic scheduling algorithm, then we may shed some tasks from the system
before the task set is handed to the scheduling algorithm. We should avoid repeated
failures of the scheduling algorithm for finding a feasible scheduie. Failures are mainly

caused by the following factors:

e The task set for the scheduling algorithm has an overload in a time interval
(tz,ty] (for t, < L), such that the sum of the computation times of all tasks
having deadlines within this interval is greater than m - (¢, — t.), where m is

the number of processors available.

o The heuristic scheduling algorithm may fail to find a feasible schedule even if
the task set is feasible, because the heuristic scheduling algorithm is only an
approximation to the optimal algorithm which always find the feasible schedule

if it exdsts.

o Tasks may have more complex constraints, e.g., additional resource require-
ments, which may reduce the system utilization because of the resource con-

tentions among tasks.

Possible solutions to avoid these failures are (1) to avoid overloads in all sub-intervals
and (2) to reduce task workload further because a portion of the system utilization
will be wasted because of the resource contentions among tasks.

If tasks to be configured have different reward and penalty rates, the task config-
uration procedure becomes a bit more complicated. Here is a high level description
of one way to solve the problem. We divide L into K equal intervals of size A. The
value of A will depend on how closely we would like the redundancy levels to reflect

optimal values. For example, assuming that ¢ is the average computation time for
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the tasks, we set A to be /2. For each t, where t =iA,i=1--- K, we do the follow-
ing: We compute a(t) based on Equation (5.31), with v(t), p(¢), and g(¢) being the
average reward rate and the average penalty rate at ¢, computed from tasks whose
scheduling windows cover ¢. From a(t), we can derive A,(t) either by solving Equa-
tion (5.34) or by using Table 5.6. After knowing A.(t) and F(t), we compute u*(t)
based on Equation (5.33). Next, we use u_int(t) 1;0 approximate u"(t) as presented
in Section 5.5. Knowing u_int(t), tasks are then assigned the redundancy with the
values specified by u.int(t). Finally, we can start to schedule tasks. Many issues
related to task scheduling discussed above also apply here.

Note that, in both cases, the values of u_int(t) represent the lower bound on
task redundancy to maximize performance wifhout being jeopardized by too high
redundancy levels. Therefore, some tasks could be assigned higher redundancy levels
than the ones specified by u.int(t), if there are not enough tasks to fill the processor
resources in a given time interval. This will improve reliability without affecting
the schedulability of tasks. Also, how well all this works in practice must still be

determined by simulations or actual system implementations.

5.8 Conclusions

In this chapter, we have developed a new task configuration strategy with the goal
of maximizing the preformance index which considers deadline-related performance
measures as well as fault-tolerance related requirements. Qur analysis shows that the
basic continuous task model very closely approximates the discrete models, and the
optimal task configuration function u*() can be substituted by an integer function
with very minor effects on the total performance index. Also, we showed how our ba-
sic model can be extended to handle tasks with different reward/penalty parameters

and computation times.
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There are several avenues that are worthy of further investigation to determine
how well this works in practice. Interactions between the configuration phase and
the scheduling phase need to be explored. Also, it is important to understand the
implications of applying such a configuration strategy in a dynamic system with tasks
arriving and then being configured (with existing tasks being reconfigured). Such a
dynamic reconfiguration can help improve performance further [49].



CHAPTER 6

SUMMARY

6.1 Contributions

The research presented in this dissertation focuses on three issues related to dynamic
scheduling arising in many real-time applications. (1) the worst case analysis of
on-line scheduling algorithms, (2) the bound analysis of heuristic algorithms for tasks
with resource requirements, and (3) the performance-related reliability analysis for
determining tasks’ redundancy levels. By studying these problems of interest to
dynamic real-time systems using both mathematical as well as simulation tools and
by providing algorithmic solutions to the problems, we have contributed in significant
ways to both the theoretical aspects and practical aspects of real-time systems.

For the worst case analysis of on-line scheduling algorithms, we consider tasks
with different values, and consider the performance bound to be the ratio of the
value obtained by an on-line scheduling algorithm to the value obtained by an ideal

optimal off-line “clairvoyant” algorithm. The main contributions of our analysis are:

o If all tasks have the same value density, i.e., the value per unit computation
time, we show that the tight upper bound of the uniprocessor on-line scheduling

problem is 1/4;
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o If tasks have different value densities and the ratio between the highest and the

lowest value density is 4, we show that the upper bound for the uniprocessor

on-line scheduling problem is

1
Y+1+2,7'
e Two on-line scheduling algorithms, TD, and TD,, are designed to reach the

two upper bounds mentioned above;

o If all tasks have the same value density, we show that the tight upper bound of
the dual-processor on-line scheduling problem is 1/2.

For the bound analysis of heuristic algorithms for tasks with resource require-
ments, we focus on heuristic algorithms which have both a good ability to generate
feasible schedules and can produce feasible schedules of high quality, expressed in
terms of the schedule length. The heuristic algorithms must handle tasks’ real-time
constraints and some additional resource requirements. Particularly, we consider a
generalized heuristic scheduling algorithm, called H, where 2 < k < m. It combines
features from both list scheduling and the H algorithm which is the basic heuristic
scheduling algorithm of the Spring real-time system. The H, algorithm schedules
tasks according to their dynamically determined priorities while attempting to keep
at least k processors busy whenever possible. Ifit is not possible to keep k processors
busy, then it will keep as many processors busy as possible. The main contributions

in this part of the dissertation are:
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e We show that the schedule length bound of Hj, for tasks with the same com-

putation time is

m k1
-+ -
k J.=Zz.1

where 2 < k < m. We show that the schedule length bound of Hj for tasks

with arbitrary computation times is

+1

2 ’
where 2 < k < m. In both cases, the complexity is O(n**'r) for 2 < k < m,

and O(n?r) for k = 2, where n is the number of tasks;

e Using simulation studies of three algorithms, H,, the H scheduling algorithm,
and list scheduling, we show that the H, algorithm has almost the same mean
behavior in the ability to find feasible schedules as the H scheduling algorithm,
and both are much better than list scheduling. The scheduling overheads of H
and H; are about the same, while the worst case schedule length bound for H,
is about a half of the worst case schedule length bound for H.

For the performance-related reliability analysis for determining tasks’ redundancy
levels, we study algorithms for assigning redundancy levels to tasks such that the total

performance index is maximized. The main contributions include:

o If tasks have the same reward/penalty parameters, and the task scheduling
windows are relatively small compared to the length of the schedules, we show
that the optimal task configuration strategy follows the iso-reliability principle
and there exists a closed form solution to compute the optimal strategy, by

using a continuous model.

e We show that the continuous model is a good approximation for the discrete
model. Thus, applying the results for the continuous model, we can handle a

discrete task model where tasks have arbitrary computation times.

£
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We show that the same analysis approach can be further extended to handle

tasks having different reward rates and penalty rates.

Future Research in Dynamic Scheduling

A number of possible extensions are:

In the worst case analysis for on-line scheduling algorithms, if we have some
partial knowledge of future tasks, we could improve the performance bound fur-
ther. For example, in many real-time systems, all task parameters are known
beforehand except that their arrival times are unknown. It is highly desirable
if we can determine the worst case performance bound for a given set of tasks.
This is not going to be an easy problem, because to derive a worst case re-
quest sequence for an arbitrary task set is extremely difficult if not impossible.
Alternatively, we may consider some general situations: (1) tasks have a cer-
tain amount of laxity and (2) the computation times of tasks are bound within
a certain range. For these two cases, it is likely that improved performance

bounds can be derived.

Other open problems for on-line scheduling include on-line scheduling for three
or more processors and on-line scheduling for dual-processor with tasks having

arbitrary value densities.

The heuristic algorithms studied in this dissertation are limited to independent
tasks with additional resource requirements. In practice, tasks may have more
complex structures, such as precedence constraints. It will be useful to extend

the H, heuristic algorithm to accommodate the new constraints.

In the performance-related reliability analysis, interactions between the configu-
ration phase and the scheduling phase need to be explored to better understand

the practical implication of the configuration strategy. Also, it is important
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to understand the implications of applying such a configuration strategy in a
dynamic system with tasks arriving and then being configured (with existing
tasks being reconfigured). Such a dynamic reconfiguration can help improve
performance further [49)].

£
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