

3. Implement Classes and Objects

Do: Browse Class/Object Diagrams

(Requirements)

(The change list) User initiates the transition
(Full design specification)
[No inconsistency is found]

(Proposed modification)

(Requirements exist)

User initiates the transition

Edit Object Diagram
Edit State Transition Diagram

Edit Module Diagram
Edit Process Diagram
Edit Moduel Template
Edit Process Template

[Candidate Classes/Objects are defined]

User initiates the transition(The change list)
Changes to candidates

(List of candidates)

Edit Class Template
Edit Timing Diagram

Do: Browse Candidate Classes/Objects
2. Identify the Semantics of Classes/Objects

Edit Object Template

 Edit Class Diagram

List candidate classes/objects
Identify Verbs
Identify Nouns

1. Identify Candidate Class/Object
Do: Read requirements

Edit Data Flow Diagram

User initiates the transition
(Class/object, and some other diagram/templates)
[Class/Object diagram/template defined]

Changes to the class/object diagram/templates

Find inconsistency in class/object diagrams/templates

(Proposed modification)
User initiates the transition

User initiates the transition
(Proposed modification)

Do: Browse Requirement
Browse Candidate Classes/Objects
Edit Class Diagram
Edit State Transition Diagram
Edit Object Diagram

Do: Browse Class Diagram
Browse Object Diagram
Edit Class Templates
Edit Class Utility Templates
Edit Object Templates

Do: Browse Object Diagram
Browse Class Diagram
Edit Module Diagram
Edit Process Diagram

Edit Device Template
Edit Process Template
Edit Module Template

Do: Browse Module Diagram

Step 2 Determine Semantics of Class

Step 3 Specify Class/Object Templates

Develop Module DiagramStep 4

Specify Module TemplateStep 5

(Full design specification)
[No inconsistency is found]

[Requirements exist]

User initates the transition

Class/Object

Find inconsistencies in Candidate Class/Object Diagrams

(List of Candidate Class/Objects)
[Candidate Classes/Objects are defined and reviewed]

User initiates the transition

User initiates the transition (Class/Object diargam)

User initiates the transition

Step 1 Identify Candidate Class/Object

(Requirements)

Changes to candidates
(Changed List)

[The changes are approved]

Diagrams

Changes on

(Changed diagrams)
[Class/Object diagrams are reviewed][The changes are approved]

(Changed List)
Changes to candidates

[The changes are approved]

Find inconsistencies in
class/object templates
[Modification is approved]

[Modification is approved]
class/object diagrams
Find inconsistencies in

[Modification is approved]Find inconsistencies in Class Diagram

Changes to
class/object templates

(Class/Object Templates)
[The changes are approved]

User initiates the transition
(Class/Object Diagrams)
(Class/Object Templates)

[Class/Object Templates are reviewed]

Find inconsistencies in
module diagram
[Modification is approved]

User initiates the transition
(Module diagrams)
[Module diagrams are being defined]

Changes to
module diagram
(Changed module diagram)

Do: Browse Requirement

Do: Browse Requirements
 Edit Data Flow Diagram

Do: Edit Object Diagram
Edit Class Diagram

User initiates the transition (Feedback)

Inappropriate Problem Definition

Step 1.1

Step 1.2

Define Problem Boundary

Structured Analysis Step 1.4 Prototyping

User initiates the transition

Define Problem

(Proposed new definition)(Problem Definition)
User initiates the transition

[Definition is approved]
(Problem Definition)
User initiates the transition

Domain AnalysisStep 1.3
Do: Browse Requirements

Edit Candidate Class/Objects

User initiates the transition(Data Flow Diagrams)
(Problem Definition)
[Definition is approved]

(Candidate class/object)
[Candidate Class/Objects exist]

Step 1. Identify Candidate Class/Object

2. Identify the Semantics of Classes/Objects

(Requirements)

(The change list)

(Requirements exist)

User initiates the transition

(Design specification)
[No inconsistency is found]

1. Identify Candidate Class/Object

Change to
Candidates

User initiates the transition
(List of candidates)
[Candidate Classes/Objects are defined]

Do: Browse Candidate Classes/Objects
 Edit Class Diagram
Edit Object Diagram
Edit State Transition Diagram
Edit Timing Diagram

User initiates the transition

Find inconsistency between candidates and
class/object diagrams

 (Proposed modification)

Do: Browse Requirement
Problem Definition

Inappropriate Problem Definition

Step 1.1 Define Problem Boundary

(Proposed definition)

Domain AnalysisStep 1.2

1.3 Reuse-based Design

User initiates the transition and
(Candidate Classes/Objects)

User initiates the transition and
[Problem is defined]

(Candidate Abstract Class)

User initiates the transition and

Step 1. Identify Candidate Class/Object

Search for Noun
Search for Verb
Search for Adjective

Identify Key Abstractions
Do: Browse Requirement

Define Candidate Classes/Objects
Do: Identify Classes from Nouns

Decide Operations from Verbs
Define Classes with Adjectives
Identify Objects from Nouns

(Identified nouns, verbs, adjectives)
User initiates the transition (Change List)

Identified Nouns/Verbs/Adjective
Changes on

Domain AnalysisStep 1.2
Step 1.2.1

Step 1.2.2

Identify Reusable Components

Develop Object Diagram for the

Edit the Concrete Classes

Concrete Classes
Instantiate the Abstract Class to

User initiates the transition

User initiates the transition

User initiates the transition
(Concrete Class)

User initiates the transition

Identify Abstract Class

Change on reusable
components

Change on semantics
of the abstract class

1.3. Reuse-based Design

Change on the object diagram

(New components)

(New object diagram)

(Completed concrete classes)

(Abstract classes)

(Abstract classes)

Class

(Abstract Classes, Reusable Components)

(Reusable Components, Candidate Classes)
User initiates the transition

(Object Diagram, Candidate Classes)

Find new sharable objects
(Description of the objects)

Selected Class A

Insert
Rejected Class A

Update (Name = B)

(Needed = FALSE)

Rejected Class B

Update
(Name = B)

(Needed = FALSE)
Update

(Name = B)
Update

[No existing class has name A]

[No existing class has name A]

(Needed = TRUE)
Insert

Selected Class B Terminated

Update
(Kind = Object)

Delete

Selected Object A

Update

Rejected Object A

(Kind = Object)

Class

Object

Insert the Class

(Needed = TRUE)
Update

Delete Class A

Delete Class A

Delete Class A

Insert Class A

Insert Object A

...

.....

......

SDM

Process 1 ... Process N

.....

Step 1.1 Step 1.2 Step N.1 Step N.M

Step 1.1.1

......

Step 1.1.1.1

Activity 2Activity 1

Process 2

Console

Driver 1 Driver 2 Driver N

Driver 1.1 Driver 1.2 Driver N.1 Driver N.M

Driver 1.1.1

Panel 1.1.1.1

Tool-Button 1 Tool-Button 2

SupportInitiateExclusive Unspecified OrderConstrained Order

Debus-Booch System Interface ArchitectureAn SDM Model

Criteria Guidline Display Display

