Engineering Software Design Processes to Guide Process Execution®

Xiping Song
Siemens Corporate Research Inc.
755 College Road Fast
Princeton, NJ 08540

song@scr.siemens.com

Abstract

Using systematic development processes is an im-
portant characteristic of any mature engineering dis-
cipline. In current software practice, Software Design
Methodologies (SDMs) are intended to be used to help
destgn software more systematically. This paper ex-
plicitly shows, however, that one well-known eram-
ple of such an SDM, Booch Object-Oriented Design
(BOOD), as described in the literature is far too vague
to provide specific guidance to designers, and is too
imprecise and incomplete to be considered as a fully
systematic process for specific projects.

To provide more effective and appropriate guidance
and control in software design processes, we applied
the process programming concept to the design process.
Given two different sets of plausible process require-
ments, we elaborated two more detailed and precise
destgn processes that are responsive to these require-
ments. We have also implemented, experimented with,
and evaluated a prototype (called Debus-Booch) that
supports the execution of these detailed processes.

1 Introduction

If software engineering is to make solid progress
towards becoming a mature discipline, then it must
move in the direction of establishing standardized, dis-
ciplined methods and processes that can be used sys-
tematically by practitioners in carrying out their rou-
tine software development tasks. We note that such
standardized methods and processes should not be to-
tally inflexible, but indeed must be tailorable and flexi-
ble to enable different practitioners to respond to what

*This research is supported by the Advanced Research
Projects Agency, through ARPA Order #6100, Program Code
7E20, which was funded through grant #CCR-8705162 from the
National Science Foundation. This work is also sponsored by
the Advanced Research Projects Agency under Grant Number
MDA972-91-J-1012.

Leon J. Osterweil
Computer Science Department
Univ. of Massachusetts

Ambherst, MA 01003

ljo@Qcs.umass.edu

18 known to be a very wide range of software devel-
opment situations in correspondingly different ways.
Regardless of this, however, the basis of a mature dis-
cipline of software engineering seems to us to entail
being able to systematically execute a clearly defined
process in carrying out these tasks. In this paper we
refer to a process as being “systematic” if it provides
precise and specific guidance for software practitioners
to rationally carry out the routine parts of their work.

As design 1s perhaps the most crucial task in soft-
ware development, it seems particularly crucial that
software design processes be clearly defined in such a
way as to be more systematic. Humphrey [Hum93]
says that “one of the great misconceptions about cre-
ative work is that it is all creative. FEven the most
advanced research and development involves a lot of
routine. ... The role of a process is to make the rou-
tine aspects of a job truly routine.” We agree with
this, and believe that design as a creative activity still
contains a lot of routine which can be systematized.
For example, making each design decision is probably
creative (e.g, deciding if an entity should be a class
when using an object oriented design method). How-
ever, the order of making each of these related de-
sign decisions can be relatively more systematic (e.g.,
identify each class first and then define its semantics
and relations). We also anticipate that with progress
in design communities, design methodologies will pro-
vide more routine which can be systematized. This
will help adapt SDMs into practice more easily and
thus improve productivity and software quality.

This paper describes our work that is aimed at this
goal—namely to make SDM processes more system-
atic and thus more effective in guiding designers. This
work begins with the assumption that the large diver-
sity of Software Design Methodologies (SDM’s) pro-
vides at least a starting point in efforts to provide
the software engineering community with such well-
defined and systematic design processes. This pa-
per concentrates on the Booch Object Oriented De-

sign Methodology (BOOD) [Boo91] in order to pro-
vide specificity and focus. The paper shows, however,
that BOOD, as described and defined in the litera-
ture, is far too vague to provide specific guidance to
designers, and is too imprecise and incomplete to be
considered a very systematic process for the needs of
specific projects. On the other hand, we did find that
BOOD could be considered to be a methodological
framework for a family of such processes.

Our work builds upon the basic ideas of process pro-
gramming [Ost87], which suggest that software pro-
cesses should be thought of as software themselves,
and that software processes should be designed, coded,
and executed. That being the case, we found that
BOOD, as described in the literature, is far closer to
the architecture, or high-level design, of a design pro-
cess than to the code of such a process. As such,
BOOD is seen to be amenable to a variety of detailed
designs and encodings, each representing an elabora-
tion of the BOOD architecture, and each sufficiently
detailed and specific that it can be systematic in a way
that is consistent with superior engineering practice in
older, more established engineering disciplines.

In the remainder of this paper we indicate how and
why we believe that BOOD should be considered a
software design process architecture. We then suggest
two significantly different detailed designs that can be
elaborated from BOOD, each of which can be viewed
as a more detailed elaboration upon the basic BOOD
architecture. We show that these elaborations can be
defined very precisely through the use of such accepted
software design representations as OMT [RBP+91],
and through the use of process coding languages such
as APPL/A. Indeed, this paper shows that the use
of such formalisms is exactly what is needed in order
to render these elaborations sufficiently complete and
precise that they can be considered to be systematic.

Thus, the paper indicates a path that needs to be
traveled in order to take the work of software design
methodologists and render it the adequate basis for a
software engineering discipline.

First (in Section 2), we define the process archi-
tecture provided by BOOD, and then describe two
processes elaborated from the architecture. Second
(in Section 3), we describe a prototype that supports
designers in carrying out the execution of these pro-
cesses, illustrating how these differently elaborated
processes support different execution requirements.
Third (in Section 4), we describe our experience of
using the prototype and summarize some of the main
issues that have arisen in our efforts to take the de-
sign process architectures that are described in the

literature to the level of encoded, systematic design
processes.

2 The BOOD Architecture and Two
Elaborations

2.1 Overview of BOOD

We decided to experiment with BOOD because
BOOD is widely used, and provides a few application
examples that are very useful in helping us to identify
the key issues in elaborating BOOD to the level of ex-
ecutable, systematic processes. A detailed description
of BOOD can be found in [Boo91]. In this section, we
present only a brief description of the architecture of
the BOOD process. We believe that it can be summa-
rized as consisting of the following steps:

1. Identify Classes/Objects: Designers must
first analyze the application requirements spec-
ification to identify the most basic classes and
objects, which could be entities in the problem
domain or mechanisms needed to support the re-
quirement. This step produces a set of candidate
classes and objects.

2. Determine Semantics of Classes/Objects:
Designers must next determine which of the can-
didate classes should actually be defined in the
design specification. If a class is to be defined,
designers will determine its semantics, specifying
its fields and operations.

3. Define Relations among Classes: This step
is an extension of step 2. Designers must now
define the relationships among classes, which in-
clude use, inheritance, instantiation and meta re-
lationships. Steps 2 and 3 produce a set of class
and object diagrams and templates, which might
be grouped into class categories.

4. Implement Classes: Designers must finally se-
lect and then use certain mechanisms or program-
ming construects to implement the classes/objects.
This step produces a set of modules; which might
be grouped into subsystems.

BOOD provides more hints and guidelines on how
to carry out these steps. However, BOOD provides
no further explicit elaboration on the details of these
steps. Thus designers are left to fill in important de-
tails of how these complex, major activities are to be
done. As a result, there is a considerable range of vari-
ation and success in carrying out BOOD. Further, the

process carried out by those who are relatively more
successful is not documented, defined or described in
a way that helps them to repeat it effectively, or for
them to pass on so that others can reuse it. We believe
that this is the sense in which BOOD, as described in
the literature, 1s a process architecture. It provides
the broad features and outlines of how to produce a
design. It supplies elements that can be thought of
and used as building blocks for specific approaches to
design creation. On the other hand, it provides no spe-
cific guidance, details or procedures. These are to be
filled in by others who, we claim, then become design
process designers (e.g., the authors of [HKK93]) and
implementors when the method is applied to specific
projects or organizations.

2.2 Process Definition Formalism

Farlier experiences [KH88, CKO92] have shown
that the State-Charts formalism [HLNT90] is a pow-
erful vehicle for modeling software processes. Thus,
we use a variant of State-Charts [HLNT90], the dy-
namic modeling notation of the Object Modeling
Technique (OMT) [RBPT91], to model the processes
that we will elaborate from BOOD. As shown later,
we believe these dynamic models of BOOD processes
are sufficient to demonstrate our point

Generally, our approach is to use the notion of a
state (denoted as a labeled rounded box) to represent a
step of a BOOD process, the notion of an activity (the
text inside a rounded box and after “Do:”) to represent
a step which does not contain any other steps. Accord-
ing to OMT, the order for performing these activities
can be sequential, parallel or some other forms. We
use the order in which the activities is listed to recom-
mend a plausible order for performing those activities.
A transition (denoted as a solid arc) denotes moving
from one design step to another. The text labels on
a transition denote the events which cause the transi-
tion. The text within brackets indicates guarding con-
ditions for this transition. The text within parentheses
denotes attributes passed along with the transition. A
state could have sub-states, each of which denotes a
sub-step of the step.

Indeed, a modelling formalism is generally inade-
quate for characterizing certain details of processes.
We found that sometimes it was necessary to specify
these details in order to render the process we were at-
tempting to specify sufficiently precisely that it could
realistically be considered to be systematic. For ex-
ample, OMT does not provide a capability for spec-
ifying the sequencing of two events which are sent
by the same transition. Specification of this order

might well be the basis for important guidance to a
designer about which design issues ought to be con-
sidered before which others. Thus, we found it nec-
essary to supplement OMT, by using a process cod-
ing language called APPL/A [SHO90b] to model such
details. APPL/A is a superset of Ada that supports
many features that we found to be useful. Some exam-
ples of APPL/A code are also provided in subsequent
sections of this paper.

Note that the goal of this work is to use these pro-
cess models and codes to demonstrate the diversity
and details of the processes that can be elaborated
from an SDM. As shown later, these dynamic models
of BOOD processes are sufficient to demonstrate this
point. Thus; we did not develop OMT’s object models
and function models for BOOD processes.

2.3 Modeling the BOOD Architecture

Fig. 1 represents an OMT model of the original
BOOD process architecture, as described in [Boo91].
In this architecture, we merged step 2 and 3 of
the original BOOD process because our experience
shows that it 1s hard to separate those steps in prac-
tice (Booch himself also considers that step 3 is an
extension of step 2 [Boo91]). We believe that this
model is considerably more precise than the informal
description originally provided. It is still quite vague
and imprecise on many important issues, however.
Booch [Boo91] claims that this vagueness is necessary
in order to assure that users will be able to tailor and
modify it as dictated by the specifics of particular de-
sign situations. For example, step 2 of Fig. 1 does not
define the order for editing various BOOD diagrams
and templates. It does not define clearly which of the
diagrams or templates must be specified in order to
move from step 2 to step 3. Booch claims that different
designers might have important and legitimate needs
to elaborate these details in different ways (Chapters
8-12 of [Boo91] provide a few examples).

We found that there are indeed many ways in which
these details might be elaborated precisely and that
many of these different variants might offer better
guidance. The differences might well arise from differ-
ences in application, differences in organization, dif-
ferences in personnel expertise, and differences in the
nature of specific project constraints. Once these dif-
ferences have been understood and analyzed, however,
the design process to be carried out should be defined
with suitable precision. Such precise definitions are
needed in order to support adequate improvements of
the efforts of novices. In addition, we believe that
there are expert designers who have internalized very

User initigtes the transition
(Requirenents)
(Requirements exist)

1. Identify Candidate Class/Object
Do: Read req

— Edit Data Flow Diagram
Identify Nouns

Identify Verbs

List candidate classes/objects

Uter initiates the transition
(Ptoposed modification) User initiates the transition

(Proposed modification)

Changes to candidates

(The changk list User initiates|the transition

(List of candiflates)
[Candidate Classes/Objects are defined]

2. Identify the Semantics of Classes/Objects

Do: Browse Candidate Classes/Objects
Edit Class Diagram

Find i istency in class/obj

(Proposed modifi

Edit Object Diagram

— Edit State Transition Diagram
Edit Timing Diagram

Edit Class Template

Edit Object Template

cation)

3. Implement Classes and Objects
User initiates|the transition

(Class/object{and some other diagram/templates)
[Class/Object|diagram/template defined]

Do: Browse Class/Object Diagrams
Edit Module Diagram
Edit Process Diagram
Edit Moduel Template
Edit Process Template

Changes to the class/object diagram/templates

(The change list) User initiates the transition

(Full design specification)
[No inconsistency is found]

Figure 1: A Process Architecture of BOOD

specific and very effective elaborations of the BOOD
architecture and that the more these are defined pre-
cisely, the more important design expertise may be
understood, reused, automated, and improved.

In order to make the above remarks specific, we
now discuss two possible elaborations of the BOOD
architecture. In addition, using these examples we can
show the need for, and power of, both design and code
representations as vehicles for making design processes
clear and thereby providing more effective guidance.

2.4 Two Examples of BOOD Process Re-
finements

2.4.1 Examples of Software Project Types

First, we characterize two different types of projects
for which we will elaborate variants of design pro-
cesses, within the outlines of the BOOD architecture
(see Project Properties columns in Table 1). The pa-
rameters of these characterizations are 1) implemen-
tation language, 2) documentation requirements, 3)
project schedule, 4) designer skill, 5) software opera-
tion domain, 6) software domain, and 7) maturity of
the software domain.

Based upon our experiences, we identified these two
project types as representatives of projects commonly
encounted in software engineering practice (see Ta-
ble 1). For example, an instance of project type 1
could be a defense-related or a medical systems project
while an instance of project type 2 could be a civil-
ian project. We expected that elaborating processes
to fit the requirements of these two different types of

projects would help us understand the range of pro-
cesses that could be elaborated from BOOD.

The seven characterization parameters were chosen
because our earlier work indicated that these param-
eters are likely to have major and interesting effects
upon design process elaboration. For example, when
consulting with Siemens medical companies, we found
that the U.S. Food and Drug Administration (FDA).
has specific documentation requirements, and requires
control and monitoring of corrective actions on the
product design. [FDAS89] says that “when corrective
action is required, the action should be appropriately
monitored... Schedule should be established for com-
pleting corrective action. Quick fixes should be pro-
hibited.” This certainly affects how an SDM should be
applied to a specific project.

The application examples described in [Boo91] also
provide us with some details that seemed likely to be
useful in employing these parameters to help us to de-
rive these BOOD-based design processes. For exam-
ple, one of Booch’s examples indicates that if C++4 is
to be the eventual application coding language, then
class/object diagrams would not need to be translated
into module diagrams. In addition, Booch’s problem
report application example [Boo91] helps us to under-
stand the process requirements for developing an infor-
mation processing system. For instance, that example
shows that the method must be tailored to support the
design of database schemas. His traffic control exam-
ple helps us to understand the process requirements
for developing a large scale, device-embedded system.

2.4.2 The Processes Elaborated from BOOD

In this section we present portions of the OMT di-
agrams used to define details of each of these two
elaborations on the basic BOOD architecture. We
then further refine parts of them down to the level
of executable code. Each of these processes is clearly
a “Booch Design Process”, each represents what we
consider to be a completely plausible design process,
and each is quite completely and precisely defined—to
the point of being systematic for the specific kinds of
projects. These two processes demonstrate the point
that there is a great deal of imprecision in the current
definition of ”Booch Object-Oriented Design.” They
also indicate how BOOD can be elaborated, and what
the range of elaboration might be when it is applied
to specific projects.

We will refer to our first elaborated process as
the Template Oriented Process (TOP). It emphasizes
defining various BOOD templates (e.g., the class tem-
plate) as it hypothesizes the importance of carrying

1. A Template Oriented Example

2. A Diagram Oriented Example

Project Properties

Process Requirements

Project Properties

Process Requirements

Must be coded in Ada

Specify Module Diagram

Must be coded in C++

Guide designers not to specify Module
Diagram since it is not needed in this case.

Must incorporate very
complete documentation

Requires specification of
all templates

Only minimum documentation
required

No need to enforce
specifying all templates

Long-term

Allow full documentation

Short-term

Encourage use of existing code

Skilled design team

Less process guidance
More process flexibility

Inexperienced design team

More process guidance
Less process flexibility

Safety-critical
(e.g., Medical Systems)

More change control needed
to satisfy FDA’s requirements

Non safety-critical

Less change control needed

Large scale,
device-embedded system

Use structured analysis
Support partitioning domain

Information processing system

Single, familiar domain.
Need to support schema design

State of the art project

Need to support prototyping

Well-understood

No support for prototyping needed.

Need to support code reuse

Table 1: Project Characteristics and Process Requirements

out a design activity that delivers very complete doc-
umentation. The TOP’s emphasis on complete docu-
mentation can be seen by noting that we have refined
steps 2 and 3 of Fig 1 into the more detailed model
defined in Fig. 2.

We further hypothesized in designing the TOP that
the software to be developed is to be safety-critical,
and that, therefore, the TOP should enforce more con-
trol over design change as this is often required by
government agencies to ensure product quality. Ac-
cordingly note that the high level design of the TOP
incorporates an approval cycle for all changes to pre-
viously defined artifacts.

On the other hand, we hypothesized that the TOP
is to be executed by skilled and experienced designers.
Because of this, we did not refine the detailed design
activities into lower level steps. Our expectation here
is that such designers would insist upon freedom and
flexibility that this would be given them. This also
illustrates that it is possible to define a design process
precisely, yet still provide considerable freedom and
flexibility to practitioners. In addition we designed
the TOP to allow for a certain degree of flexibility
in making transitions from one step to another. We
have also included the possibility of incorporating a
prototyping subprocess into this process.

We refer to our second elaborated process as the
Diagram Oriented Process (DOP), as it emphasizes
specifying BOOD diagrams. We derived this process
from Booch’s Home Heating System example [Boo91].
In the DOP we hypothesized that there are only weak
requirements in the area of documentation, and we,
therefore, do not design in the need for designers to
specify BOOD’s templates (see Figures 4). We also
hypothesized that the product being designed will be
coded in a language that provides direct support for

programming classes and objects. For this reason, the
DOP omits step 3 of the general model shown in Fig. 1
as part of its elaboration, leaving the model defined in
Fig. 4. Note that this elaboration incorporates fewer
top-level steps than the general BOOD model does.

We also hypothesized that the DOP is aimed at
supporting novice designers, and so the DOP provides
detailed guidelines for identifying classes/objects (see
Figures 5, 6, and 7). In addition, the DOP assumes
that a great deal of importance is placed upon reuse.
In response, the DOP incorporates steps that guide
designers to reuse existing software components (see
Fig. 7).

The job of creating more specific and detailed elab-
orations of BOOD is not limited solely to modification
of the processing steps of BOOD. It also entails speci-
fying the flow of control between these steps and their
substeps. A good example of the importance of these
specifications can be seen by examining how change
management is handled in these design processes.

We use the term forward change management to
denote a transition used to maintain consistency be-
tween a changed artifact and its dependent artifacts,
that are normally specified at a later stage of the pro-
cess. For example, a designer may add a class to a
candidate class list (in step 1 of Fig. 2) . This results
in forcing designers to redo step 2 to consider adding
a corresponding class to the class diagram. There is
virtually no guidance in BOOD about precisely how
this is to be done, or how the critical and tricky issues
of consistency management are to be addressed. Thus
there is a clear need for more detailed guidance on
automatic change control. One way this can be done
is to refine this high-level transition further as shown
in Fig. 8. In Fig. 8, a dotted line from a transition
to a class represents an event sent by the transition.

For example, the transition from Selected Class A to
Rejected Class A, which is caused by updating can-
didate class A’s field Needed to FALSE (i.e. class A
is no longer needed), sends event Delete Class A to
class Class. Clearly this refinement is simply one of a
very large assortment of possible refinements. We do
not claim that it is the only one or the “right” one.
We do claim, however, that supplying details such as
these provide specific guidance that is important for
designers—especially for novice designers and for large
design teams. Should it turn out that such a specifi-
cally designed process is shown to be particularly use-
ful and desirable, then the detailed specification will
also render 1t more amendable to computer support.

We should also note that we did not stop at the level
of design diagrams in refining the meaning of forward
change management, but that we went further and de-
fined it as actual executable process code. Our code
was written in the APPL/A process coding language.
Fig. 9 shows the APPL/A code for the process defined
in Fig. 8. Note that this code provides even more de-
tails. For example, note that this code specifies that
changing a candidate class to a candidate object will
cause an ordered sequence of events: 1) the insertion
of an object template, 2) the removal of the class tem-
plate and 3) the forwarding of that template to step
3 for editing of the object template. Again, we stress
that these specific details are not to be considered the
only feasible elaboration of BOOD—only one possible
elaboration. We do believe, however, that in speci-
fying the design process to this level of detail deeper
understandings result, and the process becomes more
systematic. In addition, by reducing the process to
executable APPL/A code, it becomes possible to use
the computer to provide a great deal of automated
support (e.g., some types of automatic updating and
consistency maintenance) to human designers.

Another kind of control flow in BOOD is backward
change management, which is aimed at maintaining
consistency between a specified artifact and all the
artifacts upon which the specified artifact should de-
pend. These artifacts are normally defined at earlier
stages of the process. For example, in step 2 of Fig. 2,
designers may need to define a class in a class dia-
gram and find that this class does not correspond to
any candidate class because of an incomplete or faulty
analysis of the application requirements. Thus, de-
signers have to go back to earlier steps, reviewing the
requirements and possibly redoing step 1 to add this
class to the candidate class list. This transition can
be refined and coded in a manner similar to what was
described in the case of forward change management.

Cl
q

Diagrar
(Changy
[The chnges are approved] [Clafs/Object diagrams are reviewed|

User initateq the transition
(Requjrements)
[Requirgments exist]

Step 1 Identify Candidate Class/Object

Find in Candidate Class/Object Diagrams
Chnso A e sion
&he Chaes e approvedy (45 ofChndidate Class Object)
chang PP! [Candidat Objects are defined and reviewed]
Step2 Determine Semantics of Class
D0 prowse Requirement
Browse Candidate Classes/Objects Find inconsistencies in Class Diagram [Modification is approved]
|

Edit Class Diagram

Edit State Transition Diagram

Fimd i N in
classlobject fliagrams
catior|is approved|]

s on Edit Object Diagram

diagrams) User initiaes the transiion (Class/Object diargam)

Step S Specify Module Template

Step 3 Specify Class/Object Templates Do: Browse Module Diagram

Do: Browse Class Diagram

yis found]

Edit Module Template
Browse Object Diagram Fmd!"“{"f“?"a‘e\'" Finfl inconsistencies in Edit Process Template
Edit Class Templates dlassobject templates moffule diagram
— P [Modification s approved] ¢ diag is approved] Edit Device Template
janges to candidates Edit Class Utility Templates S app
unged Lis) Edit Object Templates
[The changes are approfed] User nitias the transition
T Step 4 Develop Module Diagrany - User initiates the transition };‘:}” desigh specification)
Changes to User initiates the transition Do: Browse Object Diagram | (Module diagrams)
class/object templatey (Class/Object Diagrams) Browse Class Diagram [Module diagrams are being defined]
(Class/Object Templatefs) (Class/Object Templates) Ui
[The changes are approfed] [Class/Object Templates are reviewed] Edit Module Diagram .
Edit Process Diagram module diagram

(Changed module diagram)

Figure 2: Top-level Process Definition of the Template
Oriented Process

These process definitions, including both main flow
and change management transitions, explicitly and
clearly demonstrate how the published Booch Object
Oriented Design description can be elaborated into
a precisely defined process to provide more effective
guidance for specific projects. Our research indicates
that this observation i1s quite generally applicable to
the range of SDM’s that are currently being espoused
widely in the community. There are a number of rea-
sons for this imprecision. We have already noted that
the imprecision is there intentionally to permit wide
variation in design processes to match similarly wide
design process contexts and requirements. While we
neither doubt nor dispute this need, we believe that
our work has shown that it can be met more effectively
through tailoring SDMs for specific needs of projects.
These processes resulting from the tailoring, and sup-
ported by the appropriate tools, provide more effective
guidance and help implement various recommended
practices (e.g, those recommended by FDA [FDAg9]).
In the next sections, we discuss how to support the ex-
ecution of the elaborations of the BOOD architecture
that we have just described.

? Q

¢ Step 1. Identify Candidate Class/Object
e 1 Mdeniy Candidae Clas/Obje | Step 1. Identify Candidate Class/Object
Step 1.1 Define Problem Boundary .
. S Step 1.1 Define Problem Boundary
Do: Browse Requirement .
Define Problem Do: Browse Requirement
Problem Definition
User initjates the transition User iniates the transition Inappropriate Problem Definition
(PDrot[)le_ D_eﬁmuon){ d (Problem Definition) (Proposed ne defnion) User initiates the tfansition and Inappropriate Problem Definition
[Definitipn is approved] i (Proposed definition)
[Problem is defined]
Step 1.2 Structured Analysis [Step 14 Prototyping
Do: Browse Requirements Do: Edit Object Diagram
Edit Data Flow Diagram Edit Class Diagram Step 1.2 Domain Analysis User initiates the transition and
User initiates the transjtion(Data Flow Diagrams) (Candidate Apstract Class)
(Prol_)lgr_r Definition)
[Definitipn is approved] L " User injtiates the transition and
User initiates the transition ~ (Fgedback) (Candjdate Classes/Objects) ‘
~| Step 1.3 Domain Analysis 13 Reuse-based Design
Do: Browse Requirements User initiates the transition
it Candidate Class/Obiects (Candidate class/object)
Bt Candidae Class/Objects [Candidate Class/Objects exist]
Figure 3: Second-level Process Definition of Template Figure 5: Second-level Process Definition of Diagram
Oriented Process: Refinement of Step 1 Oriented Process

0 0

User initiates the transition
(Requiremems))
(Requirerpents exist) Step 1.2 Domain Analysis
Step 1.2.1 Identify Key Abstractions
1. Identify Candidate Class/Object Do: Browse Requiremem
Search for Noun
I) Search for Verb
Fingl inconsistency between candidates and Search for Adiective Ch anges on o
Change fo User initiates the transition fll,a‘ SIObe]Ct dlggfyan:vs) ! Identified Nouns/Verbs/Adjective
Candidates (List of candidates) Tpposed moditication e, - (Change List)
(The change list) ~ [Candidate Classes/Objects are defined] Userllrllmate the mnsmor} .
(Identified nouns, verbs, adjectives)
2. Identify the Semantics of Classes/Objects
Do: Browse Candidate Classes/Objects Step 1.2.2 Define Candidate Classes/Object

Edit Class Diagr: .
it obj‘éét fﬁig‘iﬁ”m Do: - Identify Classes from Nouns

Edit State Transition Diagram Decide Operations from Verbs
Edit Timing Diagram Define Classes with Adjectives

Identify Objects from Nouns

User initjates the transition
(Design specification)
[No inconsistency is found]

© 0

Figure 6: Third-level Process Definition of Diagram
Oriented Process : Refinement of Domain Analysis

Figure 4: Top-level Process Definition of Diagram Ori-
ented Process

P
IR T

Identify Reusable Components

1.3. Reuse-based Design

Change on repsable User initiatef the transition

&‘;&ﬂ%‘:g‘;ﬂmm (Reusable Cpmponents, Candidate Classes)

Lo Identify Abstract Class

User initiates the transition
(Abstract Clagses, Reusable Components)

Change on senjantics
of the abstract {lass
(Abstract classgs)

L | Develop Object Diagram for the —
- Class

Change on the objeqt diagram User initiates the transition
(New object diagram) (Object Diagram, Candidate Classes)

Instantiate the Abstract Class to
Concrete Classes

User initiates the transition Find ney sharable objects
(Concrete Cldss) (Description of the objects)
> Edit the Concrete Classes

User initiates the transition
(Completed cpncrete classes)
(AbStract ptasses)

0

Figure 7: Third-level Process Definition of the Dia-
gram Oriented Process : Refinement of Reuse-based
Design, which is based on Booch’s Home Heating Sys-
tem example

3 Support for Executing BOOD Pro-
cesses

To experiment with our ideas and demonstrate how
these processes should be supported appropriately, we
have developed a research prototype, called Debus-
Booch, to support the execution of design processes
of the sort that have just been described. Execution of
such processes is possible as a result of their encoding
in APPL/A, a superset of Ada that can be translated
into Ada, and then compiled into executable code.

We note that BOOD addresses only issues con-
cerned with supporting single users working on a single
design project. As most designers must work in teams,
and are often engaged in multiple projects simultane-
ously, a practical system for support of such users must
do more than simply execute straightforward encod-
ings of BOOD elaborations. Our Debus-Booch proto-
type adapts an architecture used in a previous research
prototype (Rebus [SHDH*91]). The architecture lets
developers post (to be done) and submit (finished)
tasks to a whiteboard to coordinate their task assign-
ments. Since this work has been published and is not
directly related to the topic of this paper, we will not
describe it here.

Object
Selected Object A
]

Update Insert Object A
(Kind = Object) -
[Seleued Class B { Terminated j Delete Class A
Update || Update (Name=B) :
(Name =B)
(Needed = Iﬁiﬁ{;) Delete : v Delete Class A
[No existing class has name A] Selected Class A]
Insert the Class Class
Update K A
(Needed = FALSE) Delete Class A
Update
(Needed = TRUE)
(\w Insert Class A
Rejected Class A
Insert)
(Needed = FALSE)
[No existing class has name A] Update Update
(Name =B) (Kind = Object)

[Rc]cclcd Class B]

Figure 8: A Refinement of Forward Change Man-
agement: illustrates more precisely how a change
in the candidate list might affect the class dia-
gram/templates. A candidate is recorded with three
fields: name, needed (indicating if it is selected as an
candidate), and kind (indicating that it is a class or
object)

[chcclcd Object 9

In addition, there are a variety of difficult user in-
terface issues to be faced in implementing a system
such as this. Exhaustive treatment of all of these is-
sues 18 well beyond the scope and limitations of this
paper. An indication of our approaches to these and
related problems can be seen from the following brief
implementation discussion.

3.1 System Overview

Debus-Booch provides four levels of process guid-
ance and support to its end-users (see Fig. 11 for their
user interface representations):

1. Process Selection (Accessed through a
Console/Driver): This enables users to select
any of a range of elaborations of the BOOD ar-
chitecture, or any non-atomic step of any such
elaboration (as shown in Fig. 10). This is done
by selecting a driver to perform a constrained se-
quence of steps at a certain level of the selected
process step hierarchy. Debus-Booch helps users
with this selection by furnishing users with access
to information about the nature of these various
processes and steps.

with candidate_rel, class_template;

trigger maintain_candidate;

--|] maintain the product of step 1
trigger body maintain_candidate is

begin
loop
trigger select

upon candidate_rel.update

(name string;
needed boolean;
kind candidate_type;
update_name : boolean;
new_name : string;
update_needed : boolean;
new_needed : boolean;
update_kind : boolean;

new_kind

candidate_type)

An SDM Model

Debus-Booch System Interface Architecture

M <€--------

G
Progess | Procgss 2... Procgss N
1

Step L.l Step 12 StepN.I - StepNM
oo -

Actiyity 1 Activity 2
VFoa- - oo

Criteria Guidline

Congole
,,,,,,, . A
\
DINHZ DriverN.I Driver NM

Driver LI ™

~ =~ Panel LILLI
" W\l 7
Tool; 1 Tool-Button2
1&?&&1 ‘ool-Button

Display Display

completion do
if needed = TRUE or update_needed = TRUE then
--| change management is necessary only when
--| candidate is selected or being updated.
case kind is
when class =>
if (update_needed = TRUE) then
if new_needed = FALSE then
--| the candidate is no longer needed
class_template.delete(name => name) ;

else

--| the candidate becomes needed
class_template.insert (name => name, ...);
end if;

query (pname, plen, sname, slen);
define_class_proc(pname,plen,sname, slen);
elsif (update_name = TRUE)
class_template.update (name => name,
update_name => TRUE,
new_name => new_name) ;
end if;
if (update_kind = TRUE and
((needed = TRUE and update_needed = FALSE)
or (new_needed = TRUE and
update_needed = TRUE)) then
case new_kind is
when object =>
object_rel.insert (name => name);
class_template.delete (name);
define_object_proc(pname,plen,sname,slen) ;
when operation =>
end case;
end if;
when abstract_class =>
end case
end upon
or

end select
end loop;
end maintain_candidate;

Figure 9: APPL/A code for defining Forward Change
Management between candidate class list and class di-
agram/template definitions

~—7 Excusive | 7 Constrained Order | .~ Unspecified Order <77 Support

// Initiate

Figure 10: An SDM definition and support model

2. Process Step Execution (Accessed through
a Panel): The user can obtain support for the
sequencing and coordination of the driver activi-
ties to be performed in an elaborated design pro-
cess. These activities can be divided into two cat-
egories: required and optional activities. For ex-
ample, in the step used to determine the seman-
tics of classes, designers must use Class Diagram
Editor, which therefore supports a required activ-
ity; in the same step, designers may use a require-
ments browser, which therefore supports an op-
tional activity. Designers can invoke all the tools
that support the required activities by clicking
on the Set Environment button. In using this ac-
cess method, we help designers to set up a design
environment more easily. Note that different pro-
cesses may have different required activities. For
example, in the template oriented process (TOP),
editing the class template 1s a required activity.
However, in contrast, using the diagram oriented
process (DOP), the user cannot even access this
editor.

3. Atomic activity /support (Ac-
cessed through a Tool-Button): The user can
obtain support for a specific activity in an atomic
step. For example, the user can request access to
a Class Diagram Editor in order to obtain sup-
port for defining a class diagram, which is an ac-
tivity performed in determining the semantics of
classes.

4. Documenation and Help Support (Ac-
cessed through Displays): This support can
be obtained in conjunction with the use of tools
that support atomic activities. The displays that
are made available convey a variety of informa-
tion, such as the criteria, guidelines, examples,
and measures [SO92] to be used to help designers
understand how to carry out the activity.

Debus-Booch provides the flexibility that is needed
for experienced designers. Designers can use a console
display to access all of the supports listed above. For
example, a designer can click on the Console’s Steps
button to execute any step of any elaborated BOOD
process (as long as the guarding condition for this step
is satisfied, otherwise, the invocation will be rejected).

Figure 10 shows how these four types of support
are made available to the designers who use Debus-
Booch. In particular the figure indicates the degrees
of interactions that are allowed among the supports
for processes, steps, and activities. In particular, note
that support for process execution will be provided on
an exclusive basis only, as we believe 1t is reasonable to
use only one process at a time to design any given sys-
tem, or any major part of a system. Similarly, there
are constraints on furnishing support for the simul-
taneous execution of process steps. This is because
there are often data dependencies between steps. On
the other hand, support for simultaneous execution of
activities 1s unconstrained as many design process ac-
tivities must often be highly cooperative in practice.
Some sets of activities must indeed be carried out in
constrained orders. In this case it is necessary to group
them into composite steps. The decisions about allow-
able degrees of concurrency were made based on our
observations of the nature and structure of the process
models defined in Section 2.4.2.

3.2 Scenario for Use of Debus-Booch

Here is a general scenario, which indicates how de-
signers might use Debus-Booch (see Fig. 11):

1. Designers select a specific elaborated BOOD pro-
cess from the menu popped up after pressing the
Process button. They may select Process Selec-
tor to retrieve information about these processes.
For each process, the Process Selector describes
the most appropriate situations (e.g., the docu-
mentation requirements, project deadline) under
which the process should be used.

2. Upon clicking on the menu item (i.e. a selected
process), the corresponding driver will be initi-
ated. Then, designers must enter the name of the

10

subsystem to be designed. This subsystem can be
assigned to them from a management process or
a high-level system decomposition process (e.g.,
in our case, it is on the whiteboard [SHDH*91]).

3. When the subsystem name has been entered, the
driver will check what design steps have been per-
formed on this subsystem, and then automati-
cally set the current sub-step in order to continue
with the design of this subsystem. (This is tan-
tamount to the process of restarting a suspended
execution of the process from a previously stored
checkpoint.) Then, the designer can click the Run
button to invoke the corresponding sub-driver or
atomic step support.

4. If a sub-driver is initiated, step 3 will be repeated
except designers will not need to enter the sub-
system name again.

5. If atomic step support is invoked, a panel ap-
pears and designers can click on its tool-buttons
to invoke the tools to support the activities that
should be carried out in this atomic step.

6. Having finished this step, designers can click on
the next step using the Steps buttons of the driver
to move the process forward. If the guarding con-
dition (e.g., see Fig. 2) for the next step is true,
the move will succeed, otherwise, the move will
be rejected. After finishing the final step in the
elaborated process, the designer may go back to
the first step to start another iteration on the
same subsystem, reviewing and revising the ar-
tifacts produced in the previous iteration. Thus,
Debus-Booch also provides supports for process
iteration.

As this scenario illustrates, Debus-Booch provides
different supports for users who are using different pro-
cess elaborations. For example, using the template ori-
ented process, the user will be guided by the driver,
(with enforcement provided by the guarding condi-
tion), to specify the module diagram as is useful when
Ada is used as the implementation language. In con-
trast, using the diagram oriented process, the user will
be directed to not define the module diagram as it is
not considered to be of value when an object-oriented
language is used.

4 Experience and Evaluation

In the past year, we have carried out two experi-
ments and one evaluation with Debus-Booch. In the

i Snapshot: View

[

Booch Design Process Console

User MName: Xiping song

Project: Demg

Procasses v) Steps ¥

Activities =)

Processes

Process Selector

ril Eooch Design Process Driver

Template Oriented Process

Project: Demg Steps 1. Identify Class
System: Elevator 2, Determine Semantics of Class
3. Specify Class Template

Function Guide) State Guide | Code |

| 4, Develop Module Diagrarm

Run) Product State] Data Flow Guide] 5. Specify Module Temnplate

[

Develop Module Diagram Panel

00s
Project: Demg, [Insert |[" #em/uc/ softtest/examples/elevata

Set Environment « | [Read] [Load] (Stur
il Class Tem Redisplay (_Center | ((Remo
Project: Demg System: Elevator [—D-%] (M] mﬂ

Browser | Criteria | subpragran Lp_]l]is Def (—]REUSE (—[HEI

Class Template

Step 4 DEJ‘LI

Narne : Elevatar;
Author : #iping Song;
Date ©oSept. 22, 1989Z2;

Documentation: Provides operations for chang
It corresponds to an elevator

Yisibility : EXPORTED;
Cardinality : n; Elev:Elevabor_ IDquirDirestiona
Superclasses @ None; —— &

lau:ELl i o=
Metaclasses @ None; Elew:Elevabor 10

Genaeric :Eleu:Bleuator_I:D.,Jlﬁor:Ploor_IDn—ﬂ i -y o ETevE
AT R e —————

parameters : None; Floor:Floor_IDgir,Directionae I Ploor:Flusr,
lses : Controller, Timer; o ¥
Fields : Elevator—id: Integer;

: Direction: up, idel, down;
Operations : Set—direction,

: Open—door,

H C]USE_dUUr, Tir:DirectionBLlev:Elevabor_IDo

: Clear-request—button, sy p—

: Clear—all-huttaon;

Figure 11: A Stack of Debus-Booch Windows Supporting the Booch Method

11

first experiment, we used the prototype to develop a
design example: an elevator control system. This is a
real-time system that controls the moving of elevators
in response to requests of users [RC92]. Tt was used as
an example for demonstrating how the Arcadia con-
sortium supports the whole software development life-
cycle. The system requires full documentation, and is
to be implemented in Ada. It is safety-critical and
device-embedded. The design team was to include
the lead author and students who had finished the
software design course. Thus, this project has most of
the characteristics described in the Template Oriented
Example (see Table 1).

Our experience with this experiment shows that the
Template Oriented Process (TOP) supported our de-
sign development quite effectively. The process rep-
resented through the drivers and panels guided us
to define the BOOD templates and the module di-
agrams. For example, the designers were guided to
define the problem boundary first and then identify
candidate classes such as Controller, Button, Floor,
and Door. In this experiment, we found that the Set-
Environment button was most frequently used and
was effective in guiding designers to define those re-
quired diagrams and templates. The flexibility offered
by the process allowed the designers to modify some
intermediate design specifications. For example, the
designers often moved back to Step 1 from Step 2 (i.e.,
the Determine Semantics of Class step of Fig. 2) to
modify the candidate classes. However, to ensure sys-
tem safety, this process enforced stricter control over
the other backward changes which directly affect the
actual design documentation. For example, the tran-
sition from Step 3 to Step 2 of Fig. 2 was more strictly
monitored. In using the prototype, we found the cur-
rent implementation to be too restrictive. Thus, we
think that Debus-Booch needs to provide a number
of, rather than one, methods that can be selected for
controlling the transition. Examples may include: 1)
The modification triggers revision history recording,
2) The modication triggers change notification mech-
anism, and 3) the modication triggers a change ap-
proval process. These example methods support dif-
ferent degrees of the control over the design process.

In the second experiment we used Debus-Booch to
develop a design for the problem reporting system as
described in [Boo91]. This project fits five character-
istics of the Diagram Oriented Example (See Table 1).
The system is to be coded in C4++, has minimum doc-
ument requirements, and is not safety-critical. It 1s an
information processing system and well-understood.
The design team, including the lead author and a soft-

12

ware engineer, however, is more experienced than that
described in the Diagram Oriented Example.

In this experiment our experience were similar to
those in the first experiment. One additional, inter-
esting experience is that for this well-understood do-
main (e.g., design of a relational database schema),
the process (the Diagram Oriented Process (DOP))
could have been designed to be even more specific and
therefore to provide more effective guidance. For ex-
ample, Steps 1.2.2 and 2 should provide guidance to
the normalization of the classes. This seems to indi-
cate that for building a large system, an SDM might
need to be tailored into a set of different processes,
each of which is most effective for designing certain
kinds of components of the system. For example, a
large system might contain both an embedded system
and a data processing system. That being the case,
both DOP and TOP processes might need to be ap-
plied to developing this system.

We have installed a version of Debus-Booch at
Siemens Corporate Research (SCR). Some technolo-
gists there have used the prototype and evaluated it.
These technologists are specialized and experienced in
evaluating CASE tools and making recommendations
to Siemens operating companies. During their evalu-
ation, the technologists executed the tool and exam-
ined all its important features. Based upon their ex-
perience, the technologists believe that Debus-Booch
should be particularly useful for novice designers be-
cause the tool explicitly supports BOOD’s concepts
and processes. Their experience tells us that novice
designers are much more interested in using a well de-
fined, detailed process to guide their design. A tool,
such as Debus-Booch, that explicitly supports an SDM
process should help them to learn the SDM quickly.

Some experiences coming out of these experiments
and evaluation are:

1. Process execution hierarchy (the tree of drivers
and panels in Fig. 10) cannot be too deep: There
are two main reasons for having this sugges-
tion: 1) A deep execution hierarchy needs too
much effort in tracking the detailed process states.
This problem is similar to the “getting lost in
hyperspace” problem found in hypertext sys-
tem [Con87]. 2) Need to minimize the time over-
head from transiting between various tools that
support various design steps.

These suggestions clearly reinforce our observa-
tions about the problem of mental and resource
overhead [SO93]. Novice designers are more will-
ing to accept the overhead to trade for more guid-
ance while skilled designers are not. However,

the evaluation seems to indicate that even for the
novice designers, the process execution tree can-
not be too deep. The evaluation suggested that
three levels seem to be maximal.

2. Designers had difficulty wn selecting processes:
Users need stronger support for selecting pro-
cesses. The textual help message associated with
each process seems to be not sufficient. A more
readable and illustrative method must be devel-
oped to help users to understand the process re-
quirements quickly, and thereby help users to se-
lect appropriate processes.

3. Support the coordination of designers working at
different steps: Our model focuses on supporting
designers to work in parallel in designing different
software components, or supporting an individ-
ual designer to work in parallel on multiple soft-
ware components. However, the current model
is weak 1n coordinating two designers working on
the same software component at different process
steps. For example, we found that a finished class
diagram might need to be passed to another de-
signer for defining its module diagram. This often
helps in utilizing the different skills of designers.

4. Need to have stronger support for tracking and
coordinating processes: This suggestion is closely
related to the first suggestion. The evaluation
indicates that the process tracking mechanism is
even more important when the process guides de-
signers at the relatively low levels of the process.
The process tracking must emphasize indicating
the current state of the process and help designers
understand the rationales and goal for performing
the step.

5 Summary

Our work in developing elaborations of the BOOD
architecture into more precise design process designs
and code has brought a number of technical issues into
sharpened focus. Generally, we have found that it is
quite feasible and rewarding to develop design pro-
cesses down to the level of executable code. Doing so
raises a number of key issues that are all too easily
swept under the rug by process architectures and pro-
cess models. Many of these issues have tended to be
resolved informally and in ad hoc ways in the past.
This has stood in the way of putting into widespread
practice superior software design processes. The fol-

13

lowing summarizes some of the more important and
interesting findings of this work.

5.1 The Advantages of Detail in Process
Definition

Process modelers often struggle to choose between
general process definitions and specific process defini-
tions. Processes that are too general are often crit-
icized for providing no useful guidelines. Processes
that are too specific are often criticized as leaving no
freedom to designers. We found that starting with
a specific SDM such as BOOD, and then elaborating
it and making it more specific to the needs of a par-
ticular situation represents a good blending of these
two strategies. Doing this serves to make the result-
ing process sharper and more deterministic, and thus
helps to make it more systematic and susceptible to
computerized support. It seems worthwhile to note
that taking this approach is tantamount to pursuing
the process of developing a software design process as
a piece of software, guided by a set of process require-
ments and an assumed architectural specification (in
this case the BOOD architecture)

We are therefore convinced of the importance of
dealing with the details when elaborating design pro-
cess architectures into designs and code. Here we sum-
marize these process design issues, and describe how
we addressed them in using our approach:

1. Step selection: An SDM often describes many
“you could do” activities in its process descrip-
tion. In our work we turned many of them
into “you should/must do” or “you should not
do” activities in order to provide more effective
guidance. For example, BOOD suggests specify-
ing module diagrams. However, when using an
implementation language that directly supports
programming classes and objects, Debus-Booch
guides designers to not specify these diagrams
because they are useless in this specific applica-
tion (see Fig. 4).

With our process programming approach to the
elaboration of specific processes we also found it
straightforward to specify how to incorporate var-
ious other related processes (e.g., reuse, proto-
typing) into the design process (see figures 3, 5
and 7 for example).

2. Refinement selection: An SDM generally pro-
vides its guidance as a set of high-level steps.
Each high-level step has a set of guidelines. De-
signers are often left free to follow the guidelines

closely or rely more upon their experience. Novice
would tend to follow guidelines while skilled de-
signers would rely more on their experience with
some support from the guidelines. With our ap-
proach, we provide both supports to novice and
skilled designers. Novices can use the detailed
process support to guide their design activities,
while more skilled designers use only high-level
process support.

3. Control condition selection: An SDM usu-
ally does not specify strictly how design changes
should be managed. It usually does not specify
precisely the conditions under which a step can
be considered to be finished. With our approach
of tailoring SDMs for specific projects, we can de-
fine the conditions quite precisely. For example,
for a medical system which 1s often safety-critical
and regulated by FDA | we decide to provide more
strict control (see Fig. 2) to ensure system consis-
tency and reliability. However, our experience in
using Debus-Booch shows that such control mech-
anism should not be enabled until the specifica-
tions (e.g., class diagrams) are stable and have
been used by other software components.

4. Control flow selection: An SDM usually does
not specify all the possible transitions between
steps, instead, it only specifies those that are
likely to be done most frequently. Transitions
that are the most crucial ones may also be the
most difficult to explain, and thus not specified
sufficiently precisely. Our approach makes it far
easier to add precision to the specification of tran-
sitions. For example, Fig. 8 shows the various
transitions needed for modifying classes.

5. Concurrency specification: As noted earlier,
most SDM’s are intended only to specify how to
support the efforts of a single designer working
on one project at a time. It is clearly unrealistic
to assume that this is the mode in which most
designers work, and that, therefore, support for
this mode of work is sufficient. In our work we
adapted an architecture [SHDH%91] that is capa-
ble of supporting group development. The activ-
ities which can be performed at each step allow
individual designers to work on the same design
in parallel.

5.2 Related Work

We have not seen any work that is similar to our ap-
proach of developing design processes as software, then

14

analyzing and contrasting the elaborated processes,
and illustrating explicitly why currently existing SDM
descriptions cannot be taken directly as a completely
systematic process for specific projects. Our work is
unique in that it indicates how one might use the pro-
cess programming approach to modeling and coding
an SDM into a family of more systematic processes
used for a corresponding family of projects.

It demonstrates how SDM processes can be defined
more precisely. A more precisely defined SDM pro-
cess 18 more likely to be effectively supported and
thus provides more effective guidance. This exper-
iment encourages us to be more confident in us-
ing the project-domain-specific process programming
approach to solving many problems in sharpening
and supporting software processes. Some work (e.g.,
[BN93]) studied mechanisms for supporting generic
software processes. However, without studying spe-
cific generic and instantiated processes as we did in
this work, the value of these mechanisms i1s hard to
evaluate.

This work is related to other projects aimed at
developing a process-centered software environment,
like those reported in [MS92, KF87, MR88, Phig9,
ACM90, FO91, MGDS90, DG90]. The most signifi-
cant difference between these efforts and our work is
that our work, targeted at specific process require-
ments, provides very specific strategies for support-
ing specific processes that emerge from the work of
other acknowledged experts (in this case, these ex-
perts are in the domain of software design). For ex-
ample, we provide very specific interface architecture
and tool access methods for supporting SDMs and
their various users. In contrast, most work in devel-
oping process-centered environments is aimed at de-
veloping general-purpose software development envi-
ronments. For instance, [MR&8] supports specifying
any software development rules. Marvel [KF87] is a
general purpose programming environment. It does
not describe specifically how to provide effective guid-
ance for using specific development method on spe-
cific kinds of projects. Another difference 1s that our
work focuses on evaluating varied external behaviors
of the system while other work focuses on the study
of implementation mechanisms and process represen-
tation formalisms (e.g., [FO91]). The study of these
mechanisms and formalisms is not the focus of our pa-
per. Comparisons of our formalisms (e.g., APPL/A)
to others can be found in [SHDH*91, SHO90b].

6 Status and Future Work

The current prototype version of Debus-Booch
is implemented using C+4, Guide (a user inter-
face development tool), and APPL/A. Tt incorporates
StP [AWMS89] and Arcadia prototypes. The whole
prototype consists of about 34 UNIX processes. Each
of them supports a console, driver, panel, and other
tools. It was also demonstrated at the tools fair of the
Fifth International Conference on Software Develop-
ment Environments '. At present, this prototype is
being enhanced by the conversion of more of its code
to APPL/A and by the incorporation of new features,
new design process steps, and new design processes.

We plan to carry out the following future work:

1. Focusing on more specific project domains, to
elaborate still more specific process models and
support environments. This should help deepen
our understanding of the project domain’s influ-
ences on process requirements and SDM elabora-
tions.

2. Collecting data about how these elaborated pro-
cesses are used. Based on the analysis of these
data, we would be able to adjust the processes
more scientifically.

3. Developing a project-domain-specific process gen-
erator. With the specification of project proper-
ties, the corresponding process definitions and its
support environment might eventually be auto-
matically generated, at least in part.

7 Acknowledgments

We thank the members of the Arcadia software en-
vironment research consortium for their comments,
particularly Stanley M. Sutton and Mark Maybee for
their useful comments on the APPL/A code.

We also thank those SCR researchers, particularly
Wenpao Liao, who experimented with and evaluated
our prototype. We are also very grateful to Tom Mur-
phy and Dan Paulish for supporting us to continue
this work at SCR. We thank Bill Sherman and Wen-

pao Liao for reviewing the final version of this paper.

References

[ACMO90]

V. Ambriola, P. Ciamcarini, and C. Montangero.
Software process enactment in Oikos. In Proc.

1This paper was not published at that conference and has
not been published at any other conferences or journals.

15

[AWMS89]

[BN93]

[Boo91]

[Boo92]
[CKO92]
[Con87]

[DG90]

[FDAS9)

[FO91]

[HKK93]

[HLN*90]

[Hum93]
[TSP&g]

[JKLW90]

[KF87]

[KHs8]

[MGDS90]

of the 4th ACM SIGSOFT/PLAN Software Engi-
neering Symposium on Practical SDFE, pages 183—
192, Dec. 1990.

P. Pircher A. Wasserman and R. Muller. An
object-oriented structured design method for code
generation. ACM SIGSOFT, 14(1):32-55, Jan.
1989.

R. Balzer and K. Narayanaswamy. Mechanisms for
generic process support. In D. Notkin, editor, The
1st International Conference on the Foundations
of Software Engineering, pages 21-32. ACM Press,
Dec. 1993.

G. Booch. Object-Oriented Design with Applica-
tions. The Benjamin/Commings Publishing Com-
pany. Inc., 1991.

Grady Booch. The booch method: Process and
pragmatics. Computer Language, July 1992.

B. Curtis, M. I. Kellner, and J. Over. Process
modeling. Comm. of ACM, 35(9), Sept. 1992.

J. Conklin. Hypertext: An introduction and sur-
vey. IEEE Computer, Sept 1987.

W. Deiters and V. Gruhn. Managing software pro-
cesses in the environment melmac. In Proc. of the
4th ACM SIGSOFT/PLAN Software Engineering
Symposium on Practical SDE, pages 193—-205, Dec.
1990.

Preproduction quality assurance planning: Rec-
ommendations for medical device manufacturers.
Technical report, Office of Compliance and Surveil-
lance, Food and Drug Administration, 1989.

C. Fernstrom and L. Ohlsson. Integration needs
in process enacted environments. In The Proc. of
the 1st Int. Conf. on the Software Process, pages
128-141. IEEE CS, Oct. 1991.

S. Honiden, N. Kotaka, and Y. Kishimoto. For-
malizing specification modeling in ooa. IFEE Soft-
ware, Jan 1993.

D. Harel, H. Lachover, A. Naamad, A. Pnuell,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. Statemate: a working environ-
ment for the development of complex reactive sys-
tems. IEEE Transaction on SE, 16(4):403-414,
April 1990.

W. S. Humphrey. Using the personal software pro-
cess. Private communication, 1993.

In C. Potts, editor, Proc of the 4th International
Workshop on the Software Process, May 1988.

Jr J. Kirby, R. C. Lai, and D. M. Weiss. A for-
malization of a design process. In Proc of the 1990
Pacific Software Quality Conference, 1990.

G. E. Kaiser and P. H. Feiler. An architecture for
intelligent assistence in software development. In
Proc. of 9th International Conference on Software
Engineering, pages 180—188, 1987.

M. I. Kellner and G. A. Hansen. Software pro-
cess modeling. Technical report, Technical Report
CMU/SEI-88-TR-9, May 1988.

N. H. Madhavji, V. Gruhn, W. Deiters, and
W. Schafer. Prism = methodology + process-
oriented environment. In Proc. of 12th Interna-
tronal Conference on Software Engineering, March
1990.

[MRs8]

[MS92]

[Ost87]

[Phis9]

[RBP+91]

[RC92]

[RG92]

[SHDH*91]

[SHO90a]

[SHO90D]

[SM92]

[SMOH91]

[SO89]

[5092]

[5093]

N. Minsky and D. Rozenshtein. Software devel-
opment environment for law-governed systems. In
Proc. of the ACM SIGSOFT/PLAN Software En-
gineering Symposium on Practical SDE, pages 65—
75, Nov. 1988.

P. Mi and W. Scacchi. Process integration in
CASE environments. IEEE Software, 8(2), March
1992.

Leon J. Osterweil. Software processes are soft-
ware too. In Proceedings of the 9th International
Conference on Software Engineering, pages 2—13,

March 1987.

R. W. Phillips. State change architecture: A pro-
totype for executable process models. In Proc of
the 22nd Annual Hawaii International Conference
on Software Engineering, Vol II. Software Track,
pages 154-164, Jan. 1989.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object Oriented Modeling and
Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

D.J. Richardson and J. Chang. Rebus require-
ments on elevator control system. Available upon
request, Dec. 1992.

K. S. Rubin and A. Goldberg. Object behav-
ior analysis. Communication of ACM, (9):48-62,
Sept. 1992.

S. M. Sutton, Ziv H, H. E. Yessayan D. He-
imbigner, M. Maybee, L. J. Osterweil,
X. Song. Programming a software requirements-
specification process. In The Proc. of the 1st Int.
Conf. on the Software Process, pages 68—89. IEEE
¢S, Oct. 1991.

S. Sutton, D. Heimbigner, and L. J. Oster-
weil. Language constructs for managing change
in process centerd environments. In Proc. of the
4th ACM SIGSOFT/PLAN Software Engineering
Symposium on Practical SDE, pages 206-217, Dec.
1990.

S. M. Sutton, D. Heimbigner, and L. J. Oster-
weil. Language constructs for managing change in
process-centered environments. In Proceedings of
the Fourth ACM SIGSOFT Symposium on Soft-
ware Development Environments, pages 206-216,
Irvine, Dec. 1990.

S. Shlaer and S. J. Mellor.
design. Available from authors, 1992.

X. Song, M. Maybee, L. J. Osterweil, and D. He-
imbigner. Rebus: A requirement specification pro-
cess program. Technical Report 91-17, ICS Dept.
University of California, Irvine, April 1991.

and

Real time recursive

X. Song and L. J. Osterweil. Debus: a software de-
sign process program. Technical report, Arcadia-
document, UCI-89-02, April 1989.

X. Song and L. J. Osterweil. Towards objective,
systematic design-method comparison. IEEE Soft-
ware, pages 43-53, May 1992.

X. Song and L. Osterweil. Challenges in execut-
ing design process. In Preprints of the 8th Inter-
national Software Process Workshop, March 1993.
Available from the authors upon request.

16

Appendix:

Challenges in Executing

Design Processes’.

Xiping Song and Leon J. Osterweil

Information and Computer Science
Department
University of California at Irvine

Irvine, CA 92717

song@ics.uci.edu, ljo@ics.uci.edu

A Motivation

Executing a software process is an activity that re-
sults in the creation of software that provides guidance
and assistance to humans who use the corresponding
process as a guide in carrying out software activities.

Execution of software processes has been a very
popular topic in the software process and software
development environment communities. In the past
five years, many papers [[SP88, MS92, SHDH*91]
have been published to address this topic. We sur-
veyed these papers and found that many of them fo-
cus on the study of mechanisms: process representa-
tions and architectures for representing and support-
ing such execution. There is little work that describes
and analyzes external behaviors of an executing pro-
cess and evaluates these behaviors. Previous work has
demonstrated the execution of project management
processes, group coordination processes, and general
decision making processes. We note, however, that
some key software processes, like software analysis and
design, have not been executed successfully.

The software design methodology (SDM) and
CASE communities have suggested that SDM support
tools should support not only the drawing of SDMs’
notations, but also the execution of the processes sug-
gested by SDMs (we refer to this kind of processes as «
design process in this paper). However, up to now, we
have not actually observed a SDM support tool that
supports these processes effectively.

Thus, we believe that using recently developed soft-
ware process technologies to execute real design pro-
cess should benefit all these communities. Executing a
design process should help us to understand the issues
involved in software process execution, and to evaluate
design technologies from users’ perspectives.

2 Accepted and published in Preprints of the 8th In-
ternational Software Process Workshop

B Research Goal

In this paper, we focus on a specific process do-
main, the domain of software design, and discuss the
difficulties in executing software process in general.
Our analyses are based upon our experiences in exe-
cuting design processes [SO89, SMOH91, SHDH*91],
and in comparing and evaluating SDMs [SO92]. We
also analyze other work in this area. We believe that
identifying these difficulties will facilitate progress in
executing software processes in general.

C Challenges
Processes

in Executing Design

Challenge 1: Design processes are too vague to
be executed

One key problem is that the SDMs we have stud-
ied seem to define their processes in terms of artifact
types (e.g., object type and class type) rather than
instances of these types (e.g., objects and classes, for
example, client, clerk, account, interface objects, or
I/O objects). Since software designers create and ma-
nipulate these instances, These SDMs do not provide
strong enough guidelines to these designers.

For example, Booch’s Object Oriented Design
(BOOD) [Boo91] suggests the use of the following
process: 1) Tdentify classes and objects; 2) Identify
semantics of classes and objects; 3) Identify the re-
lationships among classes and objects; and 4) Tmple-
ment classes and objects.

In practice, designers using BOOD will not iden-
tify all objects and classes, then define their seman-
tics. Instead, they will first identify some major and
important objects, then define their semantics. After
that, they may do step 3 to identify the relationships
among the classes and objects they have identified to
obtain a system architecture. Then, they may do step
4 to experiment with the architecture to evaluate its
feasibility, or go back to step 1 to identify other less
important, or internal, objects and classes. Evaluating
the BOOD process against this scenario, we found that
the BOOD process is vague in the sense that it does
not say, specifically for an application domain, what
kinds of objects and classes would be more important
and should be identified first. Unfortunately, though
more recent SDMs offer more guidance, all SDMs still
have this weakness to varying degrees.

Because of this, we expect that simply supporting
existing design processes will not be likely to improve
designer productivity significantly. Note that this is

17

not an execution issue, per se. Instead, this is a pro-
cess improvement challenge, indicating an obstacle to
producing a usable and useful executable design pro-
cesses.

Challenge 2: Design process execution requires
the use of multiple mechanisms

Design processes actually consist of a diverse variety
of activities, such as:

1) diagram drawing (e.g., drawing data flow dia-
grams).

2) knowledge acquisition (e.g., understanding the re-
quirements).

3) analysis (e.g, identifying the system components).
4) selection (e.g., choosing objects).

5) definition (e.g., defining the semantics of an object).
6) development (e.g., a high-level development phase).
These activities are different in 1) time required to fin-
ish, and 2) degree of human involvement.

These differences should affect decisions about
which mechanisms to use to execute these processes.
We believe that the use of the following mechanisms
will be affected:

1. Process control mechanisms: For exam-
ple, the process control mechanisms classified
in [Phi89] are a) user-initiated/user-guided, b)
user-initiated /process-guided,

¢) process-initiated /user-guided, d) process-
initiated /process-guided. For a design activity
that entails scant human involvement, we might
choose to use mechanism ¢) or d). For an activity
that involves humans intensively, we might choose
to use mechanism a) or b).

2. Process guidance mechanisms: Examples
of these mechanisms include those described in
[MS92, SHDH91, FO91]: window, menu, check-
list (task list), dialog box, icon, command button,
process state graph, and task description window.
It seems appropriate to use checklists to guide
the execution of a set of long-executing processes
(e.g., analysis, architectural design, detailed de-
sign). For guiding the execution of a set of short
processes (e.g., specifying object name, author
name, superclass name), it should be appropri-
ate to use a dialog box.

3. Process state tracking mechanisms: FEx-
amples includes the process states described in
[MS92]: none, allocated, ready, active, stopped,
done, and broken. For a short process (e.g., define
object name), we think these states are very much

sufficient (if they are not overcomplex). How-
ever, for a long and complex process, these states
might be at a too low level, and thus, it might
be useful to define and use states at higher lev-
els of abstraction (e.g., analysis_done, architec-
ture_design_done).

Challenge 3: Executing a design process incurs
substantial overhead:

If no overhead costs were incurred, the executed design
process would certainly be more useful than conven-
tional CASE tools or SDEs. Unfortunately, we have
observed that using current process technologies in-
curs the following kinds of overhead costs:

1. Mental Overhead: Showing process informa-
tion to designers may cause mental overhead. 1)
We expect that not all of this information will
be useful to the designers at any time. The infor-
mation (like that shown in [MS92, JKLW90]) may
distract designers’ attention from designing prod-
ucts. 2) Current technologies for executing pro-
cess tend to use a set of deeply overlaid windows
to support a process that is modeled as nested
subprocesses [MS92]. Since a designer may exe-
cute a number of such processes in parallel, using
these technologies will likely cause the “lost in
space” problem that is typically found in hyper-
text systems [Con87].

2. Resource Overhead: Managing the process
state and manipulating the user interface (e.g.,
window creation and deletion) incur performance
overhead. These operations also take internal
(e.g., memory) and external (e.g., window) space.

Challenge 4: Design processes are irregularly
iterative

Like many design methodologists, Grady Booch
stresses that his design specification process must be
performed iteratively in refining and revising a soft-
ware design. He explicitly states that this process is
not a restrictively looping process, but instead, it al-
lows designers to go back to previous steps, even when
looping has not been finished. For example, using the
Booch process, a designer, while at step 3, may like
to go back to step 2 to change the object’s semantics
because he or she has obtained a new understanding
of the object. Thus, the design process actually is not
sequential, random, and iterative in the conventional
sense, but rather irregularly iterative. This suggests

18

the need for new and different process definition lan-
guage semantics.

Three techniques have been used to support design
specification process: a) a set of ordered prompts, b)
a textual or graphical editor (e.g., vi), ¢) a textual
template editor (e.g., a 4th generation tool). Tech-
nique a) will usually be not capable of supporting this
irregularity effectively. Technique b) certainly allows
designers to deal with this irregularity, however, at the
cost of providing no process guidance. Technique c¢)
is more useful than b) because it provides some guid-
ance (e.g., the REBUS system [SHDH*91, SMOH91]
uses the template editor to guide requirement speci-
fication). Ts the textual template editor sufficient for
supporting the specification process? Could we de-
velop something better than that?

Challenge 5: The need to accommodate design-
ers of different skill levels

Some design processes are simple in the sense of that
they capture only outlines of the actual design pro-
cesses. Designers can learn (memorize) these processes
fairly quickly through training. Thus, support for
these simple processes may not help these designers
significantly.

Probably, support for a complex design process
(e.g., the process defined in OMT [RBP*91]) would
be significantly helpful, particularly to less skilled de-
signers. However, this will make challenges 2, 3 and 4
even more challenging.

Very skilled and experienced designers would not
need process support nearly as badly as less skilled
designers would. Those skilled designers know, based
on their experiences and skills, when to stop one step
and to go forward or backward in the process.

Designers of different skill levels need different pro-
cess support. This is a distinctive characteristic of pro-
cess. Note that even very skilled designers use some
product support tools (e.g., those that are directly in-
volved in production, such as, compilers and diagram
drawing tools). An analogy can be found in cooking.
A skilled cook still uses kitchenware, but may not use
a recipe (unless the process is really complex and/or
rarely used). Based on this, we believe that we must
provide process support that can be flexibly adapted
to accommodating different designers.

D Our strategies

To meet these challenges, we are currently develop-
ing an executable version of Booch’s design process.

Tts execution will use our research prototypes (e.g.,
REBUS) and CASE tools (e.g., StP of IDE [AWMS89]).
We also aim to explore new mechanisms to provide
process support. For example, we plan to use trigger
mechanisms [SHO90a].

In the long term, we aim to develop and support
more comprehensive and complex design processes.
We note that design methodologists have begun to
incorporate domain knowledge into SDMs, and to de-
velop more prescriptive and comprehensive design pro-
cesses [Boo92, SM92, RG92]. We believe that an exe-
cuted process would be most useful when it supports a
complex and comprehensive process that incorporates
some domain knowledge and greater prescription.

Acknowledgements

The authors would like to thank Prof. Debra
Richardson. Numerous discussions with her helped
us to shape the ideas presented in this paper.

19

