Common Lisp Instrumentation
Package: User Manual

David L. Westbrook, Scott D. Anderson,
David M. Hart and Paul R. Cohen

Computer Science Technical Report 94-26

Experimental Knowledge Systems Laboratory
Department of Computer Science, Box 34610
Lederle Graduate Research Center
University of Massachusetts
Ambherst, MA 01003-4610

This work was supported by a University Research Initiative grant, ONR N00014-86-K-0764, and by
ARPA /Rome Laboratory under contracts F30602-C-91-0076 and F30602-C-93-0100.

Common Lisp Instrumentation Package:
User Manual

Experimental Knowledge Systems Laboratory
Computer Science Department, LGRC
University of Massachusetts
Box 34610
Amherst, Massachusetts
01003-4610

David L. Westbrook
Scott D. Anderson
David M. Hart
Paul R. Cohen

Crip Version 1.4
January 31, 1994

© 1994, 1993, 1990 Department of Computer Science, University of Massachusetts, Amherst, Mas-
sachusetts. This work was supported by a University Research Initiative grant, ONR N00014-86-K-0764,
and by ARPA /Rome Laboratory under contracts F30602-91-C-0076 and F30602-93-C-0100.

Abstract

This document is the user manual for the Common Lisp Instrumentation Package
(CLrp), a tool for automating experimentation and data collection. CLIP was designed
to be used in combination with the Common Lisp Analytical Statistics Package (CLASP),
though it can be used as a standalone instrumentation package for Common Lisp applica-
tions.

CLIP is available via anonymous ftp from fip.cs.umass.edv in the directory pub/eks1/clip.
CLip requires Common Lisp and the Common Lisp Object System, CrLos. CLIP runs on a
number of platforms under a variety of lisp implementations. Check the CLIP release notes
in pub/eks1/clip for a detailed list of currently supported platforms.

If you have any problems, questions, or suggestions, contact us at:

clasp-support@cs.umass.edu

Contents

1 CLIP 1
1.1 Motivation 1
1.2 Implementation 2

1.2.1 Define-simulator Macro 0o, 2
1.2.2 Define-experiment Macro 3
1.2.3 Write-current-experiment-data Function 5
1.2.4 Run-experiment Function 5
1.2.5 Explicitly Stopping Trials 6
1.3 Clip Definition 6
1.3.1 Simple Clips e 7
1.3.2 Clips with Components 7
1.3.3 Time-series Clips 7
1.3.4 Defclip Macro. 7
1.4 Examples from a Simple Agent Simulator 9
1.4.1 Using Simple Clips to Collect Trial Summary Data 9
1.4.2 Using a Mapping Clip to Map Simple Clips Over Multiple Agents . 10
1.4.3 Full Agent Simulator Experiment with Time-Series Clips 11

A Clip Examples 17

A1 More Experiment Definitions Using CLip 17
A.1.1 Measuring an Airport Gate Maintenance Scheduler’s Performance 17

A.1.2 PHOENIX Real-Time-Knob Experiment 22

The PHOENIX System 22

Identifying the Factors that Affect Performance 23

Experiment Designo oL 23

Rrk Experiment Clips 24

A.1.3 Example from a Transportation Planning Simulation 32
References 37
Index 37

ii

List of Figures

1.1 Simple Clip Example o 11
1.2 Mapping Clip Example. 0 oo 12
1.3 Event-Driven Time-Series Clips, 15
1.4 Periodic Time-Series Clips 15

iii

iv

Chapter 1

CLIP

1.1 Motivation

We collect information from software systems for many reasons. Sometimes, the very pur-
pose of the system is to produce information. Other times, we collect data for debugging,
feedback to the user—in general, for understanding the system’s behavior. Unfortunately,
there seem to be few general tools available for this task. Instead, we often find ad hoc,
domain-specific code, spread throughout a system, varying from component to component,
despite strong similarity in the requirements for any data collection code.

Cuip, the Common Lisp Instrumentation Package, standardizes data collection. It is
named by analogy with the “alligator clips” that connect diagnostic equipment to electrical
components. By standardizing data collection, we can more easily add and delete instru-
mentation from our systems. We can reuse a piece of data collection code, called a “clip,”
in other systems we are studying. We can use general tools to analyze the collected data.
Instrumentation in a system becomes more easily used and understood, because the basic
functionality of the system is separated from the functionality of the instrumentation.

We designed CLIP to be used for scientific experiments, in which a system is run under a
number of different conditions to see whether and how the behavior changes as a function of
the condition. Consequently, we view an experiment as a series of trials, varying the settings
of experiment variables and collecting information. Generally speaking, an experiment
comprises the following steps:

1. Creating clips and inserting them into the system to be studied. Generally, clip
measures one particular aspect of a system, but you can also define clips that combine
many measurements, including other clips. Often, the clips you need will already be

defined.

2. Define the experiment, in terms of what system is to be run, any necessary initializa-
tion code, and the conditions under which it is to run (different input parameters or
environmental conditions).

3. Run a series of trials, saving the output into a CrLaspPformat data file.* This format
is described in the CLASP manual section Data Manipulation Functions, although it
isn’t necessary to understand the file format. CLASP can read what CLIP writes.

*CLIP can also write data files in standard tab or space delimited format used by most other statistical
packages, databases and spreadsheets.

2 CHAPTER 1. CLIP
4. Analyze the data using CLASP.

1.2 Implementation
CLiP provides five major forms to support experiments:
e define-simulator,
e defclip,
e define—experiment,
e write-current-experiment-data, and
e run-experiment

Each is described in detail below.

1.2.1 Define-simulator Macro

define-simulator (name &key system-name system-version reset-system [Macro]
start-system stop-system schedule-function deactivate-scheduled-function
seconds-per-time-unit timestamp)

Define the interface to a simulation. The following options are recognized:

1.2. IMPLEMENTATION 3

:system-name string naming system [2]
:system-version function or form which handles the arguments [1]
of the experiment and returns a string which
denotes the version of the system ¢
:start-system function or form that handles the experiment [2]
variables and arguments of the experiment;
this function is called during the experiment
loop to begin execution of the system; when it
returns the trial is considered to be completed
:reset-system same as :start-system; this function will be [1]
called during the experiment loop before the
system is started;
:stop-system same arg handling as :start-system; this func- [1]
tion can be used to execute code when a trial
is shutdown; it is most useful when instru-
menting multiprocessing systems where other
processes need to be terminated
:schedule-function function or form that handles the lambda list [3]
(function time period name) and optionally
returns a data-structure which represents the
event; used to provide access to the simula-
tor’s event-scheduling mechanism
:deactivate-scheduled-function function or form that handles one arg, [1]
namely the data structure returned by the
schedule-function function; used to pro-
vide access to the simulator’s event-scheduling
mechanism
:timestamp a function or a list of (<function-name> [3]
<clip-name>) where function should re-
turn the current time in units specified by
:seconds—-per-time-unit
:seconds-per-time-unit the number of seconds in 1 simulator time [3]
quantum (default is 1)

Keywords marked [1] are optional; Keywords marked [2] are required, and keywords marked [3] are
required when using time-series clips
“Functions must accept the formal arguments specified in define-experiment and the actual arguments
specified in a call to run-experiment. Forms can refer to the arguments lexically.

The define-simulator form is used to eliminate the need to specify redundant infor-
mation when multiple experiments are to be defined for the same system. All of the options
specified in this form can be overridden in a define-experiment form.

1.2.2 Define-experiment Macro

define-experiment (name arguments &body body &auzr documentation) [Macro]

A define-experiment form sets up the environment in which the system is to be run.
Options for define-experiment support the sequential nature of experimentation. That

4 CHAPTER 1. CLIP

is, for the purposes of alligator clips, we view an experiment as a series of trials, varying the
settings of experiment variables and collecting information. The define-experiment macro
allows code to be run at the beginning and end of the experiment, usually to set up data-
recording or to do data analysis. It also allows code to be run at the beginning and end of
each trial; often this is used to reset counters, clear data structures, or otherwise set up the
data collection apparatus. Through the :script keyword a user may add specific code to
run at particular times during the experiment. A user can also specify experiment variables
and their associated sets of values; the experiment code will ensure that all combinations
of the experiment variables are run. For example, specifying:

:variables ((rating-scheme ’(:0PPORTUNISTIC :0RDER-BY-ORDER))
(percentage from 100 downto 50 by 10))

describes an experiment with twelve conditions (six values of percentage times two kinds
of rating schemes), and so the number of trials will be a multiple of twelve, with an
equal number of trials being executed under each condition. The options accepted by
define-experiment are:

:simulator specify the name of the simulator definition to use
:before-trial called with the current values of the experiment variables and
arguments to specify operations performed before each trial
(such as initializations)

:after—-trial similar to :before-trial, specifies operations to be per-
formed after each trial. Summary data files for each trial can
be written at this time using write-current-experiment-
data.

:before-experiment called with the arguments. The value should be a form that
refers to the arguments or a function that handles the correct
number of arguments. Used to initialize system and define
experiment environment.

:after-experiment Similar to :before-experiment, called with just the argu-
ments. Used to close files, write any experiment summariza-
tion output and clean up after the experiment.

:instrumentation is a list of names defined with defclip which will be enabled
during the experiment. Use write-current-experiment-
data in the after-trial code to write the data to the output-
file.

:variables ({(var exp) | (var {loop-for-clause})}) - define experiment

variables

:locals ({(var exp) | var}*) - bind variables in the context of the
experiment

:script ({(descriptive-name initial-time [next-time| form) — script-
element-name}*) initial-time can be a string, a number or
form to evaluate. mezt-time is a time interval and should be
a fixnum or form.

In addition, define-experiment accepts all the options accepted by define-simulator.

1.2. IMPLEMENTATION 5

The following steps are generated from the define-experiment specification to run a
typical experiment. After initializing the system using the :before-experiment form, it
loops over the cross-product of the specified experiment variables, running one trial for
each element in the cross-product. This is repeated for as many times as is specified in the
:repetitions option. After the last trial, the :after-experiment form is run.

Run :BEFORE-EXPERIMENT code with args
LoopP
Update experiment-variables for trial
Run :BEFORE-TRIAL code with experiment-variables and args
Run :RESET-SYSTEM code with experiment-variables and args
Instantiate Script Events
Reset and Enable all the instrumentation
Run :START-SYSTEM code with experiment-variables and args
<system runs (possible periodic and event based collection done)>
Run :AFTER-TRIAL code (possible post-hoc collection domne)
END LOOP when all trials completed
Run :AFTER-EXPERIMENT code with args

1.2.3 Write-current-experiment-data Function

write-current-experiment-data (&key separator format instrumentation [Function]
stream)

Causes each experiment instrumentation to write its data to stream or the output-files
specified in the run-experiment call or in a defclip. separator should be a character which
will be used to separate fields. It defaults to the value of *data-separator-character*.
format should be one of :CLASP which means write a clasp native format data file, : ASCII
which means write a standard separator delimited data file including column names or
:DATA-ONLY which is the same as :ASCII except no column names are included. format
defaults to the value of *xoutput-format*. instrumentation can be used to specify a subset
of the experiment’s instrumentation to write to the data file.

1.2.4 Run-experiment Function

run-experiment (experiment-name Ekey args repetitions number-of-trials [Function]
length-of-trial output-file error-file extra-header starting-trial-number)

Run-experiment starts execution of the experiment named ezperiment-name. The args
are passed on to the experiment. outpui-file is optional, but must be specified if write-
current-experiment-data is called from within your experiment. number-of-trials can be
used to specify an exact number of trials to run. If number-of-trials is not specified it will
be calculated so as to vary all the experiment variables across all their values repetitions
(default 1) times. starting-trial-number can be used to change this value to something other
than one (1) which is useful for continuing partially completed experiments. length-of-trial
can be specified for time-based simulators to put a limit on the maximum trial length.
error-file can also be used to direct the error/debug output to a file. extra-header is written
at the end of the header of the output file.

6 CHAPTER 1. CLIP

1.2.5 Explicitly Stopping Trials

The following functions can be called from user code to explicitly terminate a CLIP trial
or experiment. Usually this is done from within the code of a script or as part of an error
handler. They all take no arguments and assume that an experiment is in progress.

shutdown-and-rerun-trial () [Function]

This will cause the current trial to be aborted (no data written) and restarted. This
is a function that users should call when they have detected an error condition of
some sort that renders the trial worthless, but rerunning the trial may work.

shutdown-and-run-next-trial () [Function]

This will cause the current trial to be stopped (data will be written) and the next
trial started. This is a function that users should call when want to normally
shutdown a trial and collect and report the data from that trial.

shutdown-experiment () [Function]

This will cause the current trial to be aborted (no data will be written) and will
return the system to the state it was before the experiment began (by running the
after-experiment code).

1.3 Clip Definition

There are basically only a small number of ways to instrument a software system. These
are: adding special purpose code to collect data, interrogating global (usually objects with
state) data structures or using advice.

The first way is to build in special purpose code to collect data about the state of the
system while the system is running. We used this technique in the Phoenix;j testbed to keep
information about the execution time of timeline entries and also message traffic patterns.
The Transsim simulator also uses this technique when it keeps track of daily costs, ship
locations, demon firing intervals. The key point here is that the only reason for adding the
piece of code was to allow an experimenter to analyze the behavior of the system. The
simulation itself does not use the information. This method increases the complexity and
reduces the readability and maintainability of the software system. In code that is highly
instrumented it is often difficult to determine what is intrinsic to the running of the system
and what is used to instrument.

Another method involves interrogating global data structures to determine the state
post hoc. Examples include most everything we collected about Phoenix (ie., fireline built,
first plan tried, bulldozer digging times, etc.). This technique is fine if the information
is hanging around after you have finished running the simulation, but this is not always
the case. Also, there is some information that is time-sensitive, and therefore must be
collected on a periodic or event-driven basis. Collecting this type of information often
involves resorting to the first method — altering the code itself.

Alternatively, one can use the advise facility available in many lisp environments to non-
intrusively collect information when functions are called. This is a nice modular approach,
but requires a good deal of knowledge about the advise facility and the software system
itself. Unfortunately, the advise facility is not standardized across Lisp implementations.

The defclip macro encapsulates the code necessary to instrument a software system
and separates it from the system itself. It avoids the pitfalls of adding special purpose code

1.3. CLIP DEFINITION 7

directly to the software system while at the same time allowing periodic and event-driven
data collection. It also allows collection to be done by perusing global data structures.

1.3.1 Simple Clips

Simple clips have no components and collect data immediately prior to reporting it to the
output file at :after-trial time. If they are defined with a :schedule or :trigger-event
defclip option their default behavior is store all of the data collected during a trial and
report a single value which is the mean of all the values collected.?

1.3.2 Clips with Components

Clips with components, as specified by the : components keyword, generate multiple columns
in a data file each time they are reported. Depending on other options they may produce
one column per component (composite clips) or multiple columns per component (mapping
clips). Mapping clips are specified using the :map-function option to defclip. Clips with
components are sometimes referred to as super clips. For a good example of clips with
components and further discussion of their use, see Appendix A.1.1.

1.3.3 Time-series Clips

Clips that have :components and either the :schedule or :trigger-event option are
time-series clips. They generate multiple data columns in the manner of component clips
(which they are) and also multiple data rows. Each row corresponds to a single collection
and is either triggered by a particular event or activated periodically. Since time-series
clips generate multiple rows, they are generally written to a data file that is separate from
the main experiment (summary) data file. The name of the data file associated with a
time-series clip is specified using the :output-file option to defclip.

The :schedule-function, :seconds-per-time-unit, and :timestamp keywords to
define-simulator must be specified for periodic time-series clips. Event-based time-series
clips require only that the Common Lisp implementation provide some mechanism similar
to the advise function.}!

1.3.4 Defclip Macro
defclip (name args (options) Erest body) [Macro]

A defclip form defines and names a particular data-collection instrument. Each clip
collects a single variable which, together with other variables, make up a dataset. The
dataset can then be analyzed by CrAsP. The form may contain arbitrary code to gather
data for the clip: access to global variables, function calls, and so forth. Naming the clips
makes it easy to turn them on and off programatically or with menu selections.

options is a list of keywords and values which modify the main form implemented by
the clip. options can be any of the following, all of which are optional:

tThe default behavior if the collected values are non-numeric is to generate an error.

Actually, one can explicitly call the undocumented (until now), unexported ‘clip::collect’ function on a
particular instrumentation and achieve the same effect as an event-based clip, but requires modifying the
code.

8 CHAPTER 1. CLIP

:schedule a list of keyword/value pairs; currently allowed are :period
which provides the time interval between collections for time-
series data, and :start-time which specifies the time of the
first collection; if neither :schedule nor :trigger-event is
specified, collection will be done immediately prior to the
report being output to the data stream

itrigger-event a function, list of functions or list of trigger specifications
which trigger event-driven collection ; each trigger spec
should of the form (<fname> [:BEFORE | :AFTER] [:PRED-
ICATE <fname>])

:components a list of clips that are associated with this clip; ie., they are
collected and reported as a group by collecting or reporting
this clip

:map-function provides a list of items to map the :components over ; this
function should return the same arguments in the same order
each time it is called

:report-key allows overriding of the column header key which is written to
the data stream; avoid using this for component clips unless
you really know what you are doing as the default key will
be generated to correctly differentiate between multiple in-
vocations of the same clip with different parents; this string
is used in a call to ‘format’; for most component clips this
string should handle the same arguments as the clip

:initial-status whether the clip is enabled or disabled by default
:report—function can be used to override the default report function; for expert
users only
:enable-function code?® to set up data structures for the clip; runs once when
the clip is turned on
:disable-function code to remove data structures set up for the clip; runs once
when the clip is turned off
:reset-function code to reinitialize data structures at the beginning of each
trial; for example, setting counters back to zero
:display-function code for graphical display of the information
:output-file wused to specify the output file for time-series clips - merged
with the pathname specified in the run-experiment call,;
should be a string or a function of one arg; the function is
called with the name of the clip and should return a value
suitable for use as the first argument to merge—pathnames

%‘code’ at this level is specific to the user’s system, and is assumed to be user-supplied Lisp code. For
example, enabling a counter of events in a system may require creation and initialization of a counter variable.

Some examples of defclip usage:

A simple clip with code used to report a value:
(defclip number-of-dead-bulldozers ()
(length (bds-that-died)))

1.4. EXAMPLES FROM A SIMPLE AGENT SIMULATOR 9

An example showing a clip with components:
(defclip methods-each-bd (bulldozer)
"Salient information for each instance of applying a recovery method:"
(:components (trial-number
agent-name
method-type
failure-type
calculate-recovery-cost
method-succeeded-p
order-of-application)
:map-function (gather-recovery-method-instances (name-of bulldozer)))
;3 This code executes before the map-function is executed.
(send (fire-system) :set-frame-system (name-of bulldozer)))

(defclip ii-projection-attempts-made ()
"Clip for reporting the number of attempts that were made by
ii-projection during the last projection of the trial."
(:reset-function (setf *ii-projection-attempts-made* nil))
(car *ii-projection-attempts-madex))

1.4 Examples from a Simple Agent Simulator

The following three examples illustrate experiment control and data collection using CLIP.
The agents in this simulator stochastically increment their state until they reach a final
state. The first example defines the experimental interface to an agent simulator and two
simple clips for collecting data. The second and third examples build on the first, defining
more complicated clips for mapping a simple clip onto multiple agents and for collecting
time-series data.

1.4.1 Using Simple Clips to Collect Trial Summary Data

This example collects trial summary data about overall agent-cost and task completion-time.
Collection occurs at the end of each trial and is written out to a summary file in CLASP
format. The define-simulator form designates methods for starting the simulation at
the beginning of the experiment, resetting and reinitializing it if necessary, and stopping it
after the final trial. The define-experiment form designates the simulator to use, in this
the case the one we have defined. It also specifies: a set of experiment variables and the
experimental settings for each, a list of the clips we’ve defined under :instrumentation,
initializations for global variables before each trial, and a function for writing out a row of
data at the end of each trial.

For each trial, the trial number (assigned sequentially) and the value of each experiment
variable are written out to the summary file along with the values of the specified clips. An
example of the CLASP output file produced by this experiment is shown in Figure 1.1.

In this first example we have defined two simple clips. One collects the combined cost
of all agents at the end of each trial and the other records the time at which the trial ends.

10 CHAPTER 1. CLIP

(define-simulator agent-sim-1
:start-system (run-agent-simulation :reset nil)
:reset-system (reset-agent-simulation)
:stop-system stop-simulation)

;33 Clip Definitioms

(defclip agents-cost ()

O
(reduce #’+ (find-agents) :key #’cost))

(defclip completion-time ()
O

(current-time))

S5 seokokokekeke ook o k k ks sk sk sk sk s s s s s o o o o
;33 The Experiment Definition

(define-experiment simple-agent-experiment-1 ()
"A test experiment."
:simulator agent-sim-1
:variables ((transition-probability in (.01 .1))
(cost-factor from 1 to 3))
:instrumentation (agents-cost completion-time)
:before-trial (setf *transition-probability* transition-probability
relative-cost cost-factor)
:after-trial (write-current-experiment—-data))

#| Execute this to run the demo experiment.

(run-experiment ’simple-agent-experiment-1
:output-file
#+Explorer "ed-buffer:data.clasp")
| #

1.4.2 Using a Mapping Clip to Map Simple Clips Over Multiple Agents

This example defines a mapping clip that maps over all the agents at the end of each
trial and returns the cost accrued by each. It produces a summary output file like that in
Figure 1.2 recording after each trial an entry that includes trial number, each experiment
variable, each of three agent’s cost, and the completion time of the trial.

;;; Mapping clip to collect cost of each agent

(defclip all-agents-costs ()

1.4. EXAMPLES FROM A SIMPLE AGENT SIMULATOR 11

trial-number cost-factor agents-cost completion-time

transition-probability

(1 0.01 1 1571 729)
(2 0.01 2 3288 587)
(3 0.01 3 4011 567)
ggfn?; —» (4 0.10 1 126 63)
(5 0.10 2 328 67)
(6 0.10 3 537 68)

Figure 1.1: Simple Clip Example from the Agent Experiment.

(:map-function (find-agents)
:components (each-agent-cost)))

(defclip each-agent-cost (agent)
O
(cost agent))

5 dkookook ok ok ok ok ok ok ok ok k ok ok 2k k ok 3k 2k 2k sk sk 2k 2k k ok ok 2k ke k¢ sk 3k K 2k kk 3k ok 3k ok 2k k ok ok 2k ok 3k 3k 3k ok ok ok %k

;33 The Experiment Definition

(define-experiment simple-agent-experiment-2 ()
"A test experiment."
:simulator agent-sim-1
:variables ((transition-probability in (.01 .1))
(cost-factor from 1 to 3))
:instrumentation (agents-cost all-agents-costs completion-time)
:before-trial (setf *transition-probability* transition-probability
relative-cost cost-factor)
:after-trial (write-current-experiment—-data))

#| Execute this to run the experiment.

(run-experiment ’simple-agent-experiment-2
:output-file
#+Explorer "ed-buffer:data.clasp")
| #

1.4.3 Full Agent Simulator Experiment with Time-Series Clips

This example uses both periodic and event-driven time-series clips to collect data about
each agent’s state. To use time-series clips the experimentor must supply CrLip with
enough information to schedule data collection during trials. This is done by specify-

12 CHAPTER 1. CLIP

‘trial-number"transition-probability' ‘cost-factor' ‘agents-cost' all-agcnts-coslts ‘completion-time'
:map (agent-

agent-2

agent-3)

each-agent-cost

(1 0.01 1 1370 390 622 358 622)
(2 0.01 =2 2108 746 364 998 499)
(3 0.01 3 4938 1299 2772 867 924)
(4 0.1 1 148 36 59 53 59)
(5 0.1 2 280 130 80 70 65)
(6 0.1 3 627 192 258 177 86)

Figure 1.2: Mapping Clip Example from the Agent Experiment. Mapping clips are used to
map one or more simple clips over multiple objects.

ing in define-simulator a :schedule-function that tells defclip how to schedule clip
execution. The optional :deactivate-scheduled-function provides a function for un-
scheduling clips (if necessary). :seconds-per-time-unit tells CLIP how to translate the
time units of the simulator into seconds. The value of :timestamp is used to automatically
record the time of collection in each row of a time-series data file.

This example illustrates three uses of clips: collecting summary data about the highest
agent state, gathering periodic snapshots of all agent states, and recording particular aspects
of the agents’ changes of state. The periodic clip definition specifies an output file and a
scheduling interval. Two event-driven clips are triggered in this example by the same
function, change-of-state-event-function, which looks for any change of agent state.
However, since their component clips are not identical, their output is routed to separate
files (CLasP file format expects all rows to have the same number of columns and column
names).

Four output files are produced by this experiment. As in the previous examples, a
summary file records a row of data at the end of each trial. Each change in an agent’s state
triggers event-driven clips that record a row in a time-series output file, as in Figure 1.3.
The event-driven clip definitions change-of-state and change-of-state-pred produce
one output file each. The fourth output file also records time-series data, one row for each
periodic snapshot of all agents’ states (cf. Figure 1.4).

Collecting time-series data is more time-consuming than collecting summary data. In
the first two examples, where only summary data was collected, trials were allowed to run to
completion. In the third example periodic clips run every 12 minutes and event-driven clips
run as frequently as agent’s states change. We can limit the duration of trials by specifying
a :length-of-trial value to run-experiment. This is useful for statistical tests on time-
series data, such as cross-correlation, that expect the number of rows for each trial to be
the same. Thus, in this example, specifying :length-of-trial to be 500 minutes ensures
that the periodic data collection will produce the same number of rows for each trial.

(define-simulator agent-sim
:start-system (run-agent-simulation :reset nil)

1.4. EXAMPLES FROM A SIMPLE AGENT SIMULATOR

:reset-system (reset-agent-simulation)
:stop-system stop-simulation
;; a function that places functions to run on the queue of events.
:schedule-function (lambda (function time period name &rest options)
(declare (ignore name optiomns))
(schedule-event function nil time period))
;; a function that removes functions from the queue of events.
:deactivate-scheduled-function unschedule-event
:seconds-per—-time-unit 60
:timestamp current-time)

;33 Clip Definitioms

;3 This post-hoc clip produces two values.
(defclip highest-agent-state ()
(:components (highest-state highest-agent))

(loop
with agents = (find-agents)
with highest-agent = (first agents)
with highest-state = (state highest-agent)
for agent in (rest agents)
for agent-state = (state agent) do
(when (state< highest-state agent-state)
(setf highest-state agent-state
highest-agent agent))
finally (return (values highest-state highest-agent))))

;33 Periodic collection

;3 This clip invokes its component every 12 minutes.
(defclip periodic-agent-state-snapshot ()
(:output-file "snapshot.clasp"
:schedule (:period "12 minutes")
:map-function (clip::find-instances ’agent)
:components (each-agent-state-snapshot)))

;3 Simple clip that returns the state of the agent.
(defclip each-agent-state—snapshot (agent)

"Record the state at an agent."

0]

(state agent))

;33 Event-driven collection

13

14 CHAPTER 1. CLIP

;5 This clip accepts the arguments passed to ‘change-of-state-event-function’
;; and simply passes them through.
(defclip change-of-state (agent-name new-state)
(:output-file "state-change.clasp"
:trigger-event (change-of-state-event—function :BEFORE)
:components (new-state agent-name))
(values new-state agent-name))

;; This clip accepts no arguments and returns two values computed by other
;; functionms.
(defclip change-of-state-pred ()
(:output-file "state-change—pred.clasp"
:trigger-event (change-of-state-event-function :AFTER)
:components (fred barney))
(values (compute-fred) (compute-barney)))

3k 2k 3k 3k 3k 2k 3k sk 3k ok 2k sk ok ok 2k k 3k 3k 2k k¢ sk 3k % 2k ok ok 2k k¢ k¢ sk Kk K 2k k 3k ok 3k K 2k dk ok ok ok ok k¢ 5k *k %k

;33 The Experiment Definition

(define-experiment agent-experiment ()

"A test experiment."

:simulator agent-sim

:variables ((transition-probability in (.01 .1))

(cost-factor from 1 to 5 by 2))

:instrumentation (agents-cost
all-agents—-costs
completion-time
highest-agent-state
change-of-state-pred
change-of-state
periodic-agent-state-snapshot)

:before-trial (setf *transition-probability* transition-probability

relative-cost cost-factor)
:after-trial (write-current-experiment—-data))

;; Execute this to run the demo experiment.

(defun rexp ()
(run-experiment ’agent-—experiment
:output-file "data.clasp"
:length-of-trial "500 minutes"))

1.4. EXAMPLES FROM A SIMPLE AGENT SIMULATOR 15

trial-number I ’ timestamp I ’transition-probability I’ cost-factorl ’change-of -stateI

new-state I ’agent-name I

(1 65 0.01
(1 82 0.01
(1 136 0.01
(1 151 0.01
(1 154 0.01
(1 250 0.01
(1 296 0.01
(2 0O o0.01
(2 23 0.01
(2 28 0.01

STATE2 AGENT-2)
STATE3 AGENT-2)
STATE3 AGENT-1)
STATE4 AGENT-2)
STATE4 AGENT-1)
STATE5 AGENT-2)
STATE6 AGENT-2)
STATE2 AGENT-2)
STATE2 AGENT-1)
STATE3 AGENT-2)

WWWHRKRRERRR

Figure 1.3: Event-Driven Time-Series Clips are used to collect data when an agent’s state
changes in the Full Agent Experiment.

periodic-agent-
state-snapshot
:map (agent-1
agent-2
agent-3)

trial-number]| timestamp transition-probabilityl cost-factor

each-agent-
state-snapshot

(1 O 0.01 1 STATEl1l STATEl STATE1l)
(1 12 0.01 1 STATE1l STATEl STATE1l)
(1 24 0.01 1 STATEl STATEl STATE1l)
« ---)
(6 36 0.1 5 STATE3 STATE6 STATE2)
(6 48 0.1 5 STATE4 STATE6 STATEG)
(6 60 0.1 5 STATE4 STATE6 STATEG)

Figure 1.4: Periodic Time-Series Clips collect snapshots of each agent’s state at regular
intervals during the Full Agent Experiment.

16

CHAPTER 1.

CLIP

Appendix A

Clip Examples

A.1 More Experiment Definitions Using Clip

The following three examples, taken from different domains, illustrate experiment control
and data collection using CLIP. The third example includes output files (in CLASP format)
for time-series clips.

A.1.1 Measuring an Airport Gate Maintenance Scheduler’s
Performance

This extended example of CLIP code was provided by Zachary Rubinstein. The system
being studied is an Al scheduler developed by David Hildum for a domain called Airport
Resource Management (ARM). The task is to schedule gate maintenance, providing and
coordinating vehicles for servicing planes at terminal gates. The experiments shown here
were part of a baseline study designed to measure the performance characteristics of several
priority rating schemes under resource-constrained scenarios. The dependent variables are
delay and fragmentation (how much shuttling between gates occurs). The independent
variables are the competing heuristic rating schemes for determining the order in which
resource requests are scheduled. For clarity, many of the implementation details have been
omitted.

The example uses several super clips to organize the collection of similar kinds of data,
such as all measures of delay. All data collection occurs post hoc and is written to a single
summary file. Note that two experiments are defined, each of which uses the same clips. The
function delays-information, called by the clip delay, provides an interesting example of
the interface between clips and the system being instrumentated.

The delay and fragmentation clips are examples of composite clips. The values re-
turned by the body of a composite clip are one-to-one mapped onto the components of the
clip. Each component is itself a clip which accepts an argument and has a body that returns
a value. This value is what is output to the data file. The number of values a composite
clip produces is equal to the number of its components.

The components of a composite clip have a clip definition automatically generated for
them. The default action for this automatically generated component clip is to return its
single argument as a single value. For example, the delay clip below generates a clip
for each of its components automatically. The clip designer can also override this default
behavior by writing a clip for that component that does something with the argument before
returning it.

17

18 APPENDIX A. CLIP EXAMPLES

(define-simulator arm :start-system arm:run-arm)

;33 CLIP Definitions

(defclip airport ()
"Return the Currently Loaded Airport"
O
(arm: :get-loaded-airport))

(defclip timetable ()
"Return the Currently Loaded timetable"
O
(arm: :get-loaded-timetable))

(defclip delay ()
"Composite clip to calculate the various delay clips."
(:components (total-delay number-of-delays average-delay
std-dev-delay maximum-delay duration-ratio))

(delays-information))

(defclip fragmentation ()
"Composite fragmentation clip to calculate the various fragmentation clips."
(:components (total-servicing-time
total-sig-frag-time
total-setup-time
total-travel-time
ratio-of-frag-to-servicing
ratio-of-setup-to-servicing
ratio-of-travel-to-servicing))

(resource-fragmentation-information ’arm:baggage—truck-planner-unit))

;3 ; Experiments

(define-experiment limit-resources-numerically-over-rating-schemes
(%key (rating-schemes *defined-rating-schemes*)
(airport-delimiter 10)
(airports user::*10-FTS-ATRPORTSx*)
(timetable-name :20-flights))
"Using the various rating schemes, constrain the resources
and report the delays."
:locals ((report-filename nil))

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 19

:variables ((airport-name in airports)
(rating-scheme in rating-schemes))
:instrumentation (timetable
total-delay number-of-delays average-delay
std-dev-delay maximum-delay duration-ratio
total-servicing-time total-sig-frag-time
total-setup-time total-travel-time
ratio-of-frag-to-servicing
ratio-of-setup-to-servicing
ratio-of-travel-to-servicing)
:before-experiment (progn (arm:zack-set—default-demo-parameters)
(arm:execute-load-timetable
:LOAD-SPECIFIC-FILE timetable-name))
:before-trial (setf report-filename
(delay-initialize—trial rating-scheme
airport-delimiter airport-name))
:after-trial (delay-report report-filename
airport-delimiter rating-scheme))

;;; Example Invocation

#+COMMENT
(run-experiment ’dss:limit-resources—numerically-over-rating-schemes
:args ’(:rating-schemes
(:zack-1 :default :obo-minest-heuristic)
rairport-delimiter :20-ref
:airports (:detroit-17-bts :detroit-16-bts
:detroit-15-bts :detroit-14-bts
:detroit-13-bts :detroit-12-bts)
:timetable-name :20-flights)
:output-file "hillary:reports;20-REF-FTS-DELAY-STATS.TEXT")

;3 ; Experiments

(define-experiment run-over-rating-schemes
(%key (rating-schemes *defined-rating-schemes*)
(airport-delimiter 10))
"Using the various rating schemes, constrain the resources, introduce
orders, and report the delays."
:locals ((report-stream nil))
:variables ((rating-scheme in rating-schemes))
:instrumentation (airport timetable
total-delay number-of-delays
average-delay std-dev-delay

20

APPENDIX A. CLIP EXAMPLES

maximum-delay duration-ratio
total-servicing-time total-sig-frag-time
total-setup-time total-travel-time
ratio-of-frag-to-servicing
ratio-of-setup-to-servicing
ratio-of-travel-to-servicing)

:before-trial (setf report-stream

(delay-initialize—trial rating-scheme
airport-delimiter))

:after-trial (write-current-experiment—-data))

;;; Example Invocation

#+COMMENT

(run-experiment ’dss:run-over-rating-schemes

:ARGS ¢ (:RATING-SCHEMES
, (cons :DEFAULT
(cons :ZACK-1
(remove :0PPORTUNISTIC
defined-rating-schemes
:TEST #’eq)))
:airport-delimiter 10)
:0UTPUT-FILE "hillary:reports;HILDUM-EXP-1.TEXT")

;33 Delay Information

(defun delays-information ()
(LDOP WITH local-delay-time = O

AND network = nil
AND release-time = nil
AND due-date = nil
AND start-time = nil
AND finish-time = nil
AND avg-delay = 0
AND std-dev-delay = 0
AND max-delay = O
FOR order IN (find-units ’order
(make-paths ’(scheduler * order)) :ALL)
DO
(setf network (order$network order))
(setf release-time (order$release-time order))
(setf due-date (order$due-date-time order))
(setf start-time (task-network$start-time network))

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP

(setf finish-time (task-network$finish-time network))
(setf local-delay-time (- finish-time due-date))

SUM (- finish-time start-time) INTO total-actual-duration
SUM (- due-date release-time) INTO total-desired-duration
WHEN (not (= local-delay-time 0))

COUNT local-delay-time INTO number-of-delays

AND

SUM local-delay-time INTO total-delay-time
AND

COLLECT local-delay-time INTO delays
FINALLY

(unless (zerop number-of-delays)
(setf avg-delay (float (/ total-delay-time number-of-delays)))
(setf std-dev-delay
(LOOP FOR delay IN delays
SUM (expt (- delay avg-delay) 2)
INTO sum-of-squares
FINALLY (return
(sqrt
(float
(/ sum-of-squares
(1- number-of-delays)))))))
(setf max-delay (apply #’max delays)))
(return (values total-delay-time
number-of-delays
avg-delay
std-dev-delay
max-delay
(float (/ total-actual-duration
total-desired—duration))))))

21

22 APPENDIX A. CLIP EXAMPLES

A.1.2 Phoenix Real-Time-Knob Experiment

This section describes an experiment done in the PHOENIX fire-fighting simulation system.
We give some background on the Phoenix system and on the experiment design to help
the reader better interpret the experiment definition that follows. For more detail on the
experiment and its results see Hart & Cohen, 1992 [1].

The Phoenix System

PHOENIX is a multi-agent planning system that fights simulated forest-fires. The simulation
uses terrain, elevation, and feature data from Yellowstone National Park and a model of
fire spread from the National Wildlife Coordinating Group Fireline Handbook (National
Wildlife Coordinating Group 1985). The spread of fires is influenced by wind and moisture
conditions, changes in elevation and ground cover, and is impeded by natural and man-made
boundaries such as rivers, roads, and fireline. The Fireline Handbook also prescribes many
of the characteristics of our firefighting agents, such as rates of movement and effectiveness
of various firefighting techniques. For example, the rate at which bulldozers dig fireline
varies with the terrain. PHOENIX is a real-time simulation environment PHOENIX agents
must think and act as the fire spreads. Thus, if it takes too long to decide on a course of
action, or if the environment changes while a decision is being made, a plan is likely to fail.

One PHOENIX agent, the Fireboss, coordinates the firefighting activities of all field
agents, such as bulldozers and watchtowers. The Fireboss is essentially a thinking agent,
using reports from field agents to form and maintain a global assessment of the world.
Based on these reports (e.g., fire sightings, position updates, task progress), it selects and
instantiates fire-fighting plans and directs field agents in the execution of plan subtasks.

A new fire is typically spotted by a watchtower, which reports observed fire size and
location to the Fireboss. With this information, the Fireboss selects an appropriate fire-
fighting plan from its plan library. Typically these plans dispatch bulldozer agents to the fire
to dig fireline. An important first step in each of the three plans in the experiment described
below is to decide where fireline should be dug. The Fireboss projects the spread of the fire
based on prevailing weather conditions, then considers the number of available bulldozers
and the proximity of natural boundaries. It projects a bounding polygon of fireline to
be dug and assigns segments to bulldozers based on a periodically updated assessment of
which segments will be reached by the spreading fire soonest. Because there are usually
many more segments than bulldozers, each bulldozer digs multiple segments. The Fireboss
assigns segments to bulldozers one at a time, then waits for each bulldozer to report that it
has completed its segment before assigning another. This ensures that segment assignment
incorporates the most up-to-date information about overall progress and changes in the
prevailing conditions.

Once a plan is set into motion, any number of problems might arise that require the
Fireboss’s intervention. The types of problems and mechanisms for handling them are
described in Howe & Cohen, 1990 [2], but one is of particular interest here: As bulldozers
build fireline, the Fireboss compares their progress to expected progress. If their actual
progress falls too far below expectations, a plan failure occurs, and (under the experiment
scenario described here) a new plan is generated. The new plan uses the same bulldozers to
fight the fire and exploits any fireline that has already been dug. We call this error recovery
method vreplanning. PHOENIX is built to be an adaptable planning system that can recover
from plan failures. Although it has many failure-recovery methods, replanning is the focus

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 23

of the experiment described in the next section.

Identifying the Factors that Affect Performance

We designed an experiment with two purposes. A confirmatory purpose was to test pre-
dictions that the planner’s performance is sensitive to some environmental conditions but
not others. In particular, we expected performance to degrade when we change a fun-
damental relationship between the planner and its environment—the amount of time the
planner is allowed to think relative to the rate at which the environment changes—and not
be sensitive to common dynamics in the environment such as weather, and particularly,
wind speed. We tested two specific predictions: 1) that performance would not degrade or
would degrade gracefully as wind speed increased; and 2) that the planner would not be
robust to changes in the Fireboss’s thinking speed due to a bottleneck problem described
below. An exploratory purpose of the experiment was to identify the factors in the Fireboss
architecture and PHOENIX environment that most affected the planner’s behavior, leading
to a causal model.

The Fireboss must select plans, instantiate them, dispatch agents and monitor their
progress, and respond to plan failures as the fire burns. The rate at which the Fireboss thinks
is determined by a parameter called the Real Time Knob. By adjusting the Real Time Knob
we allow more or less simulation time to elapse per unit CPU time, effectively adjusting the
speed at which the Fireboss thinks relative to the rate at which the environment changes.

The Fireboss services bulldozer requests for assignments, providing each bulldozer with a
task directive for each new fireline segment it builds. The Fireboss can become a bottleneck
when the arrival rate of bulldozer task requests is high or when its thinking speed is slowed
by adjusting the Real Time Knob. This bottleneck sometimes causes the overall digging rate
to fall below that required to complete the fireline polygon before the fire reaches it, which
causes replanning. In the worst case, a Fireboss bottleneck can cause a thrashing effect
in which plan failures occur repeatedly because the Fireboss can’t assign bulldozers during
replanning fast enough to keep the overall digging rate at effective levels. We designed our
experiment to explore the effects of this bottleneck on system performance and to confirm
our prediction that performance would vary in proportion to the manipulation of thinking
speed. Because the current design of the Fireboss is not sensitive to changes in thinking
speed, we expect it to take longer to fight fires and to fail more often to contain them as
thinking speed slows.

In contrast, we expect PHOENIX to be able to fight fires at different wind speeds. It
might take longer and sacrifice more area burned at high wind speeds, but we expect this
effect to be proportional as wind speed increases and we expect PHOENIX to succeed equally
often at a range of wind speeds, since it was designed to do so.

Experiment Design

We created a straightforward fire fighting scenario that controlled for many of the variables
known to affect the planner’s performance. In each trial, one fire of a known initial size was
set at the same location (an area with no natural boundaries) at the same time (relative to
the start of the simulation). Four bulldozers were used to fight it. The wind’s speed and
direction were set initially and not varied during the trial. Thus, in each trial, the Fireboss
receives the same fire report, chooses a fire-fighting plan, and dispatches the bulldozers to
implement it. A trial ends when the bulldozers have successfully surrounded the fire or after

24 APPENDIX A. CLIP EXAMPLES

120 hours without success. The experiment’s first dependent variable then is Success, which
is true if the fire is contained, and false otherwise. A second dependent variable is shutdown
time (SD), the time at which the trial was stopped. For successful trials, shutdown time
tells us how long it took to contain the fire. Two independent variables were wind speed
(WS) and the setting of the Fireboss’s Real Time Knob (RTK). A third variable, the first
plan chosen by the Fireboss in a trial (FPLAN), varied randomly between trials. It was not
expected to influence performance, but because it did, we treat it here as an independent
variable.

WS The settings of WS in the experiment were 3, 6, and 9 kilometers per hour. As
wind speed increases, fire spreads more quickly in all directions, and most quickly
downwind. The Fireboss compensates for higher values of wind speed by directing
bulldozers to build fireline further from the fire.

RTK The default setting of RTK for PHOENIX agents allows them to execute 1 CPU
second of Lisp code for every 5 minutes that elapses in the simulation. We varied
the Fireboss’s RTK setting in different trials (leaving the settings for all other agents
at the default). We started at a ratio of 1 simulation-minute/cpu-second, a thinking
speed 5 times as fast as the default, and varied the setting over values of 1, 3, 5, 7,
9, 11, and 15 simulation-minutes/cpu-second. These values range from 5 times the
normal speed at a setting of 1 down to one-third the normal speed at 15. The values
of RTK reported here are rescaled. The normal thinking speed (5) has been set to
RTK=1, and the other settings are relative to normal. The scaled values (in order of
increasing thinking speed) are .33, .45, .56, .71, 1, 1.67, and 5. RTK was set at the
start of each trial and held constant throughout.

FPLAN The Fireboss randomly selects one of three plans as its first plan in each trial.
The plans differ mainly in the way they project fire spread and decide where to
dig fireline. SHELL is aggressive, assuming an optimistic combination of low fire
spread and fast progress on the part of bulldozers. MODEL is conservative in its
expectations, assuming a high rate of spread and a lower rate of progress. The third,
MBIA, generally makes an assessment intermediate with respect to the others. When
replanning is necessary, the Fireboss again chooses randomly from among the same
three plans. We adopted a basic factorial design, systematically varying the values
of WS and RTK. Because we had not anticipated a significant effect of FPLAN, we
allowed it to vary randomly.

Rtk Experiment Clips

All data collection in this experiment occurs at the end of each trial. Many of these clips
invoke system specific calls to the simulator and to agents’ state memories, again, as in
the first example, illustrating the interface between clips and the system under study. Of
particular interest here is the script invoked to recreate the same experimental scenario
for each trial (see the :script keyword to define-experiment below). This script has a
set of instructions to the Phoenix simulator’s event-scheduler that introduce a fixed set of
environmental changes that are part of the experimental control.

(define-experiment real-time-knob-experiment (use-exp-style)
"Simple experiments for exercising and testing the real time knob."

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 25

:before-experiment (real-time-knob-experiment-init-before-experiment
use-exp-style)

:before-trial (real-time-knob-experiment-init-before-trial)
:after-trial (real-time-knob-experiment-after—trial)
:after-experiment (real-time-knob-experiment-reset-after—experiment)
:variables ((real-time-knob in (1 3 5 7 9 11))

(wind-speed in ’(3 9 12)))
:instrumentation (number-of-bulldozers

plan-to-contain-fire ; FPLAN
all-plans-to-contain-fire
fires-started

shutdown-time ; SD

number-of-fires—contained
total-fire-line-built
r-factor

area-burned

agents-lost
all-agent-instrumentation
fireboss—-instrumentation
bulldozer-instrumentation)

:script
((setup-starting-conditions "12:29"
(progn
(send (fire-system)
:alter-environment-parameter ’wind-direction 315)
(send (fire-system)
:alter-environment-parameter ’wind-speed (wind-speed))))
(start—fire "12:30"
(send (fire-system) :start-fire 700 (point 50000 40000)))))

;35 Utility functions used by the :before- and :after- forms to
;33 ilnitialize and reset the experiment environment

(defun real-time-knob-experiment-init-before-experiment (use-exp-style)
(when use-exp-style
(setf (interaction-style t) ’experiment))
;; Don’t allow fires to skip over fire limes.
(send (fire-simulation) :set-spotting-scale—factor 0)
;3 Get rid of flank attack, etc.
(modify-knowledge-base))

(defun real-time-knob-experiment-init-before-trial ()
(gc—immediately :silent t))

(defun real-time-knob-experiment-after-trial ()
;3 This is now done in the ‘shutdown-trial’ method.

26 APPENDIX A. CLIP EXAMPLES

(write-current-experiment-data))

(defun real-time-knob-experiment-reset-after-experiment ()
(setf (interaction-style t) ’normal))

(defmacro pct (part wh)
‘(if (zerop ,wh) 0 (* 100.0 (/ ,part ,wh))))

(defmacro /-safe (dividend divisor)
‘(if (zerop ,divisor) 0 (/ ,dividend ,divisor)))

;33 Instrumentation definitioms...

(defclip number-of-bulldozers ()
(:report-key "Number of bulldozers")
(length (find-agent-by-name ’bulldozer :multiple-allowed t)))

(defclip area-burned ()
(:report-key "Area burned (sq. km)")
(send (real-world-firemap) :fire-state))

(defclip shutdown-time ()
(:report-key "Shutdown time (hours)")
(current-time))

;33 Fire clips

(defclip fires-started ()
(:report-key "Fires started")
(let ((cnt 0))
(map-over-fires (fire) (:delete-fire-frames nil)
(incf cnt))
(values cnt)))

(defclip fires-contained ()
(:report-key "Fires contained")
(mapcan #’(lambda (fire)
(when (eq (f:get-value* fire ’status) ’under-control)
(1ist fire)))
(f:get-values* ’actual-fire ’instance+inv)))

(defclip number-of-fires-contained ()
(:report-key "Fires extinguished")
(length (fires-contained)))

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 27

;33 Fireline clips

(defun expand-extent-in-all-directions-by (extent distance-in-meters)
(let ((temp-point (point distance-in-meters distance-in-meters)))
(extent (point-clip (point-difference (extent-upper-left extent)
temp-point))
(point-clip (point-sum (extent-lower-right extent) temp-point)))))

(defun length-of-built-line-in-extent (extent)
(let ((line-length 0))
(dofiremap (point :upper-left (extent-upper-left extent)
:lower-right (extent-lower-right extent))
(do—feature-edges (edge point (real-world-firemap) :edge-type :dynamic)
(incf line-length (feature-edge-length edge))))
(values line-length)))

(defclip r-factor ()
(:report-key "R factor")
(/-safe (total-fire-line-built) (total-perimeter)))

(defclip total-perimeter ()
O
(reduce #’+ (fires-contained)
:key #’(lambda (fire)
(fast-polyline-length
(fire-perimeter-polyline (fire-origin fire)

xfire-perimeter-resolutionx*)

t))))

(defclip total-fire-line-built ()
(:report-key "Fireline Built (meters)")
(reduce #’+ (fires-contained)
:key #’(lambda (fire)
(length-of-built-line-in-extent
(expand-extent-in-all-directions-by
(accurate-fire-extent (fire-center-of-mass fire)
(point-on-polyline-furthest-from
(fire-center-of-mass fire)
(fire-boundary fire)
nil))
xfire-sector-extensionx*)))))

;55 Agent clips

(defclip agents-lost ()

28 APPENDIX A. CLIP EXAMPLES

O
(mapcan #’(lambda (agent)
(when (eq (f:get-value (send agent :self-frame) ’status) :dead)
(1ist (name-of agent))))
(all-agents)))

;35 "all-agent-instrumentation'" is a mapping clip that collects information
;3 from its components, all of the Phoenix agents defined in this

;;; scenario. Each of the :component clips is run for each agent found

;33 by the :mapping function. Values returned by the :component clips

;;; are written out to the data file in sequence.

(defclip all-agent-instrumentation ()

"Records the utilization of all the agents."

(:components (agent-overall-utilization
agent-cognitive-utilization
agent-message-handling-time-pct
agent-action-selection-time-pct
agent—error-recovery-cost
agent-error-recovery-percentage—of—-cognitive-time
number-of-frames-on-timeline)

:map-function (cons
(find-agent-by-name ’fireboss)
(find-agent-by-name ’bulldozer :multiple-allowed t))))

(defclip agent-overall-utilization (agent)
(:report-key ""a overall utilization")
(pct (task-cumulative-cpu-time agent) (current-time)))

(defclip agent-cognitive-utilization (agent)
(:report-key ""a cognitive utilization")
(pct (phoenix-agent-cumulative-action-execution-time agent)
(current-time)))

(defclip agent-message-handling-time-pct (agent)
(:report-key "~a message handling pct")
(pct (phoenix-agent-cumulative-message-handling-time agent)
(current-time)))

(defclip agent-action-selection-time-pct (agent)
(:report-key "~a action selection pct")
(pct (phoenix-agent-cumulative-next-action-selection-time agent)
(current-time)))

(defclip agent-error-recovery-cost (agent)
(:report-key ""a error recovery cost")

(f:using-frame-system ((name-of agent))

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 29

(reduce #’+ (gather-recovery-method-instances (name-of agent))
:key #’determine-recovery-cost)))

(defclip agent-error-recovery-percentage-of-cognitive-time (agent)
(:report-key ""a ER), of cognitive time")
(pct (agent-error-recovery-cost (name-of agent))
(phoenix-agent-cumulative-action-execution-time agent)))

(defclip number-of-frames—on-timeline (agent)
(:report-key ""a number of frames on timeline")
(f:using-frame-system ((name-of agent))
(unwind-protect
(let ((cnt 0))
(labels ((count-frame (frame)
(unless (f:get-value frame ’counted)
(incf cnt)
(f:put-value frame ’counted t)
(count-frames—after frame)
(count-frames-below frame)))
(count-frames-below (start-frame)
(dolist (frame (tl-has-components start-frame))
(count-frame frame)))
(count-frames—after (start-frame)
(dolist (frame (tl-next-actions start-frame))
(count-frame frame))))

(dolist (frame (tl-has-start-actions (f:get-value ’initial-timeline
’instance+inv)))
(count-frame frame)))
(values cnt))
(f :map-frames #’(lambda (frame)
(f:delete-all-values frame ’counted))))))

;3 Fireboss clips

(defclip fireboss-instrumentation ()
"Instrumentation for the fireboss."
(:components (agent-total-envelope-time)
:map-function (list (find-agent-by-name ’fireboss))))

(defclip agent-total-envelope-time (agent)
(:report-key "~a total envelope time")
(f:using-frame-system ((name-of agent))
(reduce #’+
(f:pattern-match #p(instance {f:value-in-hierarchy-of
’(ako instance) ’plan-envelopel})))))

30 APPENDIX A. CLIP EXAMPLES

;33 Bulldozer clips

(defclip bulldozer-instrumentation ()
"Mapping clip mapping reflexes—executed :component over all bulldozers."
(:components (reflexes-executed)
:map-function (find-agent-by-name ’bulldozer :multiple-allowed t)))

(defclip reflexes—executed (agent)
(:report-key ""a reflexes executed")
(reduce #’+ (standard-agent-model-reflexes agent)
:key #’reflex-execution-count))

(defclip count-of-deadly-object-in-path-messages ()
(:enable-function (trace-message—patterns
’(:message-type :msg-reflex :type :error
:reason :deadly-object-in-path))
:disable-function (untrace-message—patterns
’(:message-type :msg-reflex :type :error
:reason :deadly-object-in-path)))
(message-pattern-count ’(:message-type :msg-reflex :type :error
:reason :deadly-object-in-path)))

;3; Plan clips record which plan(s) was used during a trial to fight the fire.

(defun the-first-fire-started ()
(first (last (f:get-values* ’actual-fire ’instance+inv))))

(defclip plan-to-contain-fire ()
(:report-key "Plan to Contain Fire")

(get-primitive-action
(tl-entry-of-plan-to-contain-fire)))

(defun tl-entry-of-plan-to-contain-fire ()
(f:using-frame-system ((name-of (find-agent-by-name ’fireboss)))
(let (top-level-actions)
(dolist (possible (f:get-values* ’act—-deal-with-new-fire ’instance+inv))
(when (equal (f:framer (the-first-fire-started))
(variable-value ’fire :action possible))
(push possible top-level-actions)))
(f:get-valuex
(first (sort top-level-actions
#>
:key #’(lambda (x)
(f:get-value* x ’creation-time))))
’has-end-action))))

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 31

(defclip all-plans-to-contain-fire ()
(:report-key "All plans to Contain Fire")
(f:using-frame-system ((name-of (find-agent-by-name ’fireboss)))
(mapcar #’(lambda (act-deal-with-our-fire)
(get-primitive-action (f:get-value* act-deal-with-our-fire
’has-end-action)))
(sort
(mapcan #’(lambda (act-deal-with-new-fire)
(when (equal (f:framer (the-first-fire-started))
(variable-value ’fire :actiomn
act-deal-with-new-fire))
(1ist act-deal-with-new-fire)))
(f:get-values* ’act-deal-with-new-fire ’instance+inv))
#’< :key #’(lambda (x) (f:get-value* x ’creation-time))))))

32 APPENDIX A. CLIP EXAMPLES

A.1.3 Example from a Transportation Planning Simulation

This example comes from a baseline experiment in bottleneck prediction at a shipping port
in a transportation planning simulator called TransSim. On each day it predicts the occur-
rence of bottlenecks at a single port in the shipping network, then captures data about actual
bottlenecks for later comparison. The experiment collects time-series data, a fragment of
which is shown after the example. The summary output file (data collected after each trial)
is also shown. Note the use of the keywords to define-simulator (:schedule-function,
:deactivate-scheduled-function, :seconds-per-time-unit and :timestamp) that de-
fine the time-series clips.

;33 Clips for the collection of time series data over the course of a trial

(defun current-day ()
"Return the current day of simulated time from 0."
(/ (current-time) 24))

(defclip port-state-snapshot ()
"Record state information for a port at the end of each day."
(:output-file "port-state"
:schedule (:period "1 day")
:map-function (list (port ’port-1))
:components (ships-en-route ships-queued ships-docked
expected-ship-arrivals predicted-queue-length)))

(defclip ships-en-route (port)
"Record the number of ships en route to a port."
O
(length (apply #’append (mapcar ’contents (incoming-channels port)))))

(defclip ships-queued (port)
"Record the number of ships queued at a port."
O
(length (contents (docking-queue port))))

(defclip ships-docked (port)
"Record the number of ships docked at a port."
O
(length (apply #’append (mapcar ’contents (docks port)))))

(defclip expected-ship-arrivals (port) ()
(progn
(update-prediction)
(let ((prediction-units (find-units ’prediction ’(port-model) :all)))
(float (/ (round (* 10000
(expected-value (first prediction-units)))) 10000)))))

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 33

(defclip port-predicted-value (port) ()
(let ((prediction-units (find-units ’prediction ’(port-model) :all)))
(generate-prediction (expected-value (first prediction-units)))))

(defclip port-actual-change (port) ()
(let ((prediction-units (find-units ’prediction ’(port-model) :all)))
(length
(set-difference
(ships-previously-in-port port 0)
(ships-previously-in-port
port (days-in-future (first prediction-units)))))))

(defclip predicted-queue-length (port) ()
(let ((prediction-units (find-units ’prediction ’(port-model) :all)))
(pred-queue-length (first prediction-units))))

;33 Clips for the collection of data at the end of a trial

(defclip prediction-score ()
(:output-file "score"
:components (score-for-day)
:map-function ’(2 5)))

(defclip score-for-day (day)
O

(compute-score-for-day day))

;;; Experiment and simulator definitiomns

(define-simulator transsim
:system-name "TransSim"
:start-system (simulate nil)
:reset—-system reset—-transsim-experiment
:schedule—-function schedule-function-for—-clips
:deactivate-scheduled-function transsim: :reset
:seconds-per—-time—-unit 3600
:timestamp current-day)

(define-experiment test-experiment ()

:simulator transsim

:instrumentation (prediction-score port-state-snapshot)

:variables ((prediction-threshold in ’(0.6 0.75 0.9))
(eta-variance-multiplier in ’(0.2 0.4 0.6))
(prediction-point in ’(5)))

:after-trial

;3 Other options here include building CLASP datasets,

34 APPENDIX A. CLIP EXAMPLES

;; exporting to some database, massaging the data or some
;; combination fo these.
(write-current-experiment-data))

;33 Utilities

(defun reset-transsim-experiment (prediction-threshold
eta-variance-multiplier
prediction-point)

(setf *prediction-threshold* prediction-threshold)
(format t "“&Prediction threshold = ~a" prediction-threshold)
(setf *eta-variance-multiplier* eta-variance-multiplier)

(format t "“&ETA variance multiplier = ~a'" eta-variance-multiplier)
(setf *prediction-point* prediction-point)
(format t "“&Prediction point = ~a'" prediction-point)

(initialize-simulation))

(defun schedule-function-for-clips (function time period name)
(if period
(transsim: :schedule-recurring-event (transsim::event-actuator :external)
:function function
:time time
:period period
:type (or name :instrumentation))
(transsim: :schedule-event (transsim::event-actuator :external)
:function function
:time time
:type (or name :instrumentation))))

(defun rexp (&key &optional number-of-trials)
(run-experiment ’test-experiment :output-file "ed-buffer:out"
:number-of-trials number-of-trials))

Shown below is the summary output file produced for 9 trials. This file is in CLASP
format. It begins with an informative header string, followed by a series of strings, each of
which is a column name in the data table. Rows of the table follow, stored as lists. Each
list contains one element per column name.

sk ok ok ke sk ok ok ok ke sk ok ok ok ke sk ok ok ok ke sk ok ok ok ke sk ok ok sk ok ok sk ok sk ok sk ok ke s ok sk sk ok ok ok ke sk ok ok sk ok ok sk ke sk ok ok ok ok s ok ok sk ok ok ok ok ok
*ook ok

*%%% Experiment: Test-Experiment

*x%*x Machine: Miles

*x**x TransSim version: Unknown

*x**% Date: 10/1/93 11:26

*x**x Scenario: None

*%%% Script-name: None

A.1. MORE EXPERIMENT DEFINITIONS USING CLIP 35

*¥x*x First trial number: 1

*x**x Last trial number: 9

*x%x Number of trials: 9

**x*x* Max trial length: Unknown hours

sk 3 ke 3 ke ok ok ok ok ok ok ok ke 3 ke ok o ok ok ok ok ok ke sk ok ok ke ok ke 3k ke ok ke ok ke 3k ke ok ek ke 3k ke ok o ok ok sk ke ok o ok Sk ke ok ok ok ok ok ok ok ok ok ok ok ok

The key follows:"

"Trial"
"Prediction-Threshold"
"Eta-Variance-Multiplier"
"Prediction-Point"
"Score-For-Day 2"
"Score-For-Day 5"

(1 0.75 0.2 5 100 100)
(2 0.75 0.3 5 100 100)
(3 0.75 0.4 5 100 100)
(4 0.8 0.2 5 100 100)
(56 0.8 0.3 5100 100)
(6 0.8 0.4 5 100 100)
(7 0.85 0.2 5 100 100)
(8 0.85 0.3 5 100 100)
(9 0.85 0.4 5 100 100)

This is a fragment of the time-series data (from the first trial only) showing the flat file
structure produced by component and time-series clip relationships.

sk 3k ke 3 ke ok ok ok ok ok ok ok ok k3 ke o ok o ok ok ok ok ke sk ok ok ke ok ke ok ke ok ok ok ke ok ke 3k ke ok ke ok ke ok ke ok ke ok ke sk ke ok ook ke ok ke ok ok ok ok ok ok ok ok
* ok ok ok

*%%% Experiment: Test-Experiment

*x%*x Machine: Miles

*x**x TransSim version: Unknown

*x** Date: 10/5/93 15:17

*x**x Scenario: None

*%%% Script-name: None

*¥x*x First trial number: 1

*¥x**x Last trial number: 12

*x%*x Number of trials: 12

**x*x* Max trial length: Unknown hours

sk 3k ke 3 ke ok ok ok ok ok ok ok ok k3 ke o ok o ok ok ok ok ke sk ok ok ke ok ke ok ke ok ok ok ke ok ke 3k ke ok ke ok ke ok ke ok ke ok ke sk ke ok ook ke ok ke ok ok ok ok ok ok ok ok

The key follows:"

"Trial"

"Timestamp"
"Prediction-Threshold"
"Eta-Variance-Multiplier"
"Prediction-Point"
"Ships-En-Route port-1"

36 APPENDIX A. CLIP EXAMPLES

"Ships—-Queued port-1"
"Ships-Docked port-1"
"Expected-Ship-Arrivals port-1"
"Predicted-Queue-Length port-1"

(100.60.250000.00)

(110.60.250000.00)

(120.60.250000.00)

(130.60.250000.00)

(140.60.250000.00)

(150.60.25200 0.0597 0)
(160.60.25200 0.3357 0)
(170.60.252000.7643 0)
(180.60.252000.9961 0)
(190.60.25200 0.9977 0)
(1 10 0.6 0.2 54 00 0.683 0)
(111 0.6 0.253 01 0.2361 0)
(112 0.6 0.253 01 0.6389 1)
(113 0.6 0.2 53 01 1.4062 1)
(114 0.6 0.2 53 01 1.9885 1)
(1 15 0.6 0.2 53 00 2.071 1)
(1 16 0.6 0.2 53 00 1.5729 0)
(117 0.6 0.2 51 11 0.5053 1)
(118 0.6 0.251 11 0.8974 2)
(119 0.6 0.251 11 0.9996 2)
(1200.60.251101.01)

(1210.60.251011.01)

(1220.60.250110.01)

(1230.60.250110.01)

(1240.60.250100.00)

(1 250.60.25201 0.1331 0)
(1 26 0.60.25201 0.355 0)
(127 0.6 0.25201 0.6276 1)
(1 28 0.60.25200 0.946 0)
(129 0.60.25400 1.2677 0)
(1300.60.25400 2.0143 1)
(1 310.60.25400 2.88322)
(1 320.60.25400 3.309 2)
(1 330.60.25400 2.4576 1)
(1 340.60.252111.9172 3)
(130.60.251210.9961 3)

References

[1] David M. Hart and Paul R. Cohen. Predicting and explaining success and task duration
in the phoenix planner. In Proceedings of the First International Conference on Al
Planning Systems, pages 106-115. Morgan Kaufmann, 1992.

[2] Adele E. Howe and Paul R. Cohen. Responding to environmental change. In DARPA
Workshop on Innovative Approaches to Planning, Scheduling and Control, pages 85-92.
Morgan Kaufmann, 1990.

37

Index

advise
needed for event driven clips, 7
used for collecting data, 6
:after-experiment kwd, 4
used by define-experiment, 5
when executed, 5
:after-trial kwd, 4, 7
when executed, 5
ARM, 17
:ASCIT kwd
output format, 5

:before-experiment kwd, 4
used by define-experiment, 5
when executed, 5
:before-trial kwd, 4
when executed, 5

:CLASP kwd
output format, 5
CLaAsp
output file format, see output, CLASP
file format, 5
output-file-format, 17
Cuip, 1-14
what is..., 1
clips
components, see components of clips
composite, see composite clips
defining, 7-9
disable, 8
display-function, 8
enable, 8
event-driven, see event-driven clips
example, 9-14, 17-36
mapping, see mapping clips
periodic, see periodic clips
simple, see simple clips
specifying output file, 8
super, see super clips

38

time-series, see time-series, clips for
column names
control of output, 5
overriding, 8
columns
multiple, generated by time-series clips,
7
produced by clips, 7
Common Lisp Analytical Statistics Pack-
age, see CLASP
Common Lisp Instrumentation Package,
see CLIP
:components kwd, 7, 8
components of clips, 7
collection and reporting, 8
example, 9
composite clips, 7
description of, 17
example, 18

:DATA-ONLY kwd
output format, 5
data-separator-characterx var, 5
dataset
created using defclip, 7
:deactivate-scheduled-function kwd,
3,12, 32
defclip macro, 2,4, 5,7
advantages of using, 6
specifying output file in, 7
with time-series clips, 12
define-experiment macro, 2-4, 9
defines formal args for experiment, 3
options accepted, 4
overriding define-simulator options,
3,4
define-simulator macro, 2, 7, 9, 32

options overriden by define-experiment,

4
use, 3

INDEX

with time-series clips, 12
:disable-function kwd, 8
:display-function kwd, 8

:enable-function kwd, 8
event-driven clips
example, 11-14
requirements, 7
triggering, 8
when collected, 5
with simple clips, 7
experiment
closing output files, 4
continuing a parially completed, 5
control loop, 5
experiment variables, 4-5
with run-experiment, 5
local variables, 4
parts of, 1
running, 5
script, 4
summary data files, 4
trial, 4
experiment design
example, 23
experiment variables, see experiment
when updated, 5

:initial-status kwd, 8
initialization
clip, 8
experiment, 4
trial, 8
instrumentation
specifying subset of, 5
when reset and enabled, 5
:instrumentation kwd, 4

:locals kwd, 4

:map-function kwd, 8

used for component clips, 7
mapping clips, 7, 8

description of, 17

example, 9-11, 24, 32-34

options
argument to defclip, 7
output, 4

39

Crasp file format, 5
example, 34-36

ASCII file format, 5

data-only file format, 5

separate files for time-series clips, 7

separator character, 5

summary data files, 4, 7, 32
output file

pathname merging, 8
:output-file kwd, 7, 8
xoutput-format* var

for write-current-experiment-data,

5

periodic clips
example, 11-14
required keywords, 7
scheduling collections, 8
when collected, 5
with simple clips, 7
PHOENIX, 6
description of, 22
post hoc clips
when collected, 5

:repetitions kwd

used by define-experiment, 5
:report-function kwd, 8
:report-key kwd, 8
:reset-function kwd, 8
:reset-system kwd, 3

when executed, 5
TOWS

multiple, generated by time-series clips,

7

RTK experiment, 22-31
run-experiment

error-file, 5

experiment-name, 5

extra-header, 5

length-of-trial, 5

number-of-trials, 5

output-file, 5

repetitions, 5

starting-trial-number, 5
run-experiment fn, 2, 5

defines actual args to experiment, 3

length-of-trials, 12

40 INDEX

:schedule kwd, 7, 8
:schedule-function kwd, 3, 7, 12, 32
schedule-function fn
used by :deactivate-scheduled-function,
3
script, see experiment
when instantiated, 5
:script kwd, 4, 24
:seconds-per-time-unit kwd, 3, 7, 12,
32
with timestamp, 3
separator character (in output files), see
output, separator character
shutdown-and-rerun-trial fn, 6
shutdown-and-run-next-trial fn, 6
shutdown-experiment fn, 6
simple clips, 7
example, 8-10
simulator, 2, 6
event-scheduling, 3
:simulator kwd, 4
:start-system kwd, 3
when executed, 5
:stop-system kwd, 3
super clips, 7
:system-name kwd, 3
:system-version kwd, 3

time-series clips, 32

defined, 7

event-driven, see event-driven clips

example, 11-14, 32-34

periodic, see periodic clips
:timestamp kwd, 3, 7, 12, 32
TransSim, 6, 32
trial, see experiment

controlling termination, 6
:trigger-event kwd, 7, 8

:variables kwd, 4

write-current-experiment-data fn, 2,
5
write-current-experiment-data fn, 4
used with run-experiment, 5

