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Abstract

Eztended transaction models in databases were motivated
by the needs of complez applications such as CAD and
software engineering. Transactions in such applications
have diverse needs, for ezample, they may be long lived
and they may need to cooperate. We describe ASSET,
a system for supporting eztended transactions. ASSET
consists of a set of transaction primitives that allow users
to define custom transaction semantics to match the needs
of specific applications. We show how the transaction
primitives can be used to specify a variety of transaction
models, including nested transactions, split transactions, and
sagas. Application-specific transaction models with relazed
correciness criteria, and computations involving workflows,
can also be specified using the primitives. We describe the
implementation of the ASSET primitives in the contezt of
the Ode database.

1 Introduction

The atomic transaction model, in conjunction with
serializability, can be limiting in advanced database
applications that function in distributed, cooperative,
and heterogeneous environments. For example, CAD
transactions can be long lived, and large software sys-
tems construction may require cooperative transactions.
Such applications have diverse needs. This has lead
to the search for more flexible correctness requirements
(20] as well as the introduction of new transaction mod-
els [12] that extend the traditional atomic transaction
model.

However, little has been done thus far to make
this research work available to a database user. At
best, a specific extended transaction model may be
provided by a database — the user has little flexibility
in specifying which one, and no flexibility in changing
its semantics. Given the large number of extended
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transaction models that have been proposed and the
absence of a clear winner, database vendors today would
hesitate to incorporate any one model into a product.

This paper reports on our attempts to address this
limitation. Instead of providing users with a predefined
transaction model, which may not be appropriate for
their applications, we provide a flexible transaction
facility, called ASSET, which is based on a set of
transaction primitives. The primitives, presented in
Section 2, are inspired by the ACTA transaction
framework, a formal framework designed to specify,
analyze and synthesize extended transaction models
(8, 9].

These transaction primitives can be used to define
customized transaction models suitable for specific ap-
plications. In particular we show in Section 3 how the
transaction primitives can be used to specify nested
transactions, split transactions, sagas, and other ex-
tended transaction models described in the literature.
Even though we use the word transaction in this pa-
per to refer to computations that have transaction-like
properties, the transaction primitives also allow us to
specify activities or workflows that are typically com-
posed of transactions-like components. We use syntax
based on O++, the database programming language of
Ode (1], for illustrating the various transaction models.
We assume that the reader is familiar with C++ [21].

Our primitives are general enough to be incorporated
in any database system. We are currently implementing
these primitives in the context of the Ode database
(1] using the EOS [3] storage manager. Details of the
implementation are discussed in Section 4.

2 Transaction Primitives and their
Meanings

A database is a collection of persistent objects.  Trans-
actions invoke operations on objects. Operations exe-
cute atomically and in mutual exclusion. A transaction
program may also manipulate volatile data, such as lo-
cal variables. However, we do not permit volatile data
to persist across transaction boundaries. For example,



a volatile global variable may not be used in multiple
transactions.

We now discuss transaction primitives for defining
customiged transaction models. It should be empha-
sized that we do not expect a user to use these primi-
tives directly. Instead, we expect that these primitives
will be used in the code generated by a compiler for a
database programming language, or an application de-
velopment interface, that provides high-level support for
transactions. Development of the details of such a com-
piler is part of our future work.

The transaction primitives can be classified into
two categories: (1) basic primitives, similar to those
found in most transaction processing systems. (2) new
primitives, which can be used in conjunction with the
basic primitives for building transactions with custom
semantics.

2.1 Basic Transaction Primitives

A transaction accesses and manipulates the objects in
the database by invoking operations on the objects. A
transaction that has invoked operations on an object
but has not yet committed, is responsible for the
uncommitted operations.

A transaction that has been initiated but has not
begun execution is said to have been initiated. A
transaction is said to be running if it is executing
its code, i.e., it has begun executing but has not yet
completed. A transaction is said to have completed if
its code has been executed. A tranmsaction has been
terminated if it has been committed or aborted. A
transaction is active if it has begun executing, and has
not terminated yet (it may be running or completed).

The basic primitives in ASSET are

e initiate(f, args): register a new transaction that
will execute the function pointed to by f with
arguments args. If successful, initiate returns the
transaction identifier (tid); otherwise, it returns the
null tid . The transaction does not start executing;
execution is started by calling begin.

e begin(?): start execution of the transaction whose
tid is ¢. begin returns 1 if successful; otherwise,
it returns 0. Similarly, begin(?,, ¢3, ..., t,) starts
execution of transactions 2y, i3, ..., tn.

e commit(t): commit the operations of transaction
t. commit returns 1 if ¢ commits or has already
committed; otherwise, if £ is aborted, commit returns
0.

commit is a blocking primitive - if issued before the
transaction has completed execution, it waits until
the execution completes; it may also be delayed to
satisfy dependency specifications (discussed later).

e wait(t): wait for transaction ¢ to complete. wait
returns 1 once the execution of the code for trans-
action ¢ completes, or if ¢ has already committed.
wait returns 0 if the transaction has aborted by the
time wait is invoked.

A commit issued after a wait may still block
or abort, but only if dependency requirements so
dictate.

o abort(t): abort transaction ¢. abort returns 1 if
the abortion of ¢ is successful; otherwise, that is, if ¢
has already committed, it returns 0.

e 8elf(): returns the tid of the executing transaction.

e parent(): returns the tid of the parent transaction,
that is the transaction that initiated the transac-
tion which invokes parent. For top-level transac-
tions the null tid is returned.

When a transaction completes (that is, the function
executed by it completes execution), the locks held by
the transaction are not released and its changes are
not made persistent. Instead, the transaction manager
records the completion of the transaction. A transaction
is committed by explicitly invoking commit.

In addition to the above, ASSET has primitives
to query the status of transactions, for instance, to
determine whether a transaction has aborted. We do
not describe them here.

2.2 New Primitives for Specifying Custom
Transaction Semantics

ASSET introduces three new primitives, delegate,
permit, and form.dependency for specifying custom
transaction semantics.

e delegate(t;, t;, ob_set): transaction ¢; transfers to
transaction ; the responsibility for the operations
performed by #; on objects in the set ob_set [9].
These operations are committed if and only if ¢;
commits (assuming ¢; does not delegate them to
another transaction). That is, once #; delegates
an object ob to t;, it will be as if ¢;, not ¢;, has
performed the operations on ob for which #; was
responsible prior to the delegation. One implication
is that a subsequent operation on ob performed by ¢;
can conflict with an operation previously performed
by t;.

Similarly, delegate(t;,t;) transfers from t; to ;
the responsibility for all the operations that #;, is
currently responsible for.

The granularity of delegation can be lowered from
objects (i.e., all the operations performed by the
invoking transaction on the these objects) to specific
operations. However, we do not consider this option
further in this paper.



e permit(%;, tj, ob_set, operations): i; allows t; to
perform operations that conflict with #;’s operations,
without, conceptually, creating a conflict edge in the
serialization graph from ¢; to t;. This primitive has
the following semantics:

1. invoking transaction ; allows t; to execute the
specified operations on objects in the set ob_set
without forcing ¢; to wait. Thus t; can view
objects accessed by t; even before ¢; commits or
aborts.

2. Only one transaction can perform an (update)
operation at any given time. That is, atomicity
and mutual exclusion continue to apply to the
elementary operations.

3. Once ¢; has permitted ¢; to perform an operation
on some object, ¢; has the right to permit further
sharing with other transactions. In particular, if
we execute
permit(;, ¢;, ob_set, operations), and
permit(t;, i, ob_set’, operations’):
the effect is as if the command:
permit(¢;, tx, ob_set N ob_set’, operations N
operations’)
had also been executed.

Three additional forms of permit are supported:
permit(;, t;j, operations) allows t; to execute
conflicting operations on any object. permit(t;, ;)
allows ¢; to execute any (conflicting) operation on
any object. permit(Z;, ob_set, operations) allows
any transaction to perform the specified conflicting
operations on objects in the set ob_set.

e form dependency(iype, ¢, t;): form a depen-
dency of the specified type between t; and t;; while
many types of dependency can be formed [8], three
that occur more often are:

- CD (commit dependency): If both commit, ¢;
cannot commit before ¢; commits, but if #; aborts,
t; may still commit.

— AD (abort dependency): if t; aborts, ¢; must abort.

— GC (group commit): either both ¢; and ¢; commit
or neither commits.

AD covers CD. That is, an abort dependency
implies a commit dependency. Also, a group commit
dependency involving a set of transactions can be
specified using pairwise GC dependencies. We have
chosen to provide three explicit primitives for ease
of use.

One noteworthy design decision is the separation
of the initiation and the beginning of a tranmsaction.
As we illustrate in Section 3, this separation allows

us to delegate to or permit sharing with an initiated
transaction before this transaction begins execution.

We assume that transactions are not malicious. The
issue of “protection” of transactions, especially in the
context of delegation and permission, is outside the
scope of this paper.

3  Realizing Various Transaction
Models and Relaxed Correctness
Requirements

We now show how the ASSET transaction primitives
can be used to specify different transaction models. As
mentioned before, we do not expect a user to program
with these primitives directly.

We refer the reader to [12, 9] for an in-depth
discussion of different extended transaction models and
to see how they help in the construction of complex
database applications mentioned in Section 1.

3.1 (Extended) Transaction Models

We show how to implement a variety of transaction
models using our primitives. To give a high-level de-
scription of the examples, we first show the transaction
written in pseudo-code, based on the O++ language[2],
a superset of C++. Italic font is used for pseudo-code
inventions, while constant-width font is used to indi-
cate actual code. We then show the implementation of
the transaction model using our primitives.

3.1.1

Atomic transactions combine the properties of serializ-
ability and failure atomicity. These properties ensure
that concurrent transactions execute without any inter-
ference as though they executed in some serial order,
and that either all or none of a transaction’s operations
are performed.

In O++, a standard (not nested) transaction is specified
as follows:

Atomic Transactions

trans {
transaction-body
}

The O++ compiler takes the transaction body and
encapsulates it into a function £ defined as

void £() {
transaction-body
}

The compiler will also generate code to initiate, begin,
and commit a transaction ¢ executing the function f:

tid t; // transaction tid
if ((t = initiate(f)) != NULL) {
if (begin(t)) {



commit(t);

}

Error checks on the return values of initiate and
begin can be used to execute error-handling code, if
desired. To minimize clutter, we omit these checks in
the examples that follow.

3.1.2 Distributed Transactions

A distributed transaction consists of one or more com-
ponent transactions executed in parallel. The compo-
nent transactions can only commit as a group, resulting
in the commitment of the distributed transaction. Con-
sider the following distributed transaction (|| denotes
parallel execution):

trans { £1() } || trans { £2() }
Il ... 1l trans { £a() }

The above distributed transaction is translated as
follows:

tid ¢1, t2, ..., tn;
t1 = initiate(£f1); t2 = initiate(£2);
...; tn = initiate(fn);
form_dependency(GC, t1, t2);
«++; form.dependency(GC, t1, tn);
begin(t1); begin(t2); ...; begin(tn);
commit(t1); commit(t2); ...; commit(tn);

The group commit/abort semantics are accomplished
by the specification of group dependency. Consequently,
it is sufficient to commit or abort only one of the
transactions. In this example commit(ti) actually
accomplishes the group commit of all the transactions in
the group, and the remaining commit invocations simply
return 1 to indicate that their respective argument
transactions have already committed. Similarly, if
the group commit attempted by commit(t1) does not
succeed, all the tramsactions abort. Later commit
invocations simply return 0.

3.1.3

A contingent transaction conmsists of two or more
component transactions. At most one of the component
transactions of a contingent transaction commits; the
component transactions are executed in the order
specified.

Consider the following contingent transaction:

Contingent Transactions

trans {£f1()} else trans {£2()}
else ... else trans { fn() }

The above contingent transaction is translated as
follows:

tid ¢t1, t2, ... tn;
t1 = initiate(f1);
begin(ti);
if (commit(t1));
else {
t2 = initiate(£2);
begin(t2);
if (commit(t2));
else {
else
tn = initiate(fn);
begin(tn);

commit(tn);

}} oo}

3.14 Nested Transactions

A nested transaction (cf. [18]) consists of a root (or
parent) transaction and nested component transactions
called subtransactions. The subtransactions can them-
selves be nested transactions. Subtransactions execute
atomically with respect to their siblings. They are
failure atomic with respect to their parent. That is,
they can abort without causing the whole transaction
to abort.

A subtransaction can potentially access any object
that is currently accessed by one of its ancestor trans-
actions without forming a conflict. abort semantics for
both root transactions and subtransactions are similar
to abort semantics in atomic transactions. However,
commit semantics are different for root transactions and
subtransactions. When a subtransaction commits, the
objects modified by it are made accessible to its par-
ent transaction. However, the effects on the objects are
made permanent only upon the commit of the topmost
root transaction.

We illustrate the translation of nested transactions
via an example. This involves a two-level nested
transaction used for making a trip arrangement:

tid t;

t = trams {
trans { make_airline_reservation(); }
trans { make_hotel_reservation(); }

}

If an airline ticket cannot be purchased, then the
trip is canceled. If a hotel reservation cannot be made
then too the trip is canceled. The effects of the airline
reservation transaction must be undone in that case.

The above nested transaction is translated as follows.

tid t;

t = initiate(trip);
begin(t);
commit(t);



where function trip is synthesized as follows:

void trip()
{
tid t1;
ti = initiate(make_airline_reservation);
pernit(self(), t1);
begin(ti);
if ('wait(t1))
abort(self());
delegate(ti, self());
commit(t1);

tid t2;
t2 = initiate(make_hotel_reservation);
permit(self(), t2);
begin(t2);
if (twait(t2))
abort(self());
delegate(t2, self());
commit(t2);

}

This is the first example illustrating the use of the
permit and delegate primitives. We do not show
the code for functions make_airline reservation and
make_hotel reservation, executed by subtransactions
t1 and t2 respectively. We assume that both subtrans-
actions abort if they are unsuccessful in making the re-
spective reservations. If they succeed, they delegate all
the updates they have made to t, the top-level transac-
tion. Otherwise t is aborted, in which case the updates
made thus far, if any, are discarded. Note that since a
reservation transaction delegates all its operations and
does nothing afterwards, it does not actually matter
whether this transaction is committed or aborted sub-
sequent to the delegation.

3.1.5 Split and Join Transactions

In the split transaction model [19] a transaction, say ,,
can split into two transactions, ¢, and ¢;. At the time
of the split, operations invoked by ¢, on objects in a set
ob_set (up to the split point) are delegated to #;. t,
and t, can commit or abort independently. Conversely,
two tramsactions, say ¢, and £, can join to form one
transaction ¢,.

Consider the following simple example of a transac-
tion s that is split off from some transaction ¢. s sub-
sequently joins the transaction t. The code for s is em-
bedded in the function f. The transaction split, ie.,

trans t {
8 = split trans X { £(); };
}

where X is the set of objects to be delegated to the split
transaction, is translated as follows:

8 = initiate(f);
delegate(parent(s), s, IX);
begin(s);

The transaction join, i.e.,
join(s, t);
is translated as follows:

wait(s);
delegate(s, t);

3.1.6 Sagas

Sagas [13] have been proposed as a transaction model
for long-lived activities. A saga is a set of relatively
independent (component) transactions ¢;, t3,..., t, that
can interleave in any way with component transactions
of other sagas. Component transactions within a saga
execute, in the simplest case, in a predefined sequential
order.

Each component transaction t; (1 < i < n) is
associated with a compensating transaction ct;. A
compensating transaction ct; undoes, from a semantic
point of view, any effects of ;, but does not necessarily
restore the database to the state that existed when ¢
began executing.

Both component and compensating transactions be-
have like atomic transactions in the sense that they
have the ACID properties. However, their behavior is
constrained by certain dependencies. For example, a
compensating transaction commits if only if its corre-
sponding component transaction commits but the saga
of which it is a part aborts.

Component transactions can commit, making their
changes to objects effective in the database, without
waiting for any other component transactions or the
saga to commit.  Thus, isolation is limited to the
component transaction level and sagas may view the
partial results of other sagas.

A saga commits, i.e., successfully terminates, if all its
component transactions commit in the prescribed order.
Under sequential execution, the correct execution of a
committed saga is:

iy tg - tn

where ¢, ..., t, are components of the saga.

A saga is not failure atomic but it cannot execute par-
tially either. When a saga aborts, it has to compensate
for the committed components by executing their cor-
responding compensating transactions. Compensating
transactions are executed in the reverse order of com-
mitment of the component transactions. Thus, in the
sequential case, the correct execution of an aborted saga
after the commitment of its k** component transaction,
t (1< k<n),is:

tyty -~ tg cli ctpoy - cty



where ct; is a compensating transaction for ¢y, ct; for
i3, etc. The commitment of £, implies the commitment
of the whole saga and hence %, is not associated with a
compensating transaction cty,.

Consider the following saga

saga {
trans { £1()}
compensating trans { c£1()}
trans { £2()}
compensating trans { c£2()}

trans { tn_10}
compensating trans { cfn_1()}
trans { £n()}

The above saga is translated as

tid t1, t2, ..., tn_1, tn;
int i = 0;
{
t1 = initiate(£1); begin(ti);
if (!commit(tl)) break; i++;
t2 = initiate(£2); begin(t2);
if (!commit(t2)) break; i++;

tn

0.

initiate(fn); begin(tn);
if (!commit(tn)) break; i++;
}
tid ct1, ct2, ..., ctn_1
switch (i) {
case n-1:
do
ctn_1 = initiate(cfn_1);
begin(ctn_1);
while (!commit(ctn_1));
// a compensating transaction must be
// retried until it finally commits.
case 2:
do
¢t = initiate(cf2); begin(ct2);
while (!fcommit(ct2));
case 1:
do
ct = initiate(cf1); begin(ctl);
while (!commit(cti));
default:

H
}
3.2 Relaxed Correctness Requirements

In this section we discuss three examples of cooperative
behavior among transactions. These satisfy correctness
requirements that are less stringent than serializability.

3.2.1 Cooperating Transactions

Assume that two transactions ¢ and ¢; want to
work cooperatively on an object (read/write the same
object).

For example, t; allows t; to perform conflicting
operations by executing

form.dependency(CD, t.i, t_j)
permit(ti, t_j, ob, op);

The CD requirement imposed by the first statement
ensures that ¢; cannot commit before #; terminates.
With the second statement, t; allows t; to perform
operation op on object ob concurrent with #;'s accesses
to ob.

Similarly, t; can allow #; to perform conflicting
operations

permit(t_j, t_i, ob, op);

This “ping-ponging” of permits allows the two trans-
actions to cooperate with each other. Controlled forms
of dependence may thus be introduced in return for re-
laxed concurrency semantics, in a manner that produces
predictable interactions in a particular application sce-
nario. In this example, once ¢; permits #; to perform
conflicting operations, another CD could be established
between ¢; and ¢; if we desire that the two cooperating
transactions must both commit or neither. Such inter-
actions would occur, for example, in cooperative design
environments wherein changes to the (design) object be-
ing shared will be committed only if the final state of
the object is considered to be acceptable in the eyes of
the cooperating designers.

3.2.2 Cursor Stability

Commercial database systems provide for relaxed de-
grees of consistency. A popular choice is cursor stabil-
ity, which allows writes by a transaction ¢; to follow
reads of an uncommitted (reading) transaction #; on an
object ob that ¢; has finished reading. This results in
non-repeatable reads by ¢;.

In terms of our primitives, before moving the cursor
from one record to the next within .a relation, the
reading transaction #; executes

permit(t_i, record, write)

This permission allows any transaction to write the
specified record without waiting for ¢; to commit. No
dependencies are formed, so that ¢; and t; may commit
in any order.

3.2.8 Workflows

Workflows are long-lived activities with transaction-
like components having inter-related dependencies (22,
11]. Here we show workflows can be captured using



our primitives. Just as we had higher-level language
constructs corresponding to each of the transaction
models discussed earlier, it is possible to design a
language to specify workflows. These would then be
translated into the code given here.

Consider, as an example, person X who is traveling
from New York to Los Angeles to attend a conference
from June 11, 1994 to June 14, 1994. X wants to
leave New York on June 11 and leave Los Angeles on
June 14 and X must stay at hotel Equator, the site of
the conference. X prefers to fly on Delta, United, or
American in that order. X will not travel on any other
airline. The car must be rented from Avis or National
with which X’s company has corporate accounts.

The workflow activity involves making flight and hotel
reservations, and optionally a car rental reservation. If
no flight or hotel is available, the whole trip is canceled.
If a car cannot be rented, the trip can still proceed since
X can take public transportation. The program for the
workflow activity can be found in the appendix.

4 Implementation

This section describes the data structures and algo-
rithms used to support the transaction primitives in a
modified version of the EOS storage manager [3]. We
focus our discussion here on one mode of operation in
which the application operates directly on the objects
in a shared cache without first copying the object to its
private address space.

4.1 Data Structures

Data structures related to the implementation of the
transaction primitives are as follows:

e The transaction descriptor (T'D). It contains the
tid of a tramsaction ¢ and its parent (if any), the
transaction status, and a list of t’s lock requests.
The transaction descriptors are placed in a chained
hash table based on the transaction tid. T'D; denotes
the descriptor of the transaction #;.

o The object descriptor (OD). It provides information
about a locked object and contains the id of the
object, a list of granted locks requests, a list of
pending lock requests for the object, and a list
of permissions so that transactions can perform
conflicting operations on the object, see Figure 1.
Each object in the cache points to its own descriptor
so no searching is needed when a lock on the object
is requested. OD,; denotes the descriptor of the
object ob.

o The lock request descriptor (LRD). It describes a
granted or pending lock request on a particular
object ob by some transaction ;. It includes a
pointer to the TD;, a pointer to the OD,;, the lock

granted lock requests
LRD
pending lock requests
Object -
Descriptor
(OD) LRD
: permissions

Figure 1: The object descriptor.

mode of the request (read, write, none), the status
of request (granted, pending, or upgrading), and a
pointer to the next lock request of ;.

o The permit descriptor (PD). Each OD of an object
ob points to a (possibly empty) list of PDs. A PD
contains a back pointer to an OD,; and a triple
(¢, tj,op) indicating that even if ob is currently
locked by ¢; in a mode that normally conflicts with
op, t; can still perform op on object ob as far as ¢; is
concerned. P Ds are doubly hashed on the tid of the
two transactions involved so that permissions given
by or given to a transaction can be located efficiently.

o The transaction dependencies graph. This is a di-
rected graph where the nodes represent transactions
and an edge from ¢; to ¢; labeled with type represents
a dependency (type, ti, t;). The graph is stored
in structures that include pointers to the T'D of the
transactions involved in the dependency as well as
the type of dependency. These structures are doubly
hashed on the tid of the two transactions involved so
that dependencies emanating from or incoming to a
transaction can be located efficiently.

Latches control simultaneous access to data and
control structures in the shared memory region and
ensure atomicity of read/write operations on the cached
objects. There are two modes in which an item may be
latched: shared (S) and exclusive (X). Before a shared
item is accessed the latch associated with the item must
be obtained in the appropriate mode. The latch is
released immediately after the access completes.

Latches in EOS are implemented by an atomic test-
and-set operation. If a process cannot (test-and-) set a
latch it “spins” on it (perhaps with some time-varying
delay) until the latch is unset. Each latch, in addition to
the value that can be set or unset atomically, contains
an S-counter indicating the number of processes holding
the latch in S mode and an X-bit indicating whether a
process is waiting to get the latch in X mode. The
X-bit blocks new readers from setting the latch, thus
preventing starvation of update transactions.



4.2 Implementation of Transaction
Primitives
e initiate(f,args):
If resources are available, generate a tid and a TD for
this transaction with the status set to initiated. If no
resources are available (e.g., the number of transactions
exceed a predetermined number) return an error code.
Register the memory address of the function f that is to
be executed by this transaction. Also record the tid of
the parent transaction (null if this is a top level trans-
action).

® begin(t):
When the transaction begins executing its status, in its
TD, is modified to running.

¢ read-lock(%;, ob), write-lock(%;, ob):

1. Scan the list of lock requests LRD pointed by OD,;.
For each granted lock gl recorded in an LRD do the
following,

(a) If this gl is a lock acquired by t;, gl is not
suspended, and gl “covers” the requested lock,
return success.

(b) If gl is held by ¢; and conflicts with the requested
lock, scan the list of permissions (PD) pointed to
by ODo. If t; permits ¢; on ob, suspend gl. If
no permission is given to t; to place the lock, #;
blocks and retries later starting at step 1.

2. t; can now lock ob.

(3) If there is no LRD pertaining to %;, create one
indicating that ¢; has a lock on ob and insert it in
the list of granted locks pointed to by OD,; and
TD;.

(b) If there is already a LRD pertaining to #;, change
the lock mode, or remove suspension status, as the
case may be.

3. Return success.

e read(t;, ob):

1. read-lock(2;, ob), if not already locked.
2. Get an S-latch on ob.

3. Perform the read operation.

4. Release the S-latch on ob.

o write(;, ob):

1. write-lock(Z;, ob), if not already locked.
2. Get an X-latch ob.

3. Write the before image of ob to the log.

4. Perform the write operation.
5. Write the after image of ob to the log.
6. Release the X-latch on ob.

To simplify the presentation, we omit the latch/unlatch
steps from the following code.

e form_dependency (type, ¢;, t):

Insert a new edge in the dependency graph. Before this,
a check is performed to prevent certain dependency cy-
cles.

e permit(¢;, t;, ob, op):

Make a permit descriptor P D that includes the (¢, 24, 0p)
triple and insert it to the list of PDs pointed by OD,,
and the PD graph. If ¢; is null, the permission is given
to all transactions. Also, if op is null, the permission is
given for all operations on ob.

e permit(¢;, t;, op):

For each object ob that ¢; accessed or has permission
to access perform permit(?;, tj, ob, op). These
objects can be found by traversing the LRD list and the
PDs of permissions given by ¢;.

e permit(¢;, t;):

invoke permit (¢;, tj, null).

e permit(#;, ob, op):

invoke permit(#;, null, ob, op).

e delegate(?;, ¢;, ob_set):

For each ob in the ob_set, do the following: (a) remove
the LRD pertaining to ; on ob from the T'D;’s list and
insert it in the list of LRDs pointed by T'D;; (b) change
any PD of the form (2, £, op) to (%;, tk, op).

¢ delegate(t;, ¢;):

Traverse the LRD list pointed to by TD; and remove
each LRD from the ¢;'s list and insert it in the LRD list
pointed by TD;. Update all PDs of permissions given
by t; to be permissions given by 2;.

e commit (¢;) :

1. Check the transaction’s status in T'D;. If it is
committed return success. If it is aborted return
failure. If it is aborting, perform the steps of the
abort(t;) algorithm described below. Otherwise,
change the status of ¢; to committing and execute
the following steps.

2. Scan the list of dependencies emanating from #; and
for each such dependency d of t; on some transaction
t; do the following.

(a) If d is an abort dependency, #; cannot commit
because if £; aborts, ¢; must abort too. #; blocks
and retries later starting at step 1.



(b) If d is a commit dependency, ¢; can only commit
after t; terminates (commits or aborts). ¢; blocks
and retries later starting at step 1.

c) dis a group commit dependency.
gt

i. Leave a mark in this dependency edge indicat-
ing that ¢; is waiting for ¢; to commit.

ii. Ift; has not left a mark on this dependency edge

that waits for ¢; to commit, invoke commit (¢;).

iii. If ¢; has left a mark on this dependency that

waits for ¢; to commit, add ¢; to the list of

transactions that can commit as a group with

ti.

3. If there is at least one group commit dependency
unresolved, ¢; blocks and retries later starting at step
1. If there is a resolved group commit dependency
involving ¢;, the steps below are simultaneously
executed for all the transactions in the group.

4. At this point ¢; does not depend on any other
transaction. Place a commit record in the log.
Change the status of ¢; to committed.

5. Scan the list of dependencies pertaining #; and re-
move each such edge from the dependency graph.
This will remove all dependencies of other transac-
tions on i;.

6. Release all locks held by ¢; by traversing the LRD
lists pointed to by T'D;, and remove permissions
given by and given to %;.

7. Return success.
e abort(%;) :

1. Check the transaction’s status recorded in T'D;.
If it is committed return failure. If it is aborted
return success. Otherwise, change the status of ¢;
to aborting and execute the following steps.

2. Scan the log and for each update performed by ¢; on
object ob, install the before image of ob with respect
to this update. (This implies that subsequent
updates done by “cooperating transactions” will also
be lost.)

3. Release all locks held by ;.

4. Scan the list of dependencies incoming to ¢; and for
each such dependency d of some transaction tj on
do the following.

(a) If d is an abort or group commit dependency,
tj must abort. Mark ¢; in its TD structure as
aborting.

(b) If d is a commit dependency, just remove this
dependency.

5. Remove the remaining dependencies pertaining to #;
from the dependency graph.

6. At this point no other transaction depends on ¢;.
Change the status of £; to aborted and return success.

5 Conclusions and Future Work

In this paper we have developed a flexible transaction
facility called ASSET. ASSET allows the specification
of arbitrary transaction models and provides support
for programming transactions that have relaxed cor-
rectness requirements. Our goal is to facilitate the
construction of transactions that cooperate and inter-
act in application-specific ways. Through several exam-
ples, we showed how three novel transaction primitives,
namely, delegate, pernit and form_dependency, allow
the construction of arbitrary transaction models and the
realization of relaxed correctness notions.

With regard to related work, Argus [17] represents
one of the earliest efforts at providing linguistic supports
for transactions. Argus, however, supported only nested
transactions; each operation invocation was considered
to be a (sub)transaction. More recently, efforts have
been underway in several places to provide support for
transactional activities. Among these, work similar in
spirit to ours is in progress as part of the InterBase
Project at Purdue University (7], the DOM project
at GTE Laboratories(14] and in the context of the
Contract model [22].

Flex, the model used in the InterBase Project, is
based on the nested transaction model but allows re-
laxations of the atomicity and isolation requirements.
Specifically, it has primitives to commit one of many
transaction components and to execute multiple trans-
action components in parallel. Also, dependencies be-
tween transaction components can be specified. These
contribute to the flexibility of transaction specifications.
ASSET’s flexibility, on the other hand, derives from
the set of primitives designed explicitly to allow for
the cooperation of transactions through object sharing
and delegation. These primitives allow users specify
the transaction behaviors just mentioned. As in Flex,
dependencies between transaction components can be
specified in ASSET.

The Transaction Specification and Management En-
vironment (TSME) of the DOM project provides an
ACTA-like specification language for users to express
the properties of extended transactions. While DOM
also allows the specifications of dependencies, unlike
DOM, ASSET’s primitives are at the programming lan-
guage level but are based on ACTA building blocks.

In the Contract model, a set of steps define individual
transactions and a script is provided to comtrol the
execution of these transactions. Even though the
functions associated with transactions in our work may



appear to be similar in concept to steps, transaction
management primitives can be invoked from within
our functions. Contract scripts introduce their own
control flow syntax, while our approach uses the control
flow syntax of the host language (e.g., O++) and
only introduces a small set of transaction management
primitives. As with contracts, ASSET allows explicit
dependencies between transactions to be expressed
using the form_dependency primitive.

One of our future goals is to develop further the
underlying transaction management system of ASSET
to exploit the concurrency semantics inherent in objects
(10]. This will take advantage of the semantics of
objects in an object-oriented database, by considering
the compatibility of class specific operations (methods).
We believe that many operations in an object-oriented
database may commute. For example, operations
to increase an existing employee’s salary and to add
a new employee to a department commute. Also,
operations on an object commute provided they operate
on different parts of the object. For example, operations
that update an employee’s salary and change the
employee’s department commute. Hence, we would
like to capitalize on the semantics of objects in an
object-oriented database, by taking into account the
compatibility of class specific operations (methods).
Concepts and mechanisms from Multi-level transactions
[23] will come into play when we consider operation
semantics.
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Appendix — The Workflow Program

//Suppose that the following functions have been defined that make (or cancel) the appropriate
// reservations. The last two functions respectively compensate for the first two functions.

void flight_reservation(Airline air, Date di, Date d2);

void hotel_reservation(Hotel h, Date di, Date d2);

void car_reservation(CarRent c, Date d1, Date d2);

void cancel_flight_reservation(Airline air, Date di, Date d2);
void cancel_hotel_reservation(Hotel, Date di, Date d2);

//Using these functions, the desired workflow can be defined as follows:

void exclusive_car_reservation(CarRent car, Date di, Date d2, tid t);
{ car_reservation(car, d1, d42);
if (wait(self())) abort(t);}

int X_conference()
{ tid t1, t2, t3, t4, t5, t6;
Airline* air;
ti = initiate(flight_reservation, "Delta", “6/11/1994", "6/14/94");
begin (t1);
if (tcommit(t1)) {
t2 = initiate(flight_reservation, "United”, "6/11/1994", "6/14/94");
begin (t2);
if (‘commit(t2)) {
t3 = initiate(flight_reservation, “American", "6/11/1994", v6/14/94%);
begin (t3);
if (fcommit(t3)) return 0; // Activity Failed
elge air = “American";}
else air = "United";}
else air = "Delta";
// Flight reservation has been made at this point

t4 = initiate(hotel_reservation, “Equator", "6/11/1994", "6/14/94");
begin(t4);
if (!commit(t4)) {
do {t§ = initiate(cancel_flight_reservation, air, "6/11/1994", "6/14/94");
begin(t8);}
while (!commit(t5));
// Compensate for the flight reservation already made
return 0;}
// At this point, hotel and flight reservations have both been made

t5 = initiate(car_reservation, "National', "6/11/1994", "6/14/94");

begin(t6);
té = initiate(exclusive_car_reservation, "Avis", "6/11/1994", “6/14/94", t5);
begin(t6);
if (wait(t5)) { // Whichever of t5, t6 completes first wins
abort(t6);

commit (t6);}
else commit (t6);

return 1; // Activity has completed successfully



