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Abstract

Active databases and real-time databases have been important areas of research in the re-
cent past. It has been recognized that many benefits can be gained by integrating active and
real-time database technologies. However, there has not been much work done in the area of
transaction processing in active real-time databases. This paper deals with an important aspect
of transaction processing in active real-time databases, namely the problem of assigning priorities
to transactions. In these systems time-constrained transactions trigger other transactions during
their execution. We present various policies for assigning priorities to parent, immediate and
deferred transactions executing on a multiprocessor system and then evaluate the policies using
simulation. The simulator has been validated by comparing to three sets of published results.
Our new results demonstrate that dynamically changing the priorities of transactions depending
on their behavior (triggering rules), yields a substantial improvement in the number of triggering
transactions that meet their deadline.

1 Introduction

Traditionally, in soft real-time transaction processing systems, a transaction is considered a mono-
lithic unit of work with a given deadline. In these systems, priorities are assigned to these transactions
and the transactions are scheduled based on their priorities. The priority assignment usually takes
into account the deadline of the transactions, because the underlying assumption is that the deadline
reflects the urgency of completing the transaction. Scheduling policies such as Earliest Deadline First
(EDF) and Least Slack First (LSF) are examples of priority-cognizant policies. The performance
implications of priority assignment policies have been studied in detail in soft real-time transaction
processing systems in [1, 6). In such systems, the priority assignment policies as well as conflict
resolution policies must be time cognizant. In this paper, our goal is to study and evaluate priority
assignment policies in a real-time active database. A real-time active database is a database system
where transactions have timing constraints such as deadlines, where transactions may trigger other
transactions, and where data may become invalid with the passage of time. There are many ap-
plications such as cooperative distributed navigation systems and intelligent network services where
real-time active database technology is extremely useful [12, 14].

Before explaining the problem we are addressing in detail, we will give a brief introduction to
active databases. The building block of an active database system is the Event-Condition-Action
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(ECA) rule. The semantics of the ECA rule is that if the specified event (E) occurs and if the
condition (C) is true then the specified action (A) is to be executed. Some examples of events are
begin?, commit/abort of a transaction, accessing a data item, or reaching a specific point in time. A
condition is usually a predicate on the database state. An action is the transaction that is executed
in reaction to the specific situation which is the combination of events and the conditions. The trans-
action that fires the rules is called the triggering transaction and the action that is executed because
of the rule firing is called the triggered transaction. We refer to the transactions that trigger other
transactions as active transactions or parent transactions in this paper. An active transaction has a
set of triggered transactions that are either executed as part of the active transaction or separately
- depending on the type of the coupling mode between the parent and the triggered transactions
[4]. There are three types of coupling modes. They are immediate, deferred and independent and
the transactions triggered in those modes are referred to as immediate, deferred and independent
transactions, respectively. The immediate and deferred transactions are executed as part of the
parent transaction whereas the independent transactions are executed independently. An immediate
transaction is executed as soon as it is triggered and the parent transaction is suspended until the
immediate transaction is completed. A deferred transaction is executed after the parent finishes ex-
ecution, but before it commits. The immediate and deferred transactions are committed only if the
parent commits. Since the immediate and deferred transactions are part of the parent transaction,
we also refer to them as subtransactions.

Due to the rule firings, an active transaction generates additional work dynamically. In a real-time
context, for the time-cognizant scheduling policies to perform well, they should take into account the
dynamic work that is being generated. This aspect of the problem makes this scheduling problem
different from the classical hard real-time scheduling where execution times are assumed to be known
in advance [8, 9, 15]. The priority driven nature of real-time transaction processing brings about
the question of assigning priorities to the parent and all triggered actions [12, 14]. We believe
that the priority assignment strategy has a significant impact on the performance of the system as
triggered actions will contend with ongoing transactions for resources. In this paper, we address the
problem of assigning priorities to triggering and the triggered transactions. We discuss three policies
for assigning priorities to immediate and deferred transactions, given the triggering and triggered
transactions’ characteristics.

To illustrate the problem, we provide an example of the structure of a complex active transaction
executing on a uniprocessor. We use figure 1 to illustrate our example. Since we use figure 1 later in
our description of priority assignment protocols, it is more complicated than necessary for the problem
illustration. Figure 1 shows the life of a complex active transaction T that triggers transactions in all
three modes. Transaction T arrives at time £1 (a(T')) with ¢10 as its deadline (d!(T')) and is started
at time ¢2 (s¢(T')). It triggers a deferred transaction dtl at time t3, and another deferred transaction

>The begin event may, in turn, have been caused by some external environment event such as an obstacle identified
by a sensor [12, 14).
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Figure 1: Life of a Complex Active Transaction

dt2 at time t4. It triggers an independent transaction indl at t5, an immediate transaction ¢l at
t6, another deferred transaction d¢3 at ¢7 and an immediate transaction it2 at ¢8. Figure 1 shows
that the transactions itl1 and it2 execute immediately while T is suspended. Finally, the figure shows
that once the parent T completes, the deferred transactions dtl, dt2 and dt3 execute. The problem
we address in this paper is the problem of assigning priorities to transactions itl, it2, dtl, dt2 and
dt3, and the problem of dynamically reassigning the priority of the parent transaction T' during its
lifetime. It should be noted that the deferred transactions can execute simultaneously if operating
on a multiprocessor or a distributed system. We assign the priorities to triggered transactions when
they start execution and they are not modified later.

Our main contributions are :

e developing priority assignment policies that take into account the dynamic work generated by

active transactions;

e evaluating the priority assignment policies against a baseline policy using a real-time active
database simulator in two settings, i.e., in a real-time task setting and a main memory database
setting;

e demonstrating that for mixed workloads with triggering and non-triggering transactions, prior-
ity assignment policies that take into account the dynamic work generated reduce the deadline
miss ratio of the triggering transactions significantly at the cost of a very small increase in the

deadline miss ratio of non-triggering transactions compared to the baseline policy; and

e conducting experiments to identify the relative bias the policies show for the triggering transac-
tions, thereby enabling an implementor to select from various policies depending on the relative
importance of the triggering and non-triggering transactions in the system.

We discuss related work in Section 2. In Section 3, we explain our transaction model, system
model and describe the various attributes of a transaction and other related terms. Section 4 gives

a detailed explanation of the priority assignment policies. We discuss the experiments and results
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in Section 5 in detail. We conclude our paper in Section 6 with a summary of our main results and

discuss future work.

2 Related Work

Over the past few years active databases and real-time databases have become important areas of
research. There have been both theoretical and experimental studies in active databases [2], [3],
[11], [4). Experimental work on active databases in [2] is done in a non real-time setting. Most
of the research done on active components in object oriented databases and real-time databases
has concentrated on the specification of Event-Condition-Action (ECA) rules [5]. Experimental
work done on real-time transaction processing systems [1, 6] has not considered active workloads.
Experimental studies reported in [1] are very comprehensive and cover most aspects of real-time
transaction processing, but have not considered active workloads and have not addressed the problem
of subtransaction priority assignment. Experiments in [2] show the impact of transaction boundaries
and data sharing on performance of active databases. We address a different problem, that of
assigning priorities to triggered transactions in real-time active databases. In [13] the relationship
between real-time databases and active databases is discussed briefly. Lack of active pursuit of
timely processing of actions to do real-time processing was identified as a missing ingredient in
active databases. In short, past studies on real-time transaction processing have not dealt with
active workloads and studies on active databases have not dealt with real-time transactions.
Simulation studies have been conducted to study the problem of assigning deadlines to subtasks
in real-time systems [7]. The problem of assigning deadlines to the parallel and serial subtasks of
complex distributed tasks is addressed in [7]. The structure of the complex tasks is assumed to be
known in advance. Also the experimental system considered in [7] is not a transaction processing
system and does not have an active component. The system we consider for our experiments is an
real-time active database with unpredictable data accesses and rule firings. In contrast with [7], in

our study the structure of complex transactions is not known in advance.

3 The Model

In this section we describe the transaction model and the system model used to study the priority
assignment policies in a real-time active database. We also define some key attributes of a transaction

and other related terms.

3.1 Transaction Model

A transaction in our system is a series of method executions on objects. We consider two types
of transactions in the system: Triggering (class T) and NonTriggering (class NT). A nontriggering

transaction is a simple transaction which does not cause any rules to fire. A triggering transaction,



on the other hand, can trigger subtransactions upon the occurrence of an event. All subtransactions
are simple transactions. An event in our model is one of the following types of events: Transaction
Event, Object Event, or Temporal Event. An object event occurs, whenever the transaction executes
a method on an object instance, a transaction event occurs during begin, commit or abort of a trans-
action and a temporal event occurs when a particular point in time is reached. The subtransaction

that is triggered can be executed in one of the three modes: immediate, deferred or independent.

3.2 Attributes of a Transaction

In order to understand the details of priority assignment policies, we define the following attributes
of a transaction T, and other terms that we require to explain our priority assignment policies.

at(T) : The arrival time of T
st(T) : The start time of T
di(T) : The absolute deadline of T
vdly(T) : The virtual deadline of T at time ¢ (this is used for scheduling)
avgLen(T) : Average length of T (average number of method invocations)
lenLeft(T) : Length Left (remaining number of method invocations
based on avgLen(T) assumption)

slack:(T) : The slack of T at time t
wslack,(T) : The predicted worst case slack of T' at time ¢
eet(T) : The estimated execution time of T
ect:(T) : The estimated completion time of T at time t
eetl,(T) : The estimated execution time left for T at time t
weet,(T) : The predicted worst case execution time of T at time t
nDef(T) : The number of deferred transactions triggered by T until time t
nImm,(T) : The number of immediate transactions triggered by T' until time t
eetDef,(T) : The sum of estimated execution time of all deferred

transactions triggered until time t
probTrig,,; : Probability of an object event triggering a subtransaction
probT'rigian, : Probability of a transaction event triggering a subtransaction

The vdly(T), the virtual deadline of transaction ¢ at time T is used to assign the transaction’s
priority by the EDF scheduler. To increase the priority of a transaction we assign a virtual deadline
which is earlier than the absolute deadline dI(T). Thus, it is not necessary to abort a transaction
when its virtual deadline expires. eet(T'), estimated execution time information, is used by some
priority assignment policies. eetl,(T), is the difference between the estimated execution time and
the time taken to execute the transaction so far. The wcet,(T), includes the execution time left
at time ¢ as well as the worst case time to execute the subtransactions which the transaction T

can trigger during its remaining lifetime. The predicted worst case slack wslack,(T) is obtained by
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Figure 2: Simulator Architecture

subtracting the worst case execution time from the absolute deadline. The calculation of worst case
execution time uses the value of probTrig,; and probT'rigi qn., Which are the probabilities that a
subtransaction is triggered by an object event or a transaction event of the transaction, respectively.
This information is used by some of the priority assignment policies. We believe that by analyzing
the characteristics of an application one might be able to obtain information like execution time of
transactions, the kind of actions they trigger and the probability of triggering. In our experiments,
we assume that this information is known accurately. In future experimentation, we plan to study
the implication of errors in this information, on the performance of the priority assignment policies.
The following equations show the relationship between the some of the terms defined above.
ects(T) = clock + eetly(T)
slack(T) = dl(T) - ect,(T)

where clock is the current clock value.

3.3 Simulation Model

Our performance model of an active real-time active database was implemented using the DeNet
Simulation Language [10]. The simulator is made up of five active components : Source, Transaction
Manager, Object Manager, Resource Manager, Rule Manager, and a passive component DB Manager.
Figure 2 illustrates the architecture of the simulator. Following is a detailed description of the

modules:

e DB Manager
This is the passive module that models the data. The data is modeled as having a certain
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number of object classes and each object class having a certain number of instances. Each
object class has a certain number of methods defined which are used to access the object.
Each object instance in the database is mapped to a page or number of pages in the secondary

storage.

Source

The source (transaction generator) generates the incoming transactions into the system. One
can view the source as the application or the environment in which the Real-Time Active
Database is used. It generates transactions with timing constraints with a specified arrival
distribution. It can generate both periodic and aperiodic transaction streams and three types
of real-time transactions namely hard, firm and soft. One of our future goals is to study the
transaction characteristics of specific applications [12, 14] and design the generator to model
it as closely as possible.

Transaction Manager

Transaction Manager is responsible for scheduling and execution of transactions it receives
from the source. It executes the submitted transactions by requesting the Object Manager
to execute the specific methods on specific objects. It handles the various transaction events:
begin, commit and abort. It informs the Rule Manager of the transaction events.

Object Manager

Object Manager executes the methods of the objects in the system as requested by the Trans-
action Manager. It is also responsible for concurrency control. If the request can be executed
it executes and sends the success message back to the Transaction Manager. If the request
cannot be satisfied it either sends a blocked or abort message back to the Transaction Manager.
It also informs the Rule Manager of the various object events that occur. Conflict resolution
in this module is priority based where the lower priority conflicting transaction waits or gets

aborted depending on whether it is the requester or holder of locks.

Rule Manager

The Rule Manager models the active workload in the system. The rule firings are modeled
probabilistically, i.e., a rule is fired with a certain probability. The Rule Manager checks to see
if any rules are triggered whenever it gets an event notice from the Transaction Manager or the
Object Manager. It models the condition evaluation, and, finally it generates the transactions
corresponding to the actions of the rules triggered if their conditions are satisfied and submits
them to the Transaction Manager.

Resource Manager

The Resource Manager simulates the CPUs and disks and the main memory buffer. The Object
Manager requests the Resource Manager for the necessary pages or for CPU time to execute the
methods. The Transaction Manager requests the Resource Manager the CPU time and buffer
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space to load transactions. The CPU, disk, and memory resource scheduling is priority driven.
-Our resource model is a multiprocessor, multi disk, shared memory system. The incoming
resource requests are queued in a common CPU queue or a common disk queue depending on
the kind of request.

The scheduling and conflict resolution decisions made in different modules of the simulator are
independent of each other. No global scheduling decisions are made. For instance, the scheduling
decision made in the Resource Manager is independent of the one made in the Transaction Manager.
There are three types of overload management policies available in the simulator. In the all eligible
policy all the transactions are run to completion. In the not tardy policy, a transaction is aborted
as soon as its deadline expires. This corresponds to firm real-time transactions. This policy assumes
that finishing a transaction after its deadline expires doesn’t impart any value to the system. In
feasible deadline policy, we check the feasibility of a transaction, i.e., if it can finish by its deadline
based on the estimated execution time and abort it if it cannot finish by its deadline.

4 Priority Assignment for Triggered Transaction

In real-time active databases, a transaction with time constraints can trigger subtransactions. Tra-
ditionally, priority driven scheduling has been used in real-time systems. So the problem arises as
to how to assign a priority to a subtransaction given the priority of the parent transaction. Another
problem is that as a transaction triggers subtransactions either in immediate or deferred modes, the
amount of work to be done on behalf of the transaction before it commits also increases. So the
transaction is legs likely to complete successfully compared to another transaction with the same
deadline which doesn’t trigger any subtransactions, since it faces more resource contention during its
lifetime. In this section, we describe some policies for dynamically assigning priorities to the parent
and Immediate and Deferred subtransactions in an active real-time database system. In all cases,
the priorities are assigned to the triggered transactions when they start execution and priorities are
not changed subsequently during their execution. The priority of the triggering transactions may
change dynamically, depending on the policy.

4.1 Priority Assignment Policies for Immediate Subtransactions

Three priority assignment policies are studied for immediate subtransactions. The first two assign-
ment policies assume that the scheduling discipline is Earliest Deadline First (EDF) and the third
policy assumes that the scheduling discipline is Least Slack First(LSF). We use the active transaction
T in figure 1 to explain our policies and discuss the priority assignment policies for the immediate
transaction it1l. We request the the reader to refer to section 3.2 to understand the semantics of the

terms used in the following description.



1. PD: Assign the same deadline as the parent deadline. The priority of the parent transaction
which is based on its deadline does not change with the triggering of subtransactions. This is
a very simple baseline algorithm. All the actions done on behalf of a transaction get the same
priority as the transaction itself at any point during its lifetime.
For example, at the triggering point, i.e., at time 6

di(it]) = di(T) [1]
vdlg(itl) = di(T) [2]

2. DIV: Equally divide the parent’s effective slack among all the immediate and deferred sub-
transactions triggered until that point. The parent’s deadline is also adjusted dynamically to
reflect the work that has been triggered dynamically. The sum of estimated execution time of
deferred transactions that have been triggered until that point is subtracted from the parents
slack to determine the effective slack.

slacke(T)—(eetis(itl)+eetie(dil)+eetes(dt2))

vdlig(itl) = ectg(itl) + nDe fug(T)+nImmus(T) (3]
d(it1) = di(T) [4]
vdl(T) = vdle(T) - eet(itl) [5]

The main idea behind this policy, is that of giving higher priority to class T transactions,
which have more work to do before completion. This will increase the probability of the class
T transactions meeting their deadlines. This policy only uses the estimates of execution times
of subtransactions that have already been triggered. It does not use any knowledge about
future triggering of transactions.

3. SL: Adjust the worst case slack (wslack:(T)) of the parent at each potential triggering point.
In this policy, the transaction with the smallest slack has the highest priority. The initial value
of slack is assigned based on the predictions about the total execution time for a transaction
and its subtransactions as indicated by probTrig,;. The slack is then adjusted at each object
or transaction event based on whether the parent transaction triggers a subtransaction or not.
The triggered transactions are assigned the same slack as the parent, i.e., they are executed at
the same priority. We assume that the transaction events do not trigger any subtransactions.
This assumption holds for the rest of the paper and is explained later in more detail.

Initially slack is set as follows:

wslack(T) = dI(T) - clock
- eet(T) - (avgLen(T) * probTrige; * eet(st)) [6]
where st is a triggered subtransaction.
If a subtransaction, say itl is triggered the slack is adjusted as follows:3

*Note that we update slack only at object events.



wslackg(T) = dl(T) - clock -
eetlys(T) - eet(itl) - (lenLeft(T) * probTrigs; * eet(st)) [7)
wslackg(itl) = wslack,s(T) (8]

If a subtransaction is not triggered then the slack adjustment is as follows :

wslack(T) = dI(T) - clock -
eetly(T) - (lenLeft(T) * probTrige; * eet(st)) [9]

For a given transaction T', wslack(T) is used to calculate its priority during scheduling. The
deadlines are assigned as follows:

vdlg(itl) = di(T) [10]
di(itl) = dI(T) [11)

4.2 Deadline Assignment Policies for Deferred Subtransactions

The priority assignment for deferred transactions is very similar to that of immediate transactions.
There are three policies, PD, DIV and SL for deferred transactions but in the case of DIV the denom-
inator of equation [3] considers only the deferred transactions that are yet to be executed, because all
the immediate transactions would have already finished execution. The following equations illustrate
the deadlines/slack assignments in the case of deferred transactions. Once again, we use the active
transaction T in figure 1 in our explanation and discuss priority assignment policies for deferred
transaction dtl.

1. PD Protocol:

di(dtl) = di(T) [12]
vdl(dtl) = di(T) [13]

2. DIV Protocol:
lackg(T)—(eetso(dil eteo(dt2 dt3
vdlgg(dtl) = ectgg(dtl) + 8iac. 39( ) (e tsnge)}::(T‘t)g( )+eit¢£(__).). [14]

di(dtl) = di(T) [15]

3. SL Protocol:
wslack,(T) = dI(T) - clock - eetDefio(T)  [16]

wslacky(dtl) = wslacky(T) [17]
vdlyg(dtl) = d|(T) (18]
dl(dt1) = di(T) [19]
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5 Experimentation and Results

We begin this section with a brief description of the validation of our simulator. We then discuss
the experimental setup along with the assumptions and decisions made in our experiments. We also
present a table of important parameters and their values. Finally, we describe each set of experiments
and an analysis of the results. In the experiments, 95% confidence intervals have been obtained whose
widths are less than +2.5% of the point estimate for the Missed Deadline Percentage (MDP).

5.1 Validation of the Simulator

Experiments were conducted to validate the simulator. This was accomplished in three steps.

active-validation
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o We validated the active part of the simulator against the results in [2]. The results are illustrated
in the figure 3. We mapped their model onto ours as closely as possible. We were not able to
obtain the exact results because of differences in the two models. The original work modeled the
buffer explicitly, but we model our buffer using a parameter hitratio, which is the probability
that a page is resident in the buffer. Hitratio is set to 0.9, for all the experiments in this
validation. The explanation of parameters and the experiments can be found in [2]. In figure
3 solid lines (marked as /[2]) represent the original results and the dotted lines represent our
simulation results. From figure 3, we can see that for Independent coupling mode (no coupling)
and the Immediate coupling mode (strict coupling), our results are within 10 percent of the

original results.

¢ We validated the real-time part by trying to duplicate the results in [1]. In the NT (not tardy)
overload management policy, a transaction is aborted as soon as it becomes tardy. In the AE
(all eligible) policy, a transaction is run until it finishes. The results are illustrated in figure
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4. Again our results were very similar to previously published results. The slight performance
improvement obtained by our policies in the not terdy case, can be explained by the fact that
checking for tardiness is done more often in our model.

e Finally, to validate the combined model, we conducted experiments as in [7] (No graphs are
plotted for these experiments). There was an inherent difference in the two models because
the one in [7] is a distributed system and ours is a single site multiprocessor system. So their
system has multiple servers with a queue for each server whereas ours has multiple servers with
a single queue. We experimented with UD and DIV-1 policies mentioned in [7] and our missed

deadline percentages were lower by no more than 5-10% which can be attributed to the above
difference and other subtle differences in parameters.

realtime-validation
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Figure 4:

In our validations we did not perform the complete set of experiments that are in [2], [1] or [7],
but just certain baseline experiments.

5.2 Experimental Setup

In our experiments

e We address only firm real-time systems where the value of the transaction drops to zero once
the deadline expires. We abort the transaction that misses its deadline along with all its related
subtransactions. This corresponds to the not tardy case.

e We do priority-driven preemptive scheduling.

e We consider active real-time databases that trigger only immediate and deferred transactions.
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We disable cascading rule firings, that is triggered transactions do not trigger further transac-
tions.

Transaction events do not trigger rules. We make this assumption to simplify the experi-
mentation as the only effect of transaction events triggering rules in our study, would be to
increase the number of subtransactions triggered. This effect can be achieved by increasing the
probability that an object event can trigger a rule.

There are three types of class T transactions: IMM which trigger only immediate subtransac-
tions, DEF that trigger only deferred transactions, and IMMDEF that trigger both immediate
and deferred subtransactions.

We normalize the slacks for the three types of class T transactions taking into account the fact
that the deferred transactions can be executed in parallel and the immediate transactions are
executed in sequence. Therefore, transactions that trigger only immediate subtransactions will

get more slack than those that trigger only deferred subtransactions.

The Missed Deadline Percentage (MDP) is the performance metric we use. This is the tradi-
tional metric used to compare performance in firm real-time systems.

We experiment with two types of data access characteristics of transactions. The first is
a main memory based system with no data conflicts. This is essentially a task model as
opposed to transaction model. Second is a main memory database, i.e., main memory based
system with data conflicts. We have no explicit buffer modeling, but a parameter hitratio that
proba\bilistica.lly says if a page is in memory, which is set to 1.0 to simulate main memory
database system. Similarly, there is no explicit mapping of objects to specific pages, but every

object access is converted in to a corresponding number of page accesses.

We use a parameter loed in our experiments which is very similar to the one in [7]. In order

to define load we specify the arrival rates and service rates of class T and NT transactions. The

arrivals of class T and class NT transactions are generated according to Poisson processes with
mean interarrival time of 1/Ay and 1/Ayr time units, respectively. The arrival rates are calculated
using the following two equations, where all other quantities except the arrival rates are known to
us. In the first equation, we define the load to be the ratio of work generated to the total processing
capacity of the system. 1/pr and 1/puyr are the average total execution time of class T and NT
transactions respectively, and N¢py is the number of CPUs in the system. In the second equation,
fracy is the fraction of load that is contributed by the class T transactions.

Ar + AnT
load = ETN—O:’:}[L [20]

Ar

fraer = x5 (]

BT " BNT
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Table 1 shows parameter settings for our baseline experiments. The deadline of a transaction T
is set using the following formula:

di(T) = at(T) + (1+ slack) * eet(T)

where slack is randomly selected from a specified range.

Mode__ Parameter Setting
ALL Nory I 6 |
Number of Object Instances 2000
Overload Management Policy Not Tardy
Avg. Length of class NT Transactions 5
slack of class NT transactions 0.5-1.25
Avg. Length of class T Transactions 6
Avg. Length of Subtransactions 5
fracr 0.15
Probability of triggering by object event 0.8
Probability of trigg_ering by transaction event | 0.0 ]

IMM slack 5.0-5.5
% of Immediate Subtransactions 100 “

% of Deferred Subtransactions 0 "
DEF slack 2.0-2.5 "
% of Immediate Subtransactions 0 ||

N ﬁ of Deferred Subtransactions 100
[ IMMDEF | slack 4045 |
% of Immediate Subtransactions 50 "
% of Deferred Subtransactions 50 |

Table 1 : Baseline setting

5.3 Real-time tasks

In the first set of experiments we deal with real-time active tasks executing in a multiprocessor
environment. The purpose of these experiments is to isolate and study the effect of scheduling on
performance. We simulate a main memory database system where there are no data conflicts. We
have a parameter dataContention which, if set to 1.0, makes all the methods of an object class
compatible with each other and when set to 0.0 makes all the methods incompatible with each other.
So in these experiments, we limited the number of object classes to 1 and the number of methods to 1.
Depending on the dataContention the method is either compatible with itself or not. All the object
instances in the database belong to this single class. We experiment with all three types of class T
transactions, i.e., IMM, DEF and IMMDEF. The performance of the transactions belonging to both
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classes is presented in figures 5, 6 and 7, respectively. Figure 5 deals with the case where all the
subtransactions are triggered in immediate mode (IMM). We can see from the graph that compared
to PD both the DIV and SL policies decrease the MDP of T class transactions significantly at higher
loads by as much as 10 to 12 percent, at the cost of a small increase of around 3 percent in the MDP
of NT class transactions. The protocol DIV reduces the MDP of T class by a greater amount than
SL, accompanied by a smaller increase in the MDP of NT class. So clearly DIV performs better
than SL in the case of immediate transactions.

In figure 6, we present the results for the case where all the subtransactions triggered are executed
in deferred mode (DEF). Again, SL and DIV policies perform better than the PD protocol for class
T transactions. In this case SL and DIV reverse their roles, SL outperforming DIV substantially at
higher loads for T class. However, in the case of NT class DIV performs better than SL. For the
T class SL reduces the MDP by 30 percent at high loads compared to DIV with a slight increase in
the MDP of NT class. Essentially SL gives higher preference to T class transactions over NT class
transactions than DIV. This change of order from the previous result can be explained by the fact
that deferred subtransactions can be executed in parallel on a multiprocessor system whereas the
immediate subtransactions are executed sequentially. So SL gives a very high preference to T class
transactions when deferred subtransactions are present. This explains the fact that SL keeps the
MDP of T class transactions nearly constant while the MDP of NT class increases. It also explains
the fact that SL gives lower MDP for T class than the NT class.

The results for the case where the subtransactions triggered execute either in deferred or imme-
diate mode with equal probability (IMMDETF), are illustrated in figure 7. The performance trend is
similar to that of the deferred only case, but the difference is lower than the DEF case because of
the presence of immediate subtransactions.

In the above results we observe that while the MDP of T class transactions is reduced by the
SL and DIV policies, the MDP of the NT class transactions increases. This is desirable, where T
class transactions are more valuable than NT class transactions. To see the performance of the
policies if transactions of both classes have the same value, we evaluated the combined MDP of all
the transactions. Again 85 percent of the workload comes from NT class transactions. The results
are illustrated in figures 8,9 and 10. As we can see PD performs best if we give equal value to both T
and NT class transactions. DIV is the next best and the SL is the worst. This is because DIV and
SL are biased toward T class transactions. Also the CPU time required by one T class transaction
is much higher. Though the MDP of T class is reduced, since NT class transactions constitute the
majority, the overall MDP increases in the case of DIV and SL. For example, in figure 8, SL shows
the worst performance and DIV is comparable to PD except at very high loads. So DIV protocol
performs comparably with the PD protocol even when transactions of both classes have equal value.

In DEF and IMMDEF case clearly PD provides the lowest MDP over DIV and SL policies in that
order.
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5.4 Analysis of DIV and SL Policies

We observed in the previous experiments that DIV and SL give preference to T class transactions over
the NT class. In this section we will study what happens when we design algorithms which range
between PD and DIV and similarly between PD and SL. So we introduced a parameter o which
controls the priority assignment in DIV and SL policies as follows. We call these parameterized
policies ALPHA-DIV and ALPHA-SL.

ALPHA-DIV: priority = a x deadlinepry + (1 — a) x deadlinepgrent

deadlinepry is the deadline assigned to the transaction by the DIV protocol. deadlinep,,en: is
the deadline of the parent transaction.

ALPHA-SL : priority = a x estSlacksy + (1 — a) x deadlinepapent

estSlacksy, is the slack assigned to the transaction by the SL protocol.

A lower priority value indicates higher importance. So when « is zero both the policies reduce
to PD. When « is one they are DIV and SL policies respectively. For this set of experiments the
load was kept constant at 0.75. We studied the performance of the ALPHA-DIV and ALPHA-SL
policies as « is changed from zero to one. The results are plotted in figures 11,12 and 13. On X and
Y axes we plot the MDP of NT and T class transactions, respectively. The points on the curves,
correspond to o values varied from 0 to 1 with an increment of 0.2. We also plotted some points
with intermediate values of a to clearly distinguish between the different policies. We observe that
ALPHA-DIV works better than ALPHA-SL throughout the range for the immediate only case. It
reduces the MDP of T class transactions by 22 percent with a little increase of only 1 percent in
the MDP of NT class, compared to the ALPHA-SL protocol which achieves the same effect at the
cost of a 3.5 percent increase. So the ALPHA-DIV protocol performs better than the ALPHA-SL
protocol in this case.

But in the deferred only transactions case the ALPHA-SL protocol reduces the MDP of T class
to a very negligible value with a rise in the MDP of NT class. ALPHA-DIV is not able to reduce the
MDP of T class transactions that significantly. So if T class transactions have a higher value than
NT class transactions, then ALPHA-SL is the protocol of choice in the deferred only case. ALPHA-
DIV marginally outperforms ALPHA-SL at lower o values. In the case where subtransactions can
be deferred or immediate with equal probability, the trend is the same as the deferred only case. The
results are illustrated in figure 13. So ALPHA-SL gives more flexibility to achieve a higher reduction
in the MDP of T class with an increase in the MDP of the NT class than the ALPHA-DIV policy.

5.5 Main Memory Database

We now extend the performance study to consider priority assignment policies in the presence of data
contention. The concurrency control algorithm we use is a modified wound-wait algorithm. All the
subtransactions of a transaction (deferred and immediate modes) are considered part of the trans-
action by the concurrency control mechanism. They share the locks. Similarly, two subtransactions
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of the same parent transaction share the locks. All the subtransactions and the parent transaction
release the locks at their commit time which is after the parent transaction and the deferred subtrans-
actions have finished. Since different subtransactions may have different priorities, deadlocks might
occur in spite of using the wound-wait protocol. So we use a deadlock prevention mechanism, which
checks for deadlocks whenever a transaction waits for another transaction and aborts the transaction
that causes the deadlock. It has been shown in previous studies that the choice of the transaction
to be aborted to resolve a deadlock does not have a significant impact on the performance [6). For
these experiments we set the parameter dataContention to 0.0, making any two method accesses
incompatible. This is equivalent to locking the whole object exclusively for each operation. We keep
the rest of the parameter values the same as in previous experiments.

The results are illustrated in figures 14,15 and 16 for immediate only, deferred only and both
immediate and deferred cases, respectively. The relative ordering of the performance of the policies
remains the same as in the case with no data contention. DIV outperforms SL in the immediate only
case and SL reduces the MDP of class T transactions more than the DIV policy with an increase in
the MDP of class NT transactions, in the deferred only and immediate and deferred cases. In figure
14, the SL policy gives a higher MDP than PD at low loads for the T class transactions. This effect
is due to the fact that SL policy gives a very high priority to a T class transaction at the beginning.
When there is a data conflict, it leads to a transaction which has just started to abort a transaction
which is in its later stages. The absolute MDP values for these experiments is greater than the
MDP values of the previous set of experiments with no data contention, that is, more transactions
are aborted due to deadline misses. Due to data conflicts more transactions experience waits or
get aborted. This shows the effect of data contention on the performance. We are exploring the
parameters further to determine if the trend observed also holds for other combination of parameter
values, including different degrees of data contention, different amounts of CPU resources and with
disk resident data.

6 Conclusions

We have studied the problem of assigning priorities to triggered transactions and reassigning priorities
of triggering transactions in a firm real-time active database. We discussed a simple baseline policy
PD and two other policies namely DIV and SLACK which assign priorities taking into consideration
the active work generated by a transaction. We showed that DIV and SL reduce the deadline miss
rate of transactions that trigger other subtransactions (class T) with a small increase in the miss
deadline percentage of transactions that don’t trigger other transactions (class NT). We showed
that DIV outperforms SL when the transactions are triggered only in immediate mode, and that SL
favors class T transactions more than DIV when transactions are triggered only in deferred mode.
We also showed that SL gives more range flexibility to reduce the MDP of T class transactions
with an increase in the MDP of NT class transactions, when the transactions are triggered only in
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deferred mode or when they are triggered in immediate or deferred mode with equal probability. We

studied the performance of policies in a task only model (no data conflicts) and in a main memory

database model. The performance of the policies did not differ drastically in these two settings.
Some of the extensions we want to address are

e Experiment with DIV and SL policies on a disk resident database to find out if disk I/O has
an effect on their performance.

o Experiment with variations of DIV and SLACK policies that have more information about a
transaction, for instance the exact number of subtransactions that it is going to trigger, and the
type of subtransactions it is going to trigger, i.e., immediate or deferred, to see what advantage
is obtained by exploiting this information.

Study variations of DIV and SLACK that will assign priorities at every scheduling instance
instead of at every object event.

Study the effect of errors in the knowledge about transactions like eet and probTrig on the
performance of the DIV and SL policies.

Explore the relative performance of the DIV and SLACK policies in different resource con-
tention regions.
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