el

Multi-Node Multi-Level Transactions!

Lory D. Molesky and Krithi Ramamritham
Computer Science Technical Report 94-30
Department of Computer Science
Lederle Graduate Research Center
University of Massachusetts
Ambherst Ma. 01003-4610
March 1994

Keywords: multi-level transactions, transaction modeling, ertended iransactions, database re-
covery, shared-disk database system, shared-memory database system.

Abstract

Multi-Level Transactions (MLT) offer a useful framework for increasing transaction concurrency
in database systems. In this paper, we develop various approaches to implementing MLT in
a shared disk multi-node system. By combining correctness and implementation specifications,
we present concrete insights into the resulting tradeoffs between the degree of concurrency,
the complexity of recovery, and runtime overheads in multi-node MLT. The main challenges
include efficiently supporting subtransaction inverses on a multi-node system when coupled
with performance enhancing mechanisms, such as fine-granularity locking, coarse-grain cache
coherency, and coarse-grain persistence mechanisms. For example, in a two level implementation
of multi-node MLT, serializability is achieved with respect to objects, and cache coherency
is achieved with respect to pages. The migration of a page containing uncommitted objects
may violate subtransaction atomicity and cause inter-transaction abort dependencies. These
problems can be overcome by adjusting the object-to-page mapping policies, and by enforcing
specific stability properties (whether an object or operation is logged, is stable logged, or is
persistent) at page migration. These and other tradeoffs are investigated in a logical fashion
by methodically studying (1) mechanisms invoked in response to significant events (such as
Commit and Abort), (2) policies for object-to-page mapping, and (3) stability policies. The
resulting implementation options are formally characterized by tailoring the ACTA formalism
to include specifications of these implementation oriented considerations, in addition to (the
traditionally specified) transaction model requirements.

!Partially supported by the National Science Foundation under grant TRI-9109210

Contents

1 Introduction 1
2 MMLT 2
21 TransactionModel 2
22 SystemModel e e e e 4
2.3 Correctness Requirements and Performance Related Properties 5

3 Implementation-Oriented Components of MMLT 6
3.1 BasicFormalConcepts0ouuunnu.... 7
3.2 Stability 8
3.3 Significant Events. 10

4 Synthesis of MMLT Implementations 11
4.1 Supporting Subtransaction Atomicity in MMLT - Maintaining Persistence Spheres 12
42 MMLT Implementations0 't tuununennenn.. 14
421 WS =P8 . i e e 15

422 WS £ PS . . e e e e 17

4.3 Other Performance Related Options e 19

5 Summary and Conclusions 19

1 Introduction

In this paper, we examine issues raised when Multi-level Transactions (MLT) [2, 18, 21, 22]
are implemented in a shared disk multi-node system. MLT exploits the semantics of high-
level operations in order to increase concurrency. Thus, in addition to providing fine granularity
locking, concurrent updates are possible by exploiting the semantics of object specific operations,
such as increment and insert. Moreover, the use of inverse operations simplifies recovery in
MLT. These performance advantages of MLT for a single node system are demonstrated in [12].
Our work is motivated by a desire to reap the additional performance advantages that can be
gained by implementing MLT in a multi-node system. The benefits include the potential for
higher transaction throughput that can be obtained via the parallel execution of transactions
and operations. However, implementing MLT in a multi-node environment raises several new
questions including:

e How does the support for object specific operations and their inverses affect a multiple-
node implementation?

e What are the implications of using page-grain I/O mechanisms in the presense of transac-
tions that perform object-level operations?

¢ How does committing a transaction on one node affect transactions on other nodes?

e What are the implications of allowing uncommitted pages (containing uncommitted objects
or portions of them) to migrate between caches?

Even a cursory examination of these questions reveals that when implementing MLT on
multiple nodes, tradeoffs arise involving the degree of concurrency, the flexibility of mapping
objects to pages, the complexity of recovery, and runtime overhead costs. For example, in MLT,
recovering from the abortion of transactions that invoke object specific operations is effectively
supported with operation or subtransaction inverses (also called as compensating operations),
for which subtransaction atomicity is essential. One way to enforce subtransaction atomicity, is
to use the persistence spheres mechanism(22]. In a force strategy, all updates made by a transac-
tion are made persistent at transaction commit time, while in a no-force strategy, a checkpoint
operation is used to periodically make (some set of) subtransactions persistent. In these con-
texts, the use of persistence spheres removes the need to make every subtransaction of every
transaction persistent. However, in multi-node MLT, pages updated by uncommitted transac-
tions may migrate between nodes. This increases the cost of determining persistence spheres in
a multi-node system thereby increasing transaction commit processing overheads. Fortunately,
by proper choice of the object-to-page mapping policy, these commit processing overheads can
be significantly reduced, but, this will reduce the flexibility of storing objects in pages. Also,
another problem still remains: if pages are allowed to migrate without logging or making stable
some information about the changes made by a committed subtransaction, cascading transac-
tion aborts can occur when nodes fail. But, specific stability policies can guarantee the absence

of these aborts, at the cost of increased transaction run-time overheads. Stability policies spec-
ify whether undo or redo information for objects (or operations) are logged, stable logged, or
made persistent when the page containing the object (or effects of a subtransaction) migrates.
For instance, one can combine stable logging to support the undo mechanism with either log-
ging or persistence to support the redo mechanism. If none of these mechanisms is used, that is,
changes are not logged or made persistent prior to page migration, the best runtime performance
is achieved but the transactions involved are subject to inter-node cascading aborts.

Given the many tradeoffs that exist, our goal is to precisely characterize the implementa-
tion options for addressing these issues in the context of the different components of multi-node
MLT (MMLT). Specifically, by methodically studying (1) the mechanisms invoked in response
to significant events (such as commit and abort), (2) the policies for object-to-page mapping,
and (3) the stability policies, the resulting implementation options are formally characterized by
tailoring the ACTA formalism (5, 6] to include specifications of these implementation oriented
considerations, in addition to (the traditionally specified) transaction model requirements. Our
approach of combining correctness and implementation specifications yields concrete insights
into the tradeoffs mentioned earlier.

The rest of this paper is structured as follows: The next section motivates the need for
MMLT by contrasting and comparing it to MLT, and discusses correctness and performance re-
lated issues. Section 3 covers the implementation oriented components of MMLT, which include
components that deal with durability issues, object to page mapping policies, and the signifi-
cant events associated with MMLT. Section 4 uses the components and mechanisms discussed
in section 3 to synthesize specifications of implementations of MMLT. Within the confines of
the MLT transaction model, these specifications vary based on the stability policies and their
impact on recovery, and the object-to-page mapping policies. Section 5 concludes the paper by

discussing related work and summarizes the salient aspects of the possible implementations of
MMLT.

2 MMLT

In this section, details of the MMLT transaction model and system model are presented. Cor-
rectness and performance related properties of a database system are then discussed.

2.1 Transaction Model

In MMLT, the structure of the transaction model is multi-level. Our protocols can be generalized
to an arbitrary number of levels, but for ease of discussion, in the rest of this paper we assume a
two level model consisting of a top level (level 2) transaction, object operations (subtransactions)
in the middle level (level 1), and page operations on the bottom level (level 0). This structure
is illustrated in figure 1 (permissible operations on pages are read and write). Subtransactions
correspond to operations on objects, and these object operations are implemented by a series of
page operations. For ease of explanation we begin by studying subtransactions which access a

Transaction

RN

Object
o
Page
Operation

Figure 1: Transaction Model

single object, but subsequently (in section 4) this assumption is relaxed. For objects, we focus
on an arbitrary operation model, which is an extension of the r/w (read/write) operation model.
Under the r/w operation model, subtransactions perform reads and writes on objects, while
under the arbitrary operation model, object-specific operations such as increment, modify, and
insert are possible.

Associated with each operation on an object is an inverse operation which logically un-
does the effect of the operation. Inverses allow more concurrency for object-specific operations.
Consider inc(ob) (increment on an object ob). Without inverses, an exclusive object lock would
typically be held for the duration of the transaction updating object ob. Thus, concurrent
updates by different transactions will not be allowed. With an inverse operation (dec(ob)), con-
current updates can be allowed, since, if the incrementing transaction aborts, the abort can be
effected by simply performing dec(ob) (that is, without affecting other non-conflicting updaters).
Thus, instead of an exclusive lock on object on 0b, an operation-specific lock on ob would be
held.

The multi-level operation hierarchy enables increased concurrency through a multi-level
locking protocol. To perform an operation on an object, an operation-specific lock is first
acquired on the object, then page locks are acquired on all the pages containing the object that
is accessed by the operation. Note that, should a page which is stored on another node be
accessed, the page must migrate to the accessing node prior to being locked. When the object
operation is complete, the page locks are released. However, the object lock is released only
when the transaction completes. Thus, in this locking-based approach, transactions employ
2PL (two-phase locking) on objects, while subtransactions use 2PL on pages.

Objects can be entirely contained within one page, or may span multiple pages. Multiple
objects can be contained in one page. Object specific operations are performed on objects. How-
ever, these operations translate into reads and writes of pages holding the objects. Conventional
computing systems are optimized for performing page granularity I/O. This mismatch between
the granularity of abstract operations and physical I/O operations is the primary contributor
to the complexity of concurrency control and recovery. For example, assume object ob spans
multiple pages p and g, and object ob’ is entirely contained in page p. If ¢* on node a updates
ob and then t* on node b updates ob’, node a's cache will contain page g while node b's cache
contains p (figure 2 illustrates this scenario). In this situation, inter-node cascading aborts may

L2: @ b

’\; [

LL: insert{ob] insert{ob'] ot
S~ |

LO: w(p) w(q) w('p)

Figure 2: Object ob spans multiple pages p and gq.

occur - i.e. if node b crashes, it will not only loose t*’s updates, but also some updates of ¢
(those contained just in page p).

2.2 System Model

We consider a shared disk multiprocessor model where each node in the system has direct access
to a single shared disk, as illustrated in figure 3. We assume transactions execute on a single
node, and for a given transaction, operations execute sequentially. Each node contains a cache
and local memory, which we collectively refer to as a cache. The cache comprises the volatile
store, while the disk is the stable (permanent) store. Node failures are independent; all data in
the node’s volatile store is lost on a node failure. The log can reside in the cache or on disk, and
thus can be volatile or permanent. We consider both types of logs in this paper.

e

lCache,l iCache,| e o o
| B 1l

| - b 1
| StableDB }

Figure 3: Multiprocessor Model

On a multiprocessor, a coherency protocol ensures that for all operations, the most recent
updates are seen by a transaction. A data item is cached in a processor’s cache prior to access
by the processor. The cache line size (we assume this is a page) defines the unit of sharing
between caches. Typically, this coherency protocol is implemented in hardware, implementing
coherent read and write operations — reads may execute concurrently with other reads, but a
write operation may not execute concurrently with a read or a write. X*(p) denotes that node
a’s cache holds exclusive access to a page p, while S%(p) denotes shared access. Consider any
node ¢ # a. Unless X°(p) is already true, the invocation of w®[p] (write to page p on node a)
triggers X%(p), and negates any X°(p) that is currently true. Similarly, unless S%(p) or X°(p) is
already true, the invocation of 7%[p] (read of page p on node a) triggers S%(p), and negates any
X°(p) that is currently true. X°(p) holds until some other node ¢ # a performs op°[p]. Thus, X
and S model the fact that the changes to pages are done in a mutually exclusive fashion. Note
that locked pages cannot migrate, that is, should node a have a lock on a page p, for node b such
that b # a, X®(p) cannot become true until the lock on page p has been released.

We assume that the processor/cache interface provides sufficient low-level hooks for the
DBMS to define stability policies. Stability policies are used primarily to log or stable log
updates prior to page migration. For example, by using a primitive which pins a page in cache,
a transaction can ensure that an update is logged before the page could possibly migrate. We
discuss object stability further in section 3.2 and stability policies are discussed in section 4.

Based on these implications of read and write, we consider how page level cache coherency
affects objects. Of primary interest is under what conditions object fragmentation occurs. Object
fragmentation is said to occur if the most recent state of an object is contained in multiple
caches. Obviously, object fragmentation can occur only if an object spans multiple pages. The
history insert®[ob]; insert’[ob], based on figure 2, illustrates object fragmentation. Object
ob, spanning pages p and g, becomes fragmented since after the second insert operation, page
p is held exclusively in node b’s cache (X®(p)) while page g is held exclusively in node a’s
cache (X%(q)). Note that fragmentation of ob can occur only as a side effect of some operation
on a different object stored in one of the pages where ob is stored. Object fragmentation is
disadvantageous since it makes subtransaction atomicity more difficult to ensure. In section 4,
we discuss conditions under which object fragmentation can be avoided.

2.3 Correctness Requirements and Performance Related Properties

The selection of the components which implement MMLT is driven by the correctness require-
ments and the desired performance-related properties. While satisfying the correctness require-
ments is not optional, satisfying performance-related properties involves carefully weighing trade-
offs between them. The following are the primary correctness requirements for MMLT.

o Serializability: This is achieved via the multi-level two-phase locking protocol described in
section 2.1.

o Transaction Atomicity: Transaction atomicity ensures that either all or none of the effects
of a transaction affect the database.

o Transaction Persistence: Transaction persistence ensures that the effects of committed
transactions will not be lost.

Transaction atomicity and persistence are achieved with the appropriate recovery and
commit processing mechanisms. Alternatives for implementing these mechanisms and correctly
supporting subtransaction inverses (as required by the MLT transaction model) in MMLT are
discussed in detail in subsequent sections. In addition to the above requirements, the following
performance-related properties are desirable in any implementation.

e No Cascading Aborts.

The abortion of one transaction triggering the abortion of another transaction is called
a cascading abort. In a multi-node system, inter-node cascading aborts may be caused

by node crashes. Based on application characteristics, in order to obtain better overall
system performance, the database system implementor may be willing to risk inter-node
cascading aborts.

o Fast Normal Runtime Processing.
Because mechanisms that ensure that no cascading aborts require that changes done by
subtransactions be logged or made persistent, these mechanisms have the side effect of
degrading the normal runtime operation. In contrast, fast normal runtime processing

denotes situations when low transaction processing overhead is achieved by avoiding these
overheads.

e Low Commit Processing Overheads.
Subtransaction atomicity enables the support of subtransaction inverses. In general, to
achieve subtransaction atomicity, Persistence Spheres [22] must be computed. Computing
persistence spheres can be expensive, unless they are kept small or are restricted to one
transaction. This problem can be eliminated by proper choice of object-to-page mapping
policies.

The above discussion of correctness requirements and performance considerations clearly
shows that there are tradeoffs involved. For example,

e While subtransaction inverses provide for more concurrency and help in recovery, mecha-
nisms designed to correctly support them incur commit processing delays.

o Requiring that no inter-node cascading aborts occur can degrade normal runtime operation
since subtransactions are logged or are made persistent.

These tradeoffs are unique to multi-node systems. Our goal is to isolate the components
of a database system involved in these and other tradeoffs, propose implementations which best
handle these tradeoffs, and/or allows the implementation designer to select the properties to
optimize in a database system.

3 Implementation-Oriented Components of MMLT

In this section we present the major implementation-oriented components of our approach -
durability, cache coherency, and significant events. The specification and combination of these
components is based on the ACTA formalism, the basic formal concepts of which are reviewed
in section 3.1. Section 3.2 discusses durability issues by focusing on the object model and
basic transaction processing mechanisms, emphasizing a classification of data objects based
on their volatility and object type. The basic recovery mechanisms, Logging, Stable Logging,
Persistence, Undo and Redo, and their effect on operations, objects, and pages are discussed.
The combination of the volatility properties of database objects, the cache coherency protocol,
and the stability policies at page migration determine the recovery requirements. Section 3.3

discusses the significant transaction events, such as Commit and Abort, and system events,
such as Crash and Mig (page migration). Our approach to formally modeling the entire system
hinges on assertions relating the events in the history. This is accomplished as follows: The
events discussed in section 3.3 trigger the invocation of (one of many possible) mechanisms
which further trigger other events.

3.1 Basic Formal Concepts

During the course of their execution, transactions invoke operations on objects as well as transac-
tion management primitives, such as, Commit and Abort. We will introduce the other transaction
management events incrementally. Transaction ¢ is denoted t;. s; is a subtransaction of some
transaction, s € subtrs(t) denotes that s is a subtransaction of ¢. € denotes the transaction
management event ¢ pertaining to ¢. op,[ob] denotes the event corresponding to the invocation
of the operation op on object ob by transaction ¢. In general, multiple objects can be stored in
one page, and a single object can span multiple pages. Page objects, corresponding to physical
pages, are denoted p and g. Where convenient, when ob € p (object ob is contained in page p),
we substitute op[p] for op¢[od] . In a multi-node system, a superscript applied to ¢;, s;, or op,
(i.e. t¥, s?, or op®) denotes the node where ¢;, s;, or op executes. In MMLT, subtransactions

have compensating operations: the inverse of s7[ob] is 57 [0b] .

The concurrent execution of a set of transactions T is represented by H, the history (3]
of the significant events and the object events invoked by the transactions in the set T'. H also
indicates the (partial) order in which these events occur. This partial order is consistent with
the order of the events of each individual transaction ¢ in T'. H (the current history) is used
to denote the history of events that occur until a point in time.

DEFINITION 3.1: The predicate € — ¢ is true if event € precedes event € in history H. It is
false, otherwise. (Thus, ¢ — ¢ implies that e € H and € € H.)

We will use pre(e) and post(e) to denote the preconditions and postconditions respec-
tively of an operation or a transaction management event e. Dependencies are a simple way to
characterize relationships between transactions.

DEFINITION 3.2: (condition = (Abort,, € H)) specifies that if condition holds t; aborts.

Invoked operations that have neither committed nor aborted are termed in progress op-
erations. An operation is committed only if the invoking transaction commits and it is aborted

only if the invoking transaction aborts. The following definitions relate objects and transactions
to pages.

DEFINITION 3.3: pages(ob), defines the set of pages in which object ob is stored.

DEFINITION 3.4: WS(s), the Write Set of a subtransaction s, is the set of pages which are
updated during the execution of s.

DEFINITION 3.5: WS(t), the Write Set of a transaction t, is a set of pages, defined as the
union of the write sets of all the subtransactions of t:
WS(t)={ U WS(s;) | s; € subtrs(t)}
1

DEFINITION 3.6: PS(s;), the Persistence Sphere of a subtransaction s;, is a set of pages
defined as follows:

PS(s;)={ %J WS(&].,) | (8 Z*)},

where two subtransactions are related by the binary relation Z if they have intersecting write
sets:

(8; T s5) iff (commit(s;) € Ha) A (commit(s;) € Ha) A (WS(s:) N WS(s;) # 0).

That is, PS(s;) is transitively affected by the write sets of all uncommitted subtransactions.
Although the PS is defined in terms of subtransactions, it can also be defined for transactions
(by substituting all occurrences of s with ¢ in definition 3.6). The persistence sphere is used
to ensure subtransaction atomicity when making pages persistent. For example, consider the
history illustrated in figure 2. Suppose t® commits using force at EOT (end of transaction).
If only page p (WS(t%)) is made persistent, then the atomicity of insert{ob] may be violated
due to a node crash. This is because, since updates made by insert[ob] on p are stable while
those updates on g are volatile, node crash losing page ¢ would invalidate the use of the inverse
insert™1[0b]. To avoid this problem, the persistence sphere is used whenever pages are made
persistent. In this example, when t® commits using force, the PS(2*) ({p, q}) is made persistent.
Persistence spheres are also used in a no-force scheme, but only when performing a checkpoint
operation.

3.2 Stability

Transactions perform operations on objects. When a transaction performs in-place updates, the
effects of an operation are captured in the state of an object. We specify important features of a
database implementation via set operations. The Stable Database is an example of one of these
sets:

DeriNITION 3.7: The Stable Database, StableD B, is a set made up of the stable state of
the objects forming the database. It is the stable state that the DBMS would have if a crash
occurred, before any log information is applied [11].

We consider object and operation stability (volatility) policies as one component in the
specification of a database implementation. We specify stability of operations, objects, and
pages with mechanisms frequently used to implement the permanence of actions: logged, stable
logged and persistent. Only pages are made persistent (for performance reasons), and either
objects, or operations on objects, can be logged. This assumption of logical logging supports
fine granularity locking, and reduces the amount of data written to the log [3, 10, 14, 16]. Thus, if

8

a transaction updates one object in a page containing multiple objects, only the updated object
is logged. Events correspond to the invocation of these mechanisms. In the following definitions
of these events, ¢* is used to indicate that ¢ is performed on node a. Consider subtransaction
s € subtrs(t):

DEFINITION 3.8: Logged — A subtransaction is logged if the subtransaction itself or its effects
are entered in the database log. Logging the subtransaction s on an object ob corresponds
to the event Log-s®(s[ob]), while logging the new state of ob that reflects the effects of s on
ob corresponds to Log-ob®(s[ob]).

DEFINITION 3.9: Stable Logged — A subtransaction is stable logged if the subtransaction
itself or its effects are saved in stable storage so that the effects of the subtransaction can
be made to manifest themselves in the stable database. Stable logging the subtransaction s
on an object ob corresponds to the event SLog-s®(s[ob]), while stable logging the effects of
s on ob corresponds to SLog-ob®(s[ob]). Typically, stable logging is achieved by logging the
subtransaction itself or its effects, and then flushing the log to stable store.

Thus, stable logging a subtransaction (or object) implies that the log entry will survive a
crash, while no such guarantee is associated with logging (since logging is performed in memory).
Also note that to facilitate undo, we log subtransaction inverses instead of logging before images.

DEFINITION 3.10: Persistent — A subtransaction is persistent if its effects are installed in the
stable database. Since the StableD B is assumed to contain pages, persistence is applied only
to pages. The event Persist-page®(s(p]) corresponds to making the effects of subtransaction
s on page p persistent (by writing p to the StableDB). Persist-page® can also take a set of
pages as an argument, i.e., Persist-page®(p1,p2, ..., Pn) indicates that pages p; through p,
are made persistent. The event Persist-page®(W S(s)) corresponds to making the effects of
subtransaction s persistent by making all pages updated by s persistent.

Since a page may contain multiple objects, making a page persistent may make multiple
objects persistent. Moreover, some of these objects may be uncommitted (updated by subtrans-
actions of uncommitted transactions). This granularity mismatch between object operations
and persistence significantly impacts commit processing in MLT, and, as we discuss in section
4, has even a more serious impact on commit processing in MMLT.

Associated with each of these events is a predicate. For example, the predicate Logged-
s%(s[ob]) is true if Log-s®(s[ob]) € Hc, i.e. Log-s®(s[ob]) appears in the current history. Pred-
icates Logged-ob®(s[ob]), SLogged-s*(s[ob]), SLogged-ob®(s[ob]), and Persists-page®(s(p]), are
defined similarly.

The Redo and Undo mechanisms use the log in order to recover the database:

DErFINITION 3.11: Redo - The Redo mechanism “redoes” the effects of operations. This
mechanism is implemented by either reexecuting the named operation, or reinstalling a copy

9

Event | Associated Mechanisms
Commit(s) | {Stable Logging, Persistence}
Abort(t) {Undo}

Crash® {Undo, Redo}

Mig(a,b,p) | {Logging, Stable Logging, Persistence}

Figure 4: Implementation Mechanisms triggered by Significant Events

of the object containing the effects of the named operations. The event Redo-s(s[ob]) occurs
when s{ob] is redone. The event Redo-0b®(s[ob]) occurs when the object which contains the
effects of s[ob] is reinstalled.

DEFINITION 3.12: Undo - The Undo mechanism “undoes” the effects of operations. This
mechanism is implemented by executing the inverse of the named operation. When the event
Undo-3*(s[ob]) is triggered, s~1[ob] is executed.

In section 4, different stability policies associated with page migration are specified based
on whether logging, stable logging, or persistence is used on the migrating pages. Then, based
on associating each stability policy, with a node crash predicate (discussed next in section 3.3),
the recovery requirements are specified with events associated with Abort, Undo, and Redo.

3.3 Significant Events

Depending on the desired performance characteristics, one may wish to implement MMLT using
a different combination of implementation policies and mechanisms. These different implementa-
tions can be specified based on the choice of mechanisms which are triggered by the occurrence
of significant events. For MMLT, these significant events consist of Commit(t), Commit(s),
Abort(t), Abort(s), Crash®, and Mig(a,b,p). The implementation mechanisms which are trig-
gered by these events are summarized in figure 4 and justified below.

For performance reasons, a couple of assumptions are made about the implementation of
these mechanisms. Given the performance advantages of page grain I/O, only page persistence
is used. To minimize the frequency of I/0, persistence of a subtransaction is not required until
transaction commit. Thus, Commit(t) triggers the commit of all its subtransactions, i.e.,

(Commit(t) € Hy) = Vs € subtrs(t), (Commit(s) € He).
By invoking the stable logging or persistence mechanisms when Commit(s) occurs, subtransac-
tion s is made durable.

Abort(t) (Abort(s)) denotes that transaction ¢ (subtransaction s) has aborted, eliminating
the effects of ¢ (s) from the database. A subtransaction abort is performed by executing its
inverse, as implemented with the Undo mechanism. The abort of transaction ¢ is achieved by
aborting all s € subtrs(t). Crash® denotes that node a has crashed, causing all volatile data on
node a to be lost and hence implies the abort of all uncommitted transactions. Crash® implies

10

the abort of all uncommitted transactions on node a. Crash can trigger both the Redo and
Undo mechanisms.

When pages migrate in a multi-node system, we must consider the implications of node
crashes. We capture these affects with the migration event Mig and with the NodeCrash
predicate. Event Mig(a,b,p) denotes that page p migrates from node a to node b. Mig(a,b,p)
satisfies the following invariant :

(pre(Mig(a,b,p)) = X°(p)) A (post(Mig(a,b,p)) = X*(p))
That is, the migration of page p from node a to b occurs after a write to p is performed on node

a and before a write to p is performed on node b. Page migration can trigger Logging, Stable
Logging, or Persistence mechanisms.

The predicate NodeCrash(c,a,b,p,t®) indicates that node ¢ has crashed, transaction ¢*
has not committed (prior to the crash), and page p migrates from node a to node b, remaining
on node b until node ¢ crashes 2.

DEFINITION 3.13: NodeCrash(c,a,b,p,t®) & (Mig(a,b,p) —» Crash®) A
-(commit(t*) — Crash®) A (Ad, (Mig(a,b,p) — Mig(b,d,p) — Crash®)).

Consider ¢2, transaction ¢ executing on node a. When uncommitted data of t* migrates to
another node b, different recovery strategies will be necessary depending on whether the source
node, a, or the destination node, b, crashes. These situations are captured by the predicates
SourceCrash and DestCrash. SourceCrash is an instance of NodeCrash, binding the crashing
node c to a, while DestCrash is also an instance of NodeCrash, binding the crashing node ¢ to
b.

DEFINITION 3.14: SourceCrash(a,b,p,t?) & NodeCrash(a,a,b,p,t?).
DestCrash(a,b,p,t*) & NodeCrash(b,a,b,p,?).

Thus, in the context of an active transaction running on node a (£%) in which uncommitted
data (on page p) has migrated to node b, SourceCrash(a, b, p,t*) indicates that the source node
(@) crashes, while DestCrash(a,b,p,t*) indicates that the destination node () crashes.

The events and predicates presented in this section comprise the building blocks of the
specification of various MMLT implementations. In section 4, we discuss these implementations.

4 Synthesis of MMLT Implementations

In this section we propose various implementations of MMLT. In section 4.1, we first review
existing techniques for supporting subtransaction atomicity in MLT (subiransaction quiescence
and persistence spheres), and discuss the implications of adapting these techniques for MMLT.

?(The notation @ — b — c is shorthand fora = b A b —¢.)

11

We find that, in the most general MMLT implementation, enforcing subtransaction persistence
with persistence spheres can be expensive. To remedy this situation, in section 4.1 we identify
conditions under which the persistence sphere does not need to be computed, that is, when the
persistence sphere of a transaction is equal to the write set of the transaction (WS = PS).
Section 4.2 proposes MMLT implementations based on whether or not WS = PS. These im-
plementations are synthesized based on an object-to-page mapping policy and stability policies.
At page migration, stability policies are used to guarantee the absence of inter-node cascading
aborts. In section 4.3 we discusses other performance enhancing related options.

4.1 Supporting Subtransaction Atomicity in MMLT - Maintaining Persis-
tence Spheres

When persistence is enforced in MLT, appropriate steps must be taken to correctly support sub-
transaction inverses. This is most effectively done by enforcing subtransaction atomicity. The
basic methods for ensuring subtransaction atomicity in MLT can be applied to MMLT. How-
ever, given that transactions execute in parallel in MMLT, we must consider how implementing
persistence may affect the performance of transactions on other nodes. To ensure subtransaction
atomicity, the MLT implementation presented in [22] advocates using subtransaction quiescence
and persistence spheres. Thus, motivated by correct support for subtransaction inverses, we
now consider implementation mechanisms and transaction management primitives for support-
ing subtransaction quiescence and persistence spheres in MMLT.

Subtransaction quiescence means completing an active subtransaction. Quiescing sub-
transactions enables atomic subtransaction persistence. If only part of a subtransaction were
made persistent, the semantics of the subtransaction inverse would be incorrect. The follow-
ing definition states that if one page of a subtransaction is made persistent, all pages in the
subtransaction’s WS must also be made persistent.

DEFINITION 4.15: Subtransaction Quiescence:
Vp € WS5(s), (post(Persist-page(p)) = Vp' € WS(s) Persists-page(p")).

Subtransaction quiescence can most effectively be supported by requiring subtransactions
to use strict 2PL on pages (in contrast to [2]). Note that during the commit of a transaction
t, to make the pages updated by ¢ persistent, no locks can be held on these pages by other
subtransactions. This guarantees that the contents of those pages do not suddenly change. Thus,
when subtransactions use strict 2PL on pages, if page p had been updated by s, a committing
transaction ¢ (where s ¢ subirs(t)) cannot make p persistent until Commit(s) occurs. The
use of strict 2PL provides an efficient mechanism for supporting subtransaction quiescence in a
multi-node implementation since inter-node communication is avoided. The use of strict 2PL on
pages has a further advantage — pages updated by incomplete subtransactions will not migrate.

This assertion is important for ensuring subtransaction atomicity in the context of node crashes.

To make a subtransaction persistent in MLT ([22]), the persistence sphere of the subtrans-

action must be made persistent:

12

DEFINITION 4.16: Subtransaction Persistence Rule:
post(Persist-page(W S(s))) = Persists-page(PS(s)).

To commit a transaction, we could adopt any combination of (steal, no-steal) with (force,
no-force) [11]. Given the possibility of multiple objects per page, where some objects may be
uncommitted and others committed, we do not consider no-steal as a viable option. Because, to
make page p persistent under no-steal would require that all transactions which have updated p
must have committed. Thus, in general, enforcing no-steal in a multinode context would require
some set of nodes to reach a commit consistent state. Reaching this commit consistent state
could impose significant delays on other transactions. Given this, we focus on force/steal and
no-force/steal policies next.

With a force policy, objects are made persistent at transaction commit time, alternatively,
with no-force, the appropriate redo log information is written to stable store at commit time.
With no-force, in order to bound recovery time, some form of checkpointing (flushing cache slots
dirtied by database updates to stable store) should be adopted. Thus, with force, objects are
made persistent at commit time, and with no-force, objects are made persistent periodically, as
part of the checkpoint operation. In either case, we must ensure subtransaction quiescence and
enforce the subtransaction persistence rule.

For both force and no-force, two basic strategies can be adopted for enforcing the subtrans-
action persistence rule. The first strategy is a brute force approach. Whenever persistence is to
be performed, all volatile database objects on all systems are made persistent. Of course, prior
to this activity, all active subtransactions must complete, ensuring subtransaction quiescence.
The advantage of the brute force approach is that the persistence sphere need not be computed
(since we are making the maximal sphere persistent). There are at least two disadvantages to
the brute force approach, both of which can delay the normal runtime operation of the database.
First, all nodes in the system must synchronize to reach a state where no node has cached dirty
database objects. Second, generally, more I/O must be performed. With force, applying the
brute force approach means that, whenever a transaction ¢ commits, a prerequisite for making
WS(t) persistent will be requiring that all other nodes must first reach a subtransaction quiescent
state, then they must flush all dirty database objects to stable store. Under no-force, applying
the brute force approach means that, after system-wide (all nodes) subtransaction quiescence is
achieved, a system-wide, cache consistent checkpoint operation is taken.

The second strategy available for enforcing the subtransaction persistence rule attempts to
minimize the number of database objects written to stable store. Under force, when transaction
t commits, only those pages in PS(t) are written to stable store. For force, to Commit(t), PS(t)
is computed by computing the transitive closure of the WS’s (as defined in 4.16). Computing
PS(t) at commit time requires inter-node communication, which can also delay the execution
of transactions on other nodes. Furthermore, a prerequisite for computing PS(t) is to maintain
W S(t) for each active transaction. The W S(t) is best maintained on the node ezecutingt. Note

13

that, since transactions execute on a single node, a given WS is only updated by one node
(although there are likely to be multiple readers due to the construction of the PS).

Consider the second strategy applied to a no-force scheme. A fuzzy checkpointing scheme
is an example of this case. In fuzzy checkpointing, all dirty database objects which have not
been flushed since before the previous checkpoint are written to the Stable DB (the fuzzy set).
To implement this scheme, the W S(¢) for all active transactions must be maintained, just as for
the force case. Once the fuzzy set has been determined, the PS of this set must be determined.
This could involve the significant inter-node communication, and computation at other nodes
may be required.

This discussion indicates that, in general, maintaining subtransaction atomicity can be
time consuming and can incur substantial overheads. Hence strategies must be devised to
minimize these impediments to efficient implementations of MMLT. For instance, if we knew
that the persistence sphere of a transaction ¢ contained exactly the same pages as t’s write set
(WS(t) = PS(t)), then ensuring the subtransaction persistence rule would be trivial. Sufficient
conditions for complying with WS(t) = PS(t) follow:

DEFINITION 4.17: Vt' #1t, Vs € subtrs(t), Vs' € subtrs(t'),
((WS(s) n WS(s'))=0) v (WS(s) 2 WS(s")) > WS(t) = PS(¢).

That is, for all pairs of subtransactions s and s’ (of transactions ¢ and t'), if either s or s’ have non-
intersecting W S’s, or WS(s’) is a subset of WS(s), then WS(t) = PS(t). These conditions can
be satisfied by proper object-to-page mappings. Next, we propose implementations of MMLT,
based on whether on not WS§(t) = PS(t), as defined by the object-to-page mapping policy, and
are synthesized by combining an object-to-page mapping policy with an stability policy.

4.2 MMLT Implementations

We propose two different types of implementations of MMLT, (1) WS = PS, and (2) WS # PS.
WS # PS allows the most general object-to-page mapping, but requires more complex stability
policies and commit processing strategies than WS = PS. When WS = PS, we can avoid the
overheads associated with computing the PS, maintaining the PS, or performing subtransaction-
consistent savepointing. We refer to this feature of WS = PS as achieving low internode
interference. Note that a single database implementation can concurrently process transaction
t; under WS = PS, while processing transaction ¢; under WS # PS. This construction
is facilitated by having two classes of transactions and requiring WS = PS transactions to
have disjoint WS’s from WS # PS transactions. Recall that, in all these implementations,
subtransaction quiescence is enforced by using strict 2PL.

The choice of stability policy is orthogonal to the transaction class. Stability policies
which ensure No Inter-node Cascading Aborts utilize combinations of Logging, Stable Logging,
and Persistence to support Undo and Redo. However, by allowing inter-node cascading aborts,

14

Fast Normal Runtime Processing can be achieved by not using Logging, Stable Logging, or
Persistence (called Nothing 3

The following example illustrates how page migration can cause inter-node cascading
aborts. Consider a stability policy which avoids cascading aborts with Redo Logging and Undo
Stable Logging. Insert® is a subtransaction of ¢*, I nsert”® is a subtransaction of t*, and page p
contains ob and ob':

Insert®[ob]; mig(a,b,p); Insert®[ob’].

Consider the case when node b crashes immediately following mig(a, b, p). If no redo infor-
mation for Insert®(ob) is available, ¢* must be aborted. The stability policy can ensure redo log-
ging, e.g., if Insert®[ob] — Log-s(Insert®[ob]) — mig(a,b,p). With a redo logging stability pol-
icy, a consistent state can be reached after the crash of b by performing Redo(Insert®(ob]). Next,
consider the case when node a crashes immediately following Insert®(ob’). Without sufficient
undo information, the crash of a will require the abort of t. The stability policy of Undo Stable
Logging ensures that this undo information is available, e.g., Insert®[ob] — S Log(Delete®[ob]) —

Insert®[ob] will enable Undo(Insert®[ob]) during recovery.

4.2.1 WS =PS

We propose two implementations with WS = PS, called MMLT-WS; and MMLT-WS,. The
first (simple) implementation, MMLT-WS$,, makes the following assumption:

e Subtransactions update at most one page. (Vs, |[WS(s)| < 1).

o A page is locked for the duration of a subtransaction.

The first assumption is a sufficient condition for WS = PS (recall definition 4.17). Since
subtransactions update at most one page, the effects of a subtransaction will never be frag-
mented, allowing for a simple implementation of the stability policies. In MMLT-WS,, we relax
the assumption that subtransactions update at most one page:

e Subtransactions update at most one object.

o Subtransactions can update multiple pages, but the object-to-page mapping is subject to
the following restriction:

— multiple objects may be stored in a page iff an object is contained completely within
a page.
That is, if object ob spans multiple pages, PSET = {p1,p2,..-Pn},
then no other object ob’ is contained in any page of PSET.

¢ Subtransactions use strict 2PL on pages to ensure subtransaction quiescence.

3Typically, transaction atomicity is implemented with logging, but this is not required. The work on recovery
in MLT ([22]) using a DB cache ([8]) discusses an alternative. The combination of a no-steal policy and a stable
store (in addition to the StableDB) enables transaction atomicity without logging.

15

These assumptions imply WS = PS (recall definition 4.17).

We now discuss the details of the formal specification of MMLT-WS, and MMLT-WS,.
Based on stability policies, we can now consider alternatives for supporting No Inter-node Cas-
cading Aborts or Fast Normal Runtime for such objects. When p migrates from node a to node b,
all uncommitted but complete operations (s) performed by node a could be logged or made per-
sistent, and/or the inverse (s~!) could be stable logged. We formally specify different stability
policies below where ¢ and s satisfy the following:

~(commit(t*) — Mig(a,b,p)) A (s € subtrs(t®)) A (s®[p] - Mig(a,b,p)).

That is, on node a, all subtransactions s of ¢ which operated on page p prior to the migration of

p from a to b are considered. When these pages migrate, the preconditions specified below are
satisfied.

Stability Policy Condition

Nothing: pre(Mig(a,b,p)) = True.

Redo Logged: pre(Mig(a,b,p)) = Logged-s2(s(p)).
Redo Persistent: pre(Mig(a,b,p)) = Persists-page®(s(p]).

Undo Stable Logged: pre(Mig(a,b,p)) = SLogged-s®(s~![p]).

The reason for (just) these possibilities will be made clear now as we examine the impli-
cations of the various stability policies when a source or destination crash occurs. Suppose the
source node (a) crashes after uncommitted operations have migrated. If pages containing un-
committed operations migrated from the source node a, the database will be in an inconsistent
state. In order to return the database to a consistent state, all uncommitted operations should
be undone. If the stability policy is Undo Stable Logged, after Crash®, undo information will be
available to eliminate the effects of uncommitted operations on migrated pages. Without stable
logged undo information (the Nothing alternative), in order to eliminate the effects of ¢%, any t*
which updated p (after p had migrated) would have to be aborted These effects of the stability
policies are stated below:

Undo Stable Logged: SourceCrash(a,b,p,t*) =
(Vt2, Vs?[p] € subtrs(t®), (s%[p] = Mig(a,b,p))=>
Undo-s(s®[p]) € H)).
Nothing: SourceCrash(a,b,p,t%) =
(vte, &8, (3s°[p] € subtrs(t®), sb[p] € subtrs(tb),
(s°[p] = Mig(a,b,p) — s[p]) = (Abort’(t") € H))).

If the destination node (b) crashes after uncommitted operations of ¢* have migrated,
updates performed by ¢* may be lost. If the stability policy is Redo Persistent, they will not
be lost, if it is Redo Persistent, these updates can be redone. Otherwise, if no redo information
is available on node a, the destination crash will trigger an abort of t®. These effects of the

stability policies are stated below:

16

Redo Undo
Stability Stability
No Cascading Aborts | {RedoLogged,
Redo Persistent} | Undo Stable Logged
Fast Normal Runtime | Nothing Nothing

Figure 5: Database System Requirements and Associated Mechanisms for WS = PS. Since
WS = PS, Low Commit Processing Overhead is achieved for both combinations.

Redo Persistent: DestCrash(a,b,p,t*) = True.
Redo Logged: DestCrash(a,b,p,t%) =
(Vte, Vs%[p] € subtrs(t®), (s*[p] » Mig(a,b,p)) =
(Redo-s(s°[p]) € H)).
Nothing: DestCrash(a,b,p,t*) =
(Vte, (3s%[p) € subtrs(t®), (s%[p] —» Mig(a,b,p)) = (Abortd. € H))).
Figure 5 summarizes the system requirements and associated mechanisms for WS = PS.

Although MMLT-WS; and MMLT-WS, have different object-to-page mapping policies,
the implications of these policies are similar. Like MMLT-WS,, object fragmentation does not
occur in MMLT-WS,. Recall that object fragmentation of 0b can occur only as a side effect of
some operation on a different object stored in one of the pages where ob is stored. Since any
object ob spanning multiple pages will not share these pages with other objects, it is not possible
for an operation on a different object od’ to cause only some of those pages, and thus part of the
object, to migrate. Thus, object fragmentation can not occur in MMLT-WS,. In summary, this
section presented MMLT implementation options in the case where restrictions are placed on
the object-to-page mapping. These object-to-page mappings achieve low internode interference
and simplify the stability policies.

4.2.2 WS+#PS
We now allow the following:

e Arbitrary object-to-page mapping policies.
¢ A single subtransaction can update multiple objects.

However, this generality causes a more complex implementation, and the resulting higher
computation and communication overheads may degrade overall system performance. Under
WS # PS, both commit processing and the stability policies are more complex. Given that we
have discussed the complexities of commit processing in section 4.1, we focus on the stability
policies in this section.

Although object fragmentation does not occur in the two implementations presented for
WS = PS, object fragmentation can occur WS # PS, requiring more complex stability policies

17

to ensure cascadeless aborts. To avoid cascading aborts in WS # PS, the stability policies
specified for WS = PS are extended by augmenting the Redo Logged and Undo Stable Logged
stability policies to log the objects operated on by subtransaction (in addition to logging sub-
transactions) 4.

To illustrate the necessary extensions to the stability policies when object fragmentation
occurs, in the remainder of this section, we assume that object ob spans exactly two pages,
p and ¢, and object ob’ is stored in page p (see figure 2). To illustrate the problems caused
by object fragmentation, consider the case where 3“[06{1,,,;}] is executed on the source node, p
migrates, then s'[ob}] is executed on the destination node. We use ob;s) to denote the object
spanning pages contained in set . If the source or destination node crashes, the atomicity of
5%[0byy,q}] is destroyed. If the source node crashes after p migrates, we must undo s%[ob,], and if
the destination node crashes, we must redo s%[ob,]. In the formal specifications of the stability
policies, transaction ¢ and subtransaction s (on node a) satisfy the following:

“(commit(t®) — Mig(a,b,p)) A (s* € subtrs(t®)) A 3g (s%[obgyq3) — Mig(a,b,p)).

That is, on node a, all subtransactions s of ¢ which operated on an object spanning multiple
pages prior to the migration of p from a to b are considered. These pages are allowed to migrate
according to the preconditions specified below:

Stability Policy Condition
Redo Logged: pre(Mig(a,b,p)) = Logged-s*(s*[oby, 3]) A Logged-ob®(s[oby)).
Undo Stable Logged: pre(Mig(a,b,p))= SLogged-s“(s“_l[ob{p,q}]) A SLogged-o0b®(s%[ob,]).

Thus, the Redo Logged policy is extended to log the portion of the object which did
migrate, while the Undo Stable Logged policy is extended by making persistent the portion of
the object which did not migrate. For Redo Logged, logging the portion of the object which
did migrate is indicated by Logged-0b®(s*[oby,|), while for Undo Stable Logged, stable logging
the portion of the object which did not migrate is indicated by SLogged-0b®(s®[ob,]). If the use
of subtransaction inverses is impossible due to the loss of part of an object (caused by a node
crash) for which the inverse was defined on, correct recovery would require inter-node cascading
aborts. This is avoided here by redo logging and stable undo logging.

Redo Logged: DestCrash(a,b,p,t*) =
(Vt2, Vs®[obip q)] € subtrs(t®), (s%[obgyq3) — Mig(a,b,p)) =
(Redo-0b(s%[0by]))).

Undo Stable Logged: SourceCrash(a,b,p,t%) =
(Vee, Vs“[ob{p'q}] € subtrs(t*), (s*[obip 3] — Mig(a,b,p)) =
(Redo-ob(s%[obg]) — Undo-s(s*[0byp q11)))-

*We do not consider Redo Persistence as a viable policy when WS # PS§, since, based on the studies of MLT
[22, 12], system performance degrades substantially due to the frequent computation of PS(s).

18

T Redo Undo
Stability Stability
No Cascading Aborts | Redo Logged | Undo Stable Logged
Fast Normal Runtime | Nothing Nothing

Figure 6: Database System Requirements and Associated Mechanisms for WS # PS. In WS #
PS, High Commit Processing Overheads are incurred.

Thus, to recover from SourceCrash, the page of the object which did not migrate is re-
stored prior to the application of the inverse operation. To recover from DestCrash, the page of
the object which migrated is restored. This recovery strategy is similar to physiological logging
[10] and the the ARIES [14, 15] style recovery of performing page oriented redo followed by
either physical or logical undo. In section 5, we discuss the implications of adopting physio-
logical logging in MMLT and compare MMLT with ARIES. Figure 6 summarizes the system
requirements and associated mechanisms for WS # PS.

4.3 Other Performance Related Options

Physiological logging [10] can be adopted as a compromise between logical and physical logging,
replacing our logical logging assumption. One of the benefits of physiological logging is that redo
can be page oriented, while, as in logical logging, undo can be implemented with inverse opera-
tions. The basic strategy for recovery with physiological logging is that redo is performed first,
repeating page operations recorded in the log, then logical undo is performed for any uncom-
mitted operations. In the context of MMLT, the stability policies would log pages or objects for
redo, and (logical) log operations for undo. Given this, to make transaction t persistent, instead
of requiring PS(t) to be persistent (as done in sections 4.2.1 and 4.2.2), WS(t) can be made
persistent and (PS(t) — WS(t)) stable logged. In the event of a crash, the recovery process can
make (PS(t) — WS(t)) persistent prior to executing any inverse operations.

ARIES [16] addresses issues involved when a no-force policy is assumed and page locks
are retained after a transaction as committed. These issues are further studied in a perfor-
mance analysis of coherency control policies through lock retention (7). Also, the taxonomy of
concurrency and coherence control presented in [19] surveys lock retention strategies. These
studies discuss the inherent tradeoffs between lock retention and the complexity of recovery.

Lock retention can be incorporated as part of the implementation options for MMLT. This will
not change the specification of the stability policies.

5 Summary and Conclusions

In this paper, we have identified and critically examined the implementation options available
when implementing MLT on multiple nodes. By exploiting the semantics of high-level operations,

19

MLT increases concurrency of operation execution. By implementing MLT in a multi-node sys-
tem, additional performance advantages can be gained via the parallel execution of transactions
and operations. Due to differences between single and multi-node MLT, the implementation
mechanisms and policies originally designed for MLT needed to be revisited to enable an effi-
cient implementation of MMLT. For example, MLT uses persistence spheres and subtransaction
quiescence [22] to maintain subtransaction atomicity during commit processing. However, in a
multi-node system, a direct application of these techniques can cause high commit processing
overheads, in terms of the delay on the committing node and the interference caused on other
nodes. Furthermore, in a multi-node system, inter-node cascading aborts can occur due to page
migration.

Our examination of the available implementation options for MMLT was guided (con-
strained) initially by making specific assumptions about transaction model correctness require-
ments and standard performance enhancing mechanisms. The main challenge in constructing an
efficient implementation of MMLT is the efficient support of subtransaction inverses, for which
subtransaction atomicity is essential. In order to arrive at an efficient implementation, we have
assumed standard performance enhancing mechanisms such as coarse-grain (page) persistence

and coarse-grain (page) cache coherency.

In MMLT, subtransaction atomicity is supported by using subtransaction quiescence, by
an appropriate commit processing strategy, and (under certain implementation options) by
proper choice of the stability policy. Subtransactions use sirict 2PL on pages to guarantee
subtransaction quiescence. The policies and mechanisms for supporting commit processing and
stability properties are dependent on the object-to-page mapping policy, which in turn deter-
mines whether WS = PS or WS # PS. For both these object-to-page mappings, either the
force or the no-force commit processing strategy can be adopted. Furthermore, with either of
these commit processing strategies, inter-node cascading aborts can be avoided with specific
stability properties.

A summary of the implementation options for supporting the subtransaction atomicity
requirement and achieving specific database performance related properties is presented in fig-
ure 7. It should be noted that we are summarizing complex options in a nutshell, and hence
this summary is complemented by the details of these options discussed in the previous two
sections. In the figure, the ellipses denote database policies. Associated with each policy is some
performance related property, denoted with the italicized text. Specific subsets of these policies
are required to support subtransaction atomicity. In the figure, the unshaded ellipses denote
policies which do not play a role in supporting subtransaction atomicity, such as No Stability
Policies. Two arrows connected by an OR arc indicate that one policy or the other must be
selected to satisfy the source requirement or policy. Arrows without an OR arc point to policies
which are mandatory to satisfy the requirement or policy. For example, the Subtransaction
Atomicity requirement is supported by using Subtransaction Quiescence and either the WS =
PS or WS # PS object-to-page mapping policy. If WS = PS is selected, (implying a Restricted

20

Low Commit
Force log ... Processing Overheads.
at commit Low Fuzzy

Checkpoint Overheuds..

Medium Commit

Processing Overheads
Simple ... Avaids Inter-Node
Stablity Policies Cascuding Aborts

Restricted
Object-to-Page
Mapping.

No \ Faster Normal
Stability Policies Runtime Processing
Subtransaction |,
Atomicity : Low Commit
Forcelog \..... Processing Overheads,
General at commit High Fuzzy
Legend: Object-t0-Puge Checkpoint Overheads.
&

O A dabase policy. Mapping. —
' rgisgm High Commit
:;en t cotmmm "*"“Processing Overheads

O A database policy which
has a role in supporting

subtransaction atomicity.
Italicized Denotes a performance
Texr: related pro‘;rrtt.y associated Complex __... Avoids Inter-Node
with the policy. Stability Policies Cascading Aborts

No N\ ... Fuster Normal
Stability Policies Runtime Processing

Figure 7: MMLT Implementation Options for Supporting Subtransaction Atomicity.

Object-to-Page Mapping), then either the Force or the No-Force strategy is selected and either
Simple or No Stability Policies must be selected. Depending on the selected stability policy,
this configuration would either Avoid Inter-Node Cascading Aborts, or provide Faster Normal
Runtime Processing. Comparing the WS = PS and the WS # PS configurations, the overheads
for the Force and No-Force commit processing strategies are greater for WS # PS due to the
non-trival nature of computing persistence spheres. Furthermore, the stability policies which
avoid inter-node cascading aborts are more complex for WS # PS. In fact, the reason for the
additional complexity of the stability policies associated with WS # PS is that, to support
subtransaction atomicity, object fragmentation must be addressed.

The object-to-page mapping policies can also be viewed as defining transaction classes,
since a single database implementation can concurrently process transaction ¢; under WS = PS,
while processing transaction ¢; under WS # PS. For both transaction classes, stability policies
can be defined which either avoid cascading aborts, or allow cascading aborts but exhibit fast
normal runtime behavior. Furthermore, for any of these implementation approaches, the DB
cache method, retained locks, and physiological logging can be incorporated for better run-time
performance and faster commit processing.

We have assumed that total leeway has been afforded to the stability policies with respect
to logging. In reality, other factors influence whether logging is required. For example, it may

21

be desirable to perform redo logging in order to maintain an audit trail [10]. Furthermore, undo
logging is essential for the application of operation inverses to achieve transaction atomicity.

Thus, if other factors require redo and undo logging, the additional cost of enforcing cascadeless
stability policies could be small.

Some of the mechanisms used in this paper are also related to the work done in ARIES
(14, 15, 16]. ARIES/IM [15] discusses index management (on a single node), focusing on con-
currency control and recovery of B*-trees, and addresses how inverse operations on B*-trees are
supported. In another recent ARIES paper [16], the support for fine granularity locking in multi-
node shared disk systems is discussed. Cascading aborts due to the migration of uncommitted
data are avoided by enforcing stability properties at ownership change. Four different schemes
for stability are identified — simple, medium, fast, and super-fast. At ownership change, the sim-
ple and medium schemes enforce persistence, the fast scheme enforces stable logging, and the
super-fast scheme enforces (volatile) logging. However, the material presented in these papers
is based on a specific implementa ion viewpoirtt. In contrast, based on MLT, we have presented
a general methodology for supporting operation and subtransaction inverses in a multi-node
system. By developing a broad spectrum of possible approaches to a multi-node database im-
plementation of MLT and discussing the related benefits of the approaches, we have also shown
which mechanisms contribute to a specific performance related requirement.

By explicitly modeling all database events and their associated implementation mecha-
nisms, we were able to precisely characterize the significant relations between support for specific
database system requirements and their implications for recovery. For example, by modeling
database events such as Commit, Abort, and Crash, and properties of objects such as Logging,
Stable Logging, and Persistence, we are able to capture the various inter-node dependencies in-
duced by the object-to-page mapping policies and stability polices. The resulting insights into
implementation tradeoffs have been facilitated through a precise characterization of policies and
mechanisms by tailoring the ACTA formalism to specify both transaction model correctness
requirements and implementation oriented properties. Some of the ideas incorporated in Flex
transactions (4] have interesting parallels to our work. Like ACTA, Flex transactions allow the
specification of transaction dependencies based on logical assertions between events. A “mixed
system”, one which allows both compensatable and non-compensatable operations, is also part
of Flex transactions. Also related to the theme of combining transaction models is Lomet’s work
on MLR (multi-level recovery) [13], which unifies recovery for MLT and nested transactions. Al-
though we have focused on multi-node MLT, our approach can also support multiple transaction
models and operations with and without inverses. For example, based on the compensatability
of an operation on an object, the specification of stability policies can involve making either the

object or the operation stable.

We believe that our work suggests a general approach to modeling complex database sys-
tems — systems which may be implemented on multiple nodes and employ extended transaction
models [9]. Our future work includes investigating this generalization. We have analyzed both

22

dependencies due to node crashes and commit dependencies which arise from normal execution.
Extensions to our approach include integrating dependencies that can form from either the struc-
ture of extended transaction models, or from semantic notions, such as recoverability [1]. Our
next step will be to implement MMLT on a multiprocessor testbed, in order to obtain actual
performance measures of the various options available for the parallel transaction execution in
the context of object specific operations. We have already begun the construction of our multi-
processor testbed (on a KSR [20] multiprocessor) in the context of related work on the design
of efficient lock managers for shared-disk database systems [17]. Our performance studies on
these lock manager designs have indicated that our formalisms, especially the stability policies,
are useful in guiding the internal design process and for reasoning about recovery.

23

References

(1] B. R. Badrinath and K. Ramamritham. Semantics-based Concurrency Control: Beyond
Commutativity. ACM Transactions on Database Systems, 17(1):163-199, March 1992.

(2] C. Beeri, H. Schek, and G. Weikum. Multi-Level Transaction Management, Theoretical
Art or Practical Need? Lecture Notes in Computer Science, 303:135 — 154, 1988.

(3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

[4] O. Bukhres, A. Elmagarmid, and E. Kuhn. Implementation of the Flex Transaction Model.
Bulletin of the IEEE Technical Committee on Data Engineering, 16(2):28-32, June 1993.

[5] P. K. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about Eztended Trans-
actions. PhD thesis, Department of Computer and Information Science, University of Mas-
sachusetts, Amherst, Massachusetts, September 1991.

(6] P. K. Chrysanthis and K. Ramamritham. ACTA: A Framework for Specifying and Reason-
ing about Transaction Structure and Behavior. Proc. 1990 ACM SIGMOD International
Conference on Management of Data, pages 194-203, May 1990.

[7] A. Dan and P. S. Yu. Performance Analysis of Coherency Control Policies through Lock
Retention. Proc. 1992 ACM SIGMOD International Conference on Management of Data,
21(2):114-123, June 1992.

(8] K. Elhardt and R. Bayer. A Database Cache for High Performance and Fast Restart in
Database Systems. ACM TODS, 9(4):503-525, December 1984. :

[9] A. K. Elmagarmid, editor. Database Transaction Models for Advanced Applications. Mor-
gan Kaufmann, 1992.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

(11] T. Haerder and A. Reuter. Principles of Transaction-Oriented Database Recovery. ACM
Computing Surveys, 15(4):287-317, December 1983.

[12] C. Hasse and G. Weikum. A Performance Evaluation of Multi-Level Transaction Manage-
ment. VLDB, pages 55 - 66, 1991.

[13] D. Lomet. MLR: A Recovery Method for Multi-Level Systems. Proc. 1992 ACM SIGMOD
International Conference on Management of Data, 21:185 — 194, June 1992.

24

(14] C. Mohan, D Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-
Ahead Logging. ACM Transactions on Database Systems, 17:94-162, March 1992.

[15] C. Mohan and F. Levine. ARIES/IM: An Efficient and High Concurrency Index Man-
agement Method Using Write-Ahead Logging. Proc. 1992 ACM SIGMOD International
Conference on Management of Data, 21:371-380, June 1992.

[16] C. Mohan and I. Narang. Recovery and Coherency-control Protocols for Fast Intersystem
Page Transfer and Fine-Granularity Locking in a Shared-Disk Transaction Environment.
VLDB, 17:193-207, 1991.

[17] L. D. Molesky and K. Ramamritham. Autonomous Locking for Shared-Disk Database
Systems. Technical Report 94-10, University of Massachusetts Dept. of Computer Science,
February 1994.

[18] E. Moss, N. Griffeth, and M. Graham. Abstraction in Recovery Management. Proc. 1986
ACM SIGMOD International Conference on Management of Data, pages 72-83, 1986.

[19] E. Rahm. Concurrency and Coherency Control in Database Sharing Systems. Technical
Report, University of Kaiserslautern, Germany, December 1991.

[20] Kendal Square Research. KSR1 Principles of Operation. KSR Research, Waltham, Mass.,
1992.

[21] G. Weikum. Principles and Realization Strategies of Multi-Llevel Transaction Management.
ACM TODS, 16(1):132 - 180, March 1991.

[22] G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-Level Recovery. Proc. 1990 ACM
SIGMOD International Conference on Management of Data, pages 109 - 123, 1990.

25

