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Abstract

Distributed real-time systems are difficult to con-
siruct such that the system behaves predictably. In ad-
dition, many of these systems must operate in complez
and uncertain environments. We discuss two main
ideas for moving distributed real-time systems towards
predictability: adjustable flow control filters and re-
flective memories. Both of these are hardware based
solutions that should be ezploited for enhancing pre-
dictability and robusiness, especially as hardware be-
comes cheaper. Adjustable flow control filters is a new
idea being proposed here, while reflective memories are
available off-the-shelf.

1 Introduction

Many next generation real-time systems will
be large, complex, distributed, adaptive, contain
many types of timing constraints, operate in non-
deterministic environments, and evolve over a long
system lifetime. Many advances are required to ad-
dress these next generation systems in a scientific man-
ner. For example, one of the most difficult aspects will
be demonstrating that these systems meet their de-
manding performance requirements including satisfy-
ing specific deadline and periodicity constraints. This
paper discusses two main ideas for moving the state of
the art towards predictable distributed real-time sys-
tems. They are:

e adjustable flow control filters that (primarily) re-
side between the non-deterministic environment
and the real-time computer control system, and

o reflective shared memory and its use in support
for distributed real-time scheduling and fault tol-
erance.

In this paper we first discuss distributed real-time
environment characteristics (Section 2). We then de-
scribe the adjustable flow control filters (Section 3)
and the reflective memories (Section 4). For each
of these topics we discuss their value in bringin
distributed real-time systems toward predictable and
robust computing. Section 5 summarizes the main
points presented in this paper.

*This work was supported by ONR under contracts
NOOO14-85-K-0389 and N00014-92-J-1048 and NSF under
grant DCR-8500332.

2 The Environment

Real-time systems interact with the environment.
We are interested in those real-time systems operat-
ing in environments which are dynamic, large, com-
plex, distributed, and evolving. For many applications
operating in such environments it is difficult or even
impossible to predict a priori the worst case loads,
minimum interarrival times for aperiodic tasks, or all
events that might occur. This nondeterminism must
be dealt with in a careful manner and, in spite of non-
determinism in the environment, we would still like the
system itself to be robust and predictable [13]. Static
solutions for such complex systems are not robust
enough because they often rely on too many (unjus-
tified) a priori assumptions, often react poorly when
assumptions are violated, and are too costly in both
initial sizing of the system in terms of needed resources
and in lifetime maintenance where even small changes
often necessitate large, expensive, and time consuming
modifications. The high cost occurs partly because, in
today’s static hard real-time systems, a design is en-
gineered so that every computation is guaranteed to
make its deadline even under peak loads. This essen-
tially elevates all processes to the critical level which
is rarely, if ever, true. Rather, in reality the number of
truly critical processes (even in very large systems) is
small in comparison to the total number of processes in
the system and approaching the problem in this man-
ner can lower cost significantly. Systems can still oper-
ate predictably [13] if deadlines are met under normal
loads and, at a minimum, critical tasks make their
deadlines in overload!. Therefore, while it is desirable
for all processes to make their deadlines, the accom-
panying disadvantages of designing statically, and for
worst case scenarios, include inflexibility at run time,
difficulty in modification, overdesign, and high cost.

Dynamic solutions, if not done carefully, can also
be inappropriate because while they may be eas-
ier to change and less expensive, they can also be
unpredictable. What is required are flexibility [2]
and robustness to both environment and requirement
changes, yet being able to retain predictable overall

1For predictability, we must also consider faults of many
types and the system’s reaction to them. However, due to
space limitations we only stress the time constraint aspects of
predictability.



performance of the system itself. To date, this combi-
nation of properties has not been adequately achieved
for distributed real-time systems. Many new solutions
are required and these solutions must be synergisti-
cally integrated. In this paper we briefly discuss two
hardware based techniques that can help in moving
towards robust, flexible and predictable distributed
real-time systems. The first is adjustable flow con-
trol filters and the second is reflective memory. Ex-
amples of other direct hardware support for real-time
systems has appeared in the form of clock synchro-
nigation, scheduling co-processors [1], and real-time
kernels [5]. These are beyond the scope of this paper.

3 Adjustable Flow Control Filters

In building a distributed real-time system, vari-
ous system models may be followed including cyclic
designs [4], time triggered systems (such as MARS
[3]), rate monotonic based systems [9], or dynamic

lanning based systems (such as the Spring system
Fl2, ll]i to name several common ones. Regardless
of which model is chosen, to size the system properly,
assumptions must be made about the expected loads,
overloads, failures, and worst case scenarios that might
occur. Some environments are easier to predict than
others and designs for them have high coverage. Cov-
erage is the ratio of what the system was designed to
handle compared to what might actually occur in the
real environment being controlled. For other situa-
tions and applications, the environment is too compli-
cated to predict accurately. In such a situation, while
we must analyze the situation as carefully as we can,
we must also provide mechanisms to deal with situa-
tions which cannot be accounted for a priori.

One mechanism that we are proposing here to
add to complex real-time systems for supporting pre-
dictable performance is adjustable flow control filters.
These filters are designed to act to cushion the system
against unanticipated environmental effects including
too many events and events that occur too close to-
gether. Policies that the filters employ can be dy-
namically adjusted and the effects of the data passing
through the filter on subsequent real-time processing
can be known.

Using these filters, the overall view of a distributed
real-time system consists of many sensors whose values
are input to a set of adjustable filters. These inputs
may occur in a nondeterministic manner and even ar-
rive at rates or total amounts beyond specifications.
The filters then create controlled inputs to the rest of
the system in a manner so as to avoid catastrophic
failure and so that they are integrated with timing
constraints in the rest of the system. In summary, the
main features of these filters include:

o buffering inputs to temporarily hold unexpected
inputs,

e analyzing these inputs to decide what higher level
processing is required,

e purging inputs to avoid unnecessary subsequent
work and to remove less valuable work when there

is overload, thereby helping to prevent catas-
trophic failure, and

e having parameters and policies of the filter itself
adjustable from higher level policy modules.

Let us first discuss these features in terms of a sim-
ple example based on a time triggered system (such as
MARS [3?) and then briefly discuss siging the filters.

Suppose that a sensor detects cars and trucks cross-
ing an intersection of a road. If the worst case scenario
was estimated to be 10 vehicles per minute and min-
imum interarrival time between each vehicles was 3
seconds, we could design a time triggered real-time
system that would handle 10 vehicles per minute. The
time triggered system would poll the inputs every 3
seconds and contain enough internal processing power
to handle the 10 vehicles per minute. However, it is
possible that without any buffer we could lose a vehicle
if it arrived in less than 3 seconds from the previous
one, or more than 10 per minute arrived. A buffer
would avoid these losses to an extent. The space that
the buffer requires is very low cost and it would be
possible to size the buffer to account for unexpected
fast arrivals or too many arrivals such that the proba-
bility of losing input would be lower than the require-
ment. The real problem is not the cost of the buffer
memory, but rather the affect that these extra arrivals
have on the rest of the processing in the computer con-
trol system. In some cases, a buffer would allow the
handling of extra load by spreading it out in time,
assuming that there was enough time to make dead-
lines on the further processing required. This might
be true if, for example, 4 vehicles arrive within 3 sec-
onds but the total number of vehicles is still less than
10 per minute. Here the buffer automatically enables
us to process this type of overload since the remain-
ing part of the system has the processing capacity to
make all the deadlines. If more than 10 vehicles per
minute arrive and they cannot be spread out to later
processing cycles such that deadlines can still be met,
then this is where the analyzing and purging capabil-
ities of the buffer come into play. The inputs can be
purged based on a policy which can be adjusted. For
example, a low value input, or all inputs, or all inputs
whose processing deadlines are too close, etc. might
be purged. Continuing with the example, it might be
that it is more important to accurately process trucks
than cars and so if the environment produces more
than the expected load then cars are purged by the
filter. Note that such filters could also be used inter-
nally in the system, e.g., at scheduling queues rather
than just between the sensors and the controlling sys-
tem.

In more complicated systems, the scheduling poli-
cies would have to decide on what adjustments to
make for a set of filters, assessing the interaction
among the filters. For example, it may be acceptable
for 2 filters to input an increased rate to the system
as long as a third filter is adjusted to reduce its input
rate or even shut down.

While the above example uses a time triggered sys-
tem, such adaptive filters would be beneficial to any



system model used such as those based on rate mono-
tonic analysis or planning.

Sising the filter to meet probabilistic bounds is an
important issue. The size should be such that un-
expected inputs, beyond which was already designed
for, can be buffered and analyzed. Further, when some
work resulting from these inputs must be discarded,
the buffer should be big enough so that the less im-
portant work is lost and yet the work being retained
is of high value and can still meet their deadlines.
Analytically sizing these buffers is difficult, primarily
because of the need to take into account the down-
stream system processing of the inputs by a deadline.
More research is needed in this area. Two promising
approaches for sizing these filters may be extensions
to work found in [6, 16]. In [6] a resource utiliza-
tion bound is computed for the buffer size, but this
bound only relates to MAC layer buffers as part of
FDDI. In [16] a queueing theoretic analysis is per-
formed which computes expected delays in a buffer
and relates that to the probability of making deadlines
for given stochastic assumptions. The results need to
be extended to handle a wider range of assumptions.

In summary, we propose building a series of ad-
Justable filters with a wide range of processing capac-
ity. At the low end these filters would have memory
and simple purging (on overflow) capabilities. At the
high end, the ﬁﬂzrs would contaln a sophisticated in-
terface to the rest of the real-time system (allowing
adaptive control), and significant compute power for
the analyzing and purging aspects of the filter.

4 Reflective Memories

In this section we describe what a reflective mem-
ory is, discuss integration of such a memory into a dis-
tributed real-time system, called SpringNet [14], and
briefly discuss how to use this memory for distributed
scheduling and fault tolerance.

A reflective memory is a hardware supported global
memory. Writes by any node in a distributed system
are automatically seen (after a small and predictable
delay) by all nodes containing this global memory. A
write into a memory location of this global memory
can also cause an interrupt if enabled. Such a product
has existed for a number of years now, the first of
which was called SCRAMnet [15] built by the Systran
Corporation.

SpringNet is a physically distributed system com-
posed of a network of multiprocessors each runnin
the Spring Kernel. Each multiprocessor (see Figure 1%
contains one (or more) application processors, one (or
more) system processors, and an I/O subsystem. Ap-
plication processors execute previously, but dynami-
cally guaranteed processes as specified in the execution
plan constructed by the scheduler executing on one or
more system processors. System processors ? offload
the scheduling algorithm and other OS overhead from

3Ultimately, system processors could be specifically designed
to offer hardware support to our system activities such as guar-
antceing proceases. Such a chip has been designed and imple-
mented (1), but not yet integrated into SpringNet itself.

the application processors both for speed, and so that
external interrupts and OS overhead do not
cause uncertainty in executing guaranteed pro-
cesses. The I/O subsystem is partitioned away from
the Spring Kernel and it handles non-critical I/0, slow
I/O devices, and fast sensors.

Currently, we have built a system with 3 multipro-
cessor nodes each with 5 processors and connected via
two networks. First, as shown in Figure 1, there is an
ethernet to support non real-time traffic. Second, as
shown in Figure 2, a fiber optic register insertion ring
connects 2 Mbyte memory boards on each node, sup-
porting 2 Mbytes of reflective memory. This provides
a shared memory model for this 2 Mbytes (of phys-
ically distributed but logically centralized memory).
This reflective memory together with communication
software and scheduling constraints are used to pro-
vide end-to-end predictable performance. The reflec-
tive memory can also be exploited for fault tolerance.
Each node also has at least 20 Mbtyes of non-reflective
memory (4 Mbytes per processor thereby presenting a
local memory model for the rest of the memory of the
multiprocessor). Figure 2 also shows how the network
can scale in two dimensions.

4.1 Distributed Scheduling
Distributed real-time scheduling [10, 8] faces a num-
ber of difficult issues including:

e cost and predictability of coordination among the
schedulers of each node of the distributed system,

o cost of moving tasks, and

e cost and predictability of sharing data among the
distributed tasks which are cooperating.

Reflective memories can help provide solutions to
these problems.

Coordination: Coordination is accomplished via
exchange of status information. In particular, all sta-
tus information that one node wants to share with oth-
ers can be assigned to the global address space. This
can include summary statistics such as the amount
of cpu surplus within a time window, or detailed in-
formation identifying exactly when a real-time task
is scheduled to begin and end execution. Using the
reflective memory in this way makes the information
available in a predictable and short amount of time.
Signaling and coordination among the nodes can also
be accomplished via this global memory®. Hence, co-
operative distributed scheduling can be initiated and
terminated using the global memory. Again, it is im-
portant to emphasize that the status information can
be as limited as statistical performance of a node to
the full representation of the exact load of each node;
simply place the dispatch tables (or the dynamic plan-
ning :ierived tables) in this globally shared memory
space!

Moving tasks: Moving task executable code un-
der real-time constraints is usually too time consum-
ing. We intend to employ a different solution that

SHowever, better distributed semaphore support in hardware
would help in this coordination.
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Figure 2: SpringNet and Reflective Memory

replicates some of the tasks a prior: at various nodes,
and then signals are sent to activate the copy at an-
other node when task migration is required. In real-
time systems many tasks are not suitable for migra-
tion because they are connected to various sensors and
actuators and are (usually) best dome locally. This
selective migration solution is simple when the tasks
are functions and no past state must also be moved.
These are prime candidates to be used for balancing
load. If state must be moved this is facilitated in our
system because such state is clearly identified as a seg-
ment. Segments may be shared or not. If the state is
shared and assigned to the reflective memory then it
does not need to move and the reflective memory once
again provides an advantage. If the state is shared and
not assigned to the reflective memory and the task is
marked as movable, we must move the state (segment)
along with the signals that identify that a task is be-
ing (logically) moved. Since our system also identifies
which tasks share the segment then task groups are
identified and the entire group could be moved. Again,
the tasks themselves would already be replicated and
Just the state (segments) of this task group would be
moving. Movement of a large group would be rarely,
if ever, done because of performance concerns. State
which is not shared would also be moved, if a task is
moved. Finally, tasks which are tied to specific I/O
devices would not be candidates for movement.

Sharing data: When tasks are cooperating in a
distributed real-time system an important issue is the
sharing of data between these tasks. In the remainder
of this section we describe the memory model we use
which is based on shared segments. Simply assigning
these shared segments to the global reflective memory
provides distributed shared memory and a predictable
distributed communication of data between cooperat-
ing and distributed tasks.

In developing a memory model for a real-time sys-
tem, it is often done by viewing a node of the system
as using a physical address space with many threads

of control, both system and user mode threads. Every
thread has access to the entire address space. This is
error prone and a single error can have catastrophic
ramifications. We prefer multiple address spaces aS’;’]
When we introduce multiple address spaces, we also
create the need for controlled address space overlap,
i.e., shared memory. The Spring system implements
this through the familiar technique of making the
memory maps for the shared sections of the address
spaces point to the same physical memory. At the
programming level this provides a way for application
processes to interact efficiently, while maintaining the
advantages of protection. This sharing can be done
within a node or across the network via the reflective
memory.

The other advantage of logical address spaces is
more subtle. Consider the set of processes that are
active on the system at a given time. If this set never
changes, then the system is static. However, next gen-
eration real-time systems are likely to have process
sets which will change dynamically, in response to en-
vironmental events. A logical address space helps sup-
port dynamic process sets because a process is com-
piled to a specific logical address, but can be loaded
into an arbitrary set of physical pages. Complex pro-
cess structures and data sharing between processes in
a group can be supported by comparatively simple ma-
nipulation of the processes’ memory maps. A process
compiled for a physical address space would have to
be assigned addresses that would not cause conflicts
in any of the active process sets of which the process is
a member. If the number of active process sets is very
large, as it is likely to be for dynamic environments,
then the problem of assigning physical addresses to a
process could become extremely complex. This is one
way in which the use of logical address spaces makes
real-time application development easier.

In our system we manage the logical address space
in a way which is predictable and has adequate perfor-
mance. We describe how we use the MMU within the



current target hardware?. The current hardware uses
a Motorola 68851 MMU chip. This is a page based
MMU which is designed for virtual memory support
in conventional systems. It has a 64 entry fully asso-
ciative translation look-aside buffer (TLB), which pro-
vides fast mapping for the most recently used pages.
A logical address reference is first checked against the
TLB entries. If a hit occurs, the address is translated
without further delay. If the proper mapping is not
in the cache, then the MMU goes to the memory map
contained in physical memory to obtain it.

Our strategy for using the MMU predictably is to
limit the size of a process so that the mappings for
all of its pages will fit into the TLB, and to explicitly
manage the TLB contents. The fact that all code and
data for a process are resident in physical memory
while the process is executing eliminates paging de-
lays associated with virtual memory. The fact that all
memory references will be mapped through the TLB,
without additional memory references to consult the
map in main memory, ensures that the worst case per-
formance of a process is both predictable and accept-
able. In the Kernel we take measures to ensure that
the MMU cannot service a TLB miss unless we are ex-
plicitly manipulating the TLB contents. Further, this
scheme automatically allows distributed shared mem-
ory as long as the shared segment is mapped to the
reflective memory. We support this by allowing the
declaration of shared segments independently of the
process and then these shared segments can be de-
clared to be mapped into the reflective memory. Pro-
cesses using these shared segments import them into
their address space.

The most obvious drawback to this design is the
limitations on code size. Our system design dictates
that the system code mappings remain in the TLB at
all times, and are shared by all processes. The cur-
rently executing process is thus limited to a number
of pages less than or equal to the number of TLB en-
tries remaining after the operating system pages have
been mapped. Since we are using a page size of 8K,
we can still write programs of reasonable size. New
MMUs based on segments can eliminate the code sige
limitation. The other drawback is that context switch-
ing includes the time required to explicitly manage the
TLB. This is a cost already paid smplicitly in conven-
tional systems, although it is not usually considered
part of the context switching time, since the TLB en-
tries in conventional systems are obtained as required
by TLB misses.

4.2 Fault Tolerance

Reflective memories also have some features for
supporting fault tolerance. For example, important
data structures and other information at a given node
are written to the reflective memory board and are
then automatically reflected in the global memory of
all the nodes on the ring. This multiple copies of in-
formation is useful in recovering from several classes
of node failure faults including power loss, bus fail-

4 A segmented oriented MMU would be preferable, but was
not available to us at the time we did this work.

ure, and SCRAMnet failures that do not cause cor-
ruption of the reflective memory. Reflective memories
also have some disadvantages with regard to faults,
because if faulty data is written to this memory, this
faulty data is then propagated to all the nodes. To
support fault tolerance in regard to these problems, it
is possible to add other parallelregister insertion rings,
each supporting its own reflective memory, and com-
parisons or voting can take place. In other words, the
SpringNet architecture can scale by connecting rings
of reflective memory in an n-dimensional grid. For
example, a 2-dimensional grid would have one reflec-
tive memory register insertion ring for each row and
another reflective memory register insertion ring for
each column (see again Figure 2). Even though the
SpringNet architecture resembles a multicomputer, it
is important to note that the SpringNet architecture
can be physically distributed, limited only by the max-
imum fiber optic ring sige.

An important aspect of fault tolerance is detecting
errors. It is possible to use one or more nodes of the
ring as a monitor. In this way the monitor node sees
all the information in the reflective memory (copied
there in a non-intrusive manner) via the normal oper-
ational aspects of the global reflective memory. The
non-intrusive aspects is especially important in real-
time systems because software monitors alter timing
and make it difficult to detect timing errors. The mon-
itor can also actively control the other nodes by itself
writing to the reflective memory and having interrupts
selectively turned on for those written locations. In
this way, the monitor can signal a single node, a set
of nodes, or all the nodes in the ring. This is valuable
in initiating mode changes, policy changes, etc., noti-
fying the system as to faults that have occurred, and
for debugging.

5 Summary

In this paper we have argued that distributed real-
time systems are quite complex and many new tech-
niques are required. We present preliminary ideas on
two hardware based solutions: adjustable flow control
filters and reflective memories that help in providing
overall solutions. Adjustable flow control filters could
easily be built using conventional hardware techniques
and reflective memories already exist. We have built a
system using the reflective memories and hope to build
adjustable flow control filters and integrate them into
the system in the future. Adjustable flow control fil-
ters provide outputs which have a degree of flow con-
trol, determinism, and synchronization with the en-
vironment, creating this out of inputs from a highly
non-deterministic environment. Reflective memories
make it easier to perform distributed communication,
distributed shared memory, and distributed schedul-
ing, and have some properties to help in fault toler-
ance, especially in backup copies and monitoring and
control. These hardware based solutions should be
added to other hardware based solutions such as for
clock synchronization, scheduling co-processors [1], or
even entire kernels in hardware f5]
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