On Balancing Computational Load on Rings of
Processors

Lizin Gao Arnold L. Rosenberg

Department of Computer Science
University of Massachusetts

Ambherst, Mass. 01003, USA

Abstract. We consider a very simple, deterministic policy for scheduling certain
genres of dynamically evolving computations — specifically, computations in which
tasks that spawn produce precisely two offspring — on rings of processors. Such
computations include, for instance, tree-structured branching computations. We
believe that our policy yields good parallel speedup on most computations of the
genre, but we have not yet been able to verify this. In the current paper, we show
that when the evolving computations end up having the structure of complete bi-
nary trees or of two-dimensional pyramidal grids, our strategy yields almost optimal
parallel speedup. Specifically, a ring having p processors can execute a computa-
tion that evolves into the height-n complete binary tree (which has 2" — 1 nodes)
in time 1

Ttree(n;p) S p(2n - 1) —I_ a; —I_p:

for some constant o, < 2 that depends only on p. Similarly, the ring can execute
a computation that evolves into the side-n pyramidal grid (which has (*}') nodes)
in time

1{n+1 3
Tgrid(n;p)S;(9)—|—§n+2.

1 Introduction

1.1 Motivation

The promise of parallel computers to accelerate computation relies on the algorithm
designer’s ability to keep all (or most) of the computers’ processors fruitfully! occupied
all (or most) of the time. The problem of balancing computational loads so as to approach
this goal has received considerable attention since the advent of (even the promise of)

1The importance of this qualifier should become obvious from our discussion.

parallel computers (cf. [2]). In this paper, we describe a simple strategy that we believe
balances and schedules loads well for a variety of dynamically evolving computations,
on parallel architectures whose underlying structure is a ring of identical processors.
The challenge of balancing loads on such architectures is their large diameters, which
precludes certain randomizing strategies that depend on low diameters. While we have
not yet been able to delimit the class of computations that our strategy works well on,
we report here on a first step, which establishes that our strategy yields near-optimal
speedup on dynamically evolving computations that end up having have the structure of
complete binary trees or of two-dimensional pyramidal grids. Specifically, our strategy
allows a ring having p processors to execute a computation that ends up with the structure
of the height-n complete binary tree (which has 2" — 1 nodes) in time

1
Tiree(n; p) < 1—7(2” —1)+a, +p,

for some constant a, < 2 that depends only on p. Similarly, it allows the ring to execute
a computation that ends up with the structure of the side-n pyramidal grid (which has

("‘ZH) nodes) in time

1{n+1 3
Tgrid(”?P)SI—)(9)‘|‘§TL‘|‘2-

1.2 Background

A. What Is “Load Balancing?”

Somewhat surprisingly, there is a lack of universal agreement on what “load balanc-
ing” means. Most naively, we want all of the parallel computers’ processors to perform
(roughly) the same amount of work during the course of the computation of interest; cf.
[7, 10]. The weakness of this definition is that, in principle, even though a computer’s
processors all perform the same amount of work, they could perform their work seriatim
(for some unpredictable, undesirable reason), so that one achieves no speedup over a
sequential computer. This pathological possibility motivates demanding also that (al-
most) all processors be occupied doing fruitful work (almost) all of the time. This goal
(which we share with, say, [9]), if achieved, guarantees that the computation of interest
is sped up by a factor of (roughly) p when executed on a p-processor machine — which
is, of course, the most one could hope for. Two quite different approaches to balancing
computational loads have evolved.

General heuristics. Systems-oriented practicioners have developed numerous heuristics
— often fine-tuned for targeted architectures — for balancing large classes of computa-
tional loads. Such “general” schemes often enjoy the desirable characteristic of unob-
trusiveness, in the sense that they do not materially complicate the programming of an

application, and they do not consume many cycles of the machine (cf. footnote 1); but
they usually elude rigorous analysis, due to the generality of the loads that they bal-
ance. Significant attempts to understand classes of “general” schemes can be found in

4,7, 8, 10].

Application-specific techniques. Both algorithm designers and applications-oriented
practicioners have devised a number of load-balancing strategies that exploit the specific
characteristics of targeted classes of parallel computations, often focussing on targeted
classes of architectures. Such “specialized” schemes usually impact algorithmic strategy
significantly, often achieving only asymptotic speedups (sometimes with constant factors
that cannot be ignored). However, these strategies often admit rigorous analyses that
establish their benefits (at least within a probabilistic framework); cf. [5, 6, 9].

B. The Present Study

Where we fit in. The present study falls primarily into the “application-specific” class,
in that we focus on load-balancing and scheduling a specific class of computations on a
targeted architecture. However, we strive for the unobtrusiveness of the better “general”
strategies in addition to the rigorous analyzability of the better “application-specific”
strategies. Our study diverges from most comparable studies in three respects.

1. We study a more general class of computations. Whereas studies like [6, 9] focus
on dynamically evolving tree-structured computations, we allow (in principle) any
dynamically evolving computation in which a task that spawns produces precisely
two new tasks.

2. We focus on a simple, unobtrusive, deterministic load-balancing and scheduling
strategy, in an attempt to gauge how well a simple scheme can balance loads on a
ring. The schemes in [6, 9] employ randomization in an essential way.

3. We focus on parallel computation on rings of identical processors, in an attempt to
understand how to balance loads in high-diameter networks. The architectures in
[6] are essentially PRAMs, while the ones in [9] are essentially butterfly networks
(of identical processors).

Seeking unobtrusiveness. Parallel computing is more than just the sharing of work
by multiple agents, because of the complication of orchestrating interprocessor commu-
nication. It is well known that the overhead for communication can offset the gains from
concurrent computation. This problem is especially acute in the context of procedures
like load balancing, wherein overloaded processors must somehow transfer work to under-
loaded ones. In the present study, we “finesse” the problem of communication costs, by
always having communication consist of one processor’s passing a small packet of work
to an immediate neighbor.

1.3 Our Load-Balancing Problem

A. The Architecture

We focus here on rings of identical processors (PEs, for short). The p-PE version R,
of this architecture has p identical PEs, denoted Pg,P1,...,Pp_1, with each PE P;
connected directly to the two PEs P;timod p- We call PE P;i1mod p (re€sp., Picimod p)
the clockwise (resp., the counterclockwise) neighbor of PE P;.

B. The Computational Load

The computations we wish to balance have the structure of dynamically growing leveled
dags (i.e., directed acyclic graphs) coming from two families, binary tree-dags and two-
dimensional grid-dags. The nodes of these dags represent computational tasks, and their
arcs denote “parenthood” (in a sense that will become clear).

Binary tree-dags. An N-node binary tree-dag (tree, for short) 7 is a dag whose nodes
comprise a full, prefiz-closed set of N binary strings. By full, we mean that the string z0
is a node of T precisely when the string z1 is; by prefiz-closed, we mean that the string z
is a node of 7 whenever z0 and z1 are. The arcs of T lead from each parent node z to its
left child 0 and its right child 1. The null string A is the root of T; each node that has
no child in the node-set is a leaf of 7. The length |z| of a string z is the corresponding
node’s level in T (so the root is the unique node at level 0). The weight of a node z,
denoted Wgt(z), is the number of 1s in the binary string z. Of particular interest is the
class of complete trees. For each n, the height-n complete binary tree-dag T ,, is the tree
whose nodes comprise all 2” — 1 binary strings of length < n. The leaves of T,, are the
2"~! nodes at level n.

The (dynamic) computation that “generates” a tree 7 proceeds as follows.

Initially: 7 has precisely one node, which is simultaneously its root and its (current)
active leaf.

Inductively: (The tasks corresponding to) some subset of the then-current active leaves
(the particular subset depending on our computation schedule) get ezecuted. An
executed task/leaf may:

o halt, thereby becoming a permanent leaf,

e spawn two new active leaves, thereby becoming an interior node.

The computation ends when no active leaves remain.

To aid the reader’s intuition, we show how one “real” computational problem abstracts
to a tree. Consider the problem of numerically integrating a function f on a real interval

[a, b] using the trapezoid rule. Each task in this computation corresponds to a subinterval
of [a,b]. The task associated with subinterval [c, d] proceeds as follows.

1. Evaluate the area of the trapezoid T having corners (in clockwise order)

(¢,0), (¢, f(e)), (d, £(d)), (d,0).

2. If the quantity 1(d — c) is less than some prespecified (resolution) threshold, then
return the area of T' as the integral of f on [c,d], and halt; otherwise, proceed.

3. Evaluate the area of the trapezoid 7" having corners

(¢,0), (¢, f(c)), (3(c +d), f(5(c + d))), (3(c + d),0);

evaluate the area of the trapezoid 7" having corners

(3(c+d),0), (3(c+d), f(3(c + d))), (d, £(d)), (d, 0).

4. If the sum of the areas of 7' and T" differs from the area of T' by less than some
prespecified (accuracy) threshold, then return the area of T as the integral of f on
[c,d], and halt; otherwise proceed.

5. Solve the two new tasks corresponding to the intervals [c, 3(c+ d)] and [3(c+d), d].

Step b corresponds to a current leaf’s spawning two new leaves; steps 2 and 4 correspond
to a current leaf’s halting.

Two-dimensional grid-dags. An N-node two-dimensional grid-dag (grid, for short) G
is a dag whose nodes comprise a full, prefiz-closed set of N pairs of nonnegative integers.
By full, we mean that the pair (k+ 1,£) is a node of G precisely when the pair (k,£ + 1)
is; by prefiz-closed, we mean that, if the pair (k,£) is a node of G, then:

e If £ =0, then? (k,£© 1) is also a node of G;
e if /=0, then (k6 1,£) is also a node of G;
e else, at least one of (k — 1,£) and (k,£ — 1) is also a node of G.

The arcs of G lead from each parent node (k,£) to its left child (k,£ + 1) and its right
child (k + 1,£). The pair (0,0) is the origin-node of G; each node that has no child is a
sink-node of G. The sum k + £ is the level of node (k,£) in G (so the origin-node is the

unique node at level 0). Of particular interest is the class of pyramidal grids. For each
n, the side-n pyramadal grid-dag G,, is the grid whose nodes comprise all ("‘ZH) pairs of

nonnegative integers (k, £) such that k + £ < n. The sink-nodes of G,, are the n pairs at
level n — 1.

The (dynamic) computation that “generates” a grid G proceeds as follows.

.y . d
25 denotes positive subtraction: m © 1 lef max(0,m — 1).

Initially: G has precisely one node, which is simultaneously its origin-node and its (cur-
rent) active sink-node.

Inductively: (The tasks corresponding to) some subset of the then-current active sink-
nodes (the particular subset depending on our computation schedule) get ezecuted.
An executed task/sink-node may:

o halt, thereby becoming a permanent sink-node,

e spawn two new task-arcs, thereby becoming an interior node. Each newly
spawned task-arc is associated with either a unary task or a binary task.

— A unary task-arc leads from the executed task to a newly created active
sink-node.

— A binary task-arc leads from the executed task-node either to a newly
created nactive sink-node, or to a pre-existing inactive sink-node that
was created by another executed node,® which thereby becomes active.

The computation ends when all remaining sink-nodes are permanent ones. Intuitively,
a sink-node switches from inactive to active status when it gets the correct number of
parents, meaning that its associated task has received all needed inputs.

“Solving” the load-balancing problem. Our goal is to discover and analyze: (a) a
simple, deterministic regimen for balancing the computational load generated by dynam-
ically growing trees and grids on rings of PEs; (b) a policy for scheduling the resulting
load, that is provably efficient in the following sense. Let the phrase “unit time” denote
the aggregate time it takes one PE of a ring to

e execute one node of a tree or grid

e transmit to an immediate neighbor a description of the task denoted by a single
tree- or grid-node.

Then, we seek balancing-plus-scheduling policies which, for each integer p, provably allow
a p-PE ring R, to execute any dynamically growing tree or grid that ends up having N
nodes, in time < N/p + p + o(N). The term N/p represents the ideal p-fold parallel
speedup; the term p represents the overhead of “loading” R, with work; the remaining
term represents the extent to which our policies deviate from the ideal.

What we achieve. The problem just described seems to be very challenging technically:
its solution has eluded us thus far. We have discovered a simple balancing-plus-scheduling

3The last clause precludes having “parallel” arcs from one node to another.

policy, which we believe works well on randomly generated trees and grids and on large
explicit classes of such dags; however, we have not yet been able to verify or refute our
belief. However, we have succeeded in proving that this policy “solves” the load-balancing
problem in the (analytically) much simpler situations in which the dynamically evolving
tree grows into a complete tree and the dynamically evolving grid grows into a pyramidal
grid. (In the numerical integration scenario, for instance, such growth corresponds to the
situation where all leaves of the tree halt because of the resolution threshold.) In these
cases, our policy achieves essentially optimal speedup, in the sense made explicit at the
end of Section 1.1.

The KS-BF balancing-plus-scheduling policy. We call our balancing-plus-scheduling
policy KS-BF, for mnemonic reasons. The balancing component of the policy has each
PE observe the regimen Keep-left-Send-right in response to a spawning task, meaning

that a PE keeps the left child of the spawning task and sends the right child to its neigh-

bor. The scheduling component of the policy mandates that each PE execute the tasks

assigned to it in a locally Breadth-First manner. A PE satisfies the latter requirement

by keeping its as-yet unexecuted tasks in a priority-queue. The tasks are kept in the
queue in order of their levels (in the tree or grid being executed) and, within a level, in

breadth-first, or, “left-to-right” order. In the case of a tree, “left-to-right” order means

lexicographic order of the string-names of the nodes; in the case of a grid, “left-to-right”

order means in order of the first entries of the integer-pair-names of the nodes.

The details of the KS-BF policy for trees are as follows. Each computation begins
with the root (and initial leaf) A of the dynamically growing tree 7 as the sole occupant
of PE Py’s task-queue. At each step of the computation, the task-queue of each PE P;
contains some subset of the then-current active leaves of 7. Each P; having a nonempty
task-queue performs the following actions.

1. P; executes that active leaf z in its task-queue which is first in breadth-first order.

2. If leaf = spawns two children, then P; adds the new leaf 20 (the left child) to its
task-queue, and it transmits the new leaf z1 (the right child) to the task-queue of
its clockwise neighbor P;i1modp-

We assess one time unit for the entire process of executing a task and performing the
balancing actions just described. Adapting these details to grids is straightforward.

In order to lend some intuition for the KS regimen, we illustrate in Table 1 how the
regimen distributes the nodes of 75 in Ry.

PE ‘ tree-level ‘ resident nodes

Po 0 1

2

4

8

16, 31

32, 47, 55, 59, 61, 62

3

5,6

9, 10, 12

17, 18, 20, 24

33, 34, 36, 40, 48, 63

7

11, 13, 14

19, 21, 22, 25, 26, 28

35, 37, 39, 41, 42, 44, 49, 50, 52, 56
15

23, 27, 29, 30

39, 43, 45, 46, 51, 53, b4, 57, 58, 60

P

P

Ps

U WO WNOUEAE WN O WN —

Table 1. The node-assignments when R, executes T under the KS regimen.

In fact, we can go even further and specify exactly which PE of R, will execute each
node of an given input tree or grid.

Lemma 1.1 Under the KS regimen:
(a) each node x of an input tree is executed at PE Pwgi(s)modp of Rp.
(b) each node (k,£) of an input grid G is executed at PE Prmodp of R,.

Proof: Straightforward inductions establish the result. We present a proof just for a
tree T, leaving the similar proof for grids to the reader.

Note first that the root A of 7, which has weight Wgt()\) = 0, is executed at PE Py.

Assume inductively that some given (but arbitrary) nonleaf node z of T is executed
at PE Pwgt(z)modp- By definition of the Ks regimen:

o If the left child 20 of z is also in 7, then it is executed at PE Pwg(z)modp (the
“keep left” part of the regimen).

o If the right child #1 of z is also in 7, then it is executed at the clockwise neighbor
Pwgt(z)+1modp f PE Pwgt(z)modp (the “send right” part of the regimen).

These cases extend the induction, because Wygt(z0) = Wgt(z), and Wgt(zl) = Wgt(z)+
1. "

We can infer directly from Lemma 1.1 that the KS-BF policy does not perform well
on all trees or all grids.

Trees. The h-level w-complete binary tree is the binary tree whose node-set comprises

all binary strings of length < h that have weight < w. Consider the family of (£, des log p)-
complete binary trees. When h is significantly larger than £, the number of nodes in the

h-level member of this family is easily shown to be N(h;p) des ©(h*). Note first that, in
this case, h is not the dominant term in the ideal p-PE running time O(N(h;p)/p + h).
Note next that no policy that employs the KS balancing regimen can achieve even close to
(asymptotic) optimal parallel speedup (i.e., speedup proportional to p), since the regimen
assigns work to only log p PEs.

Grids. Let us focus on the family of grids whose node-sets have the form {7,;} x
{0,1,...,m—1}uU{0,1,...,m — 1} x {0}, where s = 0 mod p, and j =1 mod p. Note
that, for sufficiently large m, the KS balancing regimen assigns almost all the work to

PEs Py and P;.

Despite its bad worst-case beavior, we believe that the KS-BF balancing-plus-scheduling
policy does perform well on large classes of trees and grids, as well as on most “randomly
growing” trees and grids. The best we can prove at this point is that the policy is almost
optimal when the input tree grows into a complete tree and when the input grid grows
into a pyramidal grid. Formally,

Theorem 1.1 When the ring R, uses the KS-BF balancing-plus-scheduling policy:
(a) It executes each input tree that grows into the height-n complete binary tree T, in
tame 1

Tiree(n; p) < p(2” —1)+ap +p,

where a, < 2 is a constant that depends only on p.

(b) It executes each input grid that grows into the side-n pyramidal grid G, in time

1{n+1 3
Tgrid(nip)ﬁz—)(9)—|—§n—|—2.

We prove part (a) of Theorem 1.1 in Section 2 and part (b) in Section 3.

2 Analyzing the KS-BF Policy on Trees

In this section, we prove part (a) of Theorem 1.1, in two steps. First, in Section 2.1, we
prove that the KS regimen approximately balances the amount of work that the PEs of
R, perform while executing any complete binary tree 7,. Then, in Section 2.2, we prove
that breadth-first scheduling of a Ks-balanced workload ensures that, once a PE of R,
first receives a task of 7, to execute, it will always have work to do until it has completed
all of its work. This suffices to establish part (a) of Theorem 1.1. Note that, whereas p is
a fixed but arbitrary constant throughout, n ranges over all (positive) integers for each
value of p.

2.1 Work Distribution under the KS Regimen

Our analysis of the amount of work done by each PE of R, while executing a tree that
grows into 7, builds on Lemma 1.1(a), which allows us to profile the distribution of work

among the PEs. For 0 <7 < p—1, let W;(n) denote the total work done by PE P; during
this execution.

Theorem 2.1 The ezact value of W;(n) is given by:
n
Wim)= 3) (2.1)
k=i+1modp
This yields the implicit bound,

2an -1
p

<a® (2.2)

= “p>

‘m(n) -

where a, < 2 is a constant depending only on p.

Proof: Note first that, for any k, the number of length-k binary strings of weight w is

(w)

It is immediate, therefore, by Lemma 1.1(a) and the definition of complete binary tree,

precisely

that precisely

Winif) = > (l)

j=imodp J

10

nodes from level £ of T,, (where 0 < £ < n) are executed by PE P; of R,. Of course, the
workshare W;(n) is just the summation of W;(n;£) over all levels of T ,,. In other words,

Witn) = 5 Wi) = Zg ()

Elementary manipulations simplify this double summation.

Wiln) = ;% ()
- > 5

j=imodp £=0

n
a kEi—I%odp (k)7

whence equation (2.1).

To obtain the more perspicuous bound (2.2) on W;(n), which gauges the actual work-
shares’ deviations from the ideal workshare, we use the Discrete Fourier Transform (DFT)
(see Chapter 7 of [1]).* In what follows, w is a primitive pth root of unity. Denote by
F,(w) the order-p DFT matrix

1 1 1 1 1

1 w wz w3 wp—l

1 wZ w4 WG e wZ(p—l)
Fw)=1] 1 o2 Wb W .. W31

1 w];—l wZ(I‘J—l) w3(1‘1—1) e w(p‘_l)z

The following facts allow us to obtain information about the workshares W;(n) via cal-
culations involving the DFT matrix F,(w).

Fact 2.1 The cumulative amount of work performed by all PEs of R, when ezecuting
T, is

p—1

ZM(n) =2"—1.

=0

“The authors discovered after completing this paper that essentially the same analysis appears, with
different motivation, in the unpublished Master’s thesis [3].

11

Fact 2.1 is true because every node of T, is executed exactly once. [

Fact 2.2 For each k € {1,2,...,p— 1},

p—1 p—1
Z m(n)wk(z—l—lmodp) — Z wk(z—l—lmodp) Z ('Z’)
2=0 2=0

{=i+1modp

= 1+ —1.

Fact 2.2 is true (by regrouping terms) because w is a primitive pth root of unity. m

Facts 2.1 and 2.2 combine to validate the following matrix-vector product.

Wp_l(’l’L) 2" —1
Wo(n) (1+w)” -1
Fw)| Wi(n) | =| (I+u’)"-1 (2.3)
Woam))\ (1+wriy—1
It is well known that the matrix F,(w) is nonsingular and has inverse
1
FoHw) = I—)Fp(w_l).

We can, therefore, premultiply both sides of equation (2.3) by F,'(w) to obtain the
following aggregated expression for the workshares W;(n).

Wp—-1(n) 1

Wo(n) (1+w)*—1

Wiln) | =F'w)| (Q+e?)-1 (2.4)
Wy (n) (1+w) —1

By expanding equation (2.4), we obtain the following explicit expression for W;(n) in
terms of w.

Wi(n) = 11) l(zﬂ 14 Ii:w_j(i+1) (14w - 1)] . (2.5)

By noting that Z?;; 4% = 0 for any pth root of unity 7 (since the sum is invariant under
multiplication by 4 # 0), one easily simplifies expression (2.5):

Wiln) = (2.6)

p—1
2"+ Z w_J(H'l)(l + w?)"
7j=1

12

Expression (2.6) affords us a direct path to bound (2.2). First, by direct manipulation
of expression (2.6), we find that

‘W'(n) o 1‘ = 1pfw‘”’“*”(l ful)). (2.7)
p et p
Next, we invoke the triangle inequality to convert equation (2.7) to the inequality
o — 1| 1% ., : 1
‘VVZ(TL) _ ‘ <= Z ‘W—J(H—l)(l + w])n‘ + ‘_‘ ‘ (2.8)
p f et p
Since every power of w is a pth root of unity, inequality (2.8) simplifies to
" —1| 1% : 1
Wi(n) — < - 1—|—w”"—|—‘—‘. 2.9
i) - T2 < S la+wir|+) (2.9

Let a, = maxXocjp |1 + w?|. Inequality (2.9) immediately yields a bound of the form of
inequality (2.2):

2an —1 -1 1
‘Wi(n) . <P _ary-<ar (2.10)

p p p
By noting that |1 +w?| < 2 for all j # 0, one verifies that a, < 2, so inequality (2.10) is,
in fact, the sought bound (2.2). n

2.2 Running Time under the KS-BF Policy

In this section, we analyze the time required by R, to execute the tree 7, under the
KS-BF policy. To this end, we establish the following notation.

o () def Wgt(z) mod p denotes the index of the PE at which node z of T, is
executed.

o N(z) denotes the set of nodes of T, that are assigned to PE P, by the Ks
regimen.

e N<(z) denotes the subset of N(z) comprising tree-nodes that precede z in breadth-
first order.

def

e v(z) = |N<(z)| denotes the cardinality of the set N<(z).

13

Theorem 2.2 Node = of T, is executed by PE Py, of R, at step T(z) wf v(z)+ m(z).

Hence, R, ezecutes an input tree that grows into T, in time

Teree(n;p) < p+ max Wi(n).
Proof: We argue: (a) that the KS balancing regimen ensures that each PE P; of R,
starts working at time 7; (b) that the BF scheduling policy guarantees that each PE P; of
R, performs all of its work in an uninterrupted block of W;(n) steps. It will follow that
R, finishes executing 7, by time maxo<j<p Wj(n) + p.

Assertion (a) is immediate by induction, since only P, has work at step 0 of the
execution, and the KS regimen passes work along only one PE per step.

We establish assertion (b) by verifying the schedule in the statement of the theorem,
namely, that each node z of T, gets executed by PE Py, at step 7(z). Note first that
node z could not be executed any earlier than step 7(z), because PE Pr(,) does not start
working until step 7(z), and there are v(z) tree-nodes that Pr(,) must execute (because
of the BF policy) before it gets to node z. We complete the proof by verifying that node
¢ is available for execution at time 7(z). We proceed by induction on the breadth-first

order of the nodes of 7,,.

As the base of the induction, we remark that the root A of 7, gets executed at PE
Po at step 7(A) = 0, as predicted by the fact that 7(A) = »(A) = 0.

Next, focus on a nonroot node z§ of T,, where § € {0,1}, and assume that every
node y of T, which precedes zd in breadth-first order is executed at step 7(y).

Consider first the case when § = 0, so that node zé§ = z0 is a left child of its parent
z. Now, since z precedes z0 in breadth-first order, our inductive hypothesis ensures that
node z is executed at step 7(z). It follows that node z0 resides in the task-queue of PE
Prw) (since m(20) = 7(z) under the KS regimen) beginning at step v(z) + 7(z0) + 1.
Since, obviously, v(z) < v(z0), this means that node z0 is available to be executed by
step 7(z0).

Consider next the case when § = 1, so that node zé = 1 is a right child of its parent
z. As before, since z precedes z1 in breadth-first order, our inductive hypothesis assures
us that node z is executed at step 7(z). It follows that node z1 resides in the task-queue

of PE Pr(,1) beginning at step v(z) 4+ 7(z) 4+ 1. Note the following:

1. w(zl) = w(z) + 1 mod p.
This equation is an immediate consequence of the KS regimen.

2. v(zl) > v(z).
This inequality holds because, for each tree-node y € N<(z), the tree-node y0/=|-I¥/1 ¢

14

N<(z1). We know that y01*I=1¥/1 is a node of T, because it precedes z1 in breadth-
first order, and by hypothesis, z1 is a node of T,,.

To continue with the analysis, we distinguish two subcases. Say first that =(z) < p — 1,
so m(zl) = w(z) + 1. In this subcase,

viz)+m(z)+1 = v(z)+ m(zl)
< v(zl) + w(zl).
In the other subcase, n(z) = p — 1, so w(zl) = 0 = m(z) — p+ 1. In this subcase,
we know that node #1 has length at least p, since it contains a 1 and has (by Lemma
1.1(a)) Wgt(z1) = 0 mod p. It follows that, in addition to the v(z) elements in N<(z1)

guaranteed by Assertion (2) above, N<(z1) must also contain at least the p+ 1 additional
nodes {0’ | 0 < i < p}. We thus have:

viz)+m(z)+1 = v(z)+m(zl)+p
< v(zl) + w(zl).

In either subcase, node z1 is available to be executed no later than step 7(z1).

In summary: we have shown that, in all cases, node zd is executed precisely at step
7(zé). This extends our induction and completes the proof. [

3 Analyzing the KS-BF Policy on Grids

This section is devoted to proving part (b) of Theorem 1.1. Since our proof will follow
both the organization and underlying reasoning of Section 2, we shall be somewhat
sketchy in this section.

3.1 Work Distribution under the KS Regimen

Our analysis of the amount of work done by each PE of R, while executing a grid that
grows into G, builds on Lemma 1.1(b). For 0 <: < p — 1, let W;(n) denote the total
work done by PE P; of R, during this execution.

Theorem 3.1 The ezact value of W;(n) is given by:

m(n):n—i+(n—i—g—’) {”;"J—’z—’{“;ir. (3.1)

This yields the implicit bound,

o33

p

Proof: Lemma 1.1(b) tells us that each node (k,£) of G, in executed by PE Prmoap. It
follows, therefore, that, for each 7 € {0,1,...,p — 1},

1%]
Witn) = Y (n—k)= Y (n—(i+3p)).

k=imodp j=0

3
<mt2 (3.2)

The latter expression evaluates, by standard techniques, to

v = (=5 (5]) o

Elementary manipulations convert expression (3.3) to expression 3.1.

In order to verify bound (3.2), we quantify the deviation of the actual workshares
from the ideal. We begin by noting the amount of work each PE of R, would do when
executing G, in a perfectly balanced world.

Fact 3.1 In a perfectly balanced computation of G,, each PE of R, would do work

dey 1224 l(n—l—l)
W = — Wi(n) = - .
p; (n) L

Obviously, some workshares W;(n) exceed W, while others are smaller than W. In
fact, the progression from the smallest workshare to the largest is quite regular.

Fact 3.2 Foralli € {1,2,...,p— 1},
In particular, for all n,

Wo(n) > Wi(n) > --- > W,_1(n).

Fact 3.2 can be verified as follows. For each k € {0,1,...,n — 1}, we call the set of
grid-nodes {(k,£) | 0 < £ <n —k— 1} the kth row of G,,. Lemma 1.1(b) assures us that

all nodes in a given row of G,, are executed at the same PE of R,,. We partition the set of

16

rows of G, into bands: the ith band, where 0 <4 < |(n — 1)/p|, comprises those rows of
Gn whose indices fall in the set {ip,ip+ 1,7p+2,...,ip+ p — 1}; the somewhat awkward
wording here is because the last band may contain fewer than p rows. Now, note that,
within each band, the sum of the row-sizes and the row-indices stays constant (as long
as the row exists). This verifies Fact 3.2. [

Facts 3.1 and 3.2 combine to ensure that W,_1(n) < W < Wy(n). We can bound the
deviation of the actual workshares from the ideal, therefore, by bounding the differences

Wo(n) — W and W — W,_;(n). For the former difference, we have

wo-wens (o515 GL 5 0)

Conservative estimates show this quantity to be no greater than

For the latter difference, we have

W —W,_1(n) = %(”;1) —ntp—1-— (n— ;p—l- 1) {#J +g—’ {wr.

Conservative estimates show this quantity to be no greater than

3 1 1 3 3
W W, ()< [2— = T I Y 35
pl(n)_(2 p)n+(2+2p)_2n+ (3:5)

The bound (3.2) follows.]

3.2 Running Time under the KS-BF Policy

In this section, we analyze the time required by R, to execute the grid G,, under the
KS-BF policy. To this end, we adapt the following notation from Section 2.2.

o w(k,{) “f & mod p denotes the index of the PE at which node (k,£) of G, is

executed.

o N(k,£) denotes the set of nodes of G, that are assigned to PE P,y by the Ks
regimen.

17

o N<(k,{) denotes the subset of N(k,£) comprising tree-nodes that precede (k,£) in
breadth-first order.

o v(k,{) des |N<(k,£)| denotes the cardinality of the set N<(k,£).

Theorem 3.2 Node (k,£) of G is executed by PE Pruy of R, at step T(k,£) def

v(k,£) + n(k,£). It follows that R, ezecutes an input grid that grows into G, in time

0<:<p—1

Tyria(n;p) < max (Wi(n) +1)
< Wo(n).

Proof: Asin Theorem 2.2, we argue, first, that each PE P; of R, starts working at time
¢ and, second, that each PE P; of R, performs all of its work in an uninterrupted block
of W;(n) steps. The first of these assertions is proved just as in Theorem 2.2, so we focus
on the second assertion.

We argue that each node (k,£) of G, gets executed by PE Py at step 7(k,£). By
the same argument as in Theorem 2.2, node (k, £) could not be executed any earlier than

step 7(k,£). Hence, we need only verify that node (k,£) is available for execution at time
7(k, £). We proceed by induction on the breadth-first order of the nodes of G,,.

As the base of the induction, we remark that the origin (0,0) of G, gets executed at
PE Py at step 7(0,0) = 0, as predicted by the fact that «(0,0) = v(0,0) = 0.

Next, focus on a non-origin node z’ s (k + p,L + o) of G,, where {p,0} = {0,1},

and assume that every node (¢,) of G, which precedes node 2’ in breadth-first order is
executed at step 7(¢,).

Consider first the case o = 1 (so p = 0), in which node z' is a left child of its parent

z (k,£). Now, since node z precedes node ' in breadth-first order, our inductive

hypothesis ensures that node z is executed at step 7(z). It follows that node ' resides
in the task-queue of PE Py(,) (since w(z') = n(z) under the KS regimen) beginning at
step v(z) + w(z') + 1. Since, obviously, v(z) < v(z'), this means that node z’ is available
to be executed by step 7(z').

Consider next the case p = 1 (so o = 0), in which node ' is a right child of its parent
z. As before, since z precedes z’ in breadth-first order, our inductive hypothesis ensures
that node z is executed at step 7(z). It follows that node z' resides in the task-queue of

PE Pr(») beginning at step v(z) + w(z) + 1. Note the following:

1. w(z') = 7(z) + 1 mod p.
This is a consequence of the KS regimen.

18

2. v(z') > v(z).
This is because, for each grid-node (a, b) € N<(z), the grid-node (a+1,b) € N<(z').
We know that (a+1,b) is a node of G,, because it precedes z’ in breadth-first order,
and by hypothesis, z’ is a node of G,,.

To continue with the analysis, we distinguish two subcases. Say first that =(z) < p — 1,
so m(z') = w(z) + 1. In this subcase,

viz)+m(z)+1 =
<

() + 7(z')
(z') + m(z').

In the other subcase, 7(z) = p—1, so 7(2') = 0 = m(z) — p+ 1. In this subcase, we know

I
I

v
v

that the level of node z’ in G,, is at least p, since, being a right child, z’ is at least in row
1 of G,, and has (by Lemma 1.1) k + 1 = 0 mod p. It follows that, in addition to the
v(z) elements in N<(z') guaranteed by Assertion (2) above, N<(z') must also contain at
least the p additional nodes {{(k+¢,£—1) | 1 <:<LU{{(7,k+L+1—3)|0<j <k}
We thus have:

viz)+n(z)+1 = v(z)+n(z')+p
< (') + n(z").
In either subcase, node z' is available to be executed no later than step 7(z’).

Summarizing our argument: we have shown that, in all cases, node (k + p,£ + o) is
executed precisely at step 7(k+ p, £+ o). This extends our induction. The proof is finally
completed by appealing to Fact 3.2. [

Acknowledgments. It is a pleasure to acknowledge helpful and stimulating conversa-
tions with Vittorio Scarano and Zhi-Li Zhang.

This research was supported in part by NSF Grant CCR-92-21785. A portion of this
research was done while the second author was visiting the Department of Computer
Science, The Technion, Haifa, Israel.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman (1974): The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass.

19

2]

3]

8]

[9]

R.P. Brent (1974): The parallel evaluation of general arithmetic expressions. J. ACM
21, 201-206.

G. Even (1991): Construction of Small Probability Spaces for Deterministic Simula-
tion (in Hebrew). M.Sc. Thesis, The Technion.

A. Gerasoulis and T. Yang (1992): A comparison of clustering heuristics for scheduling
dags on multiPEs. J. Parallel and Distr. Comput.

S.L. Johnsson (1987): Communication efficient basic linear algebra computations on
hypercube architectures. J. Parallel Distr. Comput. 4, 133-172.

R.M. Karp and Y. Zhang (1988): Randomized parallel algorithms for backtrack search
and branch-and-bound computation. J. ACM 40, 765-789.

R. Lilling and B. Monien (1993): A dynamic, distributed load-balancing algorithm
with provable good performance. 5th ACM Symp. on Parallel Algorithms and Archi-
tectures, 164-172.

R. Liilling, B. Monien, F. Ramme (1990): Load-balancing in large networks: a com-
parative study. Typescript, Univ. Paderborn.

A.G. Ranade (1994): Optimal speedup for backtrack search on a butterfly network.
Math. Syst. Theory 27, 85-101.

[10] L. Rudolph, M. Slivkin, E. Upfal (1991): A simple load balancing scheme for task

allocation in parallel machines. 8rd ACM Symp. on Parallel Algorithms and Archi-
tectures, 237-244.

20

