Needed: A Theoretical Basis for
Heterogenous Parallel Computing

Arnold L. Rosenberg

CMPSCI Technical Report 94-36
April, 1994

Needed: A Theoretical Basis for Heterogeneous
Parallel Computing-

Arnold L. Rosenberg
Department of Computer Science
University of Massachusetts
Ambherst. Massachusetts 01003. USA

Abstract. \We present a rather general notion of heterogeneous parallel computing that
calls for a different conceptual basis than does the standard. homogeneous view ol par-
allelism. We illustrate several wayvs in which the heterogeneous world differs [rom the
homogeneons one. and we enumerate a variety of issues that seem ripe for theoretical
stndy. We argue that the world of heterogeneous parallel machines. which is enabled
by emerging technologies and fostered by new economic realities. is orders of magnitude
more complicated than its precursors. \We suggest that succeeding in this complex world
will require closer cooperative research bonds between theoreticians and practicioners
than we have seen thus far. \We intend the ruminations herein to be viewed as a chal-
lenge to both theoreticians and practicioners to create a new conceptual view of parallel
computing that addresses the issues raised by heterogeneity.

1 The Changing Profile of Parallel Computation

1.1 The Traditional View of Parallel Computers

When parallel computers first became feasible. they were viewed largely as an evolu-
ionary extension of sequential computers. with the major difference that there were
cooperating agents working on parts of the computational chore. Both theoreticians
and practicioners adopted this worldview. which led to the conceptual model depicted in
IFignre 1. The key features of this model are uniformity and predictability.

Uniformity. In this worldview. the processors and memory modules of a parallel com-
piter are identical in all algorithmically significant features. For the processors. such
features inelnde instruction repertoire. speed. and datapath width: for the memory modd-
les, they include capacity. word-size. and latency. Additionally. the commmnication

" This work was supported in part by NSF Grant CCR-92-21785 and in part by a Lady Davis Visiting
Professorship at the Department of Computer Science. The Technion. Haifa. Israel.

Processor 1 Processorn

Communication
Medium

Figure 1: The traditional view of a parallel computing systcm.

medinm is “well structured.” in the sense of having uniform bandwidth throughont and
ol having a uniform (and usually exploitable) locality structure. Finallyv. the entire system
submits to a single control regimen (e.g.. SIND or MIND).

Predictability. In this worldview. processors are 100% available at all times. so that.
lor instance. computation times can be estimated with known precision.! Analvses of
algorithms often depend on knowing the values. or at least bounds on the values of
performance determinants. such as processor loads. memory latency. and communication
bhandwidth and latency.

Many of the now-standard parallel algorithmic devices depend in fundamental wayvs
on the assnmed nniformity and precictability. The resulting free interchangeability of
processors and ol memory modules. in terms of capabilities. capacities. and speeds. per-
mit such important algorithmie devices as randomized “compile-time™ load halancing and
lateney hiding via multithreading. as well as all manner of emulation results. ['niformities
in algorithmically significant structure further allow the flexible partitioning of machines
and the free reallocation of data without costly reformatting. The predictable perfor-
mances ol the processing. memory. and communication subsystems of machines permit

"Recent theoretical work on asynchrony and fault tolerance (e.g.. [2]) suggest avennes for obviating
(hese assmmptions. but most views of parallel computing still cleave to them.

fechnigues such as “amortized™ barrier synchronization and “compile-time™ scheduling.
M is illuminating to contemplate the extent to which the capabilities and efficiency of
~weneral” models of parallel computers. such as (5. 10]. depend on the unilormity and
predictability we have been discussing.

1.2 The Emerging View of Parallel Computers

In recent vears. increasing numbers of researchers in the world of parallel computing have
discovered that the homogeneous world just depicted may he inappropriate in many siti-
ations. lor a variety of technical and economical reasons. On the technical side. one finds
sophisticated application domains. such as computer vision. calling for composite par-
allel architectures whose constituent subarchitectures are tailored for dilferent aspects
ol the processing of complex images (6. 11]. On the economical side. the steadily in-
creasing power and moderating costs of uniprocessors. coupled with the contining high
costs of leading-edge multiprocessors has led to parallel computing environments such
as: “cooperating”™? networks of workstations [3. 9. 12]: “stables”™ of “cooperating”™ com-
puters of varving speeds and capabilities [3]: and multiprocessors that are shared. via
fimesharing or partitioning. (An aside: sharing is not usually thought of as a source of
heterogeneity, bhut it does diminish the predictability of an environment. in that dilferent
exeertions of a given program with given data may use dramatically different computa-
tional resonrees.) Such technical and economic factors suggest that one should hencefortly
view the most general parallel computing system as having the form of Figure 2. The
major concomitants of this syvstem are variety and unpredictability.

Variety. Although most ~stables™ of parallel computers will likely contain lewer archi-
teetural types than appear in Figure 2. thev will definitely contain several such types.
Morcover. the nsers of a “stable™ will perceive even more types than actually appear. as
they receive different portions of the available resources.

Unpredictability. A major challenge for the users of an ~aggressively™ heterogeneons
parallel environment is that the system may keep them guessing about what resonrees
will he available for any given execution of their programs. Most clearly. the varions
computers in a “stable” will likely vary widely in computing characteristics. However.
in a shared environment. even the same computer mayv exhibit ditferent characteristics
at different times. Similar variability will be found in the communication snbsystem of
the “stahle.” Since resources may be allocated by the operating svstem. in a manner
inlluenced by, but not necessarily heeding requests by users. it mayv he difticnlt or even

“oge . “
“The word “cooperating” indicates that the computers are/may be working on subtasks of the same
progrean. rather than on separate programs.

INTERFACE

(Partitionable) (Shared) Multiprocessor

ector Processor

Special Purpose Engines

Figure 2: The new view of a parvallel computing systen.
impossible to bound the amount of computational resource that a given program will
have aceess Lo al any time.

ITaving sketched a new world of variety and uncertainty. we now try to identily some
inviting challenges created by that world.

2 Static Questions Raised by Heterogeneity

2.1 Developing Algorithms in a Varied Environment

loven in the (apparvently) simplest heterogeneous environment. there is new algorithmic
research needed. To illustrate the problem. consider that existing sophisticated work on
well-studied algorithmic problems. such as sorting and matrix multiplication. on a variety

ol idealized architectures. such as meshes and hypercubes. does not really prepare one to
implement the proposed algorithms on real parallel architectures. The [ew studies that
do proceed from the theory to an implementation suggest that the road from a theoretical
study to a well-thought out and well-crafted implementation is not a straightforward one
(el [1. 7]). How much more sinuous is this road when one has access to a “stable”™ of
varied compiters that one can apportion subtasks among?

Reading a sonrce like [4] and pondering the preceding question raises the intriguing
subjeet of structurally parameterized algorithmics. Sticking to the realm of algorithm
theory for ease of exposition. it appears clear that most algorithmic strategies are robust
enongh to withstand certain perturbations in the structure of the (ideal) architecture they
are targeted for. vet not to withstand others. Algorithms abound that allow one to specily
as a simple parameter the number of processors in one’s mesh (for instance). It is harder
to think of algorithms that enjoy the same (relative) efficiency on processor arrays ol
dilferent topologies. It is even less likely that there are many algorithms that have equally
(relatively) efficient implementations on meshes whose rows and columns are connected
by (mnltireader) buses and on meshes whose connections are all point-to-point. It is havd
even to imagine algorithms that are insensitive to the relative speecls of communication
and computation. Similarly. it seems likely that developing an algorithmic strategy for a
siven machine requires careful attention to the detailed characteristies (such as bandwidth
and lateney) ol the machine’s communication subsystem. These rmuminations snggest (he
[ollowing nnformalized. vet compelling questions:

How mnch does the structure of the available (sub)machine(s) have to change
before an algorithm loses its (relative) efficiency? hefore one is well advised
lo select a completely different algorithm?

When one considers suites of interacting algorithms. these questions hecome even harder.
One must now balance the (relative) efficiencies of each constituent algorithm with the
desire 1o execute the entire suite efficiently. As a simple vet extreme example: il one has
access to both a mesh and a hypercube. and if all of one’s subproblems have algorithms
that run significantly faster on the hypercube than on the mesh. then one is laced with
an interesting dilemma. Almost certainly. one’s optimal strategy will not he to develop a
snite ol algorithms just for the hypercube. leaving the mesh idle! How. though. does one
decide how to partition (and schedule) one’s suite of subproblems. given the available
“stable”™ and the available spectrnm of algorithmic choices? The decisions become all the
harder. obvionsly. if the available “stable™ is as varied as the one depicted in Figure 2.

2.2 Developing Algorithms in an Unpredictable Environment

When one adds unpredictability to the picture. the questions of the preceding section
bhecome even harder. The new questions are encapsulated by the [ollowing themes.

How does one specify efficient algorithms when the structure and performance
characteristics of the available (sub)machine(s) are unknown until runtime?

Note that the issue of structure arises even in a single-user “stable.” if the operating
svstem allocates all work. The issue of performance characteristics arises even when a
nser does the allocation. if the facilities in the “stable™ are shared. As one mixes and
matches these possibilities. the opportunities for unpredictability abound.

3 Dynamic Questions Raised by Heterogeneity

The varions forms of unpredictability discussed in Section 2 suggest that. in a heteroge-
neons environment. one may want to defer many algorithmic decisions as long as possible.
This requires one to develop algorithms in an environment close to that of on-line algo-
rithms (ef. [1]). The dynamic questions that arise can be encapsulated as follows.

How should work be allocated physically and scheduled temporally in a com-
prtational environment that is heterogeneous? shared? both?

These guestions hecome even more difficult if the environment’s vital characteristics (pro-
cessor and communication speeds. processor availability?. etc.) may change dynamically.
even in the midst of a computation. Such a level of dynamism demands that the sys-
tem adapt to changes in the environment ~automatically.” i.e.. with no intervention hy
the user. This last demand notwithstanding. the user must present the system with an
algorithmic repertoire that gives it the wherewithal to adapt to change.

The environments we envision demand dynamic allocation and scheduling ol work.
A client-server model suggests itself. wherein some master server-processor(s) [perhaps
many in a shared environment] allocates work dynamically to all other (client) processors
in the “stable.” The difficulty of implementing such a model in a heterogeneous environ-
ment resides in the problem of tailoring a client processor’s workload to its computational
strengths, Consider. for instance. the following scenario. Say there is just one server. S,

Debilitating faults can obviously render a processor unavailable. but in a heterogeneous environment,
o also ean o laptop’s heing disconnected from the network.

A time 1. client (" is idle and wants work: however. all the work that S has at time /
i not. particularly well suited for C'. Yet. it would be a shame to have (" sit idle. while
this work has to be done! So. S gives the work to (". Immediately after (" has started to
do this work. client (' comes along — and " just happens to be the optimal match for
the work that S just gave to (", Simultaneously. some more work is generated — which
malches perfectly the strengths of C'. ... This little unfinished story raises eloguently the
issnes of task granularity and task migration that challenge any client-server allocation
scheme in a heterogeneous environment. It also raises the intriguing question of when it
makes sense to double-allocate work. to ensure its timely completion — even when there
are no overriding hard deadlines.

Even il one figures out a regimen for matching work to clients. one must decide
hetween having proactive and reactive servers:

[. Should the server(s) initiate the allocation of work to the clients? This appears to
he a somewhat easier platform from which to exploit the individual strengths of
the client processors.

2. Shonld the clients come and request work from the server? This appears to require
less system-wide monitoring of computational loads.

Both ol these alternatives demand coordination policies. for both clients and servers. to
avoid deadlock and starvation. as well as imbalances in workload. Acdditionally. the first
alternative raises the question of how a server should allocate work. One possibly nseful
metaphor wonld have a server “auction off” work among the clients. This metaphor
requires one to figure out how to run an auction in a highly nonuniform environment. in
a way that is computationally unobtrusive. An alternative to auctions would be to have
the server(s) monitor client workloads. Models would have to be developed 1o gnarantee a
monitoring strategy that probed infrequently enough to be computationally unobt rusive,
vet frequently enough to keep client processors adequately busy-.

4 Closing Thoughts

It is clear that the world of ~aggressive™ heterogeneous parallel computing we have heen
disenssing wonld benefit immeasurably from a system that would vield predictive =hack-
of-the-envelope™ calculations of the efficiency of a proposed allocation and scheduling of
work. Neither theoreticians nor practicioners have succeeded in developing such tech-
niques. which could well prove to be indispensable if the world of parallel computation
develops in the way suggested in this paper. Indeed. they may turn out to he the real
grand challenge of parallel computing.

References

(1] J. Aspunes. O. Waarts. Y. Azar. A. Fiat. S. Plotkin (1993): On-line load halancing
with applications to machine scheduling and virtual circuit routing. 25th A€M Symp.
on Theory of Computing.

[2] Y. Aumann. Z.M. Kedem. K.V. Palem. M.O. Rabin (1993): Highly efficient asyn-
chronous execution of large-grained parallel programs. 2{th IEEE Symp. on Foundu-
lions of Computer Science.

[3] .\. Begnelin. J. Dongarra. A. Geist. R. Manchek. V. Sunderam (1991): Solving com-
putational grand challenges using a network of heterogeneous supercompnters. 3ih
SIAM Conf. on Parallel Processing for Scientific Computing. 396-G01.

[1] G.E. Blelloch. C.E. Leiserson. B.M. Maggs. (.G. Plaxton. S.J. Smith. M. Zagha
(1991): A comparison of sorting algorithms for the C'onnection Machine ('N-2. .frd
ACY Symp. on Parallel Algorithms and Architectures. 3-16.

(5] D. Culler. R.M. Karp. D. Patterson. A. Sahay. K.E. Schauser. E. Santos. R. Subramo-
nian. T. von Eicken (1993): LogP: towards a realistic model of parallel computation.
Typeseript, 11C'al Berkeley.,

[6) T.D. deRose. L. Snyder. C'. Yang (1987): Near-optimal speedup of graphics algorit hms
nsing multigauge parallel computers. Intl. Conf. on Parallel Processing. 289-291.

(7] S.L. Jolmsson. T. Harris. K.K. Mathur (1989): Matrix multiplication on the Connec-
tion Machine. Tech. Rpt. TR-736. Yale Univ.

(N] M. Litzkow. M. Livny. M. Matka (1933): Condor - A hunter of idle workstations. ~Sih
Ann. Intl. Conf. on Distributed Computing Systems.

[9] D. Nichols (1990): Multiprocessing in a Network of Workstations. Ph.D. thesis. ('NIU,

[10] L.G. Valiant (1990): A bridging model for parallel computation. (. 4¢"V/ .25 [03-
1.

[I1] €.C. Weems. S.P. Levitan. A.R. Hanson. E.M. Riseman. D.B. Shu. J.Gi. Nash (1989):
The Image Understanding Architecture. Intl. J. Computer Vision 2. 251-282.

[12] S.W. White and D.C'. Torney (1993): Use of a workstation cluster for the physical
mapping of chromosomes. SLAM NETS. March. 1993. 14-17.

