Implementation and Evaluation of the IUA C+4+
Class Library on the Connection Machine!

Katja Daumiiller and Charles C. Weems

Image Understanding Architecture Laboratory
Department of Computer Science
University of Massachusetts, Amherst MA 01003

Technical Report 94-40
May, 1994

Abstract

It is always of interest how portable a language is, especially when it has been
designed for a specific machine and application. It is also of interest how well
languages specific to a machine can be used for porting another language onto
this machine. In this project, the Image Understanding Architecture (IUA) C++4
Class Library (ICCL) was ported to the Connection Machine (CM) with PARIS.
Design tradeoffs are described. The portability of the ICCL, and the suitability of
PARIS for this task are investigated. We explored performance bottlenecks in the
transport of the ICCL on three different machines by running several algorithms,
written in the ICCL, and comparing execution times. Also, a new vision algorithm
was developed, which was optimized for speed in the ICCL. The suitability of the
ICCL for this task and design criteria are described below.

1This work was supported in part by Army Research Laboratory contract DAAL02-91-K-0047

1

Contents

1 Introduction

4
1.1 The Image Understanding Architecture 4
12 TheIUAC++ Class Library 5
1.3 The Connection Machine 6
14 C-PARIS. e 6
2 Porting the ICCL to the CM through PARIS 8
2.1 The Dyadic Operators uuuenn... 8
2.1.1 Dyadic Operators between two Fields 8
2.1.2 Dyadic Operators between a Scalar and a Field 17
213 OtherICCL Functions 18
2.14 The Implementation of the Coterie Network 24
3 Suggested Improvements to PARIS 29
3.1 GeneralProblems 29
3.2 Specific Problems in the Implementation with the ICCL 30
3.3 Summary and Suggestions 33
4 A Fast Line Extraction Algorithm 34
4.1 The Burns Algorithm, 34
4.2 A Fast Line Extraction Algorithm 35

5 Comparison of Execution Times on the SUN, the CM and the IUA for
Different Algorithms written in the ICCL 43
5.1 Execution Times of Basic Functions of the ICCL 44
5.1.1 Dependence of the ICCL Operations on Input Data. 46
512 The SUN o it et ettt e e e 47
513 The CM i it ittt e e e e e 50
514 TheTUA i it e e e e e e i e e e 52
5.1.5 Comparison of the Basic Functions on the SUN, CM and IUA . . 55
5.2 The Low-Level Portion of the DARPA Benchmark 59
521 The Timings o o o v v v vt vttt e 63

5.2.2 Comparison of the Timings 64

5.2.3 The *Lisp Timings for the Benchmark 67

5.3 The Fast Line Extraction Algorithm 68
5.4 The Depth Recovery Algorithm 73

6 Summary ‘ 76

1 Introduction

In the introduction, the vision architecture on which the ICCL runs is described together

with the ICCL itself, the CM and PARIS.

1.1 The Image Understanding Architecture

The field of computer vision calls for particular kinds of computational power. For exam-
ple vision may be divided into high-level vision, intermediate-level vision and low-level
vision (pixel-level) and processing may occur on the three levels in parallel. Another
special processing requirement in computer vision is to select particular subsets of pixels
for various types of processing.

The heterogeneous Image Understanding Architecture (IUA) [6] represents a hardware
implementation of these three levels of abstraction inherent in our view of computer
vision. It consists of three different, tightly coupled parallel processors. These are the
Content Addressable Array Parallel Processor (CAAPP) at the low level, the Interme-
diate Communication Associative Processor (ICAP) at the intermediate level, and the
Symbolic Processing Array (SPA) at the high level. The CAAPP and ICAP are con-
trolled by a dedicated Array Control Unit (ACU), that takes its directions from the SPA.
In each of these layers, the processing elements are tuned to the computational granu-
larity and algorithms required by that particular level of abstraction. As a result, the
CAAPP is a SIMD array and the ICAP and SPA are respectively MIMD arrays with
different computational granularity. With this architecture, the three levels of vision can
be executed in parallel at their most natural computational granularity.

In the following, our main area of interest will be the CAAPP. The CAAPP is a
square grid SIMD array of custom 1-bit serial processors, intended to perform low-level
image processing tasks. Its size can vary from 64 x 64 to 512 x 512 processors. The
first-generation IUA has size 64 x 64, and the processors are organized in an 8 x 8 mesh
on each chip, with one board containing 4 chips. The system contains 16 boards.

There are four different ways of communicating among the CAAPP cells. One
way is through global feedback and rebroadcast. A tree connection from the CAAPP
cells to the controller enables fast feedback. Broadcast is done on the instruction bus by
the controller. Another way is through the ICAP. This could possibly be used in case of
large blocks of data, but is rarely chosen. The third way uses the nearest-neighborhood
(S,E,W,N) mesh. The fourth way of communication distinguishes the CAAPP from
previous architectures: Independent groups of processors are created that sharc:: a l.ocal
associative feedback circuit. Multiple neighboring processors can write to the circuit at
the same time. Switches on a mesh are used to reconfigure this Coterie Network into
groups of neighboring processors. The mesh and Coterie Network continue across chip

boundaries.

Also, noted above, region-dependent processing can be done on the Coterie Network in
the CAAPP. For example, the maximum of a parameter in all regions of the image can
be determined or a value can be broadcast within each region independently. On the
other hand, non-region dependent operations like smoothing or enhancing execute faster
on the nearest-neighbor mesh.

Among the components of the IUA, the focus of this paper is, as previously mentioned,
the CAAPP. The next subsection explains how to program in the ICCL.

1.2 The IUA C++4 Class Library

The ICCL is a C4++ class library, used as a parallel language for vision applications,
more explicitly, for low-level vision.

C++ offers several useful features for basic constructs, like the construction of a net of
classes with their relation being e.g. friend or ancestor. Also, for each class, there exist
protected or public members which can be functions or variables. The first feature is
important for the predefined classes of the ICCL. One of the classes with no ancestor is
e.g. 'plane’, which means image. Planes are defined at the beginning of the program with
their size, like a conventional variable. The plane type, however, is specified by a prefix
to ’plane’, e.g. IntPlane or CharPlane. IntPlane and CharPlane are classes themselves
and descendents of the class Plane.

There are 7 predefined plane types in the ICCL, which are: BitPlane, CharPlane, UChar-
Plane, ShortPlane, UShortPlane, IntPlane and FloatPlane. The U’ means unsigned,
whereas ommitting the 'U’ means signed. BitPlane is as big as CharPlane, but is as-
sumed to contain only Os or 1s. The second feature is convenient for retrieving parameters
belonging to a particular class and for applying functions to classes. In the ICCL, there
is usually a function for accessing a protected variable of a class.

In addition to the 'Plane’ constructs, the ICCL also provides constructs dealing
with the special feature of the CAAPP, the Coterie Network, and the control structures
in the parallel language. The ICCL has predefined classes for both, *Select’ and ’Coterie’
respectively. Both states get enabled by a call to a constructor function, and their state
exists as long as the block where they were defined.

Except for the 'Plane’ classes, the 'PlaneSize’ class (which determines the size of a plane),
the 'Coterie’ and the Select’ class, there are no other predefined classes. The user, how-
ever, is able to create new symbols by defining a new class with its operators and methods.

In C++, operators between classes are used like operators between va.riables. in
C, if they have been defined previously for each class. This feature is c?.]led overloading
of operators and functions. The ICCL has the advantage of being easily transporta.l.)le
to other machines. The member and operator functions in C++ are instantiated with
the various (Plane) types using a macro, which can conveniently be rewritten in another

programming language.

In the next subsection, the CM is introduced and compared to the IUA.

1.3 The Connection Machine

It is best in general to test the portability and compare the execution of a specific language
on a machine used relatively often and equipped with a basic architecture. We use the
Connection Machine CM-2 for this task. The CM-2 is a SIMD-machine with a front end
and back end. The front end is either a Sun-4 Workstation, a DEC VAX 8000 or a DEC
6300 minicomputer. The back end is a hypercube of processors with 4K, 8K, 16K, 32K or
64 K processors, where K is 1024. The processors are organized in processor chips with
16 processors each, which are linked in a boolean m-cube (hypercube). m = loga(N) —4,
where N is the total number of processors. Communication within the processors is
done in a permutation circuit. Communication from one processor to another uses the
permutation circuit inside the chip and the hypercube links exclusively. Global broadcast
is also done through the 'Instruction Broadcast Bus’. Special hardware is used for global
feedback, to which all processors are connected.

In our case, a DEC 6400 is used as front end, the array contains 64 x 64 processors and
the processor chips, each containing 16 processors are linked in an 8-cube. The CM-2
used for the presented experiments did not have a floating point accelerator.

Comparing the IUA and the CM-2 with respect to their connection system, the
IUA has the additional Coterie Network, and the (rarely used) opportunity to connect
to the higher level and use its connection system. The architecture of the hypercube
connection system in the CM-2, however, is more powerful than the mesh system as it
contains additional processors.

1.4 C-PARIS

In order to port a language to a machine, it is most speed-efficient to use the lowest-level
language implemented on the machine. For the CM, this language is PARIS. PARIS is
intended primarily as a base upon which to build the higher-level CM-languages, like
C*, CM Fortran and *Lisp. It is a low-level protocol, in which the user can write data
parallel programs for the CM. There are three interfaces - C /PARIS, Lisp/PARIS .and
Fortran/PARIS. In our case, the ICCL has been written in C++, so it was convenient
to use C/PARIS.

PARIS has arithmetic functions, functions relating to communication between processors
and functions relating to communication between the front end and the back end. QOn-
trol structures are implemented in so-called ’context’-setting functions.. Before operations
are executed, the ’vp-set’ has to be specified, which is the ratio ?f vutlfa.l Processors to
physical processors in a user-defined geometry. Functions are dlﬁ'ere.ntlatc.ed by various
options which are put into the function name. The bit-length of a variable is an operand

to the function. The variables can be allocated over an arbitrary number of bits, which
is why they are called ’fields’. ’fields’ are simply one or more contiguous bits that start
at the same bit location in every processor. Fields can be allocated as a stack or as a
heap.

A typical PARIS function might look like:

CM._[type] function_[operators] fieldlengthcount([result,] argl, ... , argN, lenl, ...
, lenN);

The characters CM in the front of the functions means Connection Machine.
"Type’ stands for unsigned, signed or float. ’Function’ is usually a short form of the
function name. 'Operators’ is the number of field variables which contribute to the com-
putation, e.g. there could be 3 variables, two inputs and an output variable, or there
could be 2 variables, two input, and the result field is identical to one of the input fields.
'Fieldlengthcount’ is the number of different lengths of the fields, appended with a L. So
2L’ means that, e.g. the input and output fields have different lengths. Subsequently,

res’, 'argl’, ... , ’argN’ are just fields, whose type is CMfield.id.t, and ’reslen’, ’lenl’,
... , 'lenN’ are int, short or char numbers. We refer to reslen’, 'lenl’, ... , 'lenN’ as the
lengths of the corresponding result and argument fields 'res’, ’argl’, ... , ’argN’.

The comparison of PARIS to the ICCL is straightforward: PARIS contains all
the important features of the ICCL, except there do not exist communication functions
which leave as much freedom of definition to the programmer as those of the Coterie
Network. Considering the explicit specification of the variable type and bit-length in the
function name in PARIS, the ICCL is slightly more high-level than PARIS.

2 Porting the ICCL to the CM through PARIS

In the following sections, the transport of the various operators and functions in the
ICCL to PARIS is described in detail. Operators such as dyadic, monadic, set, and
shift operators have their counterpart in the member functions of the classes, which are
nearest-neighbor, index, i/o, route, select, coterie, broadcast and regionselectmin/max
functions. The functions which operate on the Coterie network require some additional
explanation because no equivalent PARIS operation is available for them. For the other
functions and operators, the problem consists of matching the required types from ICCL
and the types available in PARIS.

A common concern to both the ICCL and PARIS is the activity of the processors.
Activity is itself represented in a BitPlane, where 1 means active and 0 inactive. Certain
functions are sensitive to activity, i.e. only values in active processors can contribute to
the function. In the ICCL, fewer functions are sensitive to activity than in PARIS. This
stems from the fact that in PARIS, almost every operation can assign the result value to
a parallel result field. Usually, activity plays a role when the right-hand side is assigned
to the left-hand side. In the ICCL, apart from assignment, global operations and Coterie
functions are sensitive to activity. Also in PARIS, the global operations are sensitive to
activity (This did not imply an assignment, because the result variable is not parallel.)
as is the corresponding operation to the Coterie operation. Therefore for most functions
(the ICCL corresponds to a high percentage of functions in PARIS), the activity scheme
in the ICCL and PARIS is equal.

2.1 The Dyadic Operators

There are three kinds of dyadic operators: dyadic operators between two field variables
and dyadic operators between a field variable and a scalar with the scalar on the left side
or on the right side respectively. We first investigate the dyadic operators on two fields.

2.1.1 Dyadic Operators between two Fields

The dyadic operators have a 'first argument’, a ’second argument’ and a result. In subse-
quent discussion, we will refer to the first argument as argl and the second a.rgume.nt as
arg2. In this section, argl and arg2 are fields and have lengths lenl and len2, respectively.

This section can be divided again into the description of several operator types.
There are the add, subtract, divide, multiply, mod, greater than, greater Fha.n or equal
to, less than, less than or equal to, equal to, not equal to, and, or, xor, right-shift and

left-shift operators.

For each ICCL function (or operator), there are equivalent PARIS functions. The
only difficulties which complicate the application of PARIS functions are caused by the
the 7 plane types in the ICCL and their combination in functions. The ICCL defines
a table with possible combinations between the two operand types and the outcoming
type, for example

IntPlane + ShortPlane = IntPlane or
ShortPlane 4+ UShortPlane = ShortPlane.

Basically, the ICCL instantiates for every combination of types its own function.
Each function has a small procedure with a macro call, which includes parameters for
types. Every instantiation calls the function with different type parameters, and the
macro is therefore called with different type parameters. Here, the preprocessor operator
is used. In order to avoid costly if-statements, macro expansion is done according
to different types by concatenating actual arguments (the types in the first level) to the
macro call. At the very lowest level of the macro hierarchy there are then calls to PARIS,
and at this point the types are used again: The types are either the input to a PARIS
function or they represent part of the PARIS function name.

PARIS has three ’basic’ types, which are signed, unsigned and float. These types
appear in the function name. The other distinction in types can be made according to
the length of the fields in PARIS, which are parameters in the function calls.

PARIS already takes care of most of the types used in the different functions. Unfortu-
nately, PARIS is not consistent over several functions. The following features are coherent
over some, but not all functions:

1. Different lengths are allowed for each of the 2 inputs and the output field.

2. The functions are defined on the types unsigned, signed and float operators, where
the types of the arguments have to be the same.

3. The arguments for the operator and the result field can have all distinct field IDs.

Unfortunately, PARIS does not provide automatic type conversions, so the func-
tions only take argument and result fields with the same type. Type conversions have
to be done separately. This supports the assumption that PARIS is more low-level than

the ICCL.

In the following, types are only 'unsigned’, 'signed’ and float’.

There are several levels from fulfilling none of the above requirements up to fulfill-
ing all. For example, a "low’ level with few requirements fulfilled would be: all the same
length fields on signed and float (not unsigned) with one of the argument fields being
identical to the result field. For some functions, however, it is not necessary to offer the

full range of possibilities, for example it is not very useful to apply boolean operators to
float variables.

The philosophy of this project was to provide operations which can account for as
many special cases as possible.

Several remedies can be applied to work around the unsupported argument combinations
(each remedy according to the possible variation cases defined above):

1. Operations between arguments of different lengihs:

This case becomes applicable if operands of different lengths are not allowed. Then,
(a) new field(s) can be allocated, and in case the allocated field(s) is (are) not the
result field, the values of the smaller fields can be copied into larger fields with
the CM_s/u/f_-move_1L operation. Finally the operation can be executed. In case
the smaller field is the result field, the resulting value has to be copied out of the
allocated field into the smaller field again. Either only one field in the function or
several fields can be allocated and assigned copied values.

2. Types in functions are missing (most times signed or unsigned) or a function has
to be applied to two arguments with different types (which PARIS does not account
or):

-’fI‘hi remedy here is, to copy the ’less sophisticated type’ into a field with the 'more
sophisticated’ type. Hereby, the order goes from unsigned via signed to float as the
'most sophisticated’. Fortunately, PARIS always provides a means of converting
the 'less sophisticated’ type to the 'more sophisticated’ type.

The transformation operations are the following:

e From unsigned to signed, a field with length at least one more bit has to be
allocated, and the copying is done with CM_u.move 2L.
(see ONE_LALLOC, BOTH.RES_ALLOC and ONERES_ALLOC below)

o The PARIS function CM_f_s_float_2_2L takes care of the conversion from signed

to float.
(see FLOAT_CONYV below)

e The PARIS function CM_f_u_float_2_2L takes care of the conversion from un-

signed to float.
(see FLOAT_CONV below)

10

3. One argument field and the result field are identical
This is the easiest case. The goal with all the functions in ICCL is not to destroy
the argument fields because the arguments could be the factors of a multipli-
cation where the result is put into a temporary field and the argument reused. In
any case, the arguments are members of classes, which should not be destroyed.
The solution is to allocate a new field and copy the argument field, which would
otherwise be overwritten by the result field, into this new field.

In order to take care of some mixture of the three cases, three macros have
proven useful in the application with signed and unsigned (ALLOC macros) and float
(FLOAT_CONV macro) cases and were applied in many dyadic operators:

e ONE.ALLOC

This macro allocates a bigger field for either argumentl (call it argl) or argu-
ment2 (call it arg2), and copies the field with the appropriate move-operation
(CM_u/s/f-move2L) into the bigger field. The operation is then executed with
the bigger field. (case 1, 2 and 3 above)

e BOTH RES ALLOC
Here, all three fields are allocated with specific lengths. The appropriate copy
operations into the bigger fields take place with appropriate move operations. The

operation is then executed with the bigger fields, and the result is copied back into
the smaller field. (case 1, 2 and 3 above)

e ONE RES_ALLOC

Allocation of one argument field and the result field was designed, but proved to
be redundant. (case 1, 2 and 3 above)

e FLOAT CONV

This function allocates a float field and copies and converts the first or second
argument of the function from a signed or unsigned field into a float field. (case 2)

The above macros are used for many of the 14 dyadic functions. Subsequently,
the implementations of all the dyadic functions are briefly explained:

11

¢ add-functions

Fortunately, PARIS provides all the ideal cases mentioned previously for the add
functions. The 2 arguments and the result field can all have different lengths, they
are all disjoint and the add functions exist in signed, unsigned and float mode.
Therefore only two macros were used for type conversion. One is ONE_ALLOC in
the case of 'unsigned’ add ’signed’ or vice versa, and the other is

FLOAT_CONY with the combination of a float with an unsigned or signed variable.
BitPlanes can be both signed and unsigned due to their small occupancy of bits.
The only type conversion with BitPlanes is from unsigned/signed to a float field
variable.

e subtract

The subtract functions in PARIS can be handled like the add functions except
for the BitPlanes. Subtracting a BitPlane from something else or vice versa can
have a negative outcome, so the ICCL prescribes that the result is signed, and
ONE_ALLOC has to be applied to all combinations of a BitPlane and an unsigned
plane with subtract.

e multiply

Multiply can be implemented in the same way as the add function. Because of the
costliness of the multiply function, however, a special program was implemented to
handle the case where one of the factors is a BitPlane. In this case, an inquiry is
made if the BitPlane contains a zero or one, and the appropriate steps are executed.
This seemed to be faster than to involve all eight bits in the multiplication process.

e divide and mod

The difficulty with the divide and modulo functions is that they are provided only
for one length. For mod, there exists only the function
CM_u/s/f-mod_2/3_1L, and for divide the functions CM f_divide 2/3_1L and

CM_u/s_truncate2/3_1/3L.

Another problem was that the CM_s.mod_2/3_1L function was not equivalent to
that of the SUN. In case of the left and right argument having different signs, the
second argument has to be subtracted from the result of the CM, in order to obtain

the result in the SUN.
The CM_*_mod_*_1L, CM_* _truncate_*_*L and CM_f_divide_*_1L functions are quite
expensive. For this reason, the goal with these functions was to avoid using them

as often as possible.
First, the CM_*_mod_*_1L functions will be investigated in more detail.

12

Some new macros were developed which attempt to make the expensive
CM_*_mod_*_1L functions cheaper. This, however, is only possible in special cases:
Whenever the first argument is smaller than the second, the mod is equal to the
size of the smaller argument. Presumably, this happens more often if the length of
the first argument is shorter than the length of the second argument.

A macro of this kind is BIT_ MOD_SOMETHING. This macro is invoked whenever
a BitPlane mod ’someother’Plane is executed. The result is equal to the first ar-
gument whenever the second argument is not 1 (or -1 in case of signed Planes). If
the second argument is actually 1 or -1, then the result is zero.

Another macro of this kind is called SMALLER MOD BIGGER. It is used when-
ever the first argument is shorter than the second argument (and therefore more
likely to be smaller) and can be used for all combinations of signed and unsigned
except the first argument being unsigned and the second being signed. The first
step in this macro is to test in the larger (second) argument if the positions in
excess of the first argument are all zero or all one. The test for all one is done only
if the second argument is signed. If the first argument is signed, the kth position in
the second argument (counting from the lowest-order bit position) is also included
in this test, where k is the length of the first argument.

If the test is positive, we can be sure that nothing is changed if the excess positions
of the second argument are cut off and the CM_*_mod_*_1L function is executed
with the field length of the smaller argument.

If the test is negative, we know that the second argument is either bigger or equal
to the first argument (in absolute values). If it is bigger, the result would be
the first argument field. In order to be sure, let us consider the three cases in
SMALLER_ MOD_BIGGER:

— argl unsigned, arg2 unsigned:

One of the positions in arg2 in excess to argl is not zero, therefore arg2 is
actually bigger than argl, and the result is equal to argl. If the positions in
arg2 in excess to argl are all zero, the function CM_u_mod _3_1L is used on lenl.

— argl signed, arg2 signed:

In this case, the positions of arg2 in excess of argl plus one are tested for
all-zeros or all-ones. In case these positions are not uniform, there are two
cases: Say, argl has 8 bits, and therefore the numbers go from -128 to 127.
In the above mentioned leading positions of arg2, there is a discontinuity, so
the numbers occur within the intervals -’big number’ to -129 and 128 to ’big
number’. Therefore, we have to test for the special case argl being -128 and
arg? being 128, because the mod would be zero in this case. In all the other
cases where this specific test is negative, and the above mentioned leading

13

positions of arg2 are not uniform, the result is equal to argl.
In case the leading positions of arg2 are uniform, the function
CM_s_mod_3_1L is invoked on lenl.

— argl signed, arg2 unsigned:

Here, the positions of arg2 in excess of argl plus one are checked for uniformity
of zeros. The leading position is checked, too, because if the test is positive,
the signed CM_*_mod_*_1L function would be executed.

In this case, the basic assumption lenl < len2 for using

SMALLER MOD_BIGGER can be relaxed to lenl < len2.

Taking the example from the previous item, in case of a negative test, the
first argument could have the range -128 to 127, while the second argument’s
range is from 128 to a big number. Therefore, we have to test the special case
with argl being -128, and arg2 being 128, too. If this special test is positive,
the result is zero. Otherwise, if the leading positions plus 1 are not uniformly
zero, the result is equal to argl.

In case the leading positions of arg2 are uniformly zero, the function
CM_s_.mod_3_1L is invoked on lenl.

The last case (argl unsigned, arg2 signed) is not directly considered by

SMALLER_MOD _BIGGER. As arg?2 has to be at least 2 bits longer than argl, this
case is reduced to SMALLER MOD _BIGGER with the three cases. A new field
is allocates with length lenl+1, and argl is copied in there (the new field should
be signed). Now, if lenlnew < len2, SMALLER.MOD BIGGER can be invoked

again. This new macro for (argl unsigned, arg2 signed) is called

UNSIGNED MOD _BIGSIGN.
Here are the mod-macros in algorithmic description:

BIT_ MOD_SOMETHING

1. test if arg2is -1 or 1
2. if no, result is argl

3. if yes, result is zero

SMALLER MOD _BIGGER

1. test if some leading positions in arg2 are uniformly all-ones (signed) or all-zeros
2. if yes, apply CM.s/u-mod_3_1L to argl and arg2 with length lenl

14

3. if no, do the following: test in some special cases if
argl = —2'n1-1 and
arg2 = 2leni-1,

4. if yes, result is zero

5. if no, result is equal to argl.

UNSIGNED.MOD._BIGSIGN

1. allocate new argl and res field with length len1+1

2. copy argl in new field

3. invoke SMALLER MOD BIGGER (if applicable) with new field
4. copy new result in original result field

These macros are not necessary for the transport to work, they are introduced for
the sake of efficiency. In experiments, it was shown, that if argl is signed and
arg?2 is unsigned and of equal length, then SMALLER_ MOD_BIGGER was roughly
equal to BOTH.RES_ALLOC, where fields of length + 1 were allocated. In all
other cases, where arg2 is much bigger than argl, SMALLER MOD BIGGER was
far superior to the allocation functions.

In the case of sometype’Plane mod BitPlane, with ’sometype’ not being Bit, the
result is assumed to be zero, because the condition in which some elements of arg2
are zero is not defined (the exception was not checked, as this would have involved
a global inquiry).

Only signed and unsigned mod operations have been shown so far. The ICCL does
not support float mod operations.

The div functions work basically the same way as the mod functions. The principle
is the same for the signed and unsigned arguments.

In contrast to the mod functions, float arguments can be used with the div func-
tions, too. For the divide with float, the PARIS function

CM._f_divide_2/3_1L is used, and Plane types which are not FloatPlane, but com-
bined with a ’divide’ with FloatPlane, are converted with FLOAT CONV.
'sometype'Plane div BitPlane is assumed to be argl, because a zero in the BitPlane
is not defined (again, the exception was not checked, because this would have in-
volved a global inquiry).

With the div function, in BIT_DIV_SOMETHING there is some more computation.
Here are the macros:

15

BIT DIV.SOMETHING

1. test if arg2 is -1 or 1
2. if no, result is zero

3. if yes, result is argl if arg2 is 1, and -argl if arg2 is -1

SMALLER DIV _BIGGER

1. test if some leading positions in arg2 are uniformly all-ones (signed) or all-zeros
2. if yes, apply CM_s/u_truncate_3_1L to argl and arg2 with length lenl

3. if no, do the following: test in some special cases if
argl = —2'*"-1 and
arg2 = 2leni-1,

4. if yes, result is minus one

5. if no, result is zero.

UNSIGNED._DIV. BIGSIGN

1. allocate new argl field with length lenl+1
2. copy argl in new field

3. invoke SMALLER DIV BIGGER (if applicable) with new field

At the end of UNSIGNED DIV BIGSIGN, in contrary to the modulo case, no new
result field has to be allocated. The reason is that in SMALLER DIV BIGGER,
the dividing function CM_u/s_truncate_2/3_1/3L is used, in which three different
lengths are allowed to be used as the input fields.

equality and inequality

Equality can be tested with the CM_u/s/f_eq_1/2L function. The result of the com-
parison is stored in a test flag. In CM_u/s/f_eq_1/2L, all different combinations of

types and argument lengths demanded by the ICCL are provided, and therefore
only type conversions have to be executed with ONE_ALLOC and FLOAT_CONV.

16

e less than (It), less than or equal, greater than (gt)
and greater than or equal

These functions work basically the same way as the equality functions. A boolean
flag is set in case the comparison is true. All the combinations demanded by the
ICCL are provided, except the combinations of different types. Therefore, only

ONE_ALLOC and FLOAT_CONYV have to be used.

e and, or and xor

Usually, the ’and’, ’or’ and ’xor’ functions are only executed with arguments of the
same length. If the arguments do not have the same length, however, it can be
assumed that one argument is filled up with leading zeros. The ICCL defines the
boolean ’and’, ’or’ and ’xor’ functions on arguments with different lengths, too. In
the ICCL, even signed variables can be combined with boolean operators. If two
signed variables have different length, the ICCL defines that the smaller variable
is copied into a bigger variable with sign extension. PARIS, however, provides the
'and’, ’or’ and ’xor’ functions only with one-length (unsigned) arguments.

For arguments with different lengths (call them argl and arg2 with lenl < len2),
argl can be copied into the bigger result field. (In the ICCL, with ’and’, ’or’ and
'xor’, the result field has length MAX(lenl, len2).) With CM_u/s_move*, the sign
extension is taken care of. If argl is unsigned, the boolean operation only has to
be performed on lenl bits, because the leading bits are combined with zero. If argl
is signed, either the boolean operation is performend on len2 with res and arg2,
or the leading positions are tested for their sign bit. If the sign bit is zero, the
operation can be performend on the smaller length lenl, otherwise the operation is
performed on len2 with res and arg2.

In the implementation, for the signed case, no testing was done, and the boolean
operation was performed on the whole field.

o Shift

In the ICCL, right shift and left shift functions can be used. These functions are
almost identically represented in PARIS through CM_u/s_shift 2 2L. The minor
problem is that PARIS does not provide the *_3_2L. Therefore, a result field has to
be allocated. Also, for the left-shift, arg2 has to be negated.

2.1.2 Dyadic Operators between a Scalar and a Field

In this section, dyadic operations between planes and scalar values are discussed.
PARIS covers this domain to some extent. It uses the expression ’constant’ or ’const’

17

in its function names to indicate that one argument is a scalar value, and not a parallel
variable.

For this implementation, however an easy solution was chosen. The implementation of
the dyadic operators between fields had already been implemented, so it was a small step
to allocate a parallel field for the scalar argument, copy the scalar value into the field
and execute the dyadic field-to-field operators.

After some experimenting, this turned out not to be very time consuming: Allocating
a field plus doing the copy into one field plus executing the 2-field add plus deallocat-
ing the field took 45 microseconds, while doing the add directly in the ’const’ function
of PARIS took 50 microseconds on an 8-bit field. We have not run empirical exper-
iments in this area, however also the reported times show that the constant function
takes longer than the 2-field function plus ’support’ operations. For the logical ’and’,
for example, CM_logand_2_1L is reported to take 47 microseconds in ’real time’ (which
means back end time plus back end waiting time), while CM_logand_constant_2_1L takes
92 microseconds ’real time’ on a 32 bit-field. The copy is reported to take only 33 mi-
croseconds. Altogether, 80 microseconds for the 2-field operation compare to 92 for the
direct PARIS function. Other times are: CM_s_add_constant_3_1L takes 128 microsec-
onds on a 32-bit field and CM_s_add_3_1L takes 150 microseconds on a 32-bit field with
CM._s_move_constant_1L taking 38 microseconds. Here, 188 microseconds of the 2-field
operation compare to 128 microseconds for the direct PARIS operation. Other timings
differed accordingly. With this unpredictability, it was feasible to take the easier solution
and implement the scalar-with-field operators using the field-with-field operators.

2.1.3 Other ICCL Functions

In this section, we describe ICCL functions, which are easy to implement on PARIS.

e The Monadic Functions

In the ICCL, there are two monadic functions: the tilde operator and the negation
operator. The tilde operator flips the bits in the argument, and the negation oper-
ator negates the value of the field.

For both operations, there is one PARIS function which fulfills the purpose. For
the tilde operator, there is CMlognot_2_1L, and for the negation operator, there is
CM_u/s/f_subfrom_constant_3.1L. The latter, however, was not intended for nega-
tion, and is time-consuming for doing just a 2-complement, (on a 32 bit field, it
takes 57 microseconds) but an adequate PARIS function could not be found.

18

e The Set Function

The set functions implement the assignment operator.

In the ICCL, the control threads are implemented through the assignment operator,
which means that the assignment only takes place in ’active’ processors. So first of
all, the processors which should be active have to be made so. Then, the argument
is just copied with a ’'move’ function. For this purpose a 'move’ function is defined,
for each combination of types. For most combinations, this is CM_u/s/f_move 2L.
Other combinations are CM_u/s_f truncate 2_2L, which copies a float into an int,
an (u)short or an (u)char by truncating the real part. CM f_u/s_float_2_2L copies
an int, (u)short or (u)char into a float.

Apart from the standard assignment operator, there is the operator which com-
bines the assignment with a dyadic operation. First, the dyadic function with the
arguments res and argl is combined, and the outcome is assigned to res. In this
case, the field res is both the first argument and the result. This doubling of fields
or overlapping of fields is not a problem with the dyadic functions used in this
implementation.

For the assignment of a scalar to a field, basically the same steps have to be taken.
For the simple assignment of a constant to a field, the functions
CM_u/s.move_constant_1L are used. The type conversions are made with a cast to
the scalar. In case that the assignment operator is combined with a dyadic operator
a field is allocated and the scalar is copied into it with one of the
CM_*_move_constant_1L functions. Then, the dyadic macro is invoked like with
the field-with-field operator and the outcomes copied into the result field with a
CM_*_move_*L function.

e The Nearest-Neighbor Functions

The nearest-neighbor functions on the CAAPP mesh are retrieved with PARIS by
a call to CM_get_from news_1L. The news net in PARIS is a user-defined multidi-
mensional array. In the vision domain, it is two-dimensional. The south, north,
west or east neighbors are retrieved by going 'down’ or 'up’ the news-axises.

o The Edge Function

The edge operator tests whether a pixel in the image lies on the image boundary or
not. The south, north, east and west edges are tested, and the result is a boolean
variable which indicates if the pixel lies on the particular edge. There is also a
general edge function which indicates if a pixel lies on any of these edges.

19

The algorithm is implemented easily:

1. Get the x and y coordinates of the pixel with
CM_my news_coordinate_1L

2. Test for the particular condition of the desired edge, e.g.
in the north edge, if the y coordinate is zero

3. Store the flag which was set in step 2 in the result field

o The Index Function

The index function returns the row and column index of a pixel in one variable.
The column index is put into the low order 16 bits of the variable, and the row
index is put into the high order 16 bits of the variable. This is accomplished by two
calls to CM_my news_coordinate_1L respectively on the low-order and high-order
parts of the result field.

e Miscellaneous Functions

The miscellaneous functions include the resize, convert, any, count, increment and
decrement, bit manipulation, minimum and maximum selection and the access
functions.

In the following, we will discuss each of them in some detail.

1. Resize

This function takes a plane with its x and y sizes in the x, and copies it into
another plane with different x and y sizes. The upper left corner of the origi-
nal plane is hereby copied into the upper left corner of the new plane. Empty
space in the new plane is undefined, and in case the new plane is smaller,
values are discarded.

PARIS has the function CM._send_1L for this purpose. With this function,
every pixel sends its value to a pixel with an ’address’ in another coordinate
system. In this case, the new coordinte system has different x and y sizes.

2. Convert

‘Convert’ converts the value in a field to another type, and puts it into the new
field. This is the same as the set functions from field to field, except the activity
is not controlled. Therefore, the previously defined MOVE##typel##type2

20

macro which was used in the set function is used here.
. Any

’Any’ is a boolean function which tests if there are any ones in a BitPlane or
not. It is implemented with the equivalent PARIS function CM _global logior_bit.

. Count

‘Count’ counts the number of pixels in a BitPlane which are ones. It is imple-
mented with the equivalent PARIS function CM_global_count_bit.

. Increment

'Increment’ adds the value one to the value of a field. First, the activity of
the pixels has to be set. Then, the PARIS function
CM_u/s/f_-add _constant_2_1L is used.

. Decrement

"Decrement’ is the opposite to 'Increment’. The PARIS function
CM_u/s/f_subtract_constant_2_1L is used.

. Bit Manipulation

There are three different bit manipulation operations. The first copies a
'string’ of bits beginning at a given position of a source field to the result
field at another given position. The second operation is the same, except the
source is a scalar. The third operation retrieves the bit value of a given posi-
tion in a field and returns a BitPlane. The first two operations are sensitive
to activity.

All operations can be executed by applying some CM_u/s_move* operations
to fields with predefined offsets. The offset for the first operation, for example
is the given position of the bit-string in the input argument. The only prob-
lem in the implementation was that CM_u/u_move* does not operate on fields
with length one. CM._move_ reversed_1L, however, does.

. Min/Max Selection

The min or max selection retrieves the minimum or maximum value in a plane.
It is sensitive to activity, that is, it only retrieves the minimum or maximum

21

of active values in a plane. PARIS provides equivalent functions for this task,
which are CM_global_s/u/f_min_1L and CM_global_s/u/f_max_1L.

9. Access

Finally, the access function returns the logical or of the bits of the active values
in the input plane. This is achieved by the PARIS function CM _global logior_1L.
In case that the CM front end is a VAX, the floating point format has to be
converted from IEEE standard to VAX format. This can be accomplished
with the PARIS function

CM fieee_to_vax_1L. (The conversion is not necessary the other way round,
when a floating point number is given as an argument to a PARIS function.)

e The Route Function

With the route function, every pixel sends the value of the associated field at the
source processor to the same field in a destination processor. All pixels can send
values to themselves, or all pixels can send to the same receiver pixel. In the latter
case, the value of the receiving pixel is not defined.

Besides the ’simple’ routing function, there also exists routing functions in combi-
nation with dyadic operators. Combining an 'Add’ with a 'Route’, e.g. adds up the
received values at the receiving processor. Other combining operators are 'and’,
‘or’ and ’xor’.

In PARIS, there exist equivalent functions for 'Route’, and 'Route’ in combination
with dyadic operators which were described already in the Resize part of the mis-
cellaneous functions. The PARIS functions are CM_send-1L,
CM_send_with_u/s/f_add_1L and CM_send-with_logand /logior/logxor_1L.

For the combination with ’add’, type conversions between the source and destina-
tion fields have to be taken care of with the CM_u/s_move* function. The type
conversions are simplified by the convention of the ICCL, that the result type is
IntType or FloatType. The algorithm is straightforward now:

1. Copy default value into result field.
2. Create send addresses with the given destination rows and columns.
3. If the route function is combined with an ’add’, do type conversions

4. Execute the appropriate PARIS send operation.

22

e The I/O Functions

The purpose of the IO functions is to read an array from the front end into the
processors in the back end or to write all the values from the back end into one
piece of memory in the front end.

The functions CM_u/s/f_write_to_news_array_1L for the read and
CM._u/s/f_read from news_array_1L take care of this task.

In the read functions, the types of the source and destination plus their row and
column lengths are given. Thus the types and lengths of the dimensions have to
be adjusted. For the purpose of the read, another front end array is allocated with
the desired axis lengths, to which the values are copied under type conversion and
considering the potentially different axis lengths. The use of the several parameters
of CM_u/s/f_write_to_news_array_1L was not investigated, but might have provided
another solution.

In the write case, no constraints for the target type or target axis length are given,
so a front end array is allocated with the same type and axis lengths as the back
end field variable, and CM_u/s/f read from news_array_1L is invoked.

The BitPlanes define a special case, because their representation in the back-end,
which uses 8 bits of storage for one bit of information was compressed in the front-
end representation.

Another I0 routine for the ICCL is ’Access Pe’, which takes as input a specific
coordinate of the plane, and returns the value of the plane at this location in the
Plane. In contrast, the other ’Access’ function returned the logical 'or’ of the active
values in the BitPlane. The PARIS function for the ’Access_Pe’ function described
here is CM_u/s_read from_processor_1L, where different types have to be distin-
guished. For the floating point retrieval, the function CM{.ieee_to_vax 1L has to
be applied first.

e How the Paris variables are allocated and deallocated

For the allocation, first parameters of the variable like type and size are checked
against the parameters of the variables already in the free list. Like in the sequential
version, if the overall byte count of a variable is identical to that of a free piece, the
geometry or the virtual processor set can be changed in order to use the variable
from the free list. If no variable from the free list fits the specification, the new
varibale, a parallel memory piece is allocated.

As with the sequential ICCL variables, PARIS variables are inserted into a linked
free’ list once they have been deallocated.

In experiments, the reuse of variables turned out to be slightly superior to the
repeated allocation and deallocation of PARIS fields every time a variable is needed
or disposed.

23

2.1.4 The Implementation of the Coterie Network

This section is dedicated to the implementation of the Coterie functions on the Connec-
tion Machine with PARIS.

The Coterie network is, as mentioned above, a reconfigurable mesh with broad-
cast. It partitions the image array into user-defined, continuous regions, inside which
the Coterie operations are executed. The goal of the Coterie operations is to communi-
cate data inside the regions, which is accomplished by one broadcast operation and the
extraction of a maximum or a minimum out of the region. 'RegionBroadcast(sender)’
broadcasts the bitwise logical or of the associated Plane at processors where sender has
a one. 'RegionSelectMin/Max()’ finds the minimum or maximum of values in the associ-
ated Plane and returns a BitPlane with ones exactly at the processors whose associated
Plane value is equal to the minimum or maximum.

It is remarkable that all three functions work more or less with the same princi-
ple: They try to make all pixels in a Coterie region contain or test the same value. For
RegionSelectMax/Min(), this is the maximum or minimum value in the Coterie region,
and for RegionBroadcast(sender), this is the bitwise logical or of the plane values whose
pixels had a one in the BitPlane sender. Therefore, we can use the same concept for
all three functions, except that RegionSelectMax/Min() have to compare in addition the
outcoming plane with the plane associated to the function and in case of equality put a
one in the resulting BitPlane and a zero otherwise.

In PARIS, all the following functions communicate to some extent between the
processors, so they could be of use for our task:

1. CM_get

CM _global
CM_multispread
CM_reduce
CM._scan
CM_send
CM_spread

N o ke W

In the following, a series of possibilities is investigated regarding the applicability
to our task:

24

1. CM_get

The function CM_get_from_news_1L is applicable to a wide range of problems. In
our case, however, the sole application of this function can not solve the problem,
because it does not partition the plane in any manner.

CM _get_from_power_two_1L is a special case for exchanges between processors which
are a power of two away from each other. This is not applicable here because the
partitions can be random.

2. CM_global

With CM _global_*, an operation is done globally on all processors, and the com-
bined result is returned to the front end.

As before, this does not allow partitions of the plane, so it does not solve our prob-
lem.

3. CM_multispread

CM_multispread_* makes use of the different dimensions in the definiton of the field
and uses CM_spread_* (see below). An axis-mask is given as input which defines
the dimensions or axis’ selected for the operation. On each axis, a CM_spread
function is then executed.

In our case, this is not useful. The spread-function provides a uniform output along
one axis, which is not desired with the arbitrary Coterie partitions. The axis-mask
is not of help either, because we only have 2 axes (mesh), and so the axis-mask 01
or 10 would result in a common spread along one axis, and the axis-mask 11 results

in a spread on all elements in the plane. The axis-mask 11 would then lead to the
same result as the CM_global* function.

4. CM_reduce

CM.reduce_* is a variation of CM_spread_* (see below). Only one processor along
each axis receives the result.

5. CM._scan

The CM._scan_* function divides each axis into arbitrary parts. While scanning,
it combines the accumulated value with the scanned value on the arbitrarily par-
titioned axis’. As combination operators, there exist several dyadic and boolean

25

operators in the CM_scan_with functions, among which are ’or’, 'min’ and 'max’. A
BitPlane determines the partition of the axis, where there can be three modes. In
the first, the scan direction does not effect the partition, in the second it does effect
the partition, and in the third, there is no need for partition. The first mode works
as following: The upward scan starts at the lowest-addressed processor. It scans
(and performs the specific operation) until there is a one. Then, it disregards the
result, and starts scanning again at the processor with the one. In the downward
scan, the scan starts from anew after the one, not with the one. This way, the
partitioning is fixed.

For our purposes, this one-dimensional partitioning scheme is useful, because it
supports arbitrary partitioning, at least along one axis. With this function, the
Coterie network could be simulated, however, it would involve some tedious pro-
gramming to obtain a two-dimensional partitioning.

. CM.send

In the CM_send* operation, every processor in the plane has a destination pro-
cessor, where it sends its value to. If one processor receives several values, the
CM_send_with_’operation’_* operation combines those values with a specific oper-
ation. The CM_send_to_news operation sends the value in a processor plane to a
neighboring processor.

In the Coterie application, sending values from one processor to a particular sec-
ond processor is not needed. In the ICCL, the Route function already takes care
of that. The ’sending’ part of the Coterie operations could also be taken care of by
the spread function.

. CM_spread

The CM_spread_with_'operation’* function combines pixels in a plane in a chosen
dimension, that is, along a chosen axis. Basically, CM_spread* does a

CM _scan_with_’operation’* in one direction across the whole axis, and copies the
value at the highest position back to all positions of the axis.

This scheme does not support any partitioning, and so it is not used in the imple-
mentation of the Coterie operations.

The CM_scan* function in PARIS seems to be the only one which can partition

the image array into arbitrarily shaped regions. It also exists for CM_scan.with_min,
CM_scan_with_max and CM_scan_with_logior. The problem with this function is, that it
partitions only along one axis.

Defining the Coterie Network in one dimension is not a problem; on every boundary,

26

a one has to be defined in the upward direction. The CM_scan computes the parallel
prefix, so in order to have uniform values on one axis, the function CM_scan* has to be
applied twice (forward and backward, which will be called 'double scan’). After one axis
is uniform, the one-dimensional Coterie Network has to be extended to two dimensions.
Therefore, the same scan for the one dimension, with the division of the axes into seg-
ments, depending on the bit-value 0 or 1, is done for the other dimension, too.

The functions used for the Coterie operations are CM_scan_with_logior_1L for Region-
Broadcast(sender), and CM_scan_with_u/s_min/max.1L for RegionSelectMin() and Re-
gionSelectMax(). In order to have unique segments, it would be convenient to use the
function CM_scan_with_copy.1L for the backward scan. This function, however, is listed
with 4538 microseconds on a 64 bit field versus 1343, 1923 and 1872 for the other three
functions in the PARIS manual for version 5.2. Thus, an upward and a downward scan
are performed with the same function. After one axis direction is uniform within its
partitions, the Coterie operation could potentially be done already. Therefore, a test is
performed if the other axis direction is completed as well. The test is only a nearest
neighbor function which tests if all neighbors are equal except the PARIS partitioning
where the coterie simulation changes from 0 to 1 in upward direction. If the test is un-
successful, the erroneous axis direction (the axis direction not just worked on) is scanned
with CM_scan_with_'operation’_*. As the test is only a nearest neighbor operation and
therefore cheap, it is reasonable to perform a test after each double scan versus after a
couple of double scans. This completes the scheme of the basic algorithm. The algorithm
so far lacks one important detail: The CM_scan_* functions were not implemented with
wraparound functions. Therefore, after every double scan on one axis direction, the pix-
els on the image edges have to be exchanged.

In summary, the basic algorithm for all Coterie operations has the following form:

for (1 ==1)
do double scan in x direction
swap values depending on operation in the ends of x-axes
if (segments in y direction are uniform) break
do double scan in y direction
swap values depending on operation in the ends of y-axes
if (segments in x direction are uniform) break
endfor
Xy = axis not scanned by last scan
if (segments in xy directions are not uniform)
do double scan in xy direction
return result of the scan

Now the special Coterie Networks, which operate only on one axis, are easy to
implement: instead of two double scans in the for loop, there is only one double scan,

27

test and swap.

Although an adequate simulation of the Coterie Network has been found in the
CM.scan_* functions, the worst case execution time is very high. In the case of a spiral,
the infomation out of the innermost point has to be transmitted along the spiral to
the outermost point. In real images, however, this scenario is rare. Nevertheless, the
execution time for a Coterie operation on the CM is just slightly faster than on a SUN.
See also section 6 for timings.

Now that all the functions of the ICCL are implemented, some deficiencies of to
PARIS are discussed and improvements suggested, which would have helped the imple-
mentation somewhat.

28

3 Suggested Improvements to PARIS

In general, the implementation of the ICCL on PARIS, version 5.2 was relatively straight-
forward because the dyadic and the ’other ICCL functions’ (see 3.1.2 and 3.1.3) have al-
most identical operations in Paris. The only major problem is that the Coterie Broadcast
and RegionSelectMin/Max functions do not have their equivalent in PARIS. The Coterie
functions operate on arbitrarily shaped, 2-dimensional regions. In PARIS, only one-
dimensional axes can be divided arbitrarily, but nothing in the two-dimensional space.
First, some general problems are mentioned which arose with the use of PARIS, and then
specific problems, linked with the use of the Class Library are shown.

3.1 General Problems

e One of the minor general problems with PARIS is that there is no obvious rule when
certain options are present; the decision is made based on the particular function.
Many options are nonuniform among the functions.

— For example in the dyadic operations, the always option (which does the op-
eration in all processors regardless of the context-flag) appears only with the
floating point option, but not with mod and rem or the comparison operations.

— Also almost all dyadic functions have the option of the operands and the result
having different lengths. However this is not the case with mod, rem and the
boolean functions. Furthermore, the option of having three different fields for
each of the two operands and the result does not exist with the shift function.
There is only the option for having the first operand in the same field as the
result.

— Not only the dyadic functions are missing some options. In order to do
branching in parallel, you have to use the context and with it eliminate cer-
tain processors. It would be much less complicated in some cases to use a
CM logior_context_with test() instead of combining
CM _logand_context_with_test() with other functions.

— On the one hand, options are missing, on the other hand, consistency is main-
tained where there is no need for. The function CM._ult_zero1L(..) is a
constant function with the value zero.

29

e Another drawback lies in the difficulty in learning the functions. The length of a
function name is difficult to memorize, and sometimes, the same options appear in
different short forms.

— If a field is combined with a constant, then in the function name, the constant
is referred to as ’const’ or 'constant’, like:

CM f.add_const_always_2_1L and CM_f_add_constant_3_1L. Probably in con-
nection with ’always’, const’ is used, and otherwise ’constant’.

— Also, it is not immediately clear whether to use a number indicating the num-
ber of operands before the number of different lengths in the fields or not.
Comparison and boolean functions omit this number, which is confusing, e.g.
CM_s_ge_1L(sourcel, source2, len), but the dyadic operations with only source,
destination and length parameters contain it.

(e.g. CM_s_add_2_1L(dest/sourcel, source2, len)).

However besides that, there is no rule. For example consider the nearest neigh-
bour functions CM_get_from news_1L(dest, source, axis, directions, len) and
CMf_news_sub_2_1L(dest, source, axis, direction, s, €). The former does not
have the number, the latter has.

— Concerning the identification of the type, in most cases the type (u for un-
signed, s for signed or f for float) is put after the initials CM.- .
(like CM_s_ge_1L(..)) This rule is broken by the function CM_global_s_add_1L(..).

o The operation CM_set_field-alias_vp_set(..) is used to possibly assign a new vp-set
and type to the plane. It would be convenient to have the same for the original
field, not only an alias field.

Subsequently some problems in the respective kind of functions are described.

3.2 Specific Problems in the Implementation with the ICCL

1. Dyadic functions:

(add, subtract, multiply, truncate, divide, mod, logand, logior, logxor, less [or equal]
than, greater [or equal] than, equal to, not equal to)

Dyadic operations, especially with operands of different lengths and different type
are a problem.

30

¢ Different Types
Combining two variables which have different types is not at all supported.
For example, in order to multiply an unsigned short with a signed short, first
the unsigned short has to be moved to a longer signed field.

¢ Different Lengths

For example, combining a short with a char by mod (short mod char) requires
us to allocate short fields and move the char field to a short field and also the
result field to a short field (The result field is originally char in the ICCL).
This problem is worse if one operand is a constant. In PARIS, the bits of
a constant are only considered up to the length of the field with which they
are combined. Assume an int constant has to be combined with a short field.
Then an int field has to be allocated first and the short field has to be copied
into the int field.

¢ ’Constant Operator Field’ with non-commutative Operators
There exists no function in PARIS where the constant is on the left side of
the operators. This is especially inefficient for non-commutative functions. A
new field has to be allocated each time.

2. Bit Insertion Functions:

The functions CM_s_move_* and CM_u_move_* are impractical insofar that their
destination and source fields cannot have length one. Fields of the function
CM_move.reverse_*_1L, however, can.

3. Access of a single Pixel in the News-Array and i/o of the News-Array:

If the front end is a DEC-station, the floating point numbers have to be converted
from IEEE floating-point format to vax floating-point format or vice versa. Maybe
this could be done automatically with a compiler option.

4. Shift Function:

In the shift functions (CM_u_s_shift 2 2L(..) and CM_s_s_shift 2.2L(..)) the only
option is that the left operand field and the result field are identical. If you do not
want to change the incoming parameters, the left operand has to be copied into the
result field first. Other dyadic operations have this option.

31

5. Region Functions:

As previously mentioned, in the Class Library there exist the region operations
Broadcast, RegionSelectMin/Max which operate on arbitrarily shaped two-dimensional
regions. Broadcast broadcasts the logical 'or’ of values whose points in the argu-
ment BitPlane are one. RegionSelectMin/Max puts out a BitPlane with ones in
processors where the values of the points are the min/maximum of all selected
points (points with a context-flag one) in the region. Arbitrarily shaped regions
can be best approximated in PARIS by the function CM_scan_with_*, which oper-
ates on arbitrarily segmented axes (the function in its one-dimensional form was
introduced in section 3).

Apart from the fact that CM_scan_with_* only operates in one dimension, solutions
to the following problems would make programming much easier and not require
major changes:

e In order to broadcast in just one dimension, two scans have to be made.

e The scan function does not allow wraparound. On the other hand,
CM _get_from news_1L(..) allows wraparound.

Overcoming these problems with the scan function made the algorithms for the
Coterie functions quite complex.

6. Allocation of Fields:

For reuse of fields, the operation CM_set_field_alias_vp_set(..) can be used to assign
a new vp-set and type to the field. There is no operation which changes the vp-set
of the original field.

Aliases are created with CM_make field_alias(field_id). An alias, however, can by
itself only be created from the original field, not from another alias. This costs
some minor effort.

7. Timing Issues:

The times of a specific part of the program can only be directly printed out. For
further computations on these times (e.g. percentage) it would be convenient if the
front end maintained a list with the respective times each part of the program has
taken.

32

3.3 Summary and Suggestions

In summary the language PARIS is well suited for the implementation of the Class Li-
brary on the Connection Machine.

Problems exist with the region functions because there is no real equivalent for the Class
Library functions in PARIS. Also there exists no wraparound in the planes when the
PARIS function ’scan’ was applied. Eliminating these two problems would increase the
performance.

The lack of some specific options has to be worked around. In this specific implementation
the addition of some options would have made the programming much easier and maybe
improved the performance.

Also, the abundance of options which are expressed in the function names and their
organization make it almost impossible to program without looking up almost every
command. A clearer scheme would make it a little easier to program.

33

4 A Fast Line Extraction Algorithm

In this section, a parallel line extraction algorithm, implemented in the ICCL, is pre-
sented. The algorithm is used in the timing analysis of Section 6.

The goal with this line extraction algorithm is to run in real time with robust output. Ap-
plications for a real-time line extraction algorithm at UMass are the Unmanned Ground
Vehicle (UGV) and the algorithms implemented on it.

The line extraction algorithm was developed, with the goal to be as fast as e.g. the FLF
[4] and as accurate as e.g. the Burns algorithm [1]. It is based on the line extraction
algorithm of Burns, but was modified significantly.

Developing the algorithm on the IUA, some design criteria in the algorithm were made
considering the architecture of the IUA.

4.1 The Burns Algorithm

First, some basic principles of the Burns algorithm are introduced, which are used in the
presented algorithm.

In line extraction algorithms prior to the Burns algorithm, long, partly low con-
trast lines were segmented because of their fluctuation or change in gradient magnitude.
Therefore, Burns was looking for a criterion that does not take into account the gradient
magnitude of the pixels contributing to the line. He found that the edge orientation
carries important information about the set of pixels that participate in the intensity
variation that underlies the straight line, particularly its spatial extent.

The gradient orientation is defined as the direction of maximum gray-level change. The
important observation is that the gradient orientation does not vary much on the intensity
surface associated with straight lines, while the gradient magnitude varies significantly.
As a result, Burns introduces line-support-regions which are ideally equal to the area of
intensity variation that underlies the straight line.

The creation of the line-support-regions is the part of the Burns algorithm that is adopted
in the presented algorithm. The Burns algorithm will be investigated in some detail:
Steps for the construction of line-support-regions are:

1. Compute the gradient orientation using an appropriate mask.
2. Apply a connected components algorithm using some partition of gradients.
Computation of the gradient orientation can be accomplished using several types
of masks. The criteria Burns was looking for were symmetrical response to rotation of

the line and sensitivity to detail. After experimenting with 1 x2,1x 3, 2x 2 and 3
x 3 masks, he found that the non-quadratic masks do not obtain symmetrical response,

34

and the bigger 3 x 3 mask did not respond to high-frequency 1-pixel wide regions or fine
detail. Thus for Burns, the optimal choice was the 2 x 2 mask.

A partition of the gradient can be accomplished by either taking into account with some
method the retrieved gradients or by applying a fixed-partition scheme.

Due to the problems in grouping with the first method, Burns has used the fixed-partition
scheme, in which the 360 degree range of gradient directions is arbitrarily quantized into
a small set of regular intervals, say eight 45 degree intervals or sixteen 22.5 degree in-
tervals. A simple connected components algorithm is then used to form distinct region
labels for groups of adjacent pixels with the same gradient orientation and create the
support regions.

Now, for each support region, the Burns algorithm computes a line with a Plane
Fitting Method. This method is not relevant to the new algorithm, so it will not be
investigated in further detail. The resulting set of lines, however, does not represent the
real lines for special situations. The reason lies back in the computation of the support
region and the use of one fixed partition scheme for their creation. The first problem is
the merging of spatially contiguous lines with similar orientation into one bucket. The
second problem arises when the line orientation falls onto a partition boundary and as
a result the support regions are fragmented. The merging of spatially contiguous lines
tends to be reduced as the partition size gets smaller, but the fragmentation problem
demands larger sizes.

The computation of a second support region representation, based on another fixed par-
tition scheme, solves the second problem.The first problem can then be reduced using
adequate partition parameters. This is accomplished by applying the overlapping bucket
scheme and rotating the partition used by the second support region representation by
half a partition size, see also Figure 1. With the second support region scheme, image
lines which lie on boundaries of the first support region representation are now in the
middle of the bucket and therefore adequately represented.

The line extraction is therefore done with the first support region representation as well
as with the second support region representation, and two sets of lines are computed.
In the end, the resulting redundant set of lines is removed by applying a voting scheme
which uses the length of a line as a criterion for a vote.

4.2 A Fast Line Extraction Algorithm

In this section, the new line extraction algorithm is presented, which uses the support
regions from the previous section.
The major steps of the algorithm are the following:

1. Compute the gradient in x and y direction with a 3x3 Prewitt mask.

35

AN

o

Bucket with
; Bucket Size: 45 degrees

Figure 1: The Overlapping Bucket Scheme

Build gradient orientations and gradient magnitudes for the overlapping bucket
scheme.

Create two support region representations.
Count the pixels in each region of the two support region representations.
Build up final support region representation.

Compute the master pixel of every region.

7. Split the support regions into n parts.

10.
11.

Select the m points of highest gradient magnitude in each of the sub-regions of the
support regions.

. Retrieve the position and orientation of the line with a least-squares fit method

using the m * n points.
Compute the endpoints of the line.

Apply filtering values to select subsets of the lines.

The first step is common in most line extraction algorithms. The Burns algorithm

and the FLF also perform the second and third step, which creates support regions. They
too maintain the support regions as the basic data type for any further computation. One
of the main differences of the presented algorithm to Burns algorithm is steps 4 and 5.
In the presented algorithm, the two support region representations are combined before
the lines are computed, whereas in Burns algorithm, they are combined after the lines
are computed. This is a time-saving step, which the FLF also performs (yet differently).

36

In steps 7-9, each of the three algorithms computes the lines uniquely, which is another
main difference. The last two steps are standard steps in line extraction algorithms.

Four essential input parameters control this algoritm:

e Number of Buckets
e Magnitude
e Length

o Contrast

The 'Number of Buckets’ is used for the fixed partitioning scheme, the '"Magni-
tude’ for eliminating pixels in the connected components algorithm, and ’Length’ and
"Contrast’ are filtering values.

Other parameters are set to a particular value before the execution of the algorithm, but
theoretically can be changed, too. These are:

e Number of Subparts of the Support Region n

e Number of Points to select in each Subpart m

N and m are essential parameters in the computation of the line within a support
region.

In the following, the steps with the input of the respective parameters will be
described and explained in more detail:

1. Compute the gradient in z and y direction with a 3z3 Prewilt mask.
The 3x3 mask is preferred over the 2x2 mask. The 2x2 mask is more sensitive to
high-frequency ([4]), but the 3x3 mask recovers the orientation of a line better ([5])
and is more stable against blurred lines.

2. Build gradient orientations and gradient magnitudes for the overlapping bucket
scheme.
The gradient magnitude is the sum of squares of the gradient in x-direction and
the gradient in y-direction. Pixels whose value of 'Magnitude’ is below a threshold,
are unselected and not considered for the next steps.
One bucket representation is built by first dividing the 360 degree circle into 'Num-
ber of Buckets’ pieces of equal size (see figure 1). In the end, the index for the

37

bucket is computed with
index = roun d(gradient_orientation-' Numberof Buckets'
3600
The second bucket representation is built by rotating the first by half of the Bucket

Size (with wraparound). The pixels are assigned the bucket indexes corresponding
to their orientation values.

. Create two support region representations.

A connected components algorithm is run on the pixels, which connects neighboring
pixels whose gradient orientation falls into the same index of step 2. Neighboring
pixels are those adjacent on the north-south axis or on the east-west axis.

With the overlapping bucket scheme, two bucket representations create two support
region representations.

. Count the pizels in each region of the two support region representations.

In this step, first, master pixels for the support regions are computed. Then,
each pixel sends a one with add-combine to its region’s master pixel. The number
received at the master pixel represents the count for the support region. In the
end, each pixel has two counts for the two region representations available, which
represent the number of pixels in the respective support regions that the pixel is
part of. A boolean flag is set which indicates whether the first or second region
representation has bigger count.

. Build up final region representation.
A connected components algorithm is run which connects pixels in the final region
representation if

(a) two adjacent pixels have the same flag.

(b) two adjacent pixels have the same index in the support region representation
determined by the boolean flag.

The connected components from this algorithm construct the final support region.
Note that with this scheme, each new support region is a sub-region of an original
support region out of the selected representation.

In the 'merging’ of region representations just described, the number of pixels
in a support region was used as a criterion that this support region will produce a
'better’ line. 'Good’ lines are usually long with oval support regions. The closest
solution therefore is to use the criterion ’length’ instead of 'number of pixels’,
however this criterion is not available at this stage of the algorithm.

Most of the time, regions with many outliers and irregular shape (many outlier
paths) are low contrast regions. This is taken care of in step 1, where the pixels
are filtered out for 'Magnitude’. Other cases in which the length is a significantly
better criterion than the number of pixels are not very common. Usually, the peak
in the number of pixels of a support region is reached with its 'ideal’ gradient
orientation, which is perpendicular to the orientation causing the line. Only with

38

line-crossings does the greatest number of pixels and the longest length result from
different gradient orientations.

. Compute the master pizel of every region.
Now, the master pixels of the new support region representation scheme are found.

. Split the support regions into n parts.

In this section, the support regions which were retrieved in step 5, are split into
parts. We will describe the split for three parts, because that is the minimum
number of parts required to avoid common mismatches.

Splitting a support region into n parts is done perpendicular to its orientation, that
is, if, for example, the support region has the shape of an oval, the major axis is
split into three parts with the splitting lines being perpendicular to the major axis.
For this task, the orientation of one arbitrary pixel is taken, and through every
point (z;,y:) in the support region, a line is drawn with slope m. The intersection
of this line with the y-axis at y-value ¢; can be computed in the following way:

y; = ¢; - m + t; is transformed into
Li=Yi—ci-m

Naturally, some points (z;,y;) have the same ¢;.

After that, the two ¢; most distant from each other are obtained and are called ¢,
and t;. See Figure 2 for the construction of the split.

The lines with slope m through ¢; and ¢, are the most extreme lines bounding the
region that are orthogonal to the selected orientation.

Usually, these extrema points are unique. But as the figure shows, it is possible
to have multiple extrema for a region. In that case, we choose arbitrary extreme
points on ; and ¢, and call them p, and p;. Next, the line segment from p, to pq is
divided into three parts of equal length, with points p, and ps as splitting points.
The final splitting lines /; and I, pass through p, and p3 with slope m, so that they
divide the region into three parts along its length.

The orientation of the split was taken from an arbitrary pixel in the support region.
It varies at most one bucket size from the true perpendicular orientation of the
line, because the chosen pixel belongs to the same region, and therefore its gradient
orientation to the same bucket.

The next step will explain why the minimum number of divisions is three.

. Select the m points of highest gradient magnitude in each of the sub-regions of the
support regions.

In this step, m points of highest gradient magnitude are selected in each sub-region.
In experiments, assigning 3 to m gave the best precision-time tradeoff.

39

line (1) —

line2(2) —

Figure 2: Split of support region (shaded region) into three parts. The three new subre-
gions are indicated by the light, medium and dark shaded regions

Then the x and y coordinates of the selected points are stored in the following way:
The pixel from the previous step, which determines the orientation of the split,
is taken, and if its gradient in the x direction is greater than its gradient in the
y direction, the z; and y; coordinates of the selected points in the region are ex-
changed. After the computation of the line parameters in the next step, the regions
with reversed x and y coordinates adjust them accordingly.

Now the reasons for the split of the support region into three parts can be ex-
plained: The spatial distribution of the selected points is crucial for the direction
and location of the extracted line. Thus, the points which contribute to the com-
putation of the parameters have to be scattered along the line as much as possible.
With two sub-regions, however, points could still be clustered around the splitting
line and not contribute at all to the real orientation with their clustered location.
Therefore, the minimum number of splits for the region is three.

9. Retrieve the position and orientation of the line with a least-squares fit method us-
ing the m * n points.

In this step, the line parameters are computed from the points of highest mag-
nitude in the whole region. The line parameters are represented in slope m and
intersection with y-axis, i.e. intercept c. In the ideal line match, for every point i,
the following equation is true:

40

10.

Yyi=m-T;i+c

The error function consists of the differences of the y-coordinates of the points to
the virtual y-coordinate of the line at the x-coordinates of the points. (If the co-
ordinates have been exchanged in the previous step, exchange the x’s and y’s in
the preceding sentence.) This error is squared for every point, and the sum of the
squares is the error function.

EB?=%;(yi—m-z;—c)’

The error function is then derived with respect to m and ¢ and both derivations
are set to zero. After the derivation we have:

c= > (yi—m-z;)
m = Z(w-"w)—:?-f (=)

Now it is an easy step to resolve for ¢ and m and take into account, if necessary, the
earlier exchange of the x and y coordinates. The case where m overflows happens
only in regions with exchanged coordinates and is prevented before computing the
quotient which will be m: The boundary value of m = 150 was chosen, beyond
which the line is considered vertical, which is a separate case.

This step also comprises the boolean labeling of points, if they are 'on the line’ or
not. For this purpose, the ’distance’ from each point in the region to the line was
computed. Hereby if the slope of the line is |m| < 1, 'distance’ means the distance
of each point to the intercept with the line along the y-axis. If |m| > 1, 'distance’
means the distance of each point to the intercept with the line along the x-axis. In
the case where m exceeds 150 and therefore was considered vertical, ’distance’ is
the difference of the x-coordinate of each point with the x-coordinate of the vertical
line.

The points are labelled true if 'distance’ is < 0.5.

The least squares method was chosen because it has a linear solution, and is there-
fore easy to implement and fast on the IUA. On the IUA, trigonometric functions
and iterative arithmetic floating point functions are time consuming. With the
least squares fit, these functions can be avoided. Furthermore, the least squares fit
produces optimal results, as long as no outliers are present. In case of outliers, to
some extent, the other points will prevent the line from distortion.

Compute the endpoints of the line.
In this step, the coordinates of the endpoints of the lines are computed.

41

11.

The endpoints are the points on the line (’linepoints’) furthest away from each other.
In case of a positive slope, this is done by taking the maximum of the row index
and the maximum of the column index which construct the first endpoint, and the
minima of the row and column index, which construct the second endpoint. In case
of a negative slope, the maximum of the row index and minimum of the column
index construct the first endpoint, and the opposite ones the second. As the search
for the maximum and minimum is time consuming, the row and column indexes
are summarized into one unique index, in which the maximum and minimum are
searched for. In case of the negative slope, first the column index is subtracted
from the number of columns in the image. This subtraction is reversed after the
search.

Apply filtering values to select subsets of the lines.

Lines which do not exceed a minimal length or contrast, are filtered out. The
contrast is computed by averaging the gradient magnitude of the linepoints. Previ-
ously, in step 2, pixels were already filtered out which by themselves did not exceed
a certain 'Magnitude’.

42

5 Comparison of Execution Times on the SUN, the
CM and the IUA for Different Algorithms written
in the ICCL

In this section, execution times for algorithms written in the ICCL are directly compared
between the SUN, the CM and the IUA. The machines that were used were the SUN
Sparcstation 2, the CM-2a and the IUA simulator, version 1.4. On these machines three
vision algorithms were run, which are the low-level portion of the DARPA benchmark,
the line finder presented in section 5, and a dense depth map retrieval algorithm.

First, the execution times of some member functions in the ICCL are reported
on the three machines. This gives insight into potential bottlenecks in the execution of
the above algorithms on the three machines. Then, each algorithm is split into its basic
parts, and the execution times of the basic parts are compared, given the execution times
of the basic functions of the ICCL.

The IUA simulator is simulating a real machine, and therefore timings vary slightly
for the same instruction regarding which instructions were executed previously. In the
experiments, timings of the basic functions are an average of several executions in se-
quence. This tests only one setting (the previous instruction is exactly the same), but
reduces the variation in timings, depending on where the sequence starts, to one percent.
For the same program, however, timing results are reproducable.

The IUA simulator only provides back end times, which are compared to the PARIS back
end times.

For the CM and the SUN, the PARIS timing functions and the getrusage facility
were used. In contrast to the IUA simulator times, the timings vary with the execution
of the same program.

The accuracy percentages in the paragraph below were obtained by examining a few runs
on the respective machines.

The PARIS timing functions have microsecond precision. Their execution times vary by
at most 15 percent (measuring the difference of two times divided by the smaller time,
times one hundred) for the back end, but usually (around 90 percent of the time) the
variation is below 5 percent. For the idle back end time, however, times usually vary
significantly; in the experiments they varied by up to 1200 percent!

The accuracy of getrusage is one hundredth of a second, which is quite coarse. The sta-
bility of the results, however, is as high as in PARIS, because the results vary by at most
15 percent with low execution times. With high execution times, the stability is usually
below 5 percent and was not observed to be above 10 percent.

For these reasons, multiple executions on the CM and SUN are averaged.

43

For the times reported, no virtualization of the parallel machines was necessary.
The test images were all 64 x 64 pixels in size, which is equivalent to the size of the CM
and the first generation prototype of the IUA.

5.1 Execution Times of Basic Functions of the ICCL

Timings were taken of the ICCL functions shown below, which are a selection of functions

in the ICCL.

float, int Index

float, int West

float, int plus

float, int multiply

float, int multiply with Select
int function abs

float function abs

Any

float, int SelectMax

int Route

float, int Route within Coterie
int RoutePlus

time to build Coterie

float, int Broadcast

float, int RegionBroadcast with Select
int RegionSelectMin

time to build Selectl

time to build Coteriel

Anyl

int Broadcastl

int RegionSelectMinl

int Routel_region

int Routel_transl_20

int Routel_transl_20_wrap

int RoutePlusl_region

int RoutePlusl_transl_20

int RoutePlusl_transl 20_wrap

The above functions represent some selection of the arithmetic functions, the non-
Coterie communication functions and the Coterie functions, which were used frequently
in the presented algorithms. Other functions, which were not used very often in the

44

presented algorithms, like Input
Output functions, Display functions, the Resize function, etc., were omitted.

All functions were tested with the equality operator. As the equality operator

involves activity, there is a slight timing difference if the activity is declared everywhere
or if it has been set explicitely.
The functions multiply and RegionBroadcast, however, are not directly affected by activ-
ity, and they are included in the experiment 'with[in] Select’ only to verify that setting
the activity causes no side effects. The same is true for the Route functions tested within
the Coterie Network. (float, int Route within Coterie)

The functions RegionSelectMin and RoutePlus were only tested on integer planes
because at test time they were not implemented in the micro code on the IUA simulator.

The functions with suffix one were run only on the SUN and the IUA simu-
lator. Prior to testing them on the CM, access was lost due to decommissioning of
the machine. Because of this, Route/Plus], RegionBroadcast, RegionSelectMin and Any
were only run on a simple underlying pattern which should provide a lower time bound,
whereas Route[Plus]1, RegionBroadcastl, RegionSelectMinl and Anyl were run on un-
derlying patterns which are closer to situations in real images.

For the Route[Plus] function, each processor routes just to itself.
Route[Plus]1_transl_20 is a one-to-one permutation, where the destination pixel is 20 pix-
els translated in x-direction as well as in y-direction with respect to the sending pixel. For
the destination pixels which lie beyond the borders of the image array, the functions with-
out the suffix wrap discard the sending value, and the functions with the suffix wrap take
the destination coordinates modulo the imagesize. For the Route[Plus]1_region functions,
the image is split into regions, which correspond to equal integer values in the gradient
orientation of the image. For every region, a master pixel is chosen, which serves in the
Route[Plus]1._region functions as destination pixel for the pixels in the region. Because of
the applied scaling factor the regions can contain as many as 200 pixels, where in most
of these regions the subregions are linked together only by a one-pixel wide bridge. This
property of the regions makes a Route time-taking.

The Coterie functions without suffix one (RegionBroadcast and RegionSelectMin)
operate on regions of size one. The Coterie functions with suffix one, however, operate
on the same regions which were described above for the Route/Plus/1_region function.

In the Any function, the first non-zero element is found at the top left corner in
the image and the function is returned, whereas the AnyI function finds the first non-zero
element in the center pixel of the image.

The RegionBroadcast within Select function measures the execution time of the function

45

plus the assigment to the result plane, with the activity set. The mulitply with Select
function, however, measures the time for the multiply and assignment plus the setting of
the activity.

The term time to build Selectl indicates the time to set the activity, where one processor
is active at each row. This is also the activity which is set for the functions with suffix
withfin] Select. The term time to build Coterie[1] indicates the time to set up the Coterie
network, where the Coterie networks correspond to the suffix of the above introduced
Coterie functions.

The basic functions give some first insight into the time ranges on the three ma-
chines. For functions that are missing above, similar functions indicate the likely time
range. For example minus is expected to be roughly as fast as plus, and RegionSelectMaz
as fast as RegionSelectMin.

5.1.1 Dependence of the ICCL Operations on Input Data.

The three machines show a different behaviour for variation in the input data or 'under-
lying structure’. 'Underlying structure’ means the definition or activity or the Coterie
Network. Here are some known facts about data dependency, which also stem from
knowledge of the implementation code for the SUN and the CM:

e The IUA Simulator

On this machine, only the timings of the Route operations depend heavily on the
input data. For Coterie operations, partitioning of the image in spiral-like form
versus one-pixel regions should also result in different numbers of cycles. A fixed
time, however, is reported for the Coterie operations that is an average case esti-
mate. Therefore, for a spiral-like pattern on a large image the timing estimate is
low, but for a 64 x 64 array the assumed time is sufficient even for a spiral.

e The SUN

Here, only the construction of the Coterie network is significantly semsitive to the
underlying structure. The reason for this is that by constructing different region
representations, pixels could get questioned if they are already in some region a
different number of times. Also, with regions extending over several rows and row-
major storage, pieces of the image might not be readily accessible in the cache.

Apart from this sensitivity to the underlying structure, timings do not vary much
because all functions scan the image in a loop one to several times, which infers a

46

common basic cost already.

Small savings can occur if the body of this loop is omitted under some conditions.
One example is the setup of the activity, which queries for active pixels in e.g.
RegionSelectMin /Maz. Another example is RegionBroadcast, where only values for
broadcast are considered when the corresponding value in the input plane is one.

o The CM

The execution times vary slightly depending on the definition of activity (implicitly
by Everywhere active or explicitely by Select statements), because with the explicit
definition, a logical ’and’ has to be executed in the assignment operation or the
function sensitive to activity.

The dependence on the underlying structure and input data is greatest in the
Coterie functions. The Coterie functions are implemented as a loop with a global
combining function to test for completeness. As the values in the regions have to
be equal in the end (for both RegionBroadcast and RegionSelectMin/Maz), both
input data and underlying structure influence the timing.

Below, the results of the experiments with the basic functions on the three ma-
chines are presented. The functions are listed in the order of their execution time on the
respective machine.

5.1.2 The SUN

In Table 1, the times are shown for the basic ICCL functions executed on the SUN.
Because of the coarse granularity of the timing function (one hundreth of a second), the
experiments were repeated several times, and their average is reported.

The times in Table 1 correspond to the execution of the basic functions on the
sequential version of the ICCL.
In the table, all the functions with times below 10 milliseconds are below the precision
of the timing function. This means that their result is the average between runs with
the same input where the timing function outputs zero time and runs where it outputs
10 milliseconds time. As the experiments were done with 400 runs of the program, even
the functions with times below 10 milliseconds differed only by at most 15 percent, and
the majority of the functions differed by at most 5 percent. An exception hereby are the
Any and Anyl functions, which are barely measurable.

The timings for the ICCL functions on the SUN are divided into distinct groups:
The most expensive functions are the Coterie functions, including their setup, followed
by the Route functions. All other functions are less expensive than the Coterie and Route

47

functions.

ICCL function time in millisec. | percent of total time
Any 0.070 0.03 %
Anyl 0.660 -
time to build Selectl 1.803 -
int Index 2.890 1.10 %
float Index 3.670 1.39 %
float multiply 3.825 1.45%
int plus 3.839 1.46 %
float plus 4.080 1.55 %
int SelectMax 5.270 2.00 %
float SelectMax 6.590 2.50 %
int West 6.770 2.57 %
int Routel_transl 20 6.845 -
float multiply with Select 6.870 2.61%
float West 7.050 2.68 %
int multiply 7.105 2.70 %
int RoutePlusl_transl 20 8.740 -
int Route within Cot. 9.250 3.51%
int multiply with Select 9.305 3.53 %
int Route 9.370 3.56 %
int Routel _transl_20_wrap 9.700 -
float Route within Cot. 9.766 3.71 %
int Routel_region 10.455 -
int function abs 10.610 4.03 %
float function abs 11.210 4.26 %
int RoutePlus 12.795 4.86 %
int RoutePlusl_transl 20_wrap 13.145 -
int RoutePlus within Cot. 13.549 5.14 %
int RoutePlusl_region 13.730 -
int RegionBroadcastl 15.296 -
int RegionBroadcast 16.735 6.35 %
int RegionSelectMinl 16.875 -
int RegionSelectMin 16.965 6.44 %
float RegionBroadcast 17.229 6.54 %
float Reg.Broad. within Sel. 17.680 6.71 %
int Reg.Broad. within Sel. 17.795 6.75 %
time to build Coterie 33.155 12.59 %
time to build Coteriel 38.784 -
Total 263.443 100.000 %

Table 1: ICCL functions executed on the SUN.

The most striking observation in Table 1 is that the time required to build the
Coterie Network is a major bottleneck in an ICCL program. It is the slowest function,

48

and two times slower than the second slowest function. The reason is that in the sequen-
tial version, an array with the master pixels for every pixel in the image has to be built
first.

On the SUN, the time to build this array depends on the characteristics of the resulting
Coterie Network. The setup for the one-pixel sized region takes 17 percent less time than
for larger regions. The reason is that for larger regions, the pixels have to test all their
neighbors for possible expansion of the region, and in the scan of the whole array, some
connections are tested several times. Also, the non-cache accesses are more frequent if
the regions extend accross large pieces of memory.

In the Coterie functions themselves, there is a small difference in timing between func-
tions with and without suffix one. One reason for this is the frequent determination of
the sender coordinates in the one-pixel sized regions (all pixels are senders and broadcast
values to themselves).

Among the Coterie functions RegionBroadcast and RegionSelectMin, there is only
a small difference in timing, which points to their similar structure.
The Coterie functions are four times slower than e.g. int plus (and 12 times including
the setup time), and are the most costly functions on the SUN.

Most of the Route functions take 9-10 milliseconds, and the RoutePlus function
takes 12-13 milliseconds. Here, it makes little difference if the routing scheme is route-to-
self, a translation, or routing to a master pixel within a region. There is one exception,
however, both with Route and with RoutePlus: Route[{Plus]1_transl_20 takes about one
third less than the other functions. The explanation is that in the loop over all pixels
of the image, there is a query if the destination pixel is within image sizes. If it is not,
the loop body is skipped. In this case, for every row, 20 out of 64 values are discarded,
which explains the time reduction by roughly one third.

According to the low time difference between

Route[Plus] and Route[Plus/1 _transl_20, if no values are discarded the timings of the
Route[Plus] functions are insensitive to the distance between sending and receiving pixel.
The low time difference between Route/Plus] and Route[Plus/1_regions shows that the
Route[Plus] functions are insensitive to the number of collisions as well. This makes the
Route[Plus] functions relatively insensitive to input data on the SUN, if no values are
discarded.

The time difference between the Route and the RoutePlus function stems from the plus
operation which is needed for the RoutePlus function, and which would fill approximately
just the time difference (4 milliseconds).

Out of the remaining functions, only the multiply function has a characteristicly

high difference between float and int.
The Indez functions are on the low end, next are the addition functions, then the Select-
Maz functions, and finally the nearest neighbor functions. The int multiply function is

49

slower than the nearest neighbor function, whereas the float function is faster than the
addition function.

The least expensive function is the Any function, whose timing was almost not measur-
able. In the Any function, an BitPlane is scanned, until a one is found. The difference
between Any and Anyl stems from the different positions of the first one in the BitPlane.
In Any, the bit is found earlier.

The difference between the multiply within the Select scope (including the setup)
and the multiply outside the Select scope is distinct. The timing difference is probably
due to the setup time for the activity, measured in ’time to build Selectl’, which is 1.8
milliseconds. The small remaining time difference can stem from the assignment oper-
ation, which performs a logical ’and’ with the current activity. The same can be the
reason for the small time difference between the RegionBroadcast functions inside and
outside the Select scope.

There is, however, no timing difference for the int Route function inside and outside the
Coterie network.

In summary, algorithms on the SUN are merely dependent on the input data or
underlying structure, and therefore are predictable. The only significant difference be-
tween integer and floating point occurs in the multiply function.

5.1.3 The CM

In Table 2, the results for the CM are shown. The times are ordered by back end times
because of the instability of the ’excess front end’ times. 'Excess front end’ times are idle
back end times.

As with the SUN, the Coterie functions take longest, but are then followed by some mul-
tiply and the abs functions, succeeded by the Route[Plus] functions, and then followed by
the other functions.

The table shows that like on the SUN, the Coterie functions operating on one-
pixel sized regions are slowest on the CM. As the Coterie functions operate over a while
loop which tests for uniformity within the regions, the actual Coterie timings on regions
created by real images could increase by factors. This would make the Coterie functions
a bottleneck of the program. The setup time for the Coterie Network, however, is low in
comparison to the Coterie functions. It consists merely of a bit insertion into the setup
variable, plus time on the front end.

Another interesting fact with the Coterie functions is that, unlike other functions, the
time spent in the back end outweighs the time spent only in the front end. This could
be due to the length of the PARIS program in the respective function macro. In other
functions, the time for the PARIS program is short because a comparable PARIS - ICCL

50

function is available. Therefore, a smaller percentage of time is spent in the initialization
of the routine.

ICCL function back e. | front e. | total perc.ti. perc.ti. | perc.tot.
time time time ba.end fr.end time

Any 20.9 206.8 227.7| 0.048% | 0.395% | 0.238 %
time to build Cot. 344.1 | 1413.2 | 1757.3| 0.796 % | 2.700 % | 1.838 %
int plus 409.2 [1807.1 | 2216.4| 0.946 % | 3.453 % | 2.319%
int Index 450.0 | 1362.2 | 1812.2| 1.040% | 2.603 % | 1.896 %
int West 527.8 | 1471.3 | 1999.1 | 1.220% | 2.811% | 2.091 %
float West 545.7 | 1449.9 | 1995.5 | 1.261 % | 2.770 % | 2.088 %
int SelectMax 560.9 | 1701.1 | 2262.1 | 1.297% | 3.250 % | 2.366 %
float SelectMax 605.6 | 1738.5 | 2344.1 | 1.400% | 3.322% | 2.452 %
float Index 673.3 | 1478.8 | 2152.1 | 1.556 % | 2.826 % | 2.251 %
int Route 847.6 | 17144 2562.1 | 1.959 % | 3.276 % | 2.680 %
int Route within Cot. 857.6 | 1827.1 | 2684.7 | 1.983% | 3.491 % | 2.808 %
float plus 889.6 | 1482.2 | 2371.8| 2.056 % | 2.832% | 2.481 %
float Route within Cot. 905.2 | 18119 2717.1 | 2.093 % | 3.462% | 2.842%
int RoutePlus 934.0 | 1662.6 | 2596.6 | 2.159 % | 3.177% | 2.716 %
int RoutePlus within Cot 954.0 | 1857.3 | 2811.3 | 2.205% | 3.549% | 2.941 %
float multiply 1051.5 | 1529.7 [2581.2 | 2.431% | 2.923% | 2.700 %
int function abs 1254.2 | 4640.3 | 5894.5 | 2.899 % | 8.867 % | 6.166 %
float multiply with Select | 1386.8 | 2634.5 | 4021.2 | 3.206 % | 5.034 % | 4.207 %
int multiply 1427.7 | 1730.1 | 3157.8 | 3.300 % | 3.306 % | 3.303 %
int multiply with Select 1755.8 | 2604.0 | 4359.7 | 4.059 % | 4.976 % | 4.561 %
float function abs 18144 | 4481.2 | 6295.6 | 4.194 % | 8.563 % | 6.586 %
int RegionBroadcast 4818.9 | 2195.9 | 7014.8 | 11.140% | 4.196 % | 7.338 %
int Reg.Bro.within Sel. 4851.6 | 2147.0 | 6998.6 | 11.215% | 4.102% | 7.321 %
float Reg.Bro.within Sel. 4862.5 | 2057.6 | 6920.1 | 11.241% | 3.932% | 7.239 %
float RegionBroadcast 4914.2 | 2908.4 | 7822.5|11.360 % | 5.557 % | 8.183 %
int RegionSelectMin 5595.5 | 2421.5 | 8017.0 | 12.935% | 4.627% | 8.387 %
total 43258.7 | 52334.5 | 95593.3 | 100.00 % | 100.00 % | 100.00 %

Table 2: ICCL functions executed on the CM, times in microseconds.

The int Route function is about five times less time consuming than the int Re-
gionBroadcast function on the back end. This makes the time difference between these
two communication functions big, although only their basic patterns or underlying struc-
ture were tested. For more complicated patterns the hypercube architecture of the CM
can benefit the timings of the Route[Plus] functions versus for example the mesh archi-
tecture. Note that the difference between Route and RoutePlus is not as big as on the
SUN and does not reflect the timing of the int plus operation.

51

On the CM, both integer and floating point multiplication are much slower than
the #nt plus operation, in contrast to the time relations of these functions on the SUN.
The multiplication functions both are even slower than the RoutePlus functions.

In general, for some functions, there is a considerable difference between the float-

ing point and the integer operations. On the back end, the floating point addition takes
double the time than the integer addition, and the float multiply is slower in comparison
to the int multiply than on the SUN (float multiply takes two thirds of int multiply versus
less than one half on the SUN). Also, the abs function shows some difference for floating
point and integer plane arguments. The higher differences between operations on inte-
ger and floating point planes, in comparison to the SUN, could stem from the lack of a
floating point accelerator in the machine used for these experiments.
A remarkable observation is the timings of the Indez function. The Indez function re-
turns the position of every pixel in the image array, and the only access to the actual
input plane (class object) is to get its image size. Nevertheless, the difference between
floating point and integer planes as class objects is high, which is not explicable with this
reason. This difference was also recorded on the SUN.

Concerning the activity setup (called ’Select’ here), the excess front end time of
the float multiply function almost doubles when the activity setup (Select) is added and
its time is taken inside the Select scope. Also, the excess front end time of the abs func-
tions, where activity has to be set first, are almost 4 times as high as the back end times.
The timings for the int RegionBroadcast function indicate that the assignment statement
inside the Select setup involve almost no overhead. This suggests that the mere setup
of the activity involves some fair amount of excess front end time plus some back end time.

In summary, the Coterie functions are the most time-taking functions on the CM.
This is true for one-pixel sized regions, and the times can increase by multiple factors
as other regions are used. Route times are also expected to increase with different input
patterns, but the hypercube architecture may improve the timings.

The excess front end times in the CM are usually 2-3 times larger than the back
end times, except with the Coterie functions. For the faster functions (upper part in
Table 2), the excess front end times smooth the effect of the back end times, however
they also represent to some extend the magnitude of the back end times.

5.1.4 The IUA

On the TUA simulator, only back end times were available, which can be compared to
the back end times of the CM.

52

As mentioned in Section 6.1.1, on the IUA simulator Coterie functions are not
dependent on input data or the underlying structure. This is confirmed by the small dif-
ference between RegionSelectMin and RegionSelectMinl as well as by the small difference
between RegionBroadcast and RegionBroadcastl. In Table 3, the Coterie functions are
on the slow end of the basic functions, with the exception of the Route[Plus/! functions
on a non-trivial pattern. The Coterie functions are, however, not much slower than the
integer multiply function, which needs one fourth less time. The setup for the Coterie
network takes very little time, which brings the Coterie operations in the range of a
multiply function.

The Route[Plus] functions exhibit a significant dependency between the routing
scheme and the timings. Similar to the timings on the SUN, the functions without
wraparound are faster than the functions with wraparound. The Route/Plus] functions
are also faster than the Route functions, in most cases. In contrary to the SUN, however,
the distance between sending and receiving pixels and the number of collisions have a
distinct influence on the timings of Route[Plus/.

On the IUA simulator, a permutation with a translation of 20 in x and y direction and
executed with wraparound takes 100 times longer than the route-to-self scheme, and 30
times longer if executed without wraparound. Here, the overhead for computation of
the new coordinates for the wraparound as well as the computation of the right tile for
each pixel are responsible for the difference. In our experiments, only one tile was used,
however, the special case for one tile has not been implemented yet on the IUA simulator.
It is also notable that for the permutation with wraparound, the time difference between
Route and RoutePlus is proportionally much bigger than the time difference of Route
and RoutePlus without wraparound. The addition in RoutePlus delays the processing of
packets, so that some packets could ’fall behind’ due to the additional time spent on the
wraparound.

Collisions are caused intentionally in Route[Plus]_region by assigning the same destina-
tion pixel to several source pixels. In Route[Plus]_region, regions of up to 200 pixels with
extensions in x and y direction of 20 and 30 pixels and a shape containing many ’outlier’
paths, route to their master pixel. As the timings for Route[Plus/ region show, this slows
down the functions significantly. The reason is that in the RoutePlus function, collisions
between packets with the same destination result are resolved by combining the pack-
ets (i.e. executing the plus) right at the place of the collision. Therefore, congestion is
reduced. This scheme is not yet implemented in the Route functions. In summary, the
Route[Plus] functions are highly dependent on the underlying pattern, and timings can
vary by orders of magnitude.

53

ICCL function

time in microsec.

percent of total time

Anyl

Any

time to build Coterie
time to build Coteriel
time to build Selectl

int Index

float Index

int plus

float West

int West

int function abs

float function abs

float SelectMax

float Route within Cot.
int Route within Cot.

int Route

int SelectMax

int RoutePlus

int RoutePlus within Cot.
float plus

float multiply

float multiply with select
int multiply

int multiply with select
int RegionSelectMin

int RegionSelectMinl

int Reg.Broad. within Sel.
float Reg.Broad. within Sel.
int RegionBroadcast

int RegionBroadcastl
float RegionBroadcast

int Routel_transl 20

int RoutePlusl_transl 20
int Routel_transl 20_wrap
int RoutePlusl_transl 20_wrap
int RoutePlusl . region

int Routel region

Total

2.8
3.0
3.5
3.5
3.5
9.3
9.3
12.6
12.8
13.9
17.6
27.8
65.3
67.8
67.8
67.8
72.7
86.9
87.0
148.6
207.7
211.9
304.1
314.9
354.5
356.2
434.6
434.7
437.9
438.0
439.6
2020.3
2038.6
5892.8
7536.1
15086.7
726300.0
3913.6

0.08 %
0.09 %

0.24 %
0.24 %
0.32 %
0.33 %
0.36 %
0.45 %
0.71 %
1.67 %
1.73 %
1.73 %
1.73 %
1.86 %
2.22 %
2.22 %
3.80 %
5.31 %
5.41 %
777 %
8.05 %
9.06 %

11.10 %
11.11 %
11.19 %

11.23 %

100.00 %

Table 3: ICCL functions executed on the IUA simulator.

54

Concerning the other functions, the ranking is similar to the one for the back
end times on the CM. One exception is the time for the setup of the activity (Select).
The time difference of int multiply to int multiply with Select is negligible on the IUA
simulator, and also the time to build Selectl. The difference between int RegionBroadcast

and int RegionBroadcast within Select is negligible as well, where the function within the
Select scope is even slightly faster. Another difference to the CM is the different ranking
of the abs functions, which use the Select setup. On the CM, they were slower than the
Route[Plus] functions, while they are 2.5 times faster than the Route[Plus] functions on
the IUA simulator. These findings indicate that the setup of the Select environment does
not take much time on the IUA simulator, and also that the assignment operation is
influenced minimally by the Select environment.

The addition and multiplication functions have the same ranking as the CM back
end times. On the IUA simulator, however, the difference between the float plus opera-
tion and the int plus operation is bigger.

As on the CM, the nearest neighbor functions are on the fast end of Table 3 and
roughly equal to the int plus function. On the SUN, however, the int plus function is
double as fast as the nearest neighbor functions. Therefore, given these timings the par-
allel architectures seem to favour nearest neighbor functions.

The Any function does not exhibit different timings from the Any! function. The
Any[1] functions do not depend on the input data because the global query happens in
parallel.

In summary, on the IUA simulator the Coterie functions do not depend on the
input function or underlying structure, but the Route functions do to a large extend.
There is a big difference between float plus and int plus.

5.1.5 Comparison of the Basic Functions on the SUN, CM and IUA

For the purpose of a comparison of the the basic functions timings on the three machines,
Table 4 shows the proportion of SUN-CM total timings, and the proportion of CM-IUA
back end timings. In order to improve coherency, the functions with suffix one are not
included in Table 4 or in comparisons of all three machines in this subsection, because
they have no counterpart on the CM.

Looking at the times in Tables 1-3 (excluding the functions with suffix one), the
second slowest and second fastest functions differ by the factor 18 on the SUN, by the
factor 4 and 15 on the CM (total time and back end time) and by the factor 124 on the
TUA simulator. This supports the statement that the IUA depends more on the choice
of functions than the SUN or CM. The fact that the timings on the CM front end are
less diverse (but usually much greater) than the timings on the back end supports the

95

statement that the excess front end time smooths the effect of the back end time.

Program Part SUN / CM | CM / IUA (back end times)
int Index 1.59 48.39
float Index 1.71 72.40
int West 3.39 37.97
float West 3.53 42.63
int plus 1.73 32.48
float plus 1.72 5.99
int multiply 2.25 4.69
float multiply 1.48 5.06
int multiply with select 2.13 5.57
float multiply with select 1.70 6.54
int function abs 1.80 71.26
float function abs 1.78 65.27
Any 0.31 6.97
int SelectMax 2.33 7.72
float SelectMax 2.81 9.27
int Route 3.66 12.50
int Route within Cot. 3.44 12.65
float Route within Cot. 3.59 13.35
int RoutePlus 4.93 10.75
int RoutePlus within Cot. 4.82 10.97
time to build Coterie 18.86 98.33
int RegionBroadcast 2.39 11.00
int Reg.Broad. within Sel. 2.54 11.16
float RegionBroadcast 2.20 11.18
float Reg.Broad. within Sel. 2.55 11.19
int RegionSelectMin 2.12 15.78
Total 2.76 11.05

Table 4: Proportions of Execution Times.

Comparing the execution times of the three machines, all basic functions except
the Any function are faster on the CM than on the SUN (total time), and all basic
functions are faster on the [UA than on the CM (comparing CM-back end times). More
precisely, the CM is 0.3 times (for Any) up to 19 times (for the time to build Coterie)
faster than the SUN, and the IUA is 5 times (for int multiply) up to 98 times (for the time
for build Coterie) faster than the CM. Thus, the time difference from the IUA to the CM
seems to be greater than the difference from the SUN to the CM. This is supported by
higher numbers in the second column of Table 4 than in the first column. Exceptions to
this rule are for the first column the #me to build Coterie, which decreases dramatically
on the CM. Also, the nearest neighbor functions and basic Route/Plus/ functions have
high speedups for the CM. Functions with low speedup are the plus and float multiply

56

functions, as well as the abs functions. Any is slower on the CM than on the SUN. In
case different routing patterns are used for RoutefPlus] or different Coterie Networks for
RegionBroadcast /SelectMin /Maz, ratios between the SUN and CM change in favor of the
SUN. On the CM, Coterie timings could change by multitudes, whereas the time to build
Coterie only changed by 17 percent on the SUN, when a different Coterie Network was
used. The Route[Plus] operations on the SUN were insensitive to changes in the routing
pattern, too.

In the second column of Table 4, the Indez, West, int plus, abs functions and the
time to build Coterie have speedups above 30 from the CM to the IUA simulator. The
functions which have a speedup below 6.54 on the IUA are the float plus and multiply
functions. The speedup of the global functions Any and SelectMaz is above 6.97, but
still below 10. In case of different Coterie Networks for the Coterie functions, the ratios
could highly rise in favour of the IUA simulator, as the CM is highly sensitive to different
Coterie Networks and the IUA simulator is not. For the Route[Plus] functions, different
route patterns seem to trigger high times on the IUA simulator, which are comparable
to times on the SUN (see Table 3). In real applications, however, timings will not dete-
riorate as much, as will be shown with the line extraction algorithm.

In the following, some basic functions are compared individually on the three ma-
chines.

o Beginning with the Coterie operations, they are on the slow end for all the ma-
chines (except for Routel on the IUA). The CM is 2.5 times (and 7 times including
the setup time on the SUN) faster than the SUN, and the IUA is 11 times faster
than the CM. For different Coterie Networks, however, the times on the CM could
change dramatically. Comparing the two Coterie functions RegionBroadcast and
RegionSelectMin, RegionBroadcastis slower on the IUA, roughly equal on the SUN,
and faster on the CM than RegionSelectMin. The time differences between these
two functions is highest on the IUA, where it amounts to 20 percent.

Another function which is ranked differently on the machines is the time to build
the Coterie Network. While among the fastest functions on the CM and IUA,
it is slowest on the SUN. The reason for the fast setup on the CM and IUA is
that only a Plane has to be defined, and on the IUA electrical switches have to be
set. In the SUN, however, an array with the master pixel is defined for each element.

e The West function seems to fit better on parallel machines, as both speedups from
the SUN to the CM and from the CM to the IUA are higher than the speedups of
the total times of the basic functions.

57

e The Any function is the fastest instruction on all three machines. Although the
time on the SUN is dependent on input it is not expected to exceed double the
time of Any! (in Anyl, the first detected ’one’ is in the center of the image).

e Arithmetic functions, like plus or multiply are part of almost every program,
which makes them an important factor in timings.
As noted earlier, the plus functions have a pretty low speedup from the SUN to
the CM, as well as the float multiply operation, which could be due to the floating
point accelerator in the SUN. It is remarkable, however, that the parallel CM is
not that much faster than the SUN. For the multiply and float plus functions the
speedup from the CM to the IUA is also below the speedup of the total times for
the basic functions. The speedup from the CM to the IUA simulator for the int
plus function, however, is very big.

o For the Route functions with the route-to-self scheme, the speedups are in the
range of speedups of the total times for the basic functions. In case of different
route patterns, however, the speedups can change dramatically to the favor of the
SUN (see Tables 1 and 3). Timings for the Routel_region function, however, are
close to the worst case scenario. For timings of Route functions in real vision ap-
plications, see the timings for the line extraction algorithm in section 6.3.

e For the Select setup, comparisons are made indirectly. In the SUN/CM compar-

ison, the multiply shows no significantly different speedups from the multiply with
Select, where the speedup for the multiply function is low. The speedup of the abs
functions, which use the Select setup, is below the speedup of the total times for
the basic functions. This supports the hypothesis that the speedup from the SUN
to the CM for the setup of Select is below the speedup of the total times for the
basic functions.
In the CM/IUA comparison, the abs functions exhibit the second and third biggest
speedup. Also, the speedup of the multiply with Select functions is slightly higher
than the one of the multiply functions, which, however, does not make any sug-
gestions regarding the magnitude of the speeup. The high speedup for the abs
functions points to a speedup above average for the Select setup from the CM to
the IUA simulator.

In summary, these timings provide a first insight in the speedups of timings be-
tween the machines. There are, however, too many unknown influences which could
change the timings of a program completely. For example, it is not known how much
slower the Coterie functions are on the CM with different Coterie Networks, or it is not
known how the Route functions behave on the CM, or to what extend the
Route[Plus]_region timings can be generalized to real applications on the IUA simulator.

58

What is known so far is that the IUA simulator is the fastest machine, and seems to be
especially suited for the Coterie functions, which are in the range of the multiply function.
The CM displays the highest speedup to the SUN in the nearest neighbor operations,
and the lack of a floating point accelerator in the testing machine is evident. The SUN
has the least amount of dependency on input data, and has a floating point accelerator.
Nevertheless, given the proportions in Table 4, it is the slowest machine.

The following algorithms are a combination of the above presented functions. We
can see which functions are used for which particular vision techniques, and how the
techniques influence the total timing.

5.2 The Low-Level Portion of the DARPA Benchmark

The benchmark ([7])intends to be a framework for testing machine performance on a
variety of vision operations and algorithms, which require communication and control
across algorithms and representations. The goal was not to perform a given task in the
best way possible, but to perform typical vision tasks in a typical sequence, in order to
test an architecture.

In its full form, the benchmark requires low and intermediate level processing, which
can also be separated into bottom-up (data-directed) and top-down (knowledge or model
directed) processing. In the ICCL, which operates on the SIMD CAAPP chip, only the
low-level portion of the benchmark is executed. The low-level portion developed for the
ICCL includes no floating point operations.

The whole benchmark task involves recognizing a 2 1/2 D 'mobile’ sculpture composed
of rectangles, given images from intensity and range sensors. The low-level part is more
specific: It involves recognizing rectangles, given the intensity image.

Subsequently, the sequence of steps of the algorithm is described without detail.
Recognition of the rectangles of the mobile sculpture is performed by first splitting the
intensity image into regions of equal intensity and marking the boundary pixels of the
region. This presumes that only pixels of equal intensity can be grouped into rectangles.
Given the connected boundary pixels, the k-curvature is computed and corner pixels are
extracted and connected. Among the corner pixels, only corners above a certain thresh-
old are selected. Then, the convex hull is computed over the selected corner chain, and
the new corners are marked and connected. Angles between lines connecting the new
corners are recomputed, and those regions are selected which have three connected right
angle corners. The middle corner in the chain of the three connected right angle corners
is the master corner. Finally, the selected regions are assumed to contain rectangles, and
attributes are computed and reported, using the master corner.

It can be seen that with the above construction, occluded rectangles can also be recog-
nized, as long as three right angles are still present. The convex hull mechanism overlooks
the occluded sides.

59

In the following, a more detailed step-by-step description is given, along with some

off-hand information about the frequency of operations in the respective program parts:

S

ot

Read in image
The time for reading a parallel variable is reported.

Connected Components

The parallel connected components algorithm is performed which links pixels of
equal intensity.

The following operations occur four times: test for equality, inversion and the
nearest neighbor (retrieving the north, south, east or west value), test if on the
border of an image and insert bit operation.

Select Masters
A unique pixel is selected as master of each region in this operation.
This involves one RegionSelectMaz operation, and one Indez operation.

Label Region
Here, the row and column index of the master pixel is broadcast in each region.
This involves one Indez operation and one RegionBroadcast operation.

Trace Edges

The boundaries of the regions are traced. A pointer exists for every pixel on the
boundary, which points to the successor pixel on the boundary (that is, the south,
north, east or west).

This involves mainly nearest neighbor operations, 'and’, ’or’, 'not’ operations, bit-
access operations and activity operations (mainly Select).

Coterie operations are not used (a coterie network is built for display purposes
however).

One while loop makes sure the whole boundary is traced in every region. The ter-
mination is tested with Count. This makes the trace time input-dependent.

K-Curvature

Corners in the region boundary are found here.

This is accomplished by moving K pixels along the boundary links from the pre-
vious step in one direction, and K pixels in the other direction. With the help
of a lookup table, approximate angles between the boundary segments on the two
sides of the pixel in question are computed. Then, a one-dimensional Gaussian
smoothing function is computed on the K * 2 - 1 wide mask, constructed out of
the two segments from above, which operates on the approximate angles of every
pixel. The Gaussian smoothing value is the sum of the product of the angles with
a lookup table value.

60

Finally, the first derivative of the Gaussian smoothing value is computed over the
connected pixels on the region boundary and zero crossings are obtained by com-
paring the sign of the difference.

In the end, the corners are selected at places with zero-crossings where the smooth-
ing value and the approximate angle exceed a particular threshold.

The operations involved in this part of the benchmark do not differ much from
the previous part: Again, mostly dyadic operators like subtraction, multiplication,
addition, and, or and test for greater, less and equality are used, and negation and
inversion. Apart from that, again the nearest neighbor operations and activitiy
operators are used frequently. Except for nearest neighbor operations, no other
communication function is used.

A typical feature of this routine is that everything is done four times (in the four
directions), which can be quite time consuming.

. Convez Hull

Here, the ’list’ of corners from the previous part is used, and the intention is to link
those corners together to build a convex hull.

First, the boundary corners are ranked depending on the quotient of the difference
of their row and column index to the row and column index of the master pixel of
the region. Then, links between the corners are created depending on their rank.
For every corner, a determinant is computed, which takes into account the row and
column indexes of its two connected corners. Corners with negative determinant
are removed from the set of corners, and the links are rebuilt completely depending
on the ranking of the remaining corners. Then, the determinant is computed again,
and so forth. This continues until all the determinants of the corners turn positive,
and no corner is deleted from the corner set.

The main features in this routine are the frequent use of activity functions, the Co-
terie functions and the front-back end communication functions (Any and Count).
Test functions, (except for Any and Count) such as greater or less, are used less
frequently.

The while loop is the main part of the convex hull. Its termination depends on the
outcome of the Any and Count functions and makes the timings of the convex hull
part heavily dependent on the input.

. Compute Rectangle Attributes

The goal here is to compute the attributes of all selected rectangles in the image.
The input to this timing section is the corner pixels along with the links between
them which were obtained in the ’Convex Hull’ routine.

First, the angle of a corner is computed. This time (which is different from the
angle in the K-Curvature part), the angle between the two straight line segments is

61

computed which connect the corner to both its linked corners. Angles within some
tolerance are selected as right angles. After that, the criterion is applied that some
object, possibly occluded, can only be defined as a rectangle if it has at least three
connected corners that are right angles. Regions with less than three right angles
are discarded. For the remaining valid regions, a while loop determines for every
corner if its connected corners are right angles. The master corner is the corner
which has a right angle itself and where both its connected corners have right angles
as well. Only regions with such a master corner are assumed to build a rectangle.
The computation of the rectangle attributes then uses the connected corners of
the master corner: The midpoint is computed by taking the average of the pair of
connected corners. The length of the minor and major axis are the length of the
line segments drawn from the master corner to either of its connected corners.

Also, the orientation of the major axis with respect to the X axis is computed.

As in the previous part, there are many Coterie and activity operations. The
nearest neighbor operations are not present here, instead there are many Indez
operations. For the test of a right angle corner being connected to two right angle
corners as well, a while loop is necessary. This makes the timing dependent on the
input again.

A major time-consuming occurrence is the division in the integer square root func-
tion, which is used to compute the lengths of the major and minor axis and occurs
36 times. Concerning trigonometric operations, the acos at the end of this timing
section is not relevant, because it uses a look-up table.

9. Access Rectangle Attributes

For all the regions where rectangles were found in the above described sense, the
master pixel outputs the attributes, which are: coordinates of the midpoint, the
angle of the major axis with the X-axis, the major and minor axis length, and the
intensity value of the master pixel.

A while loop goes through all the valid rectangles. The Access operation commu-
nicates between the back and front end, SelectMaz searches for the maximum in
the whole active image and Indez accesses the row and column index of the master
pixel.

An important factor in the evaluation of the benchmark timings is that it does
not use float variables and Route. It uses many short variables, like short and char, for
which our retrieved ratios from Table 4 are not really valid, but could give some insights.

62

5.2.1 The Timings

The SUN

Program Part time in sec. | percent of total time
Read in Image 0.29 0.72 %
Connected Components 0.06 0.15 %
Select Masters 0.09 0.22 %
Label Regions 0.1 0.25 %
Trace Edges 27.65 68.54 %
K Curvature 7.34 18.20 %
Convex Hull 1.73 4.29 %
Compute Rectangle Attributes 2.98 7.39 %
Access Rectangle Attributes 0.1 0.25 %
Total 40.34 100.00 %

Table 5: Low level portions of benchmark, executed on the SUN.

The CM
Program Part back e. | front e. total perc. perc. perc.tot.
time time time ba.e.ti. fr.e.ti. time

Read in Image 13.89 125.31 139.20 0.10 % 0.59 % 0.39 %
Connected Components 8.36 31.41 39077 006%| 015%| 011%
Select Masters 148.17 15.45 163.62 1.04 % 0.07 % 0.46 %
Label Regions 128.11 13.79 141.90 0.90 % 0.06 % 0.40 %
Trace Edges 3840.68 | 13658.43 | 17499.11 | 26.94 % | 63.98 % | 49.15 %
K Curvature 1216.97 | 3903.04 | 5120.01 854% | 18.28% | 14.38 %
Convex Hull 6482.47 | 1705.94 | 8188.41 | 45.47 % 8.00 % | 23.00 %
Compute Rect. Attrib. 2407.06 | 1841.02 | 4248.08 | 16.88 % 862% | 11.93 %
Access Rect. Attrib. 11.25 54.32 65.57 0.08 % 0.25 % 0.18%
Total 14256.96 | 21348.71 | 35605.66 | 100.00 % | 100.00 % | 100.00 %

Table 6: Low level portions of benchmark, executed on the CM, times in millisec.

63

The TUA

Program Part time in millisec. | percent of total time
Read in Image 0.012 0.015 %
Connected Components 0.082 0.098 %
Select Masters 0.475 0.566 %
Label Regions 0.566 0.674 %
Trace Edges 27.432 32.703 %
K Curvature 10.606 12.644 %
Convex Hull 24.075 28.701 %
Compute Rectangle Attributes 19.588 23.351 %
Access Rectangle Attributes 1.048 1.249 %
Total 83.883 100.000 %

Table 7: Low level portions of benchmark, executed on the IUA.

Timing Proportions

5.2.2 Comparison of the Timings

In the tables 5, 6 and 7, the results of the timings for the SUN, the CM and the IUA
are presented. For the CM times, several runs with the same input were made, and the

Program Part SUN / CM [CM / IUA (back end times)
Read in Image 2.08 1138.52
Connected Components 1.63 101.46
Select Masters 0.55 312.13
Label Regions 0.70 226.50
Trace Edges 1.58 140.01
K Curvature 1.43 114.75
Convex Hull 0.21 269.26
Compute Rect. Attr. 0.70 122.89
Access Rect. Attrib. 1.53 10.74
Total 1.13 169.96

Table 8: Proportions of Execution Times.

result presented is the average of these runs.

In table 8, the ratios of the timings are presented. The SUN/CM ratio is the SUN time
divided by the total CM time, and the CM/IUA ratio is the CM back end time divided
by the IUA (back end) time. As before, the total times of the SUN and the CM are

compared, whereas the back end times of the CM and the IUA are compared.

64

It is interesting to note that the CM is almost as slow as the SUN, however the
IUA is (comparing back end with back end times) 170 times faster than the CM.
It is also striking that, comparing the percent numbers, the SUN percentages are similar
to the percentages of the waiting time of the CM back end, and the back end percentages
of the CM are similar to the percentages of the IUA.
In the following, the respective parts are investigated separately.

e In the small program segment Connected Components, there is only a test for
equality, inversion, and query for size of the parallel variable (Size). As seen in the
above description, these dyadic or monadic operators are used frequently in the
benchmark. The tables show that for Connected Components, the CM is about 1.5
times faster than the SUN, and that the IUA is about 100 times faster than the CM.
This clearly minimizes the difference between the CM and the IUA, and reverses
the relation between the SUN and the CM from the above described segments.
The use of the function Size should be in the range of the function Indez, because it
is just an access to a member of the class of the parallel variable. Nevertheless, with
the measured times for the basic functions which were tested on integer and float,
a timing proportion CM-IUA of 100 is not reached (except for the non-explicable
timings).

e In the Select Masters part of the benchmark, one Coterie network is built, and
the Indez and RegionSelectMaz functions are executed within it. This gives a good
estimate of how fast the Coterie operation RegionSelectMaz is with different re-
gions, as the Indez function is almost negligible on all machines. We see that the
SUN is two times faster in Select Masters than the CM, and the IUA is about
312.13 times faster in Select Masters than the CM.

e Another program segment, which uses predominantly Coterie operations is the La-
bel Regions segment, which builds up a Coterie network and does an Indez and
a RegionBroadcast operation. Here, the SUN is 1.5 times faster than the CM and
the IUA is 300 times faster than the CM. These proportions are very similar to the
Select Masters proportions.
The timings for the two segments indicate clearly that the Coterie operations are
a major bottleneck for the CM, and that the IUA is very fast with integer Coterie
operations.

e In Trace Edges, the CM is 1.5 times faster than the SUN, and the IUA is 140
times faster than the CM. This is close to the average, but slightly in opposition
to the Coterie constellation.

In Trace Edge, apart from some dyadic and monadic operators, there are also the

65

nearest neighbor operations. From the basic operations we know that in the nearest
neighbor operations, the IUA is 26 times (int) faster than the CM, and the CM is
3.5 (int) times faster than the SUN. This CM-IUA proportion is one of the higher
numbers of all functions, and points to a high ratio with neighboring functions on
UCharPlane in Trace Edges.

Furthermore, in Trace Edges, the Select active function is sometimes used, whose
timings are not reasonable with the IUA simulator.

For the K-Curvature part, the CM is 1.5 times faster than the SUN, and the IUA
is about 110 times faster than the CM. In this segment, there are no Coterie oper-
ations, and the participating functions and factors are similar to the Trace Edges
part.

In the Convex Hull segment, the SUN is roughly 5 times faster than the CM,
and the IUA is roughly 270 times faster than the CM. It is very surprising that the
SUN is 5 times faster in this segment than the CM, because this difference was not
recorded in any of the listed basic functions before. Because the only invariant in
the timings of the functions is represented by the Coterie operations, this means
that either the Coterie network produces an optimal sequence of storage accesses
in the SUN, and/or the Coterie regions have an inherent time-taking shape, like a
spiral.

Looking at the division of the total time into front end and back end time on the
CM shows that actually, the back end time is about 4 times greater than the front
end time. In the basic functions, the only functions whose back end time was
greater than the excess front end time were the Coterie operations.

In the Compute Rectangles Attributes segment, the SUN is 1.5 times faster
than the CM, and the IUA is 120 times faster than the CM. The advantage of
the SUN compared to the CM is smaller than in the Convex Hull, and also the
advantage of the IUA over the CM is below the overall average. The CM-IUA
comparison is lower than average and the SUN-CM comparison is still the reverse
of most routines. The fast speed of the SUN compared to the CM still can only be
explained by the Coterie operations, which are frequent in the routine’s loop. In
other routines, the influence of the Coterie operations is diluted by operations like
the 36 integer divisions in the int square root operation.

In the Access Rectangle Attributes segment, the CM was 1.5 times faster than
the SUN, and the IUA was roughly 10 times faster than the CM. Here, the Access,
the Any operation, the SelectMaz operation, the Index operation and the Select
call appear in the program segment. The functions SelectMaz and Any are global
operations, which have a low IUA-CM ratio for integers and float. Indez has a

66

high ratio, but is only used once. With shorter Char variables, the ratio might be
somewhat higher, but would still be on the low end.

It is surprising that the IUA is 60 times faster than the CM because it is only 1.3
times faster for the Any function, 4 times faster for int SelectMaz, roughly 25 times
faster for Indez, and the Select calls are much less than a factor of 60 faster on the
IUA than on the CM. The only function which could cause the difference is Access.

In summary, the timings for the benchmark confirmed the hypotheses previously
stated: The Coterie network is a major bottleneck for the CM. Every time Coterie
operations are present, (in Select Masters, Label Regions, Convex Hull and Compute
Rectangle Attributes) the SUN is faster than the CM. Also, most of these times, the IUA
is roughly more than 300 times faster than the CM.

When there are no Coterie operations present, usually the CM is 1.5 to 2 times faster
than the SUN, and the IUA is 100 to 200 times faster than the CM.

5.2.3 The *Lisp Timings for the Benchmark

Also *Lisp times are reported which were obtained by Thinking Machines on the CM-2,
with different vp-ratios. In case the vp-ratio was greater than one, (it is 16 with Con-
nected Components + Select Masters + Label Regions and Trace Edges), the timing was
divided by the vp-ratio. The used input is different from the one used for the previous
timings in the ICCL. The input image also varies in size from the segments used above.
N.A. in the table means that the time for a particular routine was not reported.

Program Part time in millisec.
Read in Image 25.00
Connected Components +
Select Masters +

Label Regions 13.75
Trace Edges 11.875
K Curvature 15.03
Convex Hull 0.18
Compute Rectangle Attributes | n.a.
Access Rectangle Attributes n.a.
Total n.a.

Table 9: Low level portions of benchmark, executed on the CM in *Lisp.

It is very difficult to compare these times with the ICCL implementations on the
SUN, CM and IUA simulator, first because the input image is different, second because

67

some timings were recorded with virtualization, and third because some times are miss-
ing. The only times directly comparable are the computation of corners in K-Curvature,
because it does not depend heavily on the input data (no loop is dependent on the input,
and no Coterie operations are used there).

With 15.03 milliseconds, the K Curvature takes somewhat longer than the K-Curvature
in the TUA simulator (11.21 msec), however, front end time was not calculated for the
IUA simulator. This time is 341 times faster than the time recorded for the K-Curvature
ICCL implementation on the CM, comparing front end times. This shows that there is
a large overhead involved in implementing the ICCL on the CM on top of PARIS.

The segments Connected Components, Select Masters and Label Regions in Ta-
bles 5, 6, 7 and 8 seem to be summarized into Label Components. Timings can be
dependent on input data with all the parts except K-Curvature.

The *Lisp Implementation takes 13.75 milliseconds for the Label Components, whereas
the TUA takes 2.88 milliseconds (5 times faster), but the CM version of the ICCL takes
20 times longer than the *Lisp implementation.

The Trace Edges segment is faster than the IUA by the factor 2.3. The Convex Hull is
very fast, exactly 134 times faster than on the IUA.

The differences in timing for the program segments except for K-Curvature could have
all kinds of causes, from a complicated Coterie network patterns to many corners in the
regions. Therefore no statements can be made in comparison.

5.3 The Fast Line Extraction Algorithm

In this subsection, the times on the three machines of the previously introduced fast line
extraction algorithm are reported. The timing intervals are equal to the steps discussed
in section 5.

Timings were done with the same algorithm on the three machines, however, in order to
run the line extraction algorithm on the simulator, some commands were slightly changed.
For example, the TUA simulator does not support the float RoutePlus operation or the
float RegionSelectMin/Maz operations, so the variables which should be processed by
float RegionSelectMin/Maz operations were defined as int. In this case, it is possible to
convert all the float RoutePlus operations into Coterie operations. On the CM, as usual,
the algorithm is run several times and the times are averaged.

68

Program Part

time in seconds

perc. of tot. time

Input

Output
Total

Compute Mask
Create Bucket Scheme
Build two Coteries
Create Counts in Coterie
Build Final Coterie
Compute Master Pixel
Split Regions into three
Compute Peak Points
Compute Line
Compute Endpoints
Filter Length

0.20
0.12
0.24
0.16
0.25
0.05
0.08
0.49
0.74
0.57
0.16
0.20
0.08
3.34

5.99 %
3.60 %
7.19 %
4.79 %
7.49 %
1.50 %
2.40 %
14.67 %
22.16 %
17.07 %

100.00 %

4.79 %
5.99 %
2.40 %

Table 10: Fast Line Extraction Algorithm, executed on the SUN.

Program Part time time total perc.ti. perc.ti. perc.

back end | front end | time ba.end fr.end tot.ti.
Input 14.83 42.08 56.92 0.61 % 2.56 % 1.39%
Compute Mask 13.09 50.41 63.50 0.53 % 3.06 % 1.55 %
Create Bucket Scheme 40.12 144.91 | 185.03 1.64 % 8.80 % 4.52 %
Build two Coteries 23.93 09.93 | 123.86 0.98 % 6.07 % 3.03 %
Create Counts in Coterie 241.74 67.37 | 309.10 9.88 % 4.09 % 7.55 %
Build Final Coterie 6.08 22.94 29.02 0.25 % 1.39 % 0.71 %
Compute Master Pixel 81.00 18.01 99.01 3.31% 1.09 % 242 %
Split Regions into three 332.22 190.83 | 523.05| 13.58% | 11.59% | 12.78 %
Compute Peak Points 1147.32 356.84 | 1504.16 | 46.90 % | 21.68 % | 36.75 %
Compute Line 178.90 179.20 | 358.10 731 % | 10.89 % 8.75 %
Compute Endpoints 175.83 66.62 | 242.45 719 % 4.05 % 5.92 %
Filter Length 104.41 74.34 | 178.76 4.27 % 4.52 % 4.37 %
Output 87.06 332.51 | 419.56 356% | 20.20% | 10.25%
Total 2446.53 1645.98 | 4092.51 | 100.00 % | 100.00 % | 100.00 %

Table 11: Fast Line Extraction Algorithm, executed on the CM with times in
milliseconds.

69

Program Part

time in millisec.

perc. of tot. time

Input

Compute Mask
Create Bucket Scheme
Build two Coteries

Build Final Coterie
Compute Master Pixel
Split Regions into three
Compute Peak Points
Compute Line
Compute Endpoints
Filter Length

Output

Total

Create Counts in Coterie

0.015
0.246
2.391
0.361
2.787
0.122
0.854
7.295
10.774
14.399
2.195
0.493
0.041
41.975

0.037 %
0.587 %
5.696 %
0.861 %
6.640 %
0.290 %
2.035 %
17.378 %
25.668 %
34.304 %
5.230 %
1.175 %
0.099 %
100.000 %

Table 12: Fast Line Extraction Algorithm, executed on the IUA.

Program Part

SUN / CM

CM / IUA (back end times)

Input

Compute Mask

Create Bucket Scheme
Build two Coteries
Create Counts in Coterie
Build Final Coterie
Compute Master Pixel
Split Regions into three
Compute Peak Points
Compute Line
Compute Endpoints
Filter Length

Output

Total

3.51
1.89
1.30
1.29
0.81
1.72
0.81
0.94
0.49
1.59
0.66
1.12
0.19
0.82

962.99
53.13
16.78
66.23
86.73
50.00
94.81
45.54

106.49
12.42
80.09

211.70

2102.90
58.29

Table 13: Proportions of Execution Times.

70

It is interesting that by replacing two Routes with RegionBroadcastand converting
float numbers to integer in order to execute on RegionSelectMaz, the CM actually runs
slower (4092 versus 3357 seconds). This could mean that even with non-trivial regions,
the CM prefers Route with collisions over a RegionSelectMaz function.

With this algorithm, the CM is even slower than the SUN. If the algorithm without
the changes due to the IUA simulator is executed, however, the CM is slightly faster than
the SUN again. The times of the CM and the SUN are comparable, whereas the IUA

timing is about 60 times faster than the CM (comparing back end times), see also Table
13.

This algorithm works mostly on integer and floating point, so the ratios of Table 4 will
be more valid.

1. In the Compute Mask part, there are many nearest neighbor, comparison and
Select operations, because the mask is computed. The nearest neighbor (high ratio)
and Select operations seem to balance out in the CM-IUA ratio.

2. The Create Bucket Scheme part contains many comparisons, arithmetic opera-
tions and especially Select operations, because in this part, the atan is computed.
What is peculiar in is that the excess front end time on the CM is 3.5 times larger
than the back end time. In this part, there are many control constructs, which are
executed on the front end. The ratio SUN-CM, however is still above the average
for this algorithm. The CM-IUA ratio is remarkably low in this part. Arithmetic
operations certainly contribute to the low CM-IUA ratio, see Table 4. It is un-
known how the Select functions contribute to the ratio, since their execution time
could be small.

3. Build two Coteries basically runs two connected components algorithms for the
two region representations. The main part of the connected components algorithm
is again nearest neighbor operations, and besides that, there are test for edge, and,
or, test for equality, inversion and shift. The CM is slightly faster than the SUN
and the CM-IUA ratio is within the average range.

4. In Create Counts in Coterie, there are 4 RegionBroadcast on IntPlane, 2 Re-
gionSelectMin on IntPlane and 2 RoutePlus on IntPlane operations, as far as com-
munication operations are concerned, which make up the main part. It is striking
in Table 13 that, as soon as Coterie operations are present in a program, the SUN
is faster than the CM. The distance in speed between the IUA and the CM also
lies well above average.

5. The timings for Build Final Coterie should be similar to Build two Coteries,
with the difference that in this segment, no threshold and no edge operation was
tested. It is noticeable, however, that the CM is faster than before, compared both
to the SUN as well as to the IUA. This could be due to the absence of the edge
function, which could be similar to the Indez function. The Indez function has a
fairly low SUN-CM ratio and a fairly high CM-IUA ratio. Other functions, how-
ever, like the absence of two ’and’ functions could have influenced the outcome as
well.

71

10.

11.

. In Compute Master Pixel, the main operations are one RegionSelectMin and

one RegionBroadcast on IntPlane each. Apart from that, there is an Indez, a shift
and an and operations. The timing of this part shows again that in case a pro-
gram piece contains Coterie operations, the timings of the other operations can be
neglected, the SUN is faster than the CM, and the IUA-CM ratio is much greater
than the average factor in the program.

. The part Split Regions into three consists mainly out of Coterie functions (4

RegionBroadcast, 3 IntPlane and 1 on BitPlane, 4 RegionSelectMin/Maz on Int-
Plane), arithmetic functions and Select functions. The SUN is slightly faster than
the CM, but the factor CM-IUA is below average, i.e. the CM is faster compared
to the IUA than usual. The arithmetic operations are probably the primary reason
for this effect.

. In Compute Peak Points, the differences are very striking: The SUN is 2 times

faster than the CM, and the IUA is about 100 times faster than the CM. In this
part, there are 18 RegionSelectMaz operations on IntPlane and 18 RegionBroadcast
operations on ShortPlane and one RegionBroadcast on BitPlane, which explains the
differences. This is the most time-taking section of the algorithm.

Compute Line has only 3 RegionBroadcast operations (2 on IntPlane and on
BitPlane), but many arithmetic operations and Select invocations. Therefore, the
CM is again faster than the SUN, and the IUA is only about 10 times faster than
the CM.

Compute Endpoints has 2 RegionSelectMin/Maz and 2 RegionBroadcast opera-
tions on integer, and some arithmetic operations. The Coterie operations seem to
dominate the timings.

Filter Length has 2 RegionSelectMin/Maz and 3 RegionBroadcast operations, all
are on 8-bit variables. As the Coterie operations in this section are all on 8-bit
variables, the CM-IUA ratio is higher than that in the previous section. The
section itsself, however, is the second least time-taking.

In order to narrow down the instructions responsible for timing differences in non-

Coterie sections, more experiments would have to be executed. The experiments done so
far e.g. do not consider different length variables and do not comprise enough functions.
Therefore, it is hard to come up with reasons for specific timing sections, except if there
are Coterie operations in them. If there are and the timing exhibits lower SUN-CM ratio
as usual and higher CM-IUA ratio as usual, the influence of Coterie functions is distinct.
It has also been observed that these ratios are more distinct the smaller the field is on
which the Coterie function operates.

72

5.4 The Depth Recovery Algorithm

In this subsection, another vision algorithm ([3]) is briefly introduced and run on the 3
different machines.

In this algorithm, a parallel dense depth map is created, with the input of temporally
separated images from a forward-moving sensor. Correspondences between them are es-
tablished in parallel through correlation. The correspondences are used to determine the
translational and rotational motion parameters of the camera through a parallel motion
algorithm. This is done by first determining the approximate translational and rotational
parameters and then constraining the search for the exact translational and rotational
parameters. Finally, the dense map is computed from the image correspondences and
the computed motion parameters.

As with the Fast Line Extraction Algorithm, in this algorithm the float Region-
SelectMin /Maz operations are changed to int RegionSelectMin/Maz operations in order
to avoid problems with the IUA simulator.

Program Part times in seconds | perc. of total time
Correlation_9x9mask 30.16 46.85 %
Correlation_3x3mask 12.90 -
Translation part 1.22 1.90 %
Translation depth 0.58 0.90 %
Translation and rotation 32.41 50.35 %
Total 64.37 100.00 %

Table 14: Depth Recovery Algorithm: Timings run on SUN in seconds.

The total result with the original algorithm is also 64.37 seconds.

Program Part time time | total | perc. back | perc. front perc.
back e. | front e. | time | end time end time | tot.time
Correlation_9x9mask 4.32 11.00 | 15.32 85.92 % 14.85% | 19.36 %
Translation part 0.47 1.22 | 1.69 9.35 % 1.65 % 2.14 %
Translation depth 0.16 0.31 | 0.47 3.18% 0.42 % 0.59 %
Translation and rotation 0.078 61.56 | 61.64 0.016 % 83.09% | 7791 %
Total 5.028 74.09 | 79.12 100.00% | 100.00 % | 100.00 %

Table 15: Depth Recovery Algorithm: Timings run on CM in seconds.

The total result with the original algorithm is 82.31 seconds.

73

Program Part times in seconds | perc. of total time
Correlation_9x9mask 0.22740 92.97 %
Correlation_3x3mask 0.16583 -
Translation part 0.01017 4.16 %
Translation depth 0.00441 1.80 %
Translation and rotation 0.00262 1.07 %
Total 0.24460 100.00 %

Table 16: Depth Recovery Algorithm: Timings run on IUA in seconds.

Program Part SUN /CM | CM / IUA (back end times)
Correlation 9x9mask 1.968 18.997
Translation part 0.722 46.214
Translation depth 1.234 36.281
Translation and rotation 0.526 29.771
Total 0.814 20.556

Table 17: Proportions of Execution Times.

In the first step, the correspondences are found. This requires many nearest neigh-
bor, plus operations and one RoutePlus operation, which operate all on short variables.
Table 17 shows the proportions of execution times. The CM-IUA ratio in Table 17 lies
between the CM-IUA ratios from Table 4 for int plus and nearest neighbor functions
(which is 35) and the CM-IUA ratio for int RoutePlus functions (which is 10). Taking
into account the execution times and number of occurrences of the functions, the final
ratio would be higher than the 19 in Table 17. This indicates that the RoutePlus oper-
ation with a non route-to-self pattern is not as costly on the CM as it is on the IUA.
The SUN-CM ratio for finding correspondences shows that executing the RoutePlus op-
eration on the CM with a non-route-to-self pattern is costlier than executing it with a
route-to-self pattern. The reason is that despite the higher ratios in Table 4 for nearest
neighbor and int RoutePlus operations, the SUN-CM ratio is as low as for the int plus
operation.

The second part computes the approximate foe by the modal hough method from
the displacements obtained in the first step. In the translation part, two Coterie oper-
ations (int RegionSelectMin/Maz) and some nearest neighbor operations are executed,
apart from front end operations.

Because of the input data dependence of the CM for the Coterie functions, the CM-IUA
ratio is much higher than in Table 4 for the Coterie functions, and the SUN-CM ratio is

much lower than in Table 4.

In the Translation depth part, the depth map is found from the foe computed in
the last step. This is effectively the approximate translational motion. There are mainly

74

floating point plus, minus, multiply and divide operations in this part. The SUN-CM
ratio conforms with the ratio in Table 4, but the CM-IUA ratio is much higher than the
CM-IUA ratio for floating point arithmetic operations in Table 4. One explanation for
this is that the int plus operation with its high CM-IUA ratio helps in raising the overall
CM-IUA ratio for this part.

The Translation and Rotation part distributes hypothesized translations along
the pixels, and for each pixel finds the optimal rotation, where the foe obtained in the
second step is used. Then, the depth map is obtained. This part contains many front
end instructions, but also some Select functions for the back end. The fact that there
are many front end instructions in this part is proven by Table 16, where the fourth part
has the biggest percentage of total time for the front end of the CM, while its back end
percentage is very small.

Part two of the depth recovery algorithm is another example which shows that the
Coterie functions contribute to the speed up of the IUA versus the Connection Machine.
Part one shows that the RoutePlus function with non-route-to-self pattern are slower
on the CM than the route-to-self structure. Also, part one shows that times for the
RoutePlus function could increase by a larger factor in comparison to RoutePlus function
with route-to-self pattern than on the CM.

The algorithm also shows that Coterie functions are useful in the motion field, in
this case to find the best displacement vector in each region.

75

6 Summary

This work described the transportation of the ICCL onto the Connection Machine, the
problems connected with the transportation, and comparisons of the performance for
the ICCL on the CM, the SUN and the IUA simulator. As there were not many vision
algorithms implemented in the ICCL yet, a new line extraction algorithm was developed,
which, together with the benchmark and the dense depth retrieval algorithm, served as
a good testbed for the performances of the ICCL on the CM.

The different vision algorithms address different operations in the ICCL. The benchmark
algorithm uses different size variables, but no floating point operations and no Route[Plus]
operations. The dense depth algorithm uses mainly nearest neighbor and RoutePlus op-
erations, while the line extraction algorithm uses many Coterie, floating point and some
RoutePlus operations.

Experimental results show that the ICCL implementation on the IUA is fastest
for all algorithms, and that the SUN and CM implementations have mostly comparable
speeds. The CM lacks speed especially when Coterie operations are used frequently. This
is apparent in the line extraction algorithm, where the SUN is always faster than the CM
when more Coterie operations are used. Concerning RoutePlus operations, the CM gets
slower when the pattern is changed from route-to-self to non-route-to-self, while the SUN
timings stay the same; evidence is found for this in the first part of the depth retrieval
algorithm. With evidence from the ’Compute Mask’ and 'Compute Line’ part of the line
extraction algorithm, the CM is faster in nearest-neighbor functions than the SUN, and
slightly faster in arithmetic functions.

The IUA simulator is fastest in all algorithms and operations. As shown in Table
4 and the percentage of time it spends in ’‘Compute Line’ in the line extraction algorithm
(Table 12), it has a smaller advantage for floating point ’plus’, but is still faster than
the CM and SUN. The timings for the benchmark, which are faster than the CM by
factors of over one hundred, show that using no floating point operations, smaller plane
sizes and no routing operations achieves very high speedups over the CM. This is also
due to the missing floating point accelerator in the IUA. The speedups in comparison to
the CM are also biggest if many Coterie operations are used on the IUA simulator (see
'Select Masters’ in benchmark, '‘Compute Peak Points’ in line extraction algorithm and
"Translation part’ in depth recovery algorithm).

The point in this paper is to show that several vision algorithms need to use the
Coterie Networks and that it has no equivalent implementation on the CM, and that
therefore vision algorithms become very costly on the CM. The SUN execution times are
shown to provide for an 'upper limit’ of execution times of the CM.

We have investigated the benchmark, the line extraction algorithm and the depth re-
covery algorithm, which all benefit from the existence of Coterie Networks. The Coterie

76

Network, however, has no hardware equivalent in the CM, and therefore an algorithm has
to be constructed to implement it. In Section 3.1.4, it was shown that no two-dimensional
region defining function exists in PARIS, and that the most useful PARIS function for
implementing the Coterie functions in parallel is a one-dimensional scan function. This
function has to be implemented in an iterative approach in order to run Coterie func-
tions in parallel on a processor array. Therefore, simulating Coterie functions in parallel
is costly.

*Lisp timings have also been reported for the benchmark. The only timing which
allows a valid comparison is 1.5 times faster on the IUA with the ICCL versus the CM
with *Lisp, which is for parts with no Coterie operations. The implementation of the
ICCL on the CM is another 81 times slower than the *Lisp implementation on the CM,
which could improve timings of vision algorithms on the CM, if implemented in *Lisp.
Because of the scalability problem, however, the advantage of the Coterie operations on
the IUA versus the CM would still remain considerably high.

In summary, this paper shows through several example algorithms that the Coterie
Networks, a special-purpose hardware feature are of great advantage for programming
several vision algorithms, and that in general the ICCL is faster on the IUA than on the
CM. The paper also documents the transportation of the ICCL on the CM, which is easy
except for the transportation of the Coterie Network.

7

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

J.B. Burns, A.R. Hanson and E.M. Riseman. “Extracting Straight Lines.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 4,
July 1986.

J.H. Burrill. “The Class Library for the IUA, Tutorial.” AAI Amerinez Artificial
Intelligence, Inc., 1992

R. Dutta and C. C. Weems. “Parallel Dense Depth from Motion on the Image
Understanding Architecture,” , IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, New York City, New York, June 15-17, 1993, pages
154-159.

P. Kahn, L. Kitchen and E. Riseman. “Real Time Feature Extraction: A Fast Line
Finder for Vision-Guided Robot Navigation.” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, Vol. 12(11):1098-1102 (Nov. 1990)

L.J. Kitchen and J. Malin. “The Effect of Spatial Discretization on the Magni-
tude and Direction Response of Simple Differential Edge Operators on a Step Edge,
Partl: Square Pixel Receptive Fields.” CmpSci Technical Report, University of Mas-
sachusetts at Amherst, 1987-34, April.

C.C. Weems, S.P. Levitan, A.R. Hanson and E.M. Riseman. “The Image Under-
standing Architechture.” International Journal of Computer Vision, 2, 251-282,
1989.

C. Weems, E. Riseman and A. Hanson. “An Integrated Understanding Benchmark:
Recognition of a 2 1/2 D "Mobile’.” CmpSci Technical Report, Universily of Mas-
sachusetts at Amherst 1988-34.

78

	TR 94-40-1
	TR 94-40-2
	TR 94-40-3
	TR 94-40-4
	TR 94-40-5
	TR 94-40-6.pdf

