An Exchange Protocol without Enforcement

Tuomas W. Sandholm and Victor R. Lesser

Computer Science Department
University of Massachusetts at Ambherst
CMPSCI Technical Report 94-44
July 1994

An Exchange Protocol without Enforcement*

Tuomas Sandholm and Victor Lesser |
{sandholm | lesser}@cs.umass.edu
University of Massachusetts at Amherst
Computer Science Department

Ambherst, MA 01003

Abstract

In multiagent systems, interaction protocols are usually enforced by law. Enforce-
ment is problematic among computational agents, because they may operate under
incomplete or different laws, the laws may not be uniformly enforced, and the agents
can vanish easily. This paper presents an enforcement free method for carrying out ex-
changes so that both agents are motivated to abide to their contract. This is achieved
by splitting the exchanged goods into partial exchanges so that at each step, both
agents benefit more from the future of the exchange than from vanishing with the
goods or payment. The conditions for such exchange are presented in general, and the
maximum deliveries and payments (for any point in the exchange) are explicitly solved
for. Similar analysis is carried out for the case, where the agents’ current actions af-
fect their future contracts. Strategic delaying is also discussed. The paper presents
a fast algorithm that will find a sequence of independent partial deliveries in a way
that enables unenforced exchange if such a sequence exists. This problem cannot be
solved in polynomial time if the partial deliveries are interdependent. Finally, the
paper shows that the unenforced exchange scheme hinders unfair renegotiation.

1 Introduction

In cooperative distributed problem solving [3], the system designer imposes an interaction
protocol and a strategy (a mapping from state history to actions; a way to use the protocol)
for each agent. In multiagent systems [9, 12, 2, 5, 11], the agents are provided with an
interaction protocol, but each agent may choose its own strategy. This allows the agents to
be constructed by separate designers and/or represent different real world parties. Agents
in such systems often act based on self-interest, and the protocols have to be constructed
accordingly. An example interaction protocol is the auction, where some agents bid to
take responsibility for a task, which is awarded to the lowest price bidder. The bids are
binding: if an agent makes a bid and the task is awarded to it, it must take responsibility
for the task at that price. Among real world agents, this protocol is enforced by law.
Such enforced protocols are problematic when used among computational agents.
First, there may be a lack of laws for interactions of computational agents, or the agents
may be governed by different laws (eg. sited in different countries). It may also be the
case that the laws are not strictly enforced or that enforcing them (eg. by litigation) is

*This paper is an extended version of [10].
tThis research was supported by ARPA contract N00014-92-J-1698. The content does not necessarily
reflect the position or the policy of the Government and no official endorsement should be inferred.

impractically expensive. We would like the agents’ interactions to work properly indepen-
dent of fluctuations in enforcement. Secondly, a computational agent may vanish at any
point in time, eg. by killing its own process. Thus, the laws cannot be enforced unless
the terminated agent represented some real world party and the connection between the
agent and the real world party can be traced. For example, the Telescript technology [4]
follows the approach of strictly trying to tie each agent to its real world party. On the
contrary, we analyze exchanges among more autonomous agents and study possibilities
of exchange without enforcement (eg. with unknown real world parties or no litigation
possibility). In cases where this type of exchange is possible, it is clearly preferable to
the strictly enforced mode of exchange due to savings in enforcement costs and lack of
enforcement uncertainty.

The fulfillment of a mutual contract can be viewed as one agent delivering and the
other agent paying. We propose a method for carrying out such an exchange without en-
forcement. The exchange is managed so that for both agents (supplier and demander), at
any point in the exchange, the future gains from carrying out the rest of the exchange (co-
operating according to the contract) are larger than the gains from defecting. Defection is
equivalent to prematurely terminating the exchange by vanishing. For example, defection
may be beneficial to a demander agent if the supplier agent has delivered much more than
what the demander has yet paid for. By intelligently splitting the exchange into smaller
portions, the agents can avoid situations where at least one of them is motivated to defect.
We will call a sequence of deliveries and payments safe, if neither agent is motivated to
defect at any point in the exchange. The basic idea of enhancing cooperation by making
the present less important compared to the future has been suggested for example in [1].

We propose an exchange strategy manager module to be added to each agent’s architec-
ture. This module is potentially different for each agent. Its role is to schedule the agent’s
deliveries (or payments) in such a way that the opponent is not motivated to defect at any
point in the exchange (this is in the agent’s self-interest). The exchange strategy man-
ager also provides the agent’s negotiator module with information on whether a certain
proposed contract can be carried out safely. Unless protocol enforcement is guaranteed,
the negotiator should only agree to contracts that can be executed so that the opponent
is not motivated to defect at any point of the exchange.

Section 2 handles one exchange in isolation. Conditions for safe exchange are derived
and an inherent problem concerning the completion of the exchange is identified. Section 3
takes the agents’ future transactions into account in describing safe exchange in order to
solve the completion problem. The role of time in an exchange is discussed in section 4.
Section 5 analyses the case, where the delivering order of independent goods can be varied.
A quadratic sequencing algorithm is presented that finds a safe sequence if one exists.
Section 6 studies sequencing of interdependent goods. Section 7 describes the problem of
forced renegotiation, and section 8 concludes.

2 Isolated exchange of goods for compensation

This section describes conditions under which a rational agent cooperates in an exchange.
The criteria are based on the idea that an agent will cooperate if its future gain from

cooperation is greater than its gain from instant defection. The exchange proceeds on two
axis: the portion of goods of the contract delivered so far # € [0, 1], and the cumulative
payment so far P(z). The payment may be monetary or other goods. The agents value the
goods z according to increasing value functions that are in equivalent units of payment
P(z). The supplier’s value function V,(z) describes how much cost the supplier incurs
by generating and delivering . The demander’s value function Vy(z) describes what the
goods z are worth to the demander. Trivially, V,(0) = 0 and V4(0) = 0.

At any point in an exchange, an agent has the options of defecting or cooperating.
Defecting gives no added gains (that have not already been received) and no added costs,
so its net benefit is 0. Therefore, a rational (net benefit maximizing) supplier agent
cooperates at # in an isolated exchange if (and only if) its future compensation is at least
as great as its future cost!. So for a rational supplier agent to cooperate throughout an
exchange in the case of continuous goods and value functions, it has to hold that Vz € [0, 1],

1
/ P'(a) - V!(a)da > 0, (1)

and in the discrete case, V& € [0, 1],
Z AP(a) — AVs(a) > 0. (2)

a€lz,1]

The supplier controls z (based on how much payment it has received so far), but the
demander controls P(z). Next we analyze how the demander should control its pay-
ments to motivate the supplier to cooperate. Solving equation 1 (or equation 2) gives
the following condition that is necessary and sufficient to avoid defection by the supplier:
P(z) — Vs(z) < P(1) — V4(1). It gives an upper limit on the cumulative payment at any
point z. Let us call this maximum payment P™%*(z). See fig. 1 left.

Pmee(z) €V, (z) + P(1) - Va(1). (3)

The supplier will assume that P(1) = P“™" (the contract price), because it can control the
demander’s cooperation as follows. A rational demander agent cooperates in an isolated
exchange if (and only if) the future compensation it has to pay is smaller than or equal to
its added value. So for a rational demander agent to cooperate throughout an exchange
in the case of continuous goods and value functions, it has to hold that Vz € [0, 1],

1
/ Vi) - P'(a)dax > 0. (4)

and in the discrete case, V& € [0, 1],
Y AVy(a) - AP(a) > 0. (5)

a€lz,1]

As above, we can calculate how the supplier should control the delivering in order to
motivate the demander to cooperate (equation 4 or 5): P(z) — Vg(z) > P(1) — V4(1).

'If equality holds, the agent is indifferent between cooperating and defecting, in which case we will
assume it will cooperate.

This equation gives a lower limit for the cumulative payment at point . Let us call this
minimum payment P™"(z). See fig. 1 left.

C Va(z) + P(1) - Va(1). (6)

Pmin (m)
These equations reflect the situation where the demander assumes that the delivery will be
totally made, i.e. finally « = 1. This corresponds to the supplier cooperating throughout
the exchange, which the demander can control as shown above.
In order for any point (2, P(z)) to be safe, it clearly has to hold that

P™M(z) < P(z) < P™%(x) (7)
or stated in terms of the agents’ value functions:
Vi(1) = Vi(2) < Va(1) = Va(z). (8)

At z = 0 this gives V(1) < V4(1), which is an intuitive condition for the contract to have
been made in the first place. Specifically, V(1) < Pe™r < V4(1), fig. 1 left. Equation 8
can be written as Vy(z) — Vi(z) < Vg(1) — V4(1). This means that the agents’ combined
profit must be higher at # = 1 than at any other ¢ € [0,1[. If the agents would have
been better off by making the contract for a smaller amount, an isolated safe exchange is
impossible.

‘$

supplier defects

min

demander defects * []
min
P

Figure 1: Left: example of safe exchange. Middle: safe exchange of discrete goods possible.
Right: safe exchange of discrete goods not possible.

If the agents do not know each others value functions, they can use bounds they know.
The supplier is safe using an upper bound for P™*(z) (i.e. a lower bound for V4(1) and an
upper bound for Vy(z)). The demander is safe using a lower bound for P™*(z). Although
the agents are safe using these bounds, even possible exchanges are disabled if the bounds
are too far off.

Condition 7 is not sufficient for safe exchange. Under that condition, each cumulative
delivery amount z € [0, 1] has some cumulative payment P(z) so that at the point (z, P(z))
neither the supplier nor the demander wants to defect. This does not guarantee that such
safe points can be reached. Thus it may happen that the exchange cannot proceed. In
the next sections we will state the necessary and sufficient conditions for safe exchange.

2.1 Discrete goods

Discrete goods are goods that are inherently split into atomic chunks. Such chunks cannot
be further split, and we assume in this section that the delivery order of the chunks is
strictly predefined. In the TRACONET (TRAnsportation COoperation NET) multiagent
system [9], agents representing dispatch centers negotiated over who’s vehicles should
transport which parcels. Taking care of one parcel is an atomic chunk, because the task
cannot be split. Sometimes a contract between two agents involved multiple tasks (in
order to avoid local optima in the distributed optimization [9]), so the total exchange
could have been split into smaller parts. The following theorem describes the conditions
for safe exchange of discrete goods:

Theorem 2.1 With discrete goods, for increasing P™**(z) and P™"(z), a safe exchange
is possible iff for every two consecutive steps = and z', P™®(z) > P™"(z').

Proof. If: Assume that the condition holds. We present an example path (fig. 1 middle)
that is safe (because it never violates P™"(z) < P(z) < P™3®(z)) and that contains no
gaps. First, the demander pays P(0) = P™%*(0) thus moving from (0, 0) to (0, P™2*(0)).
Then, at any point (z, P™**(z)), the supplier delivers the next portion of the goods (in-
creases cumulative delivery from x to z’). This move does not violate the safety constraint
P™e2(g) > P™"(z') by our assumption. Next, the demander increases cumulative pay-
ment to P(z') = P™**(2') thus moving to (z/, P™**(z')). This is obviously possible. The
process continues by alternating moves between the supplier and the demander.

Only if: Assume that P™3%(z) < P™"(z'). At z, the demander cannot move beyond
P™%(g), because otherwise the supplier would defect. The supplier cannot move to z’,
because the demander would defect at any point (2', P), where P < P™3(z) < P™"(z').
See fig. 1 right. o

Considering isolated exchanges of discrete goods, theorem 2.1 is a negative result.
Substituting £ = 1 in the definitions (equations 3 and 6) of P™3®(z) and P™"(z), we
see that P™3®(1) = P™"(1) = P(1). Theorem 2.1 requires that P™3(z) > P™"(g!)
for any two consecutive ¢ and z’. Let us call the size of the last delivery Az. So for
safe exchange the following has to hold: P™3*(1 — Az) > P™"(1) = P™?2(1). Thus the
increasing function P™%*(z) has to be constant during the last step (fig. 1 middle). This
means that the supplier’s value function V,(z) is constant. So an isolated safe exchange is
possible only if the supplier does not incur any cost from generating and delivering the last
chunk. An example of this is when the supplier has had to acquire a number of the last
deliverables as an atomic item. Then its cost of acquiring the deliverables can be entirely
attributed to the first one, while it can deliver these items separately with only the first
one increasing V,(z) (assuming negligible costs of physically delivering). This may not
occur very often in practise (fig. 1 right). Intuitively, when there is no future benefit to
be gained from exchanging, agents are better off defecting on the current move.

If this problem occurs, it spoils the entire exchange. On the last turn, the supplier does
not want to increase delivery to # = 1, because the demander would defect. Similarly, the
demander does not want to increase cumulative payment above P™%*(1 — Az), because
the supplier would defect. Both agents know that the last part of the exchange will not
take place due to this. So they can analyze the exchange as if it did not have the last part.

Now the second to last part has the same problem (unless the supplier can deliver that
part without cost): neither agent wants to initiate that part. Again, both agents know
this and so on. This backward induction can be carried out up to the first exchange. So,
neither agent will make any move, and the exchange will not take place.

In the case of continuous goods, this problem appears to be less significant. Continuous
goods are discussed in the next section. In both the discrete and the continuous case, the
problem can be overcome by considering possible related future interactions of the agent.
This issue will be discussed in section 3.

2.2 Continuous goods

In this section we analyze the exchange of continuous goods, i.e. goods that can be split
arbitrarily. Again we assume that the order of goods to deliver is fixed beforehand. First,
we state the conditions for safe exchange:

Theorem 2.2 With continuous goods, for increasing P™%*(z) and P™"(z), a safe ez-
change can enter a point zo € |0, 1] iff one of the following holds:

1. P™a®(go) = P™"(zg), and P™%*(z) is constant in some left neighborhood of zg.

2. Pma®(gq) > P™i(g0), and lim__,_— P™*2(z) > P™"(z).
0

—

3. P™%(zg) > P™i(z,), lim,,
some left neighborhood of .

e P™e2(g) = P™"(zq), and P™(z) is constant in

= 0 =
1

p X
/. ; 1 | Bl
Pmm X X0 1

L
T
1

Figure 2: Ezchanging continuous goods: reaching a point (cases of the theorem).

Proof. We need only consider moves by the supplier, because only they move the
exchange along the x-axis. Obviously, if P™®(z5) < P™"(z,), the exchange cannot
proceed to zg, because safety requires that P™" (zo) < P(zo) < P™*®(z,). Next we prove
the three cases of the theorem.

Case 1. If: Assume the conditions hold (fig. 2:1). Let us choose a point 2’ (2’ < zo)
in the mentioned left neighborhood. The point (z', P™%®(zy)) is safe, because P™%*(z') =
P™%(24). Now the supplier can make the move from (z/, P™%*(z0)) to (zo, P™**(0)).

Only if: Assume P™3%(zy) = P™"(z,), but that the second part does not hold,
ie. P™%(g) is strictly increasing in some left neighborhood of zo. Every safe point
(', P(z')), 2’ < %o has to satisfy P(z') < P™%"(z,), because P™**(z) is strictly increasing.
Any move to zo by the supplier would lead to some point (zo, P(z'), which is not safe,
because P(z') < P™3®(zo) = P™"(z).

Case 2. If: Assume the conditions hold (fig. 2:2). Because limz_mo_ pmaz(g) >

Pmin(g,), 3a', s.t. @' < zo, and P™2®(z') > P™i"(g,). Therefore, the supplier’s move
from (z', P™**(z")) to (zo, P™**(z')) is safe.
Only if: Assume P™3%(zo) > P™"(zq), but that lim____ P™(z) < P™"(zg)

T
(equality is handled as case 3). So, V&' < zo, P™**(2') < P’m"g”(mg) implying P(z') <
P™"(g4). Therefore, the supplier’s move from any safe point (z', P(z')) to (zo, P(z')) is
not safe.

Case 3. If: Let us choose a point 2’ (2’ < 2) in the mentioned left neighborhood.
The point (z', P™%"(z)) is safe, because P™%*(z') = P™%(zo). Now the supplier can
make the move from (z', P™*(z¢)) to (zo, P™**(z0)), fig. 2:3.

Only if: Assume P™3%(zo) > P™"(z), and lim, - P™e2(g) = P™"(g,), but
P™a®(g) is strictly increasing in some left neighborhood of zo. So, V' < 2o, P™**(2') <
P™"(z4) implying P(z') < P™"(z,). Therefore, the supplier’s move from any safe point
(z', P(2')) to (zo, P(z')) is not safe. g

We showed the conditions under which a safe exchange can proceed to some amount
of cumulative delivery z. It is obvious that if the exchange cannot proceed to #, it cannot
proceed beyond z either (because P™™(z) is increasing). Having reached z the exchange
may or may not be able to be carried out further. The next theorem states the exact
conditions for the exchange to proceed.

Theorem 2.3 With continuous goods, for increasing P™**(z) and P™"(z), a safe ez-
change can proceed from a point zo € [0, 1] iff one of the following holds:

1. P™a®(go) = P™"(z4), and P™" () is constant in some right neighborhood of z.

2. P™e2(z4) > P™"(zg), and lim P™in(g) < P™e2(gy).

+
E—)EO

3. Pma(gy) > P™in(g,), limm_m:)r P™in(g) = P™3%(g,), and P™"(z) is constant in

some right neighborhood of xg.

Y.

o 0— = 0 , !
X0 1 X0 1 X0 1

Figure 3: Ezchanging continuous goods: leaving a point (cases of the theorem).

Proof. Similar to the proof of theorem 2.2. g

Safe exchange can be carried out if (and only if) some initial delivery can be made,
every intermediate amount of delivery can be reached and departed, and the final amount
of delivery can be reached. So if the conditions of theorem 2.3 hold for « = 0, conditions
of theorems 2.2 and 2.3 hold for every = €]0, 1], and conditions of theorem 2.2 hold for

z = 1, then safe exchange can be carried out. Theorems 2.2 and 2.3 do not assume
continuity of P™2%(z) (equivalently V,(z)) or P™"(z) (equivalently Vy(z)). Neither do
they assume that P™3%(z) or P™"(z) is strictly increasing. If P™3%(z) and P™"(z) are
continuous, safe exchange can be carried out if and only if Vz € [0, 1], either P™**(z) >
P™in(z) or P™®(z) = P™"(z) and P™®(z) is constant in a left neighborhood of and
P™"(g) is constant in a right neighborhood of z. If in addition to continuity, P™®(z) and
P™"(g) are strictly increasing, safe exchange is doable if and only if Vz € [0, 1], P™®(z) >
P™in(g).

Isolated safe exchange is problematic also in the case of continuous goods. Substituting
z = 1 into the definitions of P™%*(z) and P™" (z), we see that P™%*(1) = P(1) = P™"(1).
From case 1 of theorem 2.2 we see that full delivery (z = 1) can be reached only if P™**(z)
is constant in some left neighborhood of # = 1. So if the value function of the supplier V,(z)
is not constant in the end of the exchange, the exchange cannot be completed. In other
words, an isolated safe exchange is possible only if the supplier does not incur any cost
from generating and delivering the last portion of the goods. This problem is less severe
than in the case of discrete goods, because the size of the last portion to be delivered can be
made arbitrarily small. In theory, the agents can carry out the exchanges infinitely long,
thus getting arbitrarily close to £ = 1. Furthermore, the backward induction argument
that disabled the entire exchange in the case of discrete goods does not hold. There is no
exchange step at which the agents could reason that neither will make a move.

We presented three theorems stated in terms of P™3%(z) and P™"(z) that analyzed
when safe exchange was possible, i.e. when each agent is motivated to cooperate at any
point in the exchange given that the opponent will cooperate throughout the exchange.
So in game theoretic terms, the cooperation of both agents throughout the exchange is a
subgame perfect Nash equilibrium [6].

3 Non-isolated exchange

So far we have considered one exchange in isolation. Often, an agent interacts with other
agents more than just once in its lifetime. One interaction may affect the agent’s future
interactions. For example, if an agent defects in the current exchange, its counterpart
may not want to take on future contracts with that agent. Moreover, the counterpart
can notify other agents that the agent defected. Thus, the agent’s interactions with third
parties may also be hindered by defecting in the current exchange. The hindering future
impact of a defection can be thought of as an extra cost. Fearing this future cost, rational
self-motivated agents can cooperate in the current exchange, even if it would be rational
to defect in it when considered in isolation. The methods for calculating defection impacts
on the future are beyond the scope of this paper. We assume that the agent knows the
defection cost of its opponent. We denote the defection cost of the supplier by c%f and
the one of the demander by cjef.

Now we can incorporate the defection costs into the cooperation conditions of a rational
supplier agent (equations 1 and 2) so that the demander would know how to control
payments in order to motivate the supplier to cooperate. In the case of continuous goods

and value functions, Vz € [0, 1],
1
[P(@) - Vi@)da > i, ©)

and in the discrete case, V& € [0, 1],

Z AP(a) — AV, (@) > —cef. (10)
a€lz,1]

Similarly, the cooperation conditions of a rational demander can be rewritten. The supplier
should make the conditions hold by controlling deliveries - thus motivating the demander
to cooperate. In the case of continuous goods and value functions, Vz € [0, 1],

1 di
/ Vi(e) — P'(a)da > —cf, (11)
and in the discrete case, V& € [0, 1],

3" AVy(a) - AP(a) > —c57. (12)
a€lz,1]

Solving equation 9 (or 10) gives the following condition that is necessary and sufficient to
avoid supplier’s defection: P(z) — V,(z) < P(1) — V,(1) + c2¢f. This allows us to redefine
pmaz(g) (figure 4):

P™(z) €V, (2) + P(1) - Vi(1) + ¢ (13)

Similarly, we solve how the supplier should control delivery to motivate the demander
to cooperate (equation 11 or 12): P(z) — Vg(z) > P(1) — V4(1) — cjef, and we redefine
P™in(g) (figure 4):

def

P™™(2) € Vy(z) + P(1) — Va(1) — 7. (14)

In terms of the agents’ value functions, condition P™"(z) < P™%*(z) becomes
Va(z) — Va(1) — ¢37 < Vi(z) — Va(1) + 27 (15)

The necessary and sufficient conditions for (subgame perfect Nash equilibrium) safe
exchange (theorems 2.1, 2.2, and 2.3) apply directly to the case of non-isolated exchange
with the new definitions of P™3%(z) and P™"(z).

In the isolated exchange case, substituting # = 1 in the definitions of P™%*(z) and
P™in(z) gave P™"(1) = P(1) = P™*(1). This led to the problem that the exchange could
not be carried out to completion (unless P™**(z) was constant in the end of the exchange).
Now, in the non-isolated exchange case, let us substitute # = 1 in the definitions of
P™(g) and P™"(z). The condition P™"(1) < P(1) < P™®(1) gives P(1) — cjef <
P(1) < P(1) + c%f. The defection penalties give leeway to the exchange, thus possibly
enabling safe exchange to be completed (even if P™%%(z) is not constant in the end of the
exchange). The contract price P™" can be overshot due to this leeway. To avoid this,
the demander just limits the total payment at each z to min(P®™" P™%*(z)). This will

not hinder exchange, because the condition takes effect after the full contract price has

supplier defects max
$ new P -
H def
N lf"“"' s

I

(supplier's defection penalty)

cg“f (demander's defection penalty)

max
old P I N

0
old P™5 N

demander defects

I =region of safe isolated exchange

N = region of safe non-isolated exchange

Figure 4: Defection penalties of non-isolated exchange give leeway to safe moves.

been paid. So, non-isolated safe exchange is more fruitful than isolated safe exchange,
because it facilitates completing the exchange.

If the agent does not know the defection cost of the opponent, it can use a lower bound
for that cost. This way the agent is safe, but if the bound is too far off, even possible
exchanges are disabled.

4 Role of time

What will motivate the agents to take as large safe steps as possible? If there is a parti-
tioning cost, for example packaging each piece of information sent over a net, then taking
largest possible safe steps minimizes costs by minimizing the number of required parts.
But if there are packaging costs for each part, the last part cannot be delivered without
cost and as we have shown earlier, isolated safe exchange becomes impossible. Anyhow,
non-isolated safe exchange may be possible also in that case. If there are no partitioning
costs, the agents are indifferent between large and small steps.

Another question has to do with time. What will motivate the agents to carry out
the deliveries as fast as possible? Will the agents move as soon as possible even if they
discount payments and the value of goods (or cost of producing goods)? We use general
nonincreasing discount functions f(t), (0 < f(¢) < 1) with subscripts s and d to distinguish
between the supplier and the demander, and superscripts p and v to characterize whether
the discount applies to payment or the value of goods. In practise, f(0) = 1. For example,
using constant interest rate (r) compounded interest, the discount function is f(t) = e~"*.

A rational supplier tries to maximize [fP(7)p'(7) — f?(7)v,(7)dr by controlling the
amount of delivery #(¢) and thus controlling v, () and v4(¢). A rational demander tries to
maximize [f¥ (1)v}(1) — f2()p'(T)dr by controlling payment p(t). When controlling
z(t), the supplier can take into account the payments so far, and when controlling p(¢),
the demander can take into account the deliveries so far, but we will not explicitly write
out this dependency in the function definitions z(t) and p(¢).

We assume that each agent knows the current value of its opponent’s defection cost,
and that the current value does not change, which seems realistic. In the case where
the opponent discounts payments, this means that its absolute value of the defection cost
increases with time. We denote the current value of the defection cost of the supplier by

c%f and the one of the demander by cjef .

10

In the following analysis we will show that under certain conditions, each agent’s
optimal strategy is to move immediately (and cooperate throughout the exchange) given
that the opponent moves immediately (and cooperates throughout the exchange). So again
our solution concept is the subgame perfect Nash equilibrium. The analysis is valid for
situations where non-time-dependent safe exchange is possible, i.e. theorems 2.2 and 2.3,
or 2.12 hold. Two conditions have to be satisfied for an agent to move immediately:

e Cooperating immediately must be better than cooperating after any delay, and
e Cooperating immediately must be better than defecting after any delay.

The first condition for the supplier can be stated as follows (if the agents move immediately,
time discounts are 1): V¢ > 0,

[P@ =i [T pepm - £ (16)

and the second one (analog of 9) as: Vt > 0,

[P @) = rydr > . (17)

The first condition for a rational demander agent can be written as: V¢ > 0,

[v - pmar> [T 5 @) - fepor, (18)

t

and the second one (analog of 11) as: Vt > 0,
>y / def
/ vg(r) — p'(1)dr > - . (19)
t

It turns out that in the region of safe isolated exchange (cjef = c%f = 0 in inequalities 17
and 19; region I in figure 4) immediate cooperation of both agents is a subgame perfect
Nash equilibrium if the supplier discounts payments more sharply than production costs
and the demander discounts value of goods more sharply than payment. This is because
the safety inequalities (17 and 19) #mply the immediacy inequalities (16 and 18):

Theorem 4.1 Let fP(t), f2(t), f7(t) and f3(t) be nonincreasing functions that range
between 1 and 0. Let cjef =cdef = 0. IfVt > 0, fP(t) < fU(t), then inequality 17 implies
inequality 16. Similarly, if Vt > 0, f7(t) > f3(t), then inequality 19 implies inequality 18.

Proof. We first prove that inequality 17 implies inequality 16. Let g(t) = p'(¢) — vi(¢).
Let S(t) = [g(r)dr. Thus S(t) = — [g(r)dr and g(t) = —S'(t). Now, [f?(1)p'(t) -
2 (r)vg(r)dr < [f2(7)p (1) — fE(r)vi(r)dr = [fE(r)g(r)dr = [° — fE(7)S'(r)dr =°
= FR(N)S(T)I° + [FLr)S(r)dr <* = fR(T)S()[° < S(8) = [P p'(7) — vi(7)dr. The

fact that inequality 19 implies inequality 18 can be proven similarly. o

ZThe discrete case will not be discussed for brevity.
3Integration by parts.
*Because f'Z(7) < 0 and by inequality 17, S(1) > 0.

11

The condition on the supplier’s discount functions is rather natural, because for ex-
ample in a stable environment the supplier’s current value of producing an item should
remain constant, but obviously payment is discounted. The condition on the demander’s
discount functions is more stringent. It is realistic in the case where the demander needs
the goods urgently. An agent need not know the opponent’s exact discount functions. It
is sufficient to know whether they fulfill the conditions.

We derived the desired immediacy equilibrium solution for the often impossible isolated
exchange. Immediacy may be an equilibrium also in non-isolated exchange (region N in
figure 4), but it requires stricter conditions on the discount functions. If 0 > [p'(7) —
v! (1)dT > —c%7 (corresponding to being in the region where the supplier will not defect for
non-isolated exchange, but will for isolated exchange), the supplier is motivated to move
as fast as it can if (and only if) its discount factor for producing the goods (f?(t)) stays
sufficiently much greater than its discount factor for payment (fP(t)) for all ¢. Similarly, if
0> [vi(r)—p'(r)dr > —cjef (corresponding to being in the region where the demander
will not defect for non-isolated exchange, but will for isolated exchange), the demander is
motivated to move as fast as it can if (and only if) its discount factor for payment (f7(t))
stays sufficiently much greater than its discount factor for the value of goods (f7(t)) for all
t. Inequalities 16 and 18 specify exactly what is meant by “sufficiently much”. Intuitively,
an agent wants to postpone a negative net benefit into the future where it is heavily
discounted.

Even though immediate exchange is an equilibrium under the mentioned conditions,
it may be more practical to force it. This can be done by specifying deadlines or lateness
penalty schedules for both agents in the contract. The role of the contract is to state
such exchange conditions, and if the contract is not abided to, the defecting agent will
suffer the defection penalty (c%f or c%f) due to how its defection will affect its future
contracts. So, strictly speaking a contract matters only in non-isolated exchange, and
therefore forcing timely exchange is possible only in such cases. This highlights the value
of our theorem that immediate exchange is an equilibrium in isolated exchange under the
mentioned conditions. Even in non-isolated exchange, deadlines and lateness penalties are
meaningful only as long as abiding to the deadline or paying the lateness penalty is less
expensive than suffering the defection penalty. Lateness penalty schedules are preferable
to strict deadlines, because they are less risky for an agent who is potentially subject to
the lateness penalty, but the other agent can still tailor the lateness penalty schedule to
motivate the former to move immediately.

In this section we have viewed immediate exchange as a desideratum. The discount
functions also play a dual role by sometimes enabling non-immediate safe exchange that
would not be safe if carried out immediately. If fP(¢) < f7(t) (i.e. the supplier discounts
payment more sharply than the value of goods), time delays in an exchange may make
it safe. The same may occur if f7(t) > f3(t), i.e. the demander discounts payments less
sharply than the value of goods. Although this method may be safe, it is not efficient,
because it takes advantage of the fact that agents lose gains in time.

12

5 Ordering of discrete independent goods

So far we have looked at exchanges in which the delivering order of the goods is fixed
beforehand (eg. at the time of the contract). In this section we analyze an exchange,
where discrete partial deliveries (individual goods or atomic chunks) can be delivered in
any order, as long as all of them get delivered. Here we assume that the demander’s added
value from one chunk does not depend on the other chunks delivered so far. Similarly, we
assume that the supplier’s cost from delivering a chunk does not depend on other chunks
delivered earlier. This enables us to associate each chunk ¢ with two values, AP™** and
AP™™ that fully characterize how much the maximum and the minimum cumulative
payments change as a chunk c is delivered.

As an application example, a computationally powerful agent could make a contract to
carry out some number of independent matrix multiplications. Multiplying two matrices
neither facilitates nor hinders multiplying some other two, so the chunks are independent
with respect to the supplier. The chunks are truly independent if they are independent
with respect to the demander also (based on the uses of the multiplication results).

Let us call an ordering of the deliveries safe if safe exchange is possible under that
ordering. We provide a fast greedy algorithm that will find a safe ordering if one exists.
The algorithm takes five inputs: a set of chunks C, a vector of AP™** values, a vector
of AP™™ values, the maximum payment before anything is delivered P%* and the

c init !
minimum payment before anything is delivered Pj.;*.
Algorithm 5.1 SEQUENCE-CHUNKS(C, AP™® Apmin pmaz pmin

1. Divide C into two sets POS and NEG s.t. POS = {c € C|AP™ — AP™™ > 0}
and NEG = {c € C|AP™®= — AP™" < (}.

2. Pme® = PRar, P™n = Ppit, p = |POS|, n = [NEG|.
3. Fori =1top{

FEASIBLES = {c € POS|P™" 4 APM™n < pmez}],

If FEASIBLES = return NO SOLUTION POSSIBLE.

c¢* =argmax AP™® — AP™M™
ccFEASIBLES

chunk[i] = c*.
pmaz _ pmaz + APcr;mz’ Pmin — Pmin + APCT'm
! POS = POS — {c*}.
4. For every ¢ in NEG: P™®® = pmez | Apmaz pmin _ pmin 4 A pmin,
5 Fori =n+pdowntop+1 {
FEASIBLES = {c € NEG|P™n < pmez _ Apma=],
If FEASIBLES = () return NO SOLUTION POSSIBLE.

c¢* =argmax AP™" — AP™®,
ccFEASIBLES

chunk[i] = c*.
pmaz — pmaz _ APcr;mz’ Pmin — Pmin _ APCT'm
\ NEG = NEG - {c*}.

6. Return the vector “chunk”. First chunk to be delivered is in “chunk[1]”.

13

Step 3 of the algorithm sequences the chunks with positive A P™® — A P™" in a forward
passing greedy manner to try to increase P™*® as much as possible while increasing P™"
as little as possible. Intuitively, the algorithm tries to maximize the range of possible safe
prices at each z. Step 4 just computes P™® and P™" at the end of the whole sequence
of chunks. Step 5 makes a greedy backward pass. It tries to allocate the chunks with
negative AP™3® — AP™™ 5o as to use as little as possible of the beneficial difference
AP™®® _ AP™" in the end of the sequence. Intuitively, this difference is saved for the
middle of the sequence, from where it has time to affect more chunks (lying later in the
sequence). The entire algorithm runs in time O(|C|?).

To attack our sequencing problem, we tried several greedy algorithms starting with
the most intuitive ones. Most of them do not guarantee that the algorithm will find a safe
sequence even if one exists. For example, the algorithms that greedily pass only forward
and maximize AP™3® — AP™™ or minimize AP™" can be defeated by counterexamples
with just two chunks. Our algorithm cannot be defeated:

Theorem 5.1 Algorithm 5.1 finds a safe ordering if one exists.

Proof. Let us call the sequence of goods that algorithm 5.1 suggests s. In case the
algorithm terminated saying “NO SOLUTION POSSIBLE”, s is only a partial sequence.
Assume (for contradiction) that Js’ s.t. s’ is a safe sequence (i.e. acceptable), but s
is not. So s’ fulfills the requirement (theorem 2.1) that for all subsequent z and z’,
P™e(g) > P™(g'), but s does not.

First, we prove that s’ can be reordered (while maintaining acceptability) s.t. the
chunks with AP™®® — AP™" > (lie before those with AP™3® — AP™" < (. Take any
pair of chunks ¢;, ¢; s.t. AP" —APC’:”'” < 0, APC’;“‘z —APC’;”'” > 0, and ¢; is assigned right
before c; in s'. Now we can swap ¢; and ¢;. This will not affect P™2%(z) or P™"(z) before
or after the pair. c¢; can be moved before ¢;, because ¢; only made P™%(z) — P™i"(z)
smaller. ¢; can be moved after c;, because c; can only make P™®(z) — P™i"(g) larger
(or same). We apply these swaps until the desired property holds. Let us call this new
sequence s’'.

Let us denote the sequence of chunks with AP™3* — AP™™ > (in s by Spos, and the
corresponding part of sequence s" by s;,,. We show that s;,, can be converted into sy,

without loosing acceptability. Let ¢ be the position at which sp,, and s, first differ. Let

pos
s; be the item in sp,, at position %, and let s} be the item in s}, at position . Let k > ¢

pos
be the position, where s; was allocated in s,,,,. Now we can swap s; and s}, in s,,,. 5, can

08 °

be moved up to position 7, because our algorithm allocated it there after havi;g checked
feasibility. s! can be moved down to position k, because the chunks in Spos
k could only have increased P™%*(z) — P™"(z). The presented swap can only increase
P™a2(g) — P™i"(g) for position between i and k, so no chunk that was feasible earlier can
become infeasible. We can apply these swaps until s;,, = 5pos- '

Let us denote the sequence of chunks with AP™*® — AP™" < 0 in s by speg, and
the corresponding part of sequence s” by s,.,. Now we show that s;,,, can be converted
into spey without loosing acceptability. Let ¢ be the last position at which s,., and sﬁeg
differ. Let s; be the item in s,., at position ¢, and let s be the item in s;,, at position
i. Let k < i be the position, where s; was allocated in s,,,,. Now we can swap s; and
"

meg- Sk can be moved down to position %, because our algorithm allocated it there

between 7 and

sy in s

14

after having checked feasibility. s can be moved up to position k, because the chunks in

s, between k and i could only have decreased P™3®(z) — P™"(z). The presented swap

ne,
ca,ng only increase P™3%(z) — P™"(z) for position between k and i, so no chunk that was
feasible earlier can become infeasible. We can apply these swaps until sﬁeg = Speg-
So, s is a safe sequence iff s” is. Earlier we showed that s” is a safe sequence iff s’ is. In
other words, s is a safe sequence iff s’ is. This contradicts our assumption and completes

the proof.

Sometimes the division of the entire exchange into chunks is not fixed a priori, but
can be decided by the agents - eg. at contract time. A top down method for doing this
is to generate a chunking and then test its safety by running the presented algorithm.
If it is not safe, the chunking can be refined by splitting chunks further. Splitting is
nicely monotonic in the sense that no split can make a safe exchange unsafe. The top
down method can be used for continuous goods also. The minus side of the top down
approach is the need to guess the splits. If they are guessed badly, possibly many more
chunks are generated than is necessary to enable safe exchange. A bottom up approach
for chunking is to take the smallest possible atomic chunks and sequence them using our
algorithm. Next, each agent can see how many atomic chunks they can deliver at once at
each step without changing the order and while still keeping the exchange safe. Bottom
up chunking requires no guessing of splits, but it can be computationally complex if the
number of smallest possible chunks is large. Also, it cannot be applied to continuous
goods, because there chunks can be made arbitrarily small.

6 Ordering of discrete interdependent goods

In the previous chapter we looked at sequencing independent chunks. Sometimes partial
deliveries are interdependent, though. The value of a chunk may depend on which chunks
have been delivered before it. For example, in a production plant, the first products can
be thought of as more costly than subsequent similar products, because later on the fixed
costs (eg. rent, acquired equipment) can be spread among more products than in the
beginning. Similarly, a data retrieval agent may incur large costs in searching for certain
information. Once the information is found, subsequent searches of related information
may be considerably less expensive.

The demander agent may also value a chunk differently depending on the other chunks
delivered so far. In TRACONET (see section 2.1), the chunks (transport tasks) were
interdependent for both the supplier and the demander. Transporting a parcel often
affects the marginal cost of transporting others. For example, one vehicle may be able
to carry two parcels to adjacent locations, thus reducing the marginal cost of each single
task. On the other hand, one parcel may fill up the vehicle so that another task must be
handled by a more costly vehicle. Some contracts involved multiple tasks. So if the safe
exchange mechanisms of this paper had been used, sequencing of interdependent chunks
would have been required. This was not crucial, because the agents represented real world
dispatch centers, whose contracts were enforced by law.

In general, interdependent goods cannot be sequenced in polynomial time in the num-
ber of chunks if it is required that a safe solution is found if one exists. Just representing

15

the problem requires O(2|C|) space, because for each set of chunks in the power set of
all chunks, P™2* and P™" have to be represented. Anyhow, if the number of chunks
per contract is low (as in TRACONET), exponential search among sequences of chunks is
viable. In such cases, the advantages of a robust exchange protocol without enforcement
outweigh the extra computational load.

7 Renegotiation risk

So far we have presented mechanisms for motivating both agents to cooperate in an ex-
change given a contract. After an irrevocable delivery (or payment), the agent that gained
from it may want to renegotiate the contract. For example, after the first partial delivery
the demander may want to renegotiate the contract for a lower price. The demander
knows that the original contract price was safe for the supplier, so now that the supplier
has already “lost” the first delivery, the supplier should be willing to carry out the rest
of the exchange at a lower price. On the other hand, the supplier knows that any point
in the exchange is safe for the demander. Therefore, if the supplier refuses to renegotiate,
the demander is motivated to follow the original contract and not vanish.

Renegotiation is more likely in unsafe exchange. For example, when an international
company initiates a mining venture in a developing country, it has to invest most of the
capital up-front. This unsafe move motivates the developing country to renegotiate the
conditions of the mining venture (profit division etc.). Due to expropriation risk the
company cannot avoid renegotiation [7, 8].

8 Conclusions and future research

This paper presented a method for carrying out mutual exchanges among self-motivated
agents without third party enforcement. Larger exchanges were split into smaller parts
so that at no point was either agent motivated to defect. The maximum size delivery
that the supplier can safely make at any point in the exchange was calculated as well
as the maximum amount that the demander can safely pay at any point. Safe exchange
is possible if the demander’s value function does not cumulate too fast compared to the
supplier’s. So, the possibility that a supplier agent incurs most of its cost from the early
portion of the exchange enhances safe exchange, while the possibility that the demander
acquires most of its value already from the early parts hinders safe exchange.

Considered in isolation, safe exchange can be carried out entirely only if the supplier
can deliver the last part without cost. With continuous goods it can be carried out
arbitrarily close to completion even if this is not the case. Considering defection’s adverse
effect on future negotiations often enables completing the current exchange.

Under the presented conditions on their discount functions, agents are motivated to
carry out the exchange as fast as they can. These conditions are less strict for isolated
exchange than for non-isolated exchange. In the non-isolated case, immediate moves can
be forced by deadlines or lateness penalties.

Some domains allow goods to be delivered in different orders. The presented quadratic
algorithm finds a safe ordering for independent goods if one exists. The problem cannot be

16

solved in polynomial time for interdependent goods. Finally, we showed that safe exchange
helps prevent unfair renegotiation.

In this paper we looked at totally safe exchanges, where each agent knew its opponent’s
value function, discount functions, and defection penalty (i.e. cost of making reputation
worse). We explained how agents could use bounds for these if they are not exactly known.
If the bounds were too far off, even possible exchanges were disabled. Often it is the case
that agents can estimate a distribution for each of these, although strict bounds are not
available or they are too far off. Using these distributions the agents can take a calculated
risk of making moves that are unsafe with a certain probability. This approach of using
distributions is also useful to the agent in trying to model the possibility of changes in
the opponent’s value function, discount functions or defection penalty that happen during
the exchange due to the opponent interacting in its environment (getting other offers,
contracts etc.).

Another approach is to try to bound ones losses by making the partial exchanges small
enough so that even if the opponent defects, the loss will be within a bound. In both the
probabilistic risk method and the loss bounding method there is a tradeoff between making
the exchange safer by using small partial exchanges and minimizing partitioning costs by
using large ones. Finally, either a probabilistic approach or a loss bounding approach can
be used to address the risk of the opponent accidentally defecting - eg. loosing contact
due to a technical fault.

Acknowledgements

We thank Neil Immerman for the backward pass idea for algorithm 5.1, John Oliensis for
helping prove theorem 4.1, and Herbert Gintis for game theoretic comments.

References

[1] Axelrod, R. 1984. The Evolution of Cooperation. BasicBooks.

[2] Durfee, E., Lee, J. and Gmytrasiewicz, P. 1993. Overeager Reciprocal Rationality
and Mixed Strategy Equilibria. In Proc. Fleventh National Conference on Artificial
Intelligence, pp. 225-230, Washington D.C.

[3] Durfee, E., Lesser, V. and Corkill, D. 1989. Cooperative Distributed Problem Solv-
ing. In: Barr, A., Cohen, P., and Feigenbaum, E. (eds.). The Handbook of Artificial
Intelligence Vol. IV. Addison Wesley.

[4] General Magic, Inc. 1994. Telescript Technology: The Foundation for the Electronic
Marketplace. General Magic White Paper.

[6] Kraus, S. and Wilkenfeld, J. 1992. Multiagent Negotiation Under Time Constraints.
Comp. Sci. Tech. Report Series CS-TR-2975, University of Maryland, College Park,
Maryland.

[6] Kreps, D. 1990. A course in microeconomic theory. Princeton University Press.

17

[7]

Lax, D. A. and Sebenius, J. K. 1981. Insecure Contracts and Resource Development.
Public Policy 29:4, pp. 417-436.

Raiffa, H. The Art and Science of Negotiation. Harvard University Press, 1982.

Sandholm, T. 1993. An Implementation of the Contract Net Protocol Based on
Marginal Cost Calculations. In Proc. Eleventh National Conference on Artificial In-
telligence, pp. 256-262, Washington D.C.

Sandholm, T. and Lesser, V. 1994. An Exchange Protocol without Enforcement. In
Proc. 13th International Workshop on Distributed Artificial Intelligence, Washington.

Wellman, M.P. 1992. A General Equilibrium Approach to Distributed Transportation
Planning. In Proc. Tenth National Conference on Artificial Intelligence, pp. 282-289,
San Jose, California.

Zlotkin, G. and Rosenschein, J.S. 1993. A Domain Theory for Task Oriented Nego-
tiation. In Proc. Thirteenth International Joint Conference on Artificial Intelligence,
pp- 417-442, Chamberry, France.

18

