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Abstract

In this paper we present an approach, based on data
flow analysis, that can provide cost-effective analysis of
concurrent programs with respect to explicitly stated
correctness properties. Using this approach, a developer
specifies a property of a concurrent program as a pattern
of selected program events and asks the analysis to ver-
ify that all or no program executions satisfy the given
property. We have developed a family of polynomial-
time, conservative data flow analysis algorithms that
support reasoning about these questions. To overcome
the traditional inaccuracies of static analysis, we have
also developed a range of techniques for improving the
accuracy of the analysis results. One strength of our ap-
proach is the flexibility allowed in choosing and combin-
ing these techniques so as to increase accuracy without
making analysis time impractical.

We have implemented a prototype toolset that au-
tomates the analysis for programs with explicit tasking
and rendezvous style communication. We present pre-
liminary experimental results using this toolset.

1 Introduction

The application of distributed and concurrent pro-
gramming technology has moved from special purpose
database and operating systems into the programming
mainstream. Developers applying this technology to
complex problems require cost-effective analysis tech-
niques to gain confidence in the quality of their concur-

*This work was sponsored by the Advanced Research Projects
- Agency under Grant # MDA972-91-J-1009.

rent software. In this paper, we present an approach,
based on data flow analysis, that -has the potential to
provide cost-effective analysis of concurrent programs
with respect to explicitly stated correctness properties.

Although our approach is applicable to a wide range
of concurrency and communication models, in this pa-
per we restrict our discussion to programs with explicit
tasking and rendezvous communication and illustrate
our approach using Ada tasking programs. Using our
approach, developers define a set of program events that
they want to reason about and specify properties of con-
current programs as patterns of those program events.
They ask the analysis to verify that all or no program
executions satisfy the given property. We have devel-
oped a family of polynomial-time, conservative data flow
analysis algorithms whose results can be used to address
such questions.

To overcome the traditional inaccuracies of static
analysis, we have developed a range of techniques for
improving the accuracy of the results. Prior to analy-
sis, refinements to the flow graph representation of the
program, based on program and property specific in-
formation, increase the efficiency and accuracy of the
subsequent analysis. During analysis, enforcement of
feasibility constraints, which are based on the program
being analyzed and the programming language in which
it is written, improves the accuracy of the results. One
strength of our approach is the flexibility allowed in
choosing and combining these techniques, thus provid-
ing a means of controlling the tradeoff between accu-
racy of the analysis results and the execution time of
the analysis. This results in an analysis approach that
can provide high accuracy without making analysis time
impractical.

Section 2 describes related work and discusses simi-
larities and differences between prior research and our
approach. We provide a high level overview of the ba-
sic analysis approach and state some theoretical results
in Section 3. Following that, we describe techniques



for improving the accuracy and efficiency of the basic
approach in Section 4. We discuss a prototype imple-
mentation of our analysis approach and present initial
experimental results in Section 5. We conclude in Sec-
tion 6 with a discussion of what we have learned about
our analysis approach and plans for future work.

2 Related Work

There is a large body of research into automated tech-
niques for reasoning about the behavior of concurrent
programs.

State reachability approaches have been success-
fully applied to analyzing concurrent programs [Hol88,
SMBT90, YTL+92]. Complexity results for reachabil-
ity analysis [Tay83] imply that, in general, the size
of the program state space and consequently the cost
of analysis increases exponentially with program size.
To address the need for scaling reachability analy-
sis to large programs, researchers have investigated
three techniques: reducing the state space based on
the property being analyzed [DBDS93, GW91, Val90),
building and analyzing the state space compositionally
[CPS93, YY91], and using a symbolic representation of
the state space [BCM*90]. Although, in general, the
costs of these techniques exhibit exponential growth,
each has been successful in verifying properties of ex-
ample programs.

An alternate analysis approach is to reason using nec-
essary or sufficient conditions about a specified property.
Necessary conditions of this form can be used to rea-
son about whether all or no program executions satisfy
a property !. In contrast, sufficient conditions of this
form can be used to reason about whether some pro-
gram execution satisfies a property. Researchers have
used linear programming techniques to encode necessary
[ABC*91] and sufficient [MSS89] conditions. Although,
in the worst case, the cost of the linear programming
technique is exponential, it has been successfully ap-
plied to a number of examples and allows for practical
analysis of very large versions of those examples.

Data flow analyses have traditionally been based on
similar necessary or sufficient conditions. Conceptually,
data flow analysis involves a fix point computation over
a flow graph of a pre-defined relation, which encodes
the analysis question. In theory the class of relations
that can be computed is very large; polynomial-time
algorithms exist for a smaller but very useful class of
relations [MR90]. For data flow analysis of sequential
programs, the flow graph is often reducible and special-
ized algorithms can be applied that improve the execu-
tion time of analysis.

Data flow analysis of concurrent programs requires

1The question do all ezecutions satisfy the property? is the
dual of is it false that no executions satisfy the negation of the
property?.

that inter-task communication be represented. Early
model checking approaches [CES86] are essentially data
flow analyses that use the program data and control
state reachability graph as a flow graph; performance
suffered from the impractical size of this graph, how-
ever. More typically, data flow analyses either repre-
sent potential communication with edges in the flow
graph [CKS90, GS93, MR91] or label nodes representing
communication statements so that they can be matched
during analysis [CK93, Mer92]. The former approach is
appropriate if we view the flow graph as a repository
of information about possible program executions that
is refined over time by a variety of analyses [MR93],
although the resulting flow graphs are invariably irre-
ducible. Our approach also employs a flow graph that
represents communication explicitly.

Masticola and Ryder [MR91] describe an analysis ap-
proach for checking deadlock freedom in Ada tasking
programs that uses data flow analyses [MR93] to im-
prove the accuracy of the analysis results. These data
flow analyses are in the spirit of the refinements de-
scribed in Section 4.1. Our approach differs from that
of Masticola and Ryder in that we advocate selective ap-
plication of a more comprehensive set of refinements, do
not iteratively apply all refinements until convergence,
further improve accuracy through the use of feasibility
constraints, and support analysis of a rich class of prop-
erties as opposed to just deadlock.

Olender and Osterweil [0092] developed an analysis
for sequential programs, based on necessary conditions,
that uses a simple version of the state propagation al-
gorithm described in Section 3.3. In addition to the
increase in complexity associated with the analysis of
concurrent programs, our approach incorporates a va-
riety of mechanisms to increase the accuracy of state
propagation analysis. We note that our analysis is ap-
plicable to sequential programs without modification.

A number of analyses represent programs and prop-
erties of interest as formal automata [GW91, Kur85,
0090]. At a high level, the set of executable program
paths are represented as strings accepted by a program
automaton and the set of program paths that satisfy the
property are strings accepted by a property automaton.
One approach to verifying properties in this context is
to test if the language of the program automata is con-
tained in the language of the property automata. The
complexity of such a test varies with the power of the au-
tomata used. The state propagation analysis described
in Section 3.3 is a polynomial-time, conservative test
to determine language containment for finite state au-
tomata.

A number of formalisms have been developed to ex-
press properties of programs, such as temporal log-
ics [Pnu85] and regular expression based formalisms
[ABC*91, Kur85, 0090]. Unfortunately, reasoning us-
ing the most general of these formalisms can be inef-
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Figure 1: Architecture of Analysis Approach

ficient. Since a large, practical class of properties, in-
cluding safety and bounded liveness, are captured by
the much simpler theory of regular expressions and fi-
nite automata, we will analyze properties in this less
general but more practical setting.

3 Overview

In this section, we describe our flow graph represen-
tation for concurrent programs, the formalism for ex-
pressing program properties, and the basic analysis al-
gorithm.

Figure 1 provides a high level view of the compo-
nents and information flow in our analysis approach.
For the basic version of our analysis the bold compo-
nents and arrows in the figure are relevant; the dashed
components and arrows can be ignored. The program
translator constructs a trace flow graph (TFG) from the
Ada source code for a program, or part of a program.
After specifying the desired property as a quantified reg-
ular ezpression (QRE), the QRE translator constructs
a property automaton (PA) that represents the prop-
erty. The generic state propagation data flow analysis
algorithm is instantiated for the PA and applied to the
TFG. The results of state propagation analysis indicate
whether the program satisfies the specified property.

To reduce the cost of analysis or increase its accuracy,
refinements can be applied to the TFG or feasibility con-
straints can be incorporated into the PA by the product
builder. Such improvements are optional and are thus
depicted by dashed lines in Figure 1.

3.1 Program Representation

The trace flow graph is a conservative representation
of executable program event traces, which are strings
over the set of program events. A TFG can be thought
of as an automaton that accepts event strings. Since it is’
conservative, it is guaranteed to accept all event strings

_task body T1 is task body T2 is

begin begin _
x := TRUE; -- EVEHT "a" accopt Ei; -- EVEHT "b"
T2.E1; -- EVERT "b" x := PALSE; -- EVEHT "c"
end T1; ond T2;

Figure 2: Ada tasks for example

that correspond to program executions. As with most
flow graph representations, it may also accept event
strings that do not correspond to program executions.

In this paper we describe TFGs in terms of Ada lan-
guage constructs and illustrate with examples of Ada
programs. Figure 2 is a simple Ada tasking program
that consists of two tasks and a single task communica-
tion, used to order the definitions of the boolean variable
x.

Users describe an alphabet of program events, denoted
by I, such that each symbol corresponds to the exe-
cution of some program event, such as a reference to
a variable or execution of an entry call. All program
event alphabets contain the 7 symbol that corresponds
to the program executing an event that is not of inter-
est. A number of mechanisms for defining this alphabet
are possible, such as using a fixed set of events, speci-
fying the set of program entities of interest ( e.g., vari-
ables, functions, task entries) and generating the set of
events related to those entities, or introducing program -
comments that define events. For expediency, we use
program comments to define events of interest as illus-
trated by the -~ EVENT "symbol" comments in Figure
2. Note that for a calling event, say b, we represent a
corresponding accept statement with a b symbol.

TFGs are constructed from a set of control flow
graphs (CFG)s that represent the tasks of the program.
Formally, a TFG is (N, E, S, T, L, P) where N is the
set of nodes, E consists of 3 kinds of directed edges
representing control flow, communication and poten-
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Figure 3: Trace Flow Graph for example

tial program event ordering information, S € N is the
unique start node, T € N is the unique terminal node,
L : F - ¥ maps an edge to an event symbol, and
P : E - E maps communication and ordering edges
to an associated partner edge. The semantics of edge

kinds and the edge partner mapping is discussed below.
* For the example in Figure 2 the CFGs for the tasks and
the initial, unrefined TFG constructed from them are
illustrated in Figure 3.

Nodes TFG nodes represent control states of individ-
ual tasks in the program. There is a TFG node for each
node in the set of CFGs for the tasks in the program.
In Figure 3 we number TFG nodes for identification
purposes. Nodes {1,2,3} correspond to control states of
task T1, where node 1 is the start and node 3 the ter-
minal state. Nodes {4,5,6} correspond to control states
of task T2, where node 4 is the start and node 6 the
terminal state. We add two additional nodes start and
end that represent the start and end states of the pro-
gram. The outgoing TFG edges from a node represent
the program events that can be executed when a task is
in the state represented by the node.

Edges An edge is labeled by a symbol from the pro-
gram event alphabet. For our example the alphabet is
{a,b,b,c}. Although not illustrated in Figure 3, multi-
ple TFG edges can be labeled with the same symbol.
We represent program events that are local to a task
as a TFG control flow (CF) edge whose source and des-
tination represent control states in the same task. These
are analogous to CFG edges. In the unrefined TFG of
Figure 3, the solid edge (1,2), labeled by a, represents

the execution of x := TRUE in task T1, and is derived
from edge (1,2) of the CFG for T1. We also add 7 labeled
edges from(to) the start(end) node to(from) the nodes
corresponding to the enter(exit) nodes of each CFG.

Like some other flow graphs for concurrent programs,
TFGs represent task communication with explicit edges.
We extract the set of potential communications from the
CFGs by matching the labels on CFG edges, for exam-
ple b and b. We are interested in capturing the fact that
the TFG nodes that follow a communication have two
predecessors, one in the same task as the node, which
is represented by a CFG edge, and the other in another
task with a matching communication statement. We
introduce a commaunication (COM) edge to capture the
communication predecessor in the other task. To illus-
trate, in the unrefined TFG in Figure 3 the predecessors
of node 3 are node 2, by way of the control flow edge,
and node 4, by way of the, dashed, communication edge.
Similarly, node 5 has a pair of incoming control flow and
communication edges. Control flow edges that represent
Ada entry call and accept statements may have multiple
associated communication edges. Each communication
edge, however, has a single control flow edge associated
with it: we refer to that control flow edge as the commu-
nication partner. A communication edge is annotated
with the identity of its partner. We note that accept
statements with bodies are modeled as separate start
and end communications.

Unlike other concurrent flow graph representations,
TFGs capture the potential interleaving of asyn-
chronously executing program events. We represent
pairs of edges that may interleave execution order by



introducing additional edges into the TFG. For each
non-7 labeled control flow or communication edge ex-
iting a TFG node we add a may immediately precede
(MIP) edge from that node to all nodes in other tasks.
We refer to the control flow or communication edge as-
sociated with a MIP edge as a MIP partner and anno-
tate the MIP edge with the identity of its partner. The
semantics of a MIP edge are that the event labeling
its partner may immediately precede execution of any
event initiated from the destination node of the MIP
edge. To illustrate, consider the unrefined TFG in Fig-
ure 3. Nodes start, 3 and 6 have no-exiting MIP edges
because all of their exiting edges are labeled 7. Node
end has no exiting edges of any kind. Node 1 has a
single exiting control flow edge (1,2) labeled by a. We
add, bold, MIP edges (1,4), (1,5), (1,6) to represent the
possibility that event @ may immediately precede events
b exiting node 4, ¢ exiting node 5, and 7 exiting node
6. The MIP edges leaving node 5 are constructed anal-
ogously. 2 -

In constructing a TFG from a collection of CFGs
for an Ada program we make use of the fact that ren-
dezvous communication requires that two tasks synchro-
nize to communicate. Therefore, communication events
between the tasks cannot execute asynchronously with
respect to any of the other events in the two tasks. Thus,
if we have a communication edge we need not add any
MIP edges for that edge. In our example, all edges exit-
ing node 2 represent communication with task T2 so we
need not include MIP edges for them; node 4 is treated
analogously. We note that if we had non-communication
related control flow edges exiting node 2, then we would
introduce MIP edges for only those control flow edges.

It is clear from this simple example that the TFG
overestimates the executable event orderings of the pro-
gram. In Section 4.1 we discuss how to eliminate some
unexecutable orderings. Finally, we note that there are
potentially many MIP edges in a TFG; this is not sur-
prising since the number of pairs of asynchronously ex-
ecuting program statements can be large.

We state two important results on the size and struc-
ture of TFGs: they are irreducible graphs and |E| =

O(IN[?). There have been a number of data flow algo-
rithms developed that are applicable only to reducible
graphs that are thus not applicable to TFGs. The com-
plexity of data flow algorithms is often expressed in
terms of the number of flow graph nodes, under the as-
sumption that the number of edges is at most the square
of the number of nodes. TFGs violate this assumption
and, therefore, we must evaluate the complexity of data
flow algorithms in this light.

2 Although not illustrated by the examplein this paper, to more
accurately model a program, TFGs can be constructed that use
multiple CF edges to represent a single program statement and
that duplicate and specialize portions of the TFG that represent
Ada accept bodies.

Figure 4: Property Automaton for Response Property

For simplicity, in the remainder of the paper we treat
the symbols representing call and accept statements for
the same entry as identical. That is, b and & will now
be treated as b in our example.

3.2 Property Representation

To specify properties, we use a part of the Ce-
cil formalism [0O90] called quantified regular expres-
sions. QREs have three components: a property alpha-
bet Tproperty, @ quantifier Q, and a regular expression
R. Syntactically, QREs look like {Z,roperty }@ R, where
Bproperty © I, @ € {V, 3}, and R is a regular expression
over Lproperty- The alphabet is a set of symbols repre-
senting distinct program events. The quantifier deter-
mines whether we test if the pattern described by R is
exhibited on all program executions or on no program
execution. The regular expressions in this formalism
are standard and include concatenation (a;b), disjunc-
tion (a|b), Kleene closure (a*) and difference ({a, b} —b)
of symbols and sets of symbols from Z,,operty-

We have been able to specify a number of useful prop-
erties in a stylized form of QREs over two classes of
sub-expressions: intervals that exclude a set of events,
of the form (Zproperey — {a,0})*, and required events,
of the form a. The idea of intervals that require and
exclude events is derived from Corbett’s w-starless ex-
pressions [Cor92). Data races, mutual exclusion, general
forms of invariance, response and precedence properties
have been specified with this form of QRE.

As an example consider an event based formulation
of a response property. If we have events a, b, and c,
we can specify “after an a event occurs, eventually a ¢
event will occur” as
{a,b,c}v
(Zproperty — 8)*i (a; (Eproperey — €)*; ¢; (Eproperey — 2)°)°
Using standard techniques we can construct from the
regular expression of a QRE a finite automaton that
we call a property automaton (PA). A property automa-
ton accepts all event strings over the property alphabet
that correspond to the property of interest. Formally, a
PAis (Tpa,2,8,Spa, Apa) where Tp, is the set of au-
tomaton states, ¥ is the alphabet, § : Tpg x & — Tpy
is the state transition function, Sp4 € Tp4 is the start
state, and Apy C Tp, are the accepting states. Fig-
ure 4 illustrates the PA for the response QRE described
above. Many PAs contain a non-accepting state that
has no exiting, non self-loop transitions. Such states
represent the fact that a string leading to that state has



Input: TFG and a PA
OQutput: the States relation
Algorithm:
1) States(start node of TFG) = Spy
all other States values =0
2) initialize worklist to exit odges of start node
3) vhile worklist is not empty
4) dequeue next edge from worklist
6) computo current states for source(s) of edge
6) for each curremnt state, s,
7) States(destination of edge)U = (s, L(edge))
8) add edges vhose source has new States
values to worklist

Figure 5: State Propagation Algorithm

violated the property in such a way that no extension
of the string can possibly satisfy the property; we call
these states trap states.

*3.3 State Propagation Analysis

One approach to analyzing properties specified as
QRE:s is to submit each TFG event trace to the PA
and check if the PA accepts it. This is impractical be-
cause the number of TFG event traces is, in general,
infinite. Our analysis collapses event traces that lead to
the same PA state into a single value and thus greatly
reduces the amount of work required to analyze QREs.
This can be implemented by a data flow analysis algo-
rithm. We use a standard iterative worklist algorithm
[Hec77] with modifications to enforce conditions related
to the semantics of TFG edges. The main data struc-
tures are a worklist of TFG edges and States, the set
of PA states for each TFG node. Figure 5 gives a high
level description of the algorithm. In step 5 we con-
sider separately communication edges and their part-
ners, control flow edges, MIP edges that have control
flow edges as partners, and MIP edges that have com-
munication edges as partners. For communication edges
we use the fact that two statements can successfully ren-
dezvous only if they are reached simultaneously on the
same program execution. In our model this corresponds
to having the same event trace lead to the source nodes
of the communication edges for a given rendezvous. The
algorithm enforces this condition by only propagating
PA states that are common to the source nodes of a
communication pair across a communication edge.

This simple version of the state propagation algo-
rithm has a worst case bound on its running time of
O(|Tpa|*|E|) or equivalently O(ITp4*INT®). We note
that the value of States for each TFG node moves mono-
tonically up the PA state powerset lattice as the algo-
rithm progresses. We have developed a slightly more
complicated version of the algorithm that, for negligible
cost, keeps track of the state values considered for each
TFG edge. For this algorithm we can bound the num-

ber of calls to § by |E||Tp4|. The bound on the running
time of this more complicated algorithm is O(|Tp4||E|)

or equivalently O(|Tp4||N|?).
3.4 Results of State Propagation

Complete program executions correspond to event
traces that start at the entering node of the TFG and
end in states that correspond to a termination state for
each task in the program. We capture this information
by intersecting the States values for the TFG nodes that
correspond to termination states for each task. This is
a conservative estimate of the PA states that can be
reached by complete executions of the concurrent pro-
gram. :

Analysis of a QRE that specifies the V quantifier re-
quires a test for language containment. If the intersec-
tion of States values for task termination nodes is a
subset of the accepting PA states, then all executable
program traces satisfy the property; we say that the lan-
guage containment test is true. If the result is false, how-
ever, we say it is inconclusive because the TFG trace(s)
that did not satisfy the property may or may not be
feasible.

Analysis of a QRE that specifies the 3 quantifier re-
quires a test for non-empty language intersection. If
the intersection of States values for task termination
nodes contains no accepting PA state, then there exists
no executable program trace that satisfies the property;
we say that the non-empty language intersection test
is false. If the result is true, however, we say it is in-
conclusive because the TFG trace(s) that satisfied the
property may or may not be feasible.

While inconclusive results are insufficient for verify-
ing properties of programs they can provide useful anal-
ysis information. In particular, post-processing of the
States values may be able to determine the feasibility
of the traces in question.

4 Increasing Efficiency and Accuracy

Cost-effective data flow analysis requires that test-
ing of necessary conditions encoded in the analysis is
efficient and that the conditions are strong enough to
provide conclusive results in most cases.

The worst case time complexity bounds of our state
propagation algorithms indicate that the efficiency of
state propagation analysis is strongly dependent on the
number of edges and nodes in. the TFG. We introduce
TFG refinements into the basic analysis illustrated in
Figure 1 to reduce the number of edges and nodes such
that analysis of the resulting TFG is more efficient with-
out sacrificing accuracy.

The structure of the TFG enforces some, but not all,
event ordering constraints of the program. The state
propagation algorithm enforces constraints on task syn-
chronization at communication and program termina-



tion states. There are three major sources of inaccuracy
in the TFG representation: unexecutable control flow
paths, unexecutable communication between matching
statements, and unexecutable orderings of asynchronous
program events. We introduce TFG refinements into
the basic analysis illustrated in Figure 1 to eliminate
sources of inaccuracy that are independent of particu-
lar TFG paths. We introduce feasibility constraints and
a mechanism for combining them with the property au-
tomaton into the basic analysis illustrated in Figure 1
to eliminate sources of inaccuracy that depend on par-
ticular TFG paths. '

4.1 Refinements

There are two goals in refining the TFG: reducing
its size and eliminating behaviors that are never exe-
cuted. Reducing the size of the TFG will reduce the
cost of performing state propagation. Eliminating unex-
ecutable behaviors strengthens the conditions encoded
in the TFG and consequently improves the accuracy of
state propagation. We have developed refinements that
reason about a variety of program information. Many
refinements only consider a subset of the TFG edges.
For example, in the description of communication inter-
vals that follows we do not need to consider MIP edges.
Therefore the cost of performing refinements is only de-
.pendent on the size of the relevant parts of the TFG.
We describe two of our refinements.

Alphabet Refinement For state propagation of a
given property to be correct, the TFG need only repre-
sent the set of events in the property alphabet and the
ordering relationships between those events. We can
perform alphabet refinement of a TFG for a given prop-
. erty by relabeling with 7 the edges in the TFG that do
not have labels in the property alphabet. The result-
ing TFG can be further transformed to eliminate edges
and nodes that do not add to the set of traces over
the reduced event alphabet. These transformations are
accomplished through application of a partition refine-
ment algorithm whose running time is bounded by a
low-order polynomial in the number of TFG nodes. We
will see in Section 5 that this simple refinement can have
a great effect on the size of the TFG and on the cost of
state propagation analysis.

Communication Interval Refinement Many pro-
grams contain critical sections, transaction like struc-
tures, regions of mutual exclusion, protocols for acquir-
ing and releasing resources, etc. We have developed
communication interval refinement to eliminate behav-
iors from the TFG that can never be executed based
on the semantics of these kinds of program structures.
A communication interval consists of a pair of execu-
tion regions in distinct tasks that are bounded by a
common pair of statically recognizable communication

events, called the start and end events of the interval.
We consider the start and end of the program as implicit
communication events. Intuitively, an interval consists
of regions of statements in two tasks such that if one task
is executing in the region associated with the interval,
then the other task must be executing in its associated
region. We can represent an interval as a set of TFG
nodes such that each node lies between the start and
end events in each of the tasks involved in the interval.
For the unrefined TFG in Figure 3 there are two com-
munication intervals involving tasks T1 and T2. Interval
1 has the start of the program as its start event and b
as its end event, and consists of nodes 1 and 2 in task
T1 and node 4 in task T2. Interval 2 has b as its start
event and the end of the program as its end event, and
consists of node 3 in task T1 and nodes 5 and 6 in task
T2.

Events in different tasks that lie in disjoint intervals ’
can never be immediate predecessors of each other be-
cause there is always an intervening event, the start or
end event of the interval. We can, therefore, eliminate
MIP edges that cross the boundaries of intervals. The
refined TFG in Figure 3 illustrates the results of ap-
plying communication interval refinement to the unre-
fined TFG. The MIP edges (1,5), (1,6), (5,1) and (5,2)
all cross interval boundaries 3. The cost of perform-
ing communication interval refinement is dominated by
the cost of computing control flow dominator and post-
dominator relations for the control flow graph of each
task and considering each pair of communicating tasks,
both of these are bounded by a low-order polynomial in
the number of TFG nodes. We will see in Section 5 that
this refinement can have a great effect on the size of the
TFG and the cost and accuracy of state propagation
analysis. We note that communication interval refine-
ment can be viewed as a generalization of Masticola and
Ryder’s critical section analysis [MR93].

Figure 6 illustrates the working of the state prop-
agation algorithm in Figure 5, with the communica-
tion interval refined TFG from Figure 3 and the PA
from Figure 4. The rows are presented in the order
that they are taken off of the worklist in line 4 of the
algorithm. Note that the computation of the current
source States value is dependent on the edge kind.
For communication edges we intersect the States val-
ues for the source COM edge and its partner. Note
also that when considering a MIP edge we use the
label of its partner edge in evaluating §. Since the
QRE for this property uses a V quantifier we check that
States(3) N States(6) = {2,3} N {3} C {1,3} = Ap4 to
verify that the response property holds on all executions
of the example program.

3For this simple example, there are other ordering refinements
that can determine the unexecutability of these edges.



Line 7 of State

’ Edge from | Edge Edge © Current Current
worklist kind | Partner Source States Dest States Propagation Algorithm
start,1) CF - {1} [] States(1) = QU §(1,7) = {1}
start,4) CF - 1} [] States(4) = QU (1,7) = {1
(1,2) CF - 1 [] States(2) = 0US(1,a) = {2
(1,4) MIP 1,2 {1 {1} States(4) = {1}U4(1,a) = {1,2}
4,3 COM 2,3 {1,2}n{2} = {2 [] States(3) = 0 U 6(2,b) = {2}
2,5 COM | (4.5 {2}n{1,2} = {2 ) States(5) = 0US(2,b) = {2}
(3,end) CF - 2} [] States(end) = QU §(2,7) = {2}
5,8 CF - {2} [] | States(6) = QU d(2,c) = {3
5,3 MIP (5,6) {2 2 States(3) = {2} U §(2,c) = {2;3}
(6,end) CF - {3 2 States(end) = {2} U 4(3,7) = {2,3}

Figure 6: Example Operation of State Propagation Algorithm

4.2 Feasibility Constraints

In contrast to refinements, feasibility constraints
(FC) attempt to improve the accuracy of state prop-
agation with respect to particular TFG paths. Con-
ceptually, a feasibility constraint represents a necessary
condition that must be satisfied for a path through the
TFG to correspond to a program execution. We have
developed feasibility constraints that encode necessary
conditions related to the ordering of events local to a
task, the ordering of events that are global to the entire
program, the relative number of occurrences of related
program events in the entire program, and the values of
program variables. Each of these can be encoded as a
finite automaton, and a collection of these can be com-
bined by the product builder, as described below, to
enforce the conjunction of the necessary conditions of
the constraints during state propagation analysis. We
will see in Section 5 that this can have a great effect
on the accuracy of state propagation analysis. We il-
lustrate the approach by discussing the local task event
ordering constraint.

Task Automata The presence of MIP edges in the
TFG introduces paths that may violate event orderings
encoded as control flow edges in the TFG. The refine-
ments of the previous section help improve the precision
of the TFG by eliminating unnecessary MIP edges. We
have developed a technique for enforcing the control flow
orderings for a single task during state propagation by
encoding the state and state transitions of an individ-
ual task as a finite automaton, called a task automaton
(TA). During state propagation, the TA restricts the
analysis to consider only TFG paths that correspond to
the set of legal event sequences for the modeled task.
A TA is constructed from the control flow graph for a
task, where the enter and exit nodes of the CFG deter-
mines the start and accept states of the TA. In general,
symbols in the TFG alphabet do not uniquely label TFG
edges. Keeping track of task state in the TA requires
that we know when relevant control flow edges in the
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Figure 7: CFG and TA for task T1 of example

TFG are considered rather than the symbols that la-
bel the edges. Thus, the alphabet of the TA is a set of
unique edge identifiers for the control flow edges of the
modeled task. We add a non-accepting violation state
to represent that a path in the TFG violates the order-
ing of events in this task. We add transitions from all
TA states to the violation state for all symbols in the
TA alphabet for which the state has no exiting transi-
tion. Figure 7 illustrates the CFG and TA for task T1
of the example in Figure 2. Each edge in the task CFG
has a corresponding transition in the TA, thus symbol
e, identifies control flow edge (1,2) and e; identifies the
control flow edge (2,3). There are four states: viola-
tion v and one for each node of T1’s control flow graph.
Finally, the state associated with the end node of the
task CFG, for this example state 3, is the only accepting
state.

We note that to enforce the conditions encoded in a
TA during state propagation, the TFG alphabet must
include the symbols of the TA alphabet. This typically
involves converting the TFG to use unique edge iden-
tifiers as edge labels and replacing PA transitions on
each symbol with a transition for each edge in the TFG
that is labeled by such a symbol. In the example, for
instance, we would replace transitions on a with transi-
tions on e;.

Product Builder Given a PA and feasibility con-
straints encoded as finite automata we can use standard
automata theory to construct a product automaton,
which we call a constrained property automaton (CPA).
As we introduce more feasibility constraints, the num-



ber of states and the size of the alphabet of this product
automaton grows rapidly, with a negative impact on the
performance of state propagation. To combat this we
have developed techniques reduce the number of states
and number of symbols in the alphabet of the CPA.

One such technique reduces the size of the CPA al-
phabet by recognizing that rather than using the cross-
product of the PA and FC alphabets, we can use unique
identifiers for the control flow and communication edges
of the TFG. Prior to state propagation, we can easily
transform the TFG labels, PA transition symbols, and
FC transition symbols to this common edge alphabet.
This can significantly reduce the complexity of J, the
CPA transition function. _

We have developed a technique that collapses collec-
tions of equivalent CPA states into a single state. As
mentioned above, the CPA enforces the conjunction of
the necessary conditions encoded in the FCs. If any of
the individual conditions of the FCs is violated then the
conjunction is violated. Therefore, we can collapse all
CPA states that represent a violation state in any of the
FC automata into a single violation state without losing
accuracy.

CPA states that are unreachable do not contribute to
the time performance of state propagation but they do
require unnecessary space to represent §. When tran-
sitions in multiple FC automata or the PA share a la-
bel, the CPA may contain states that are unreachable.
These states are easily detected and removed from the
CPA.

A final improvement to the CPA does not reduce its
size but it does improve the accuracy of analysis. We
apply refinement information to increase the accuracy of
the CPA that are built from one or more TA by directing
transitions on edges that are unexecutable at a given TA
state to the violation state.

These techniques resulted in a dramatic reduction in
the size of the CPAs used in state propagation for the
examples in Section 5.

Interpreting the results of state propagation of a
CPA, as opposed to a PA, has one slight difference from
the description in Section 3.4. When comparing the ter-
minal TFG States values to the CPA accept states, we
ignore the CPA violation state. This removes any .con-
tribution to state propagation of TFG paths that violate
any of the conditions enforced by the FCs encoded in
the CPA.

5 Empirical Evaluation

The two main goals of our empirical evaluation are to
demonstrate the feasibility of the analysis approach and
to provide feedback on the effectiveness of the analysis
components. As discussed in Section 3.1, in the worst
case the number of TFG edges is cubic in the number
of nodes. One goal is to assess whether this bound is

approached in practice. In addition, we want to validate
that accurate analysis results can be obtained without
excessive use of feasibility constraints. Note that if we
use a TA for each task in the program, then state prop-
agation of the resulting CPA will be as accurate, and as
costly, as global reachability analysis.

Although detailed characterization of the execution
performance of our analysis was not an explicit goal of
this evaluation, we are able to present some preliminary
data on the execution performance of state propagation
analysis.

Prototype Implementation

We have developed prototype implementations of a
number of components of the analysis architecture as
depicted in Figure 1. In particular, the program trans-
lator and a simple version of the state propagation al-
gorithm are fully automated, and detection of commu-
nication intervals is partially automated. We have well
defined algorithms for all the other components, includ-
ing an algorithm for constructing an automaton that
enforces constraints based on variable access called a
variable automaton (VA). The algorithms that are not
automated were applied manually for the experiments
discussed in this section.

Empirical Results

We consider three examples: the simple example
in Figure 2, the controller task from a readers/writers
problem [ABC*91], and a simple protocol [Cor92]. We
measure the cost of executing the state propagation al-
gorithm, described in Section 3.3, in terms of the num-
ber of TFG edges taken off of the worklist and the num-
ber of calls to 4, the CPA transition function. Figure
8 summarizes data for the experiments discussed below
4, The experiments included communication interval
refinement (CI), alphabet refinement (A), variable au-
tomata (VA), task automata (TA) and refinement of
the CPA based on communication intervals (CPAR).
The analysis results indicate that either all executions
satisfy the property, no executions satisfy the property,
or the results are inconclusive.

Example Experiment We analyzed 2 3 and 2 V
properties on TFGs representing the simple example in-
troduced in Section 3. We attempted to verify the re-
sponse property described in Section 3.2 and illustrated
in Figure 4. For this simple example there is a sin-
gle executable program trace over the alphabet {a, b, c},
namely abc. We attempted to verify that all the exe-
cution traces represented in the TFG exhibit this lone
executable trace. We also attempted to verify that two
unexecutable traces were exhibited by no trace in the

*Some of the QREs are too large to fit in the table and are
included in the text with reference numbers.



# Program Tasks | Refinements QRE Result TFG CPA State Propagation
Constraints Nodes | Edges | States | Edges | 4 Evals
1 example 2 {a,b,c}3ac inc 8 16 3 24 50
2 example 2 {a,b,c}Jabac no 8 16 6 24 43
3 example 2 Figure 4 all 8 16 3 19 24
4 example 2 {a,b,c}Vabc all 8 16 4 24 55
5 example 2 CI {a,b,c}3ac no 8 12 3 10 10
8 example 2 CI {a,b,c}3abac no 8 12 8 11 12
7 example 2 CI Figure 4 all 8 12 3 11 12
8 example 2 CI {a,b,c}Vabc all 8 12 4 11 12
9 control 1 QRE 1 inc 22 29 3 67 125
10 control 1 A QRE 1 inc 8 9 3 13 25
11 control 1 A VA QRE 1 all 11 14 8 32 57
12 | protocol 2 4 Cl QRE 2 inc 14 78 3 158 275
13 | protocol 2 4 CI,TA QRE 2 inc 14 78 5 129 340
14 | protocol 2 4 | CI,TA,CPAR QRE 2 all 14 78 5 105 221
16 | protocol 4 6 | CI,TA,CPAR QRE 2 all 24 232 5 444 747
16 | protocol 6 8 | CI,TA,CPAR QRE 2 all 34 466 5 862 1812
17 | protocol 8 10 | CI,TA,CPAR QRE 2 all 44 780 5 1616 2802
18 | protocol 8 10 | CI,TA,CPAR | QRE 3 with m=0 no 44 780 5 1761 3574
19 | protocol 8 10 | CI,TA,CPAR | QRE 3 with m=2 no 44 780 13 4076 16371
20 | protocol 8 10 | CI,TA,CPAR | QRE 3 with m=4 no 44 780 21 6318 37893
21 | protocol 8 10 | CI, TA,CPAR | QRE 3 with m=6 no 44 780 29 8560 68023

Figure 8: Data for Experiments

TFG. We performed state propagation analysis on the
two versions of the TFG illustrated in Figure 3.

The data in Figure 8 for experiments 1 through 8 in-
dicates that in all cases analysis of the refined TFG was
considerably less costly than for the unrefined TFG. For
the property {a,b,c}3ac, analysis of the unrefined TFG
was inconclusive; communication interval refinement of
the TFG improved the accuracy of the analysis results
so that the property could be verified.

Controller Experiment Many programs encode
state information in variables that is crucial to the suc-
cess of static analysis. The controller task from the
readers/writers example enforces the order in which it
accepts entry calls on its 4 entries by setting and testing
the state of two local variables. The code for this exam-
ple is given in appendix A with communication events
and variable access events indicated.

We specified the property that every bW, represent-
ing a communication over the Start_Write entry, is fol-
lowed by an eW, representing a communication over
the Stop.Write entry, without an intervening bW as
the QRE:

(1) {bW, eW, bR, eR}Y

(T — bW)* (BW; (T — {BW, cW})*; eW; (S — bW)*)*

The PA for this QRE has 3 states including a trap state.
We analyzed this property for three TFGs for this task:
an unrefined TFG representing all communication state-
ments and variable accesses, a TFG refined to have an
alphabet of just the communication events, and a TFG
refined to have an alphabet of communication events
and accesses to the WriterPresent boolean variable.
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As mentioned in Section 4.1, the alphabet refinement
has no effect on the accuracy of analysis results, but
it did have an appreciable impact on the cost of anal-
ysis. Unfortunately, the results were still inconclusive.
Increasing the TFG alphabet and incorporating a VA
provided sufficient accuracy to verify the property.

Experiments 9 through 11 illustrate how the com-
bination of TFG refinement and feasibility constraints
can provide increased accuracy while decreasing the ex-
ecution cost of the state propagation algorithm. These
experiments also illustrate how our analysis approach
supports reasoning about tasks and groups of tasks in-
dependent of the rest of the program.

Protocol Experiment The code for the protocol ex-
ample with 2 clients is given in appendix A. The prop-
erty that every header from client 1, h1, was followed
by a packet from client 1, pl, without any intervening
header sent was specified as the QRE:

(2) {h1,p1,...,hn,pn}v

(2 - h1)*(h1; (2 - {p1,h1,h2,...,hAn})*; p1;(Z - h1)*)*
Where there are n clients, each with unique k and p
events. The PA for this QRE has 3 states including a
trap state.

We analyzed this property for three TFGs represent-
ing a 2 client version of the protocol program. The first
TFG has an alphabet of communication events and was
refined by communication intervals. The second incor-
porated a TA for Client1 into the CPA, resulting in 2
additional states. This required converting the TFG to
the appropriate edge alphabet. The final version of the
2 client program applied the results of communication



interval refinement to the CPA. This introduces no new
CPA states, although it does change a number of tran-
sitions. The TFG for all of these experiments was the
same size but only the communication interval refined
CPA version provided sufficient accuracy to verify the
property.

Experiments 12 through 14 illustrate that accuracy
can be gained by using feasibility constraints while de-
creasing execution cost. In contrast to the the controller

example, refinements were not solely responsible for the -

decrease in execution cost. The ability of the CPA
product building algorithm to add constraints without
greatly increasing the number of states in the CPA was
an important factor in keeping analysis cost low.

We conducted experiments to get a sense of how anal-
ysis cost scales with the size of the TFG and CPA. In
Figure 8, experiments 14 through 17 are identical except
for increasing the number of clients. We note that the
LockManager task scales in complexity with additional
clients. All of these experiments successfully verified the
property described above. In Figure 8, experiments 18
through 21 are identical except for increasing the num-
ber of CPA states. We attempted to show that the QRE
(3) {h1,p1,...,hn,pn}3

(2 - h1)*(h1;(Z - {p1,h1,h2,...,hn})*;p1; (T — h1)*)™;h1
was satisfied by no program execution, where m is a pa-
rameter used to increase the size of the CPA. All of these
experiments successfully verified the property described
above.

Experimental Observations

Although the limited data presented here is insuf-
ficient for drawing statistically valid conclusions about
the rate of growth of state propagation analysis, we note
a number of trends in the data. For all of the experi-
ments in this section the number of TFG edges is consid-
erably less than the square of the number of nodes. For
the protocol example with increasing numbers of clients,
the measures of execution cost for the state propagation
algorithm appears to grow as the square of the num-
ber of nodes and linearly in the number of edges. The
number of edges taken off the worklist appears to grow
linearly with the number of CPA states and the § evalua-
tions appears to be grow faster than linear but less than
quadratic in the number of CPA states. This last point
is due to the fact that the state propagation algorithm
currently implemented in our prototype is the simple
version described in Section 3.3. Using the more effi-
cient algorithm will reduce this cost. Thus, it appears
that the bounds on the number of edges in the TFG and
the bound on execution time of the state propagation al-
gorithm are not indicative of the practical performance
of the analysis.
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6 Conclusion

We have presented an analysis approach based on
polynomial-time data flow analysis algorithms that ana-
lyze whether a concurrent program satisfies an explicitly
stated correctness property.

Our initial prototype implementation and algorithms
have provided valuable information on the contributions
of refinements and feasibility constraints to the effi-
ciency and accuracy of state propagation analysis. For
example, communication interval refinements have been
generalized from their initial incarnation based on feed-
back from our experiments. The accuracy of the state
propagation algorithm was improved by enforcing task
synchronization at communication points. In addition,
the set of TFG edges that need to be considered dur-
ing state propagation has been reduced without loss of
information. Also, we developed a faster version of the
state propagation algorithm, and the CPA construction
algorithm has been improved from its initial incarna-
tion by adding violation state collapsing and dead state
elimination.

In contrast to most of the methods described in Sec-
tion 2, our analysis approach is based on algorithms
with low-order polynomial bounds on the running time.
Our preliminary empirical evaluations suggests that ac-
curacy sufficient for verifying correctness properties of
concurrent programs may be obtained in an analysis
whose cost is bounded by a low-order polynomial in the
size of the program. Although our results are prelim-
inary, the accuracy and efficiency of state propagation
analysis for the examples presented in this paper are
encouraging.

A rich class of properties specified as patterns of pro-
gram events is supported. Specification of some global
properties however, such as deadlock, can require very
large PAs and the cost of analysis may be impractical
for these properties. One of our goals is to study a num-
ber of properties of concurrent programs to understand
how the cost-effectiveness of our analysis varies with the
property under analysis. ,

One of the strengths of our approach is its flexibility.
Users have the ability to control the tradeoff between ac-
curacy of the analysis results and the execution time of
the analysis. The analysis architecture allows for a wide
variety of TFG refinements and feasibility constraints to
be incorporated into the analysis. One of our goals is
to study the relative effectiveness of existing and new
refinement strategies with respect to increasing the ac-
curacy of analysis results and decreasing analysis cost.
While this paper describes FCs only as finite automata,
recent work has extended the analysis algorithms and
architecture to allow a more general class of data flow
problems to be solved in conjunction with state prop-
agation to eliminate unexecutable program traces from
consideration. We intend to use this increased flexibility



to explore a wider range of tradeoffs between analysis
cost and accuracy than was previously possible.

Programs can scale in a number of dimensions, such
as the number of tasks, complexity of control and data
structures, and communication structures. The exam-
ples considered in this paper are relatively simple. We
are in the process of fully automating all of the analysis
components. Using these tools we plan on performing
a number of case studies of large, complex concurrent
programs to investigate the extent to which our analysis
can be applied to realistic software analysis problems.

It has been suggested that no single analysis tech-
nique is suitable for analysis of all properties of all
concurrent programs. We intend to compare the cost-
effectiveness of our analysis approach with a number of
existing analysis techniques. This comparison will be
carried out by attempting to characterize the effective-
ness of these analyses on programs and properties found
in the literature. In this way we hope to contribute to an
understanding of the relative strengths and weaknesses
of each analysis technique so that ultimately software
developers will be able to choose the most appropriate
technique for the analysis problem at hand.
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A Code for examples

The code for the version of the read/write control task
that supports 2 active readers and where Done is a
global variable is as follows:

task body Read Write.Control is

ActiveReaders :
WriterPresent :

Batural range 0..2;
BOOLEAH := PALSE; -- EVENT "WP:= F"

ErrorFlag BOOLEAB := FALSE;
begin
accept Start Write; -- EVENT "bW"

accept StopNrite; -- EVEHT "eW" -

loop

select vhen not WriterPresent =>
accept Start Read; -- EVEHT "bR"
-- EVENT "not WP
ActiveReaders := ActiveReaders+1;

or accept Stop_Road; -- EVEET "eR"
if WriterPresent and ActiveReaders > O then
ErrorFlag := TRUE;

ond if;

ActiveRonders := ActiveReaders-i;

or vhon ActiveReaders = 0 and not WriterPresent =>
accept Startlrite; -- EVEHT “"bW*

-~ EVENT "not WP

WriterPresent := TRUE; -- EVERT "WP :=T"

or accept Stop.Nrite; -- EVENT "eW™"
if WritorPreosent and ActiveReaders > O then
ErrorFlag := True;

end if;

WriterPresent

:= FALSE; -- EVEET "WP := F"

end select;



if Done and (not WriterPresent) and
(ActivoReaders = 0) then
-=- EVEHT “notWpP?™
oxit;
end if;

end loop;
ond Read Write._Control;

The code for the 2 client version of the protocol pro-
gram where Done is a global variable is as follows:

task body LockManager is
begin
loop
oxit when Done;
select
accoept Acquirel;
accopt Reloasel;
or
accept Acquire2;
accept Release2;
end select;
oend loop;
ond LockManager;

task body Channel is
begin
loop
exit when Done;
select
accept Heador(h : in INTEGER);
or
accept Packet(p : in INTEGER); .
end select;
ond loop;
ond Channel;

task body Clientl is

h, p : IETEGER := O;

begin
loop
oxit when Dono;
LockManager.Acquirel;
Channel.Heador(h); -- EVENT "hl"
Channel.Packet(p); -- EVENT “pl"
LockManager.Releasel;
ond loop;

ond Clientl;

task body Client2 is
h, p : IHTEGER := 0;
begin
loop
exit when Done;
LockManagoer.Acquire2;
Channel.Header(h); -- EVENT "h2"
Channel.Packet(p); -- EVEHET "p2"
LockManagor.Release2;
end loop; .
ond Client2; 3

14



