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Abstract

This paper presents a compact Petri net representation that is efficient to construct for concurrent programs
that use explicit tasking and rendezvous style communication. These Petri nets are based on task interaction
graphs and are called TIG-based Petri nets (TPN)s. They form a compact representation by abstracting
large regions of program execution with associated summary information that is necessary for performing
program analysis. We present a flexible framework for checking a variety of properties of concurrent programs
using the reachability graph generated from a TPN. We present experimental results that demonstrate the
benefit of TPNs over alternate Petri net representations and discuss the applicability of Petri net reduction
techniques to TPNs.
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1 Introduction

An important goal of software engineering research is to provide cost-effective analysis techniques that allow
developers of concurrent software to gain confidence in the quality of their programs. Towards this end
many researchers [4, 8, 15, 17, 18] have investigated state reachability analyses. Theoretical results on the
complexity of reachability analysis imply that it can be prohibitively expensive [16]. Recent experimental
results [2, 13, 18] suggest that reachability analysis that considers the entire concurrent program is practical
only for small to medium size programs of moderate complexity. One approach to extending the applicability
of reachability analysis, called state space reduction, is to create a more compact program representation that
preserves only the information necessary to analyze a restricted class of properties. (4, 13]

This paper presents a compact Petri net representation that is efficient to construct for concurrent programs
that use explicit tasking and rendezvous style communication. These Petri nets are based on task interaction
graphs (TIG)s [5] and are called TIG-based Petri nets (TPN)s. This representation summarizes large regions
of program execution and makes available information from those regions that is relevant to the analysis
of desired properties. The result is a representation that is compact but unlike many state space reduction
techniques there is no loss of information. TPNs representation appears to be amenable to reachability
analysis for larger programs than previously proposed Petri net reachability techniques. TPNs are also
amenable to state space reduction techniques. ’

Given the large amount of information required to reason about properties of concurrent programs, there
is a fundamental choice about where this information is encoded. It can be explicitly represented in the
program representation or in the analysis algorithms that operate on the representation. Choosing the
former increases the space requirements of analysis but simplifies the algorithms; the latter decreases space
requirements but increases algorithm complexity. The major limiting factor in performing reachability
analysis is the construction of the reachability graph. Our hypothesis is that using a program representation
that reduces the size of the reachability graph, at the expense of increased cost in analysis of reachable
program states, will allow analysis of programs for which reachability analysis is otherwise impractical.
To evaluate this hypothesis we have constructed a set of tools to gather data on TPNs and reachability
graphs generated from TPNs and compare our results to recent work on control flow graph based Petri net
representations.

In the following section we give a brief overview of Petri nets and TIGs. Section 3 shows how a TPN is
constructed and discusses the semantic content of TPN places and transitions. Section 4 describes analysis
of state reachability properties using TPNs. We discuss how reachability analysis of TPNs differs from
reachability of most other Petri net representations. We present experimental data on the size of the
reachability graphs generated from TPNs and on the cost of checking the graph for desired properties. In
section 5 we describe how TPNs can be reduced prior to reachability analysis. Section 6 mentions directions
for future work.

2 Overview

This section defines general Petri net and TIG terminology and introduces a simple example to illustrate the
concepts presented in the paper. In principle the representations and algorithms described are applicable to
programs written in any procedural programming language that supports explicit tasking and rendezvous
style communication. In this paper, we assume that the concurrent programs being represented are Ada
tasking programs.

Petri Nets

Petri nets are a formalism used for modeling concurrent systems[10]. A Petri net is a directed bipartite
graph with nodes called places and transitions. Typically, places are drawn as circles and transitions as bars.
The edges of the graph are called arcs. Arcs are labeled with a positive integer representing their weight.
A marking is an assignment of an integer to each place in the net and represents the number of tokens at



task body T1 is task body T2 is

begin begin
loop loop
select Tl.a;
accept a; T1.b;
else end loop;
accept b; . end T2;
end select;
end loop;
end T1;

Figure 1: Ada tasking example

that place. Tokens are drawn as black dots inside places. A marking is given by a k-vector, M, where k is
the number of places in the net and M (i) denotes the number of tokens at place i. Formally, a Petri net is
a tuple (P,T,F,W,Mpo), where P is the set of places, T is the set of transitions, F C (P x T)U(T x P) is
the set of arcs, W is a function assigning. weights to arcs, and Mp is the initial net marking. In this paper
all of the Petri nets discussed are ordinary, having arc weights of 1, and safe, having a maximum of 1 token
per place. Associated with each transition is a set of input places, places at the head of incoming arcs, and
output places, places at the tail of outgoing arcs. A transition is enabled if each input place of the transition
is marked with at least as many tokens as the weight given on the associated input arc. A transition fires by
removing tokens from each input place and adding tokens to each output place. A tramsition may not fire
unless it is enabled. A transition that can never be fired in any execution of the Petri net is called dead.

Figure 1 presents a simple Ada program that will be used as an example throughout the rest of the paper.
Petri net models of concurrent programs have existed for some time; they are usually constructed from the
set of control flow graphs for the tasks of the program [6, 8, 11, 12]. We call Petri nets that explicitly
represent the possible control flow paths in each program task control flow graph Petri nets (CFGPN)s.
Figure 2 illustrates a typical CFGPN for the example, where rendezvous start and end are represented by
separate transitions. We denote start(end) of an entry call by the name of the entry subscripted by s(e),
e.g., a,. We denote start(end) of an accept statement by the putting a bar over the name of the entry
subscripted by s(e), e.g., @,. Because the net represents control flow choices explicitly, the set of reachable
markings that have no successor marking is a conservative approximation of the set of program deadlock
states. The reachability graph of this type of Petri net has been used to perform analysis of Ada tasking
programs (8, 12].

Task Interaction Graphs

TIGs have been proposed by Long and Clarke [5] as a compact representation for a rich class of tasking
programs. Most Ada language features that support concurrent programming can be modeled in TIGs. TIGs
divide tasks into maximal sequential regions, where such task regions define all of the possible behaviors
between two consecutive task interactions. The TIG abstraction hides task control flow information and thus
results in a smaller graph than a traditional control flow graph. A task interaction is any point where the
behavior of one task can be influenced by the behavior of another task. An overview of the TIG representation
is given below; a more complete description is found in [5].

Formally, a TIG is a tuple (N, E, S, T, L, C), where N is the set of nodes representing task regions, E
is the set of edges representing task interactions, S is the start node, T is the set of terminal nodes, L is a
function assigning labels to edges, and C is a function assigning code fragments to nodes. The start node
represents the region where task execution may begin and the terminal nodes represent regions where task
execution may end. Each node has a fragment of code associated with it that represents Ada statements in
the task region plus two types of non-executable statements, ENTER and EXIT, that mark region entry and
exit points. The ENTER and EXIT statements take a description of the task interaction as an argument



Figure 2: Control Flow Graph Petri Net for example
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Figure 3: Code fragments for task T1 of example

and EXIT takes a second argument describing the successor TIG node. The edges of a TIG are labeled with
the tasking interactions that cause transitions from one region to another. Considering only Ada entry calls
and accept statements, there are four distinct kinds of tasking interactions: starting an entry call, ending
an entry call, starting an accept statement, and ending an accept statement. It is necessary to model both
the start and end of a rendezvous explicitly because accept bodies are themselves task regions that perform
computation that must be captured in the representation.

To support efficient analysis, exiting task interactions are labeled as either blocking or non-blocking. If ex-
ecution reaches an entry call, accept statement, or select statement without an else or delay alternative, then
execution of the task blocks until another task reaches the rendezvous; edges representing these interactions
are blocking. If execution reaches a selective entry call or a select statement with an else or delay alternative,
then execution of the task does not block waiting for another task; edges representing these interactions are
non-blocking.

To illustrate these ideas consider the initial region of T1, C(1) in figure 3. Region 1 is entered at the
beginning of the task and exits at the select statement. There are two exits out of this region: the first exit
is on the start of the accept for a and the second is on the start of the accept for b. These edges are non-
blocking and blocking respectively. In contrast to CFGPN representations a TIG represents the semantics
of control flow branching, such as the select-else statement, within a TIG node. The TIGs for tasks T1
and T2 are given in figure 4. Given that regions represent all sequential execution paths between a given



Figure 4: TIGs for example
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Figure 5: Reduced TIGs for example

task interaction and all possible consecutive interactions, it is possible for distinct TIG nodes to contain the
same program statements. This may result in multiple TIG edges representing a single Ada communication
statement. In the example of figure 4, there are 3 edges corresponding to the statement EXIT(@;,2) in
regions 1, 4 and 5. Note that a TIG represents a single task instance. The potential behaviors of a collection
of tasks can be modeled by matching edges from different TIGs, whose labels represent calls and accepts of
the same task entry, for example a, and @;.

If the accept statement of a rendezvous has no accept body then we can reduce the size of the TIG repre-
sentation without loss of information. A single interaction, comprising both start and end of a rendezvous,
is used to model such an accept statement and any entry calls made on it. Since the accept statements given
in task T1 of figure 1 have no accept bodies, the TIGs for tasks T1 and T2 can be reduced as shown in
figure 5. We refer to these as reduced TIGs and drop the subscripts when referring to interaction names in
this context.

3 TIG-based Petri nets

We propose a Petri net model for Ada tasking programs that is constructed from a set of TIGs and therefore
hides the details of task control flow. A TPN maintains a strong relationship with the set of TIGs; each
place in the Petri net has a one-to-one correspondence with a task region and each transition represents a
potential task interaction. TPNs can be constructed using the following algorithm:

Input: set of TIG
Output: TPH
Algorithm:
1) create a place for each TIG region
2) for each pair of TIG edges with matching labols
3) create a transition whose input(output) places are the source(destination) nodes of the TIG edges



region before region before
call-start accept-start

randezvous-start

region between call-start region between accept-start
and call-end and accept-end

rendezvous-end

region after region after
call-end accept-end

Figure 6: TIG-based Petri net representation for Ada rendezvous

Task T1: Task T2:

Figure 7: TIG-based Petri net for example

The initial TPN marking has the place corresponding to each TIG’s start region marked. A TPN marking
corresponds to a program termination state if all the marked places correspond to terminal TIG nodes. A
similar algorithm can be used to construct a CFGPN from a set of task control flow graphs.

The above algorithm constructs a Petri net that overestimates the possible task interactions of the program.
All potential task interactions are included as a result of the exhaustive matching of TIG edge labels, but
some of these interactions can never be executed. From the algorithm description, it is clear that the cost of
constructing a TPN from a set of TIGs is dependent on the product of the number of calling and accepting
TIG edges. For all of the examples discussed in section 4 the time required to construct the TPN is negligible.

As we can see from the above algorithm, the total number of places in a TPN is the sum of the number of
nodes in the TIGs representing the program. There is a single TIG region for every task interaction contained
in the modeled task. The number of task interactions in a TIG is linear in the number of communication
statements in the task, as we can have at most 2 interactions for a single communication statement in the
case of an accept with a body. Thus the number of TIG nodes and hence the number of TPN places is linear
in the number of communication statements in the program.

In this algorithm, a TPN transition is created for each syntactic matching of edge labels. The potential
for having multiple TIG edges corresponding to a single call or accept statement in the source program, as
described in section 2, results in additional TPN. transitions. There are pathological examples where the
number of TPN transitions used to represent communication through a given task entry is quadratic in the
number of call and accept statements of that entry in the program. We note that many of these transitions
are dead, and hence do not contribute to the complexity of TPN based reachability analysis.

Figure 6 illustrates the TPN fragment that represents a single Ada rendezvous between a calling and
accepting task. In the case of multiple callers this fragment is replicated for each calling task, with accepting
task places participating in all potential rendezvous transitions. Continuing with our example, figure 7
illustrates the TPN constructed from the reduced TIGs in figure 5, where the firable transitions and arcs
are in bold. This example illustrates a number of the benefits of the TPN representation. Each task
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Figure 8: Reachability graph from Reduced TIGs and TPN for example

communication has a simple representation; a single TPN transition that has calling and accepting input
and output places. There is a single marked place in the set of places associated with each task in the program
that keeps track of the local state of each task. We have found that the regular structure of TPNs simplifies
reasoning about the correctness of the TPN representation and TPN based analysis. TPNs typically contain
fewer places and transitions than CFGPNs. For comparison, the TPN for the example in figure 1 has 6 places
and 9 transitions. The example CFGPN in section 2 has 16 places and 13 transitions. An Ada-net [15] is
a CFGPN designed to model Ada programs. An Ada-net for this example has 21 places and 16 transitions
[3]. In the next section we will see that for a number of examples this reduction in the size of the Petri net
representation results in a significant reduction in the size of the reachability graph.

4 Analysis using TPNs

Petri nets have been used for simulation, visualization, modeling and analysis [9]. We are primarily interested
in analysis, so the appropriate measure of worth of the TPN representation is its suitability for analysis.
TPNs are atypical of Petri net representations in that they abstract control flow merge and branch points
within a TPN place. As discussed in section 2, most Petri net representations [6, 8, 12, 15] explicitly
represent control flow merge and branch points using special purpose places and transitions. Young et. al.
(18] discuss separating the construction of the reachability graph from the process of checking a particular
property. Experimental evidence suggests that construction of the reachability graph is the limiting factor
in performing state reachability analyses. If we can construct the reachability graph, it is often practical to
check the property of interest on each of the states in the graph. We adopt this separation of graph generation
and property checking. Thus, to judge the effectiveness of a representation for reachability analysis we need
to consider both the size of the generated reachability graph and the cost of checking properties on that

graph.

4.1 Reachability

The TPN reachability graph is generated using standard Petri net techniques [8]. The structure of TPNs is
such that the number of marked places in any TPN marking is equal to the number of tasks in the program.
So, TPN markings can be represented as an array of elements of length equal to the number of tasks in the
program rather than as a bit vector of length equal to the number of Petri net places, which is needed for
general ordinary, safe nets. The reachability graph for the TPN in figure 7 is given in figure 8, where nodes
represent TPN markings. For clarity, we refer to a node in the reachability graph as a state, e.g., (1 4); we
refer to an edge in the reachability graph as an arc, e.g., (3 6) = (2 5).

Evaluating the Size of Reachability Graphs

We have constructed a set of tools to evaluate the suitability of TPNs for analysis of Ada programs. This
toolset is built from components produced by the Arcadia consortium. The current implementation recog-
nizes almost all Ada language features, builds reduced and unreduced TIGs, builds a TPN from a set of
TIGs, and then builds the TPN reachability graph. In figure 9, we present data for a number of examples
on the size of TPNs built from unreduced and reduced TIGs, in terms of places and transitions, and the
size of the corresponding reachability graphs in terms of states and arcs. We indicate with opt that the
TIGs used to construct the TPN have been reduced as discussed in section 2. In this table, we use the
symbol - to indicate that the tools were unable to build the reachability graph for the example and the
symbol * to indicate that no experimental data are available. BDS is a simulation of a border defense system



Example Tasks Ade-net TPN
Petri net Reachability Graph Petri net Reachability Graph
Places Transitions | States Arcs Places Transitions | States Arcs

BDS 15 107 135 - -
BDS opt 15 263 220 - - 96 128 | 285006 1952588
Gas-13 7 53 73 568 897
Gas-1 3 opt 7 187 141 79153 293480 35 62 323 526
Gas-1 5 9 79 137 11831 24004
Gas-1 5 opt 9 313 309 - - 53 120 6304 13397
Phils 3 ] 43 36 268 576
Phils 3 opt 6 72 54 | 18800 79083 25 24 84 186
Phils 5§ 10 71 60 11744 42440
Phils 5 opt 10 120 80 - - 41 40 1653 6130
Phils 7 14 29 85 - -
Phils 7 opt 14 * * * . 57 56 32083 166502
RW 2/1 4 29 56 85 163
LR.'_..W 2/1 opt 4 93 92 - - 17 48 41 119
RW 2/2 5 34 78 383 800
RW 2/2 opt 5 - - - - 20 66 178 692
RW 2/3 6 39 100 1413 3835
RW 2/3 opt 6 - - - - 23 84 609 3031
RW 3/2 6 39 95 1339 3644
RW 3/ 2 opt [} 138 143 - - 23 81 579 2884
RW 5/2 8 48 129 15221 50060
RW 5/2 opt 8 - - - - 28 111 5811 40660
RW 2/5 8 48 144 16433 53775
RW 2/5 opt 8 - - - - 28 120 6229 43571

Figure 9: TPN and Ada-net data

[7]. It contains 15 tasks and has entry calls and accept statements nested within complicated control flow
structures. Gas-1 are versions of the one pump gas-station example without deadlock and with the operator
task unrolled to accept separate customer entries [1]. Phils are versions of the basic dining philosophers
example with deadlock [1]. RW are versions of the readers/writers example presented in [1]. The number of
tasks next to the example name indicates the scale of the problem. For the gas station this is the number of
customers, for dining philosophers the number of philosophers and forks, and for readers/writers the number
of reader and writer tasks.

We compare TPNs to the Ada-nets generated using the TOTAL system [12] because Ada-nets are an
example of the class of CFGPNs described in section 2 and TOTAL is one of the few Petri net based
systems for analyzing Ada tasking programs for which a mature implementation and experimental data are
available. Experiments using the TOTAL system were conducted for BDS, versions of Gas-1, Phils and
the RW examples [2, 13, 14]. The size of Ada-nets, in terms of places and transitions, and the size of the
corresponding reachability graphs in terms of states and arcs, are given in figure 9, next to the comparable
TPN results. The Ada-net data is independent of reduced or unreduced TIGs so we only present that data
once. The two examples for which data are available from reachability analysis of Ada-nets and TPNs are
the Gas-1 3 and Phils 3 examples. Comparison of these data illustrates the reachability graph compaction
that can be gained by using TPNs, as the number of states and arcs in the reachability graphs are two orders
of magnitude less for TPN generated graphs. Although the maximum capacity of the TOTAL toolset is not
stated, programs whose reachability graphs are as large as 200000 states and 750000 arcs have been analyzed
[2). If we assume that reachability graphs are at least that large for the examples where reachability graphs
for Ada-nets could not be generated, then our results for the Gas-1 5, Phils 65, and Phils 7 examples also
show a compaction on the order of two orders of magnitude.

A major limiting factor in performing reachability analysis is the ability to construct the reachability
graph and in this respect TPNs are superior to Ada-nets. Comparing TPNs and Ada-nets is fair because they
represent equivalent amounts of program information. While early work on TOTAL relied on straightforward



reachability of Ada-nets [12, 15], more recent work [2, 13] has demonstrated that if we are only interested
in analyzing programs for deadlock freedom, Petri net reduction techniques are capable of significantly
extending the size of problems for which reachability analysis can be performed 2.

4.2 Checking Properties

Checking whether a program exhibits a desired property involves defining a property predicate that decides
whether a TPN marking satisfies the property in question. We evaluate this predicate for each state of the
reachability graph to determine if any reachable TPN marking violates the property. These predicates are
defined to be conservative in the sense that they never return false when a marking corresponds to a state
in which the desired property is true. The semantics of a property predicate can be used to construct TPN
reductions that preserve the conservativeness of the predicate, as will be shown in section 5. We illustrate
property predicates by presenting two examples: checking whether a TPN marking indicates the existence
of a critical race in the program and checking whether a TPN marking corresponds to a program deadlock
state.

Checking for Critical Races

An important global property of concurrent programs is freedom from critical races. Write-write critical
races occur when tasks that define the value of a shared variable execute such that the writes in one task may
either precede or follow writes in another task. This can be problematic, as the value subsequently read from
the shared variable depends on the order of writes. Shared variables can be identified by scanning the set
of variables defined and used by each task in the program. For Ada tasking programs the language provides
a mechanism for identifying shared program variables. For each shared variable, for each TPN place we
summarize whether a write to that variable is contained in the program region corresponding to the place.
For a program with v shared variables, each TPN place has an array of v booleans, named contains writein
the algorithm below, that records this information. A true value in the ith element indicates that the region
contains a write to the ith shared variable. An array of v booleans, named write_found in the algorithm,
records writes to shared variables associated with the marked places. The following algorithm determines
whether a critical race on any shared variable occurs in a given TPN marking.
Input: TPH marking M = [n1,n3,---,n;)
Output: True if the marking may correspond to a critical race.
Algorithm:
writefound(i..v] := FALSE
for i in 1..v do
for j in 1..k do
if M[j].containswrite[i] then
if not writefound[i] then
writofound[i] := TRUE
olse
roturn TRUE
end if
ond if
end for
end for
roturn FALSE

It is easy to see that a slight variant of this algorithm can be used to point the user at regions of source code
that may contain critical races if the predicate returns true for a marking. Checking this property predicate
for a given TPN marking requires time that is linear in the product of the number of tasks and the number
of shared variable in the program. A number of other co-executability properties, such as mutual exclusion,
can be checked using similar property predicates.

2We have not implemented the TPN reductions described in section 5, so comparing deadlock reduced TPNs to deadlock
reduced Ada-nets is not possible at this time.



Checking Deadlock

Freedom from deadlock is checked by determining that no combination of the individual task states for a
reachable TPN marking correspond to a program deadlock state. Conceptually, we need to look at all of the
possible control flow choices that can be made in the task regions associated with the marked TPN places.
If we find a set of control flow choices such that no pair of tasks can successfully communicate, then the
current TPN marking may correspond to a deadlock. TPN places summarige, through their associated TIG
node, the control flow choices that need to be considered to determine deadlock markings. For the TIG
nodes associated with a TPN marking we reason about all possible combinations of blocking exiting edges,
where one edge is taken for each TIG node. We call these the choice combinations for the TPN marking,
as they represent the possible communication choices that can be made by the program. A TPN marking
corresponds to a potential program deadlock if the marking does not represent a terminal state of the
program and if there exists a choice combination such that no pair of edges in the combination are matching
communications. Non-blocking edges exiting a TIG node can never contribute to a program deadlock, since
they can always be bypassed, thus they are not included in choice combinations. 3

We formulate this condition as a deadlock property predicate. For each blocking edge exiting the TIG
node associated with a TPN place, we compute a pair of bit-vectors of length equal to the number of task
entries in the program. A value of 1 in the ith bit of the accept.vector indicates that the TPN place has
an exiting edge that accepts the ith task entry. A value of 1 in the jth bit of the call.vector indicates that
the TPN place has an exiting edge that calls the jth task entry. We use bit-wise or, U and bit-wise and,
ﬂb' , operations over collections of bit vectors in the following algorithm.

Input: TPH marking M = [ny,n3,---,ng)
Output: True if the marking may correspond to a potential program deadlock
Algorithm:
if M is a terminal marking then
return FALSE

for each choiceo conhumt:.on, C, of M
all.accopts := U bec accept.vector of p
all calls := U bec call.vector of p

if (all.accopts nb" all_calls) = (0,::-,0) then
return TRUE

roturn FALSE

To illustrate, consider the deadlock property applied to the reachable TPN marking (2, 5) in figure 8. For
this example, see figure 7, TPN place 2 has a single exiting, blocking edge for the accept of 4 with an
accept-vector of (0,1) and a call_vector of (0,0) and TPN place 5 has a single exiting, blocking edge
for the call of b with an accept_vector of (0,0) and a call.vector of (0,1). The single edge choice
combination considered by the deadlock predicate for TPN marking (2, 5) computes the bit vector expression
(((0,1) v (0,0)) A ((0,0) v (0,1))) = (0, 1) so the predicate returns FALSE.

This algorithm is strongly dependent on the number of choice combinations for a TPN marking. The
number of choice combinations is, in the worst case, exponential in the number of tasks in the program.
Young et. al. [18] have shown that this problem is NP-hard, but they have found through experimentation
that for a number of programs checking this condition is practical.

Evaluating the Cost of Property Checking

For most CFGPNs, including Ada-nets, the deadlock predicate is very simple and only requires checking
whether a reachable marking has any outgoing arcs. For TPNs the deadlock predicate is more costly, since

3For clarity our presentation is in terms of edges. In practice, we group edges together that are branches of the same select
statement and select choice combinations appropriately. This improves both the efficiency and accuracy of checking a TPN
marking for deadlock.



[ Example Tasks | Entries | Maximum Average
Combinations

BDS opt 15 18 3 3.83
Gas-1 3 opt 7 10 2 1.31
Gas-1 5 opt 9 14 2 1.33

Figure 10: Choice Combination Data

in the worst case we must check all choice combinations associated with a TPN marking. This is, in the
worst case, exponential in the number of tasks in the program. To get a sense of the cost of checking the
deadlock property predicate over a TPN reachability graph in practice, we compute the average number
of choice combinations over the set of reachable TPN markings for each example in section 4.1. This is a
measure of the work required to check the deadlock property predicate at each reachable TPN marking.
For the Phils and RW examples the computation is trivial, as all TPN places correspond to TIG nodes
with a single blocking edge, thus there is a single choice combination to consider at each reachable TPN
marking. For the Gas-1 examples the Operator task has communication statements nested inside control
structures. Consequently, a number of TIG nodes for the Operator task have 2 blocking exiting edges. For
the BDS example there are a number of tasks that have nodes with more than one exiting blocking edge. A
component of our toolset computes the number of choice combinations for each reachable TPN marking, and
sums these values to get a measure of the work required for checking the deadlock predicate over the entire
generated reachability graph. Figure 10 gives the number of tasks, the maximum number of blocking edges
for any place in the TPN, and the average number of choice combinations to be considered by the deadlock
predicate over the set of markings in the reachability graph for the Gas-1 and BDS examples *. We also note
that the bit-vector operations described in the property predicates are appropriate since the longest vector
for any of these example is 18 bits, the number of entries in BDS.

Its clear that the cost of checking the TPN deadlock predicate varies with the program under analysis.
The data for the Gas-1 and BDS examples illustrates that the cost of checking the deadlock predicate is
dependent on the complexity of control flow within which communication statements are nested. The work
required for checking the deadlock predicate requires that 3 bit-vector operations be executed for each choice
combination. Our data shows that for all of our examples the average number of choice combinations is
less than 4. Therefore, we can expect that at most the work required to check the deadlock predicate at
a reachable TPN marking is approximately 12 times more costly than checking for deadlock at a reachable
CFGPN marking; for many of the examples the cost will be closer to 3 times the CFGPN cost. The data
presented in section 4.1 indicates that the number of states in a TPN reachability graph is on the order of
100 times less than in a CFGPN reachability graph. So, for these examples, the extra cost of checking the
TPN deadlock predicate is compensated for by the reduction in reachability graph size.

As discussed in section 1, TPN based analysis represents a tradeoff in encoding information in the pro-
gram representation versus analysis algorithms. The two property predicates described above illustrate that
checking properties of a TPN marking can range in cost from linear to exponential in the number of tasks.
Using the smaller TPN reachability graph is superior whenever efficient predicates are available. When the
cost of checking a predicate on a reachable TPN marking is greater than the cost of checking the corre-
sponding CFGPN predicate, this increased cost may be compensated for by the reduced number of states
in the reachability graph itself, as was demonstrated by the data in this section. Of course, in cases where
the CFGPN reachability is too large to construct and the TPN reachability graph can be generated, TPN
based analysis is the better choice.

Further experimentation with a range of realistic examples will provide a better indication of the cost of
checking TPN predicates versus the size of the TPN reachability graph.

4Our data on choice combinations incorporates the notion of groups of edges, mentioned above.
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Figure 11: Example of engaged entry reduction

5 Reducing the Cost of Analysis

Although TPNs appear to be an improvement over CFGPNs for reachability analysis, TPNs still suffer from
explosive growth in the size of the reachability graph, which makes them impractical as a basis for analysis
of large complex concurrent programs. In this section we consider techniques for reducing a TPN prior to
reachability analysis.

The theory of Petri net reductions [9] allows a given net to be replaced by a reduced net that maintains
certain properties of the original net and has a smaller reachability graph. Net reductions typically replace a
selected Petri net fragment with a new fragment. As noted above, to conservatively detect program deadlock,
reachability analysis of some Petri net representations can test for the existence of markings that have no
successors. A net reduction must preserve this information so that each reachable marking without successors
in the original net corresponds to some reachable marking without successors in the reduced net. Recent
experimental data has demonstrated that net reduction techniques are an effective approach to extending
the size of programs for which deadlock checking is practical(2, 13].

Unfortunately, program deadlocks are not conservatively represented by the set of reachable TPN markings
without successors, so we cannot directly apply existing deadlock preserving Petri net reductions. Net
reductions can be developed, however, that are applicable to TPNs. We use the semantics of the property
predicate to develop reductions by extracting necessary conditions for the predicate to hold. If we find
that a necessary condition for the property predicate to hold is false for a TPN fragment, then we know
that the tested fragment cannot participate in a reachable TPN marking that corresponds to that property.
We discuss three TPN reductions: engaged entry calls, parallel transitions and forced communication pairs.
Engaged entry call and parallel transition reductions preserve all information in the reduced TPN and
thus can be applied to improve the effectiveness of analysis for any property. Forced communication pair
reductions only preserve the deadlock property predicate in the reduced TPN.

The engaged entry call reductions eliminates a place from the TPN representation of a calling task. TPNs
include a place that represents the TIG region between an the start and end of an entry call, as in figure
6. This place carries no semantic information that is not represented by the input place of the Start
Rendezvous transition in the calling task. We can remove the redundant place from the TPN and direct its
incoming(outgoing) arcs to(from) the input place of the Start Rendezvous transition in the calling task.
Figure 11 illustrates the effect of the reduction. Place 2 is eliminated from the net. Note that this reduction
will not be applicable if this entry call was reduced during TIG construction as discussed in section 2.

The parallel transition reduction merges transitions that have the same input and output places. These
TPN structures arise when communication statements are nested within multiple control structures. The
transitions represent different control flow choices that can be made within the TIG regions corresponding
to the input places. In the context of our analysis, parallel TIG edges and their associated TPN transitions
are redundant and can be deleted. Figure 12 illustrates the effect of the reduction. Transitions ¢; and ¢; are
merged into a single transition t;3. This reduction has the potential to greatly reduce the number of arcs in
the reachability graph, thereby reducing the time it takes to generate the set of reachable TPN markings.

The forced communication pair reduction takes advantage of the existence of a sequence of communications
between two tasks. We illustrate how it can be applied to preserve deadlock in the reduced TPN. Informally,
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Figure 12: Example of parallel transitions reduction
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— local work — local work \l/bypass
accept exchange: Tl.exchange: /
— local work ~— local work
T2.stop: accept stop; //
end loop; end loop:
end T1; end T2;

Figure 13: Example of a forced communication reduction

this reduction can be applied when no other tasks attempt to communicate with the pair during a sequence
of communications and when all choice combinations for the communicating pair contain matching com-
munications. Figure 13 depicts a simple example of forced communication, where tasks T1 and T2 engage
in a series of 3 communications at T2.start, Ti.exchange, and T2.s8top. The reduction is based on the
semantics of the deadlock property predicate. Given the conditions on applying the reduction, it is always
the case that whenever we reach a TPN marking in which the start places of the forced communication are
marked, in our example 1 and 5, we always execute the rest of the TPN fragment associated with the forced
communication resulting in the end places, in our example 4 and 8, being marked. We introduce a transi-
tion into the TPN that bypasses the portion of the TPN representing the forced communication and delete
the bypassed portion of the TPN. We can detect forced communication pairs by looking for the boundary
communications, in our example start and stop, then verifying that the rest of the pattern is suitable for
reduction. This reduction reduces both the number of reachable TPN markings and the number of arcs in
the reachability graph.

We can generalize forced communication reductions to allow a more complicated pattern of communication
between a pair of tasks, to consider more than a pair of TPN places, and to preserve properties other than
deadlock. Consider a region of the reachability graph that is entered through a single marking and exited
through a single marking. If we can verify that no markings in this region violate the property we are
interested in, then we can bypass it. We have developed algorithms for detecting TPN fragments associated
with such regions based on commonly occurring communication patterns in concurrent programs. We intend
to explore their potential for reducing the cost of TPN based reachability analysis.

6 Conclusion
In this paper, we have presented a compact Petri net representation for Ada tasking programs. Experimen-

tal evidence shows that TPNs are smaller than Petri nets that explicitly represent program control flow.
More importantly for analysis, the reachability graphs generated from TPNs are also smaller, in some cases
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dramatically so. We iniroduced the concept of a property predicate and provide preliminary evidence that
checking such predicates over the set of reachable TPN markings is practical. Although those well versed
in concurrency analysis could define, and appropriately verify, predicates to check for a desired property,
we envision that typical end users will select from a library of existing property predicates and appropriate
reductions that address common properties or classes of properties of concurrent programs. We presented a
set of TPN reductions that have the potential to improve the cost-effectiveness of reachability based analysis.

It has been suggested that no single technique is suitable for analysis of all properties of all concurrent
programs. TPNs bring elements of Petri net and TIG-based reachability analysis together. TPNs represent
a different tradeoff between encoding information in the program representation versus analysis algorithms
than has traditionally been made for Petri net representations. This paper has presented preliminary results
to support our hypothesis that reachability analysis of a representation that reduces the size of the state space,
perhaps by increasing the cost of checking properties of program states, is more practical than reachability
analysis of non-reduced representations.
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