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Abstract

Although event-based software integration is one of the most prevalent approaches to loose integration,
no consistent model for describing it exists. As a result, there is no uniform way to discuss event-based
integration, compare approaches and implementations, specify new event-based approaches, match user
requirements with the capabilities of event-based integration products, and so on. We attempt to address
these shortcomings by specifying a generic, event-based integration framework that provides a flexible
model for discussing and comparing event-based integration approaches. This model supports dynamic
and static specification, composition and decomposition, and can be instantiated to describe the features
of most common event-based integration approaches. To demonstrate this, mappings to several popular
products are presented.
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1 Introduction

A serious concern in the construction of large software systems is integration, in which multiple software
modules (programs, subprograms, collections of subprograms, etc.) are made to cooperate. Approaches to
integration range from loose, in which modules have little or no knowledge of one another, to tight, in which
modules require much knowledge about one another. The looser the integration, the less impact there is
on the system when modules are added or changed. Event-based integration, in which modules interact by
announcing and responding to occurrences called events, is perhaps the most prevalent loose integration
approach — more than fifty event-based integration products are available today (e.g., [11, 14, 18, 21, 28,
29, 30)).

Unfortunately, no consistent model for describing event-based integration exists; in fact, there is not
even a consistent vocabulary for discussing it. As a result, it is hard to capture an application’s integration
requirements and match them with those offered by various event-based approaches. Thus, it is difficult to
choose a suitable approach; and if no existing approach is suitable, it is difficult to specify a new one. It is
also difficult to identify the similarities and differences of various event-based approaches in order to support
interoperability among them.

In this paper, we attempt to address these shortcomings by specifying a generic, event-based integration
framework. This framework is not “yet another” loose integration mechanism; rather, it is a high-level,
general, and flexible model with several purposes:

e To identify common components found at the heart of event-based software integration and define a
precise and consistent vocabulary for discussing them.

e To serve as a basis for comparison of specific event-based integration mechanisms.

o To facilitate interoperability among different integration mechanisms.

*This work was supported by the Defense Advanced Research Projects Agency under Grant MDA972-91-J-1009.



e To provide insight into what is required for high-level communication among software modules.

The framework is intended to support event-based software integration, as found in SoftBench [18], the
CORBA specification [11], and many other approaches. It is not intended to support other integration
techniques, such as various kinds of procedure call (e.g., single program, remote procedure call), shared
repository or central database (e.g.,, ECMA PCTE [23]), and stream-based (e.g., pipes), though it is capable
of supporting each of these in limited ways. It is unrealistic to expect a single model to subsume all possible
integration models. As we demonstrate, however, the framework does support many common and useful
integration models.

We begin in Section 2 by describing related work in event-based software integration. In Section 3, we
give a brief overview of the framework, followed by a detailed description. In Section 4, we demonstrate
the framework’s effectiveness by mapping representative examples of several integration mechanisms onto it.
Finally, we draw conclusions about the framework and its potential.

2 Related Work

Existing approaches to event-based software integration can be examined across at least four orthogonal
dimensions: methods of communication, specification of module interactions, dynamic versus static behavior,
and naming issues.

Methods Of Communication: Two primary methods of communication among software modules are
point-to-point and multicast.! Point-to-point means that data is sent directly from one software module
to another. Two common point-to-point approaches are procedure call? and application-to-application. A
procedure call sends procedure parameters from a software module known as the caller to another known as
the callee, optionally returning a value to the caller. In the application-to-application approach, application
programs have unique ID’s and transmit messages to one another via these ID’s. This approach is common
on personal computers, since the simplifying assumptions of “one user per machine” or “one invocation of a
given program at a time” may often be made. Examples include Apple Events (2] on the Macintosh and
ARexx [9] on the Commodore Amiga.

Multicast means that data is sent from one software module to a set of other software modules. Two
popular multicasting approaches are implicit invocation and the software bus. In the implicit invocation
approach, the sender is unaware of the recipients. Software modules express their interest in receiving
certain kinds of data that are then routed, usually by a central server, to the appropriate recipients. Implicit
invocation, originally called selective broadcast, was pioneered by Field [30). Today, implicit invocation is
used in many commercial products such as Hewlett-Packard’s SoftBench (18], Sun’s ToolTalk [21] and
DEC’s FUSE [14]. It has also been added to some programming languages (e.g., [27]). In the software bus
approach, software modules have their inputs and outputs bound to the channels of an abstract bus. Data
sent to a bus channel is received by all tools with an input bound to that channel. A key feature is that
bus connections may be rearranged without modifying the tools. An example of a software bus is Polylith
(15, 29).

Another primary method of communication is shared repository, in which modules communicate by
storing and retrieving data to and from a central database. While this is not a loose integration method, one
particular kind of shared repository, the sequential shared repository, is sometimes combined with an event-
based approach to provide loose integration. A sequential shared repository is a database that disallows
concurrent access to its contents. Blackboard systems [20] are a popular integration mechanism using this
approach.

As we demonstrate in Section 4, our framework supports the point-to-point, multicast, and sequential
shared repository approaches.

Specification Of Module Interactions: Various integration approaches allow interactions between soft-
ware modules to be specified at different levels of abstraction, ranging from low-level to high-level. RPC stub
generation is an example of a mechanism that allows simple, low-level connections between caller and callee
to be specified. ToolTalk [21] wraps modules in a layer of software with input and output interface speci-
fications. Polylith [29] takes this one step further and allows a somewhat higher-level specification of the

! Broadcast is a special case of multicast in which data is sent to all possible recipients, so we do not discuss it separately.
3Procedure call is not properly an event-based mechanism, but it is often used to communicate events between modules in
event-based mechanisms.
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Figure 1: Relationships among informer, listener, registrar, and router.

connections between wrapped modules’ interfaces. SoftBench [18] provides a programming language rich
enough to specify the interactions of wrapped modules without any modifications to the original source code.
Finally, Meld [22] permits a high-level specification of inter-module interactions via constraints rather than
imperative statements. A related approach is to attach formal semantics to modules [13] or the connections
between modules (1] and reason about the correctness of module interactions. As shown in Section 3.2.11,
our framework supports specification of module interactions at many levels of abstraction.

Dynamic vs. Static Behavior: Different integration approaches permit varying levels of static and
dynamic specification of their behavior. For example, Polylith version 2.1 [29] requires that modules
be terminated and restarted to change their connections. The SDL BMS (3] allows modules to register
and unregister for service dynamically. ToolTalk [33] supports both static and dynamic specification of
interactions. As shown in Sections3.2.10 and 3.2.11, our framework supports both dynamic and static
specification.

Naming Issues: Interacting software modules may be named in various ways. At the most basic level,
software modules are contacted directly by name, as in ARexx [9]. CORBA's [11] object-oriented approach
and DCE’s name server support dynamic location of modules by name. ISIS (7] allows multiple modules
to be grouped under a single name so they may be accessed together. Dynamic location and grouping are
both examples of the use of aliases. Aliases support loose integration since a module may be exchanged
for another without changing the name that other modules use to refer to it. Aliases may transparently
represent individual modules, groups of modules, or distributed modules on multiple physical machines. As
shown in Sections 3.2.7 and 3.2.8, our framework supports several naming models via attributes and groups.

3 The Generic, Event-Based Integration Framework

3.1 Overview of the Framework

Components of the Framework: In the framework, depicted in Figure 1, one or more modules, called
participants, transmit and/or receive pieces of information, called messages, in response to occurrences,
called events. Participants that transmit messages are called informers, and those that receive messages are
called listeners.

Before a participant may transmit or receive any messages, it must register its intent to do so via a
registrar. Participants may register (and unregister) information such as simple intent to communicate,
synchronization preferences, events in which they are interested, mappings of events to messages, and more
(as will be described in Section 3.2). The registrar then contacts a component called a router to create
communications channels between registered informers and listeners and transmit messages to their intended
recipients.

The framework allows the content and/or routing of messages to be modified after the messages are
sent but before they are received. A message transforming function (MTF) may dynamically convert one
sequence of messages intended for a set of listeners into another sequence intended for the same or another
set of listeners. A common, simple example of an MTF is a filter, which selectively removes messages from
a listener’s incoming message stream if they do not match certain criteria. Another is an aggregator, which
transmits a new message whenever a particular sequence of incoming messages is detected.



In addition to altering messages, one may also control the rules of message delivery by imposing delivery
constraints. These are constraints on the delivery of messages: order of delivery, timing of delivery, and so
on. For example, one may specify that all messages must be received in exactly the order they are sent, or
that a particular listener must receive all messages before any other listener does.

The framework supports the description of groups and attributes which ‘are useful for capturing composi-
tion and decomposition capabilities. Groups are sets of participants and/or framework components that may
be logically treated as individual participants or framework components. For example, a registrar, router,
and set of participants may be treated as a single participant, facilitating the description of a hierarchical,
event-based model. Attributes are named, typed values that may be associated with participants, framework
components, messages, and events. Attributes provide a flexible approach for defining selection capabilities.

In summary: registrars, routers, message transforming functions, and delivery constraints are the compo-
nents of the generic, event-based integration framework in which participants communicate. Each represents
a basic aspect of integration. Participants are the interacting software modules. Registration distinguishes
participants that are interacting from those that are not. Routing transmits data among participants.
Message transforming functions allow the data to change dynamically. Finally, delivery constraints permit
control over the flow of information.

Using The Framework: The generic framework does not specify details such as:

o Particular message transforming functions and delivery constraints, the number of registrars and
routers, and other details.

e How to implement framework components, messages, and events.
e How to turn software modules into participants.

e Particular interactions between participants.

Instead, using a three-phase process, the framework may have these details imposed on it dynamically
or statically and thereby model software integration mechanisms with specified properties and participant
interactions. The phases are called instantiation, adaptation, and configuration.

The instantiation phase is the process of imposing additional details and semantics on the framework
and its components, as listed in Section 3.2.10. We call such an instantiated framework a mechanism, and
the user responsible for this phase is called a mechanism engineer. The description of a mechanism is called
a mechanism specification. Mechanism specifications may be defined statically or applied dynamically to a
mechanism. The actual implementations of framework components, messages, and events are not explored in
this paper. The separation of instantiation from implementation is important because it allows us to discuss
the differences between mechanisms that affect their behavior versus those that do not. As we shall see in
Section 4, the behaviors of many software integration products may be described by mechanisms instantiated
from the framework.

The adaptation phase is the process of describing how software modules are turned into participants
that interact via a particular mechanism. Adaptation may or may not require modifications to the modules.
Adapted participants are said to be compatible with the mechanism.

The configuration phase is the process of defining interactions between participants in a particular mech-
anism. That is, we may specify which participants are registered, how they interact with one another, which
message transforming functions they use, how participants adhere to the delivery constraints, and so on.
Such a description is called a configuration specification, and it defines a configuration of the mechanism.
Configuration specifications may be defined statically or applied dynamically to a mechanism. The con-
figuration state is the set of states of all participants in the configuration at a moment in time. The user
responsible for the adaptation and configuration phases is called a configuration engineer.

3.2 Detailed Description

3.2.1 Participants, Informers, and Listeners

A participant is a software module that has been adapted to be compatible with an integration mechanism.
An informer is a participant that transmits messages, and a listener is a participant that receives messages.
A participant may be an informer, a listener, or both. Each listener has one or more incoming message ports
at which incoming messages are held until the listener handles them. The semantics of each message port are
definable; for example, one port may queue messages, and another may emit an event on message receipt.

-3



Every participant has a unique name or identifier that distinguishes it from all other participants. We
call this the participant ID. Since a group of participants can be treated logically as a single participant
(see Section 3.2.8), this implies that a group of participants has its own ID. Also associated with every
participant is a participant state. This may contain any information about the participant including, but not
limited to, state information about the adapted software module, and it allows the participant to respond
to a mechanism-specific set of queries. For example, it may include a description of the messages currently
waiting at the participant’s message ports but not yet processed.

Before a module can be used within a given integration mechanism, it must be turned into a participant
that is compatible with the mechanism. This process is called adaptation. Adaptation may be performed
either as the module is being written or after it has been written. Adaptation may involve modifying the
module’s source code manually or automatically, linking with custom libraries, wrapping (sometimes called
encapsulating) the module in another layer of software, or other means.

Formally, let I be the set of all integration mechanisms, P be the set of participants, and X be the set of
all software modules. Given a module ¢ € X and an integration mechanism i € I, an adaptation a(z, i) is the
relation a : (X x I) =& P. That is, a(z, i) is a participant compatible with an integration mechanism. a is a
relation, not a function, because there may be many methods of adapting modules for a given mechanism.

3.2.2 Events and Messages

An event is a notable occurrence such as the invocation of a program, modification of a file, change of a
participant’s state, or sending of a message. Each event has a name and a type.

A message is information emitted by an informer in response to an event or events.?> Each message has
a name and zero or more message parameters, analogous to the name and parameters of a subprogram.
Messages and message parameters are typed. A message’s parameter types and number of parameters are
collectively called the message signature.

8.2.8 Registrars

Before a participant may transmit or receive any messages, its intent to do so must be registered via a
registrar. Conceptually, a registrar is a front-end for the creation of router connections. Information about
a participant can be registered by that participant or by other means, such as by another participant or by
a configuration engineer. Registration may be done dynamically or statically.

An informer registers its intent to send messages, either in general (e.g., broadcast) or with particular
listeners. It also registers associations between events and messages; that is, on the occurrence of a particular
event, which messages the informer will emit. A listener registers only simple intent to receive messages.
Finer-grained control over the selection of messages is achieved by allowing participants to associate message
transforming functions with their incoming and outgoing message streams. For example, a listener interested
only in messages from a particular informer or pertaining to a particular event can use an MTF that filters
out all incoming messages not matching those criteria.

Particular delivery constraints, discussed in Section 3.2.6, may be registered. Delivery constraints may
apply per participant, per message, or both; for example, “All messages of type t with attribute a, sent by
Informer i3 in response to event e, should be received first by Listener lg.” Synchronization and concurrency
control preferences, discussed in Section 3.2.9, may also be registered and are described using the same levels
of granularity.

When a registration is requested, some consistency checking may be necessary to insure that the regis-
tration does not conflict with any other registrations. For example, if two different listeners both attempt to
register a delivery constraint to receive all PRINT messages before any other listener, both requests cannot
be satisfied simultaneously.

Associated with each registrar is a registrar state. The state contains all registered information and
additional information as specified by a mechanism engineer. Registrars may respond to queries about their
state, such as which participants are registered, what are the attributes of participant p, which participants
are interested in message m, and so on. Not all queries may be answerable directly from the registrar’s state,
so the registrar may need to obtain router state information as well.

3Note that “I am about to send a message” and “a message has been sent” are both events. Therefore, messages may
effectively be sent on demand or in response to other messages.



3.2.4 Routers

A router’s purpose is to receive messages from informers and make them available to listeners. Routers create
communication channels between participants in response to requests from registrars. A communication
channel may be as simple as a direct connection between an informer and a listener, or it may involve the
dynamic evaluation of message transforming functions and delivery constraints to determine the recipient of
a message. Routers are distinguished from registrars in that they are time-critical components; that is, one
of their major tasks is the optimization of message transmission between participants.

Routers may make a message available to listeners by two methods. The first is to send the message
immediately to the intended recipients. The second is to hold the message until some event occurs, such as
a request from a listener or the passage of a certain amount of time. The first method corresponds to the
traditional view of message passing, and the second method gives routers very limited repository semantics,
as demonstrated in Section 4.4.

Communications channels may exist only long enough to transmit the message, or they may remain in
existence until the participants using it indicate that they no longer need it (i.e., they unregister). Such
“long-lasting” channels are useful for several reasons. First, they may be used to optimize point-to-point
communication, since the router can create the channel and then not have to be involved in the sending
of every message along the channel. Second, they may be used to model some aspects of sitream-based
integration mechanisms, such as pipes, in which an unspecified amount of data is transmitted in between
“begin” and “end” events.

Let L be the set of all listeners and M be the set of all messages. The complete path of a message in the
framework is:

1. An informer emits a message m € M.
2. The message m is received by a router.

3. The router applies all applicable message transforming functions, delivery constraints, and synchroniza-
tion preferences to message m and the set of registered listeners, resulting in a sequence ((my, 1), (ma, l2),
«eey (M, k), with my,ma,...,mx € M and l1,l,...,lx € L. Note that m is not necessarily in
{mli LU TR mk}'

4. The router makes each message m; available to listener ;.

Associated with each router is a router state. The state includes a description of all connections to and
from participants, a description of all undelivered messages that have been emitted by informers but have not
yet been sent to the message ports of intended listeners, and other information as specified by a mechanism
engineer.

3.2.5 Message Transforming Functions

Given a sequence of messages intended for a particular set of listeners, an message transforming function
(MTF) transforms it into another sequence of messages intended for another set of listeners. An MTF may
also have an internal state that changes, thereby changing the system state. Formally, let M be the set of
all messages, L be the set of all listeners, and S be the set of all system states. An MTF is a function

fiM*x2ExSaM x2kxs

where M* is a sequence of messages in M, and 27 is the power set of L.

For the purposes of transforming messages into other messages and/or re-routing them to other listeners,
M* and 2% are in the domain and range of an MTF so they can be changed by the MTF. We use a sequence of
messages, rather than a single message or a set of messages, so the MTF can use the ordering of the messages
to affect its computation. In addition, including the system state in the domain and range increases the
power of an MTF by allowing it to maintain an internal state and modify its behavior based on that state.
Since the system state includes the states of all the framework components, including MTF’s, changing an
MTF’s internal state changes the system state. Of course, a simple MTF function could ignore this state
information.

Most integration products support some message transforming functions; most commonly, filters. Field
[30] participants have regular expressions (filters) that specify which kinds of messages they receive. ToolTalk
{21] and the Amiga Exec [10] allow participants to filter messages based on message “classes.” The Pilgrim



Event Notifier [6] provides “subscription lists,” and participants receive all messages sent to those lists.
Bart [4] uses “declarative glue” and relational algebra to allow participants to select relevant data. Policies
in Forest [16] provide aggregation. A more subtle example of aggregation is that of Odin (8], in which
objects have multiple dependents, all of which must (effectively) send an “up-to-date” message before the
target object can send its own. '

3.2.8 Delivery Constraints

A delivery constraint is a property of message delivery that is enforced by a mechanism. Examples are order
of delivery, timing of delivery, and atomicity properties (e.g., a message is delivered either to all or none of
its intended listeners).

In the framework, a distinction is made between two classes of delivery constraints. A system delivery
constraint is one that applies to all messages sent in the mechanism. These constraints often arise due
to underlying physical constraints, such as “messages may be transmitted no faster than 10 megabits per
second.” A user delivery constraint may apply only to some messages sent in the mechanism; for example,
“Listener Iy should receive all messages before any other listener does.”

Some examples of useful delivery constraints are:

o All messages are received strictly in the order they are sent.
o Messages must be received within a certain amount of time.

e Ouly one (or a subset) of a designated group of listeners need receive a particular message. (Perhaps
all of these listeners are capable of responding to it, but only one response is needed.)

It is possible for several delivery constraints to be inconsistent with one another. A mechanism may
specify policies for resolving such inconsistencies. In addition, violations of delivery constraints may or may
not be permitted by a mechanism. A mechanism may specify a policy for responding to such violations.

Delivery constraints are found in some integration products. ISIS (7] has “message delivery orderings”
that enforce causal relationships between messages. The Amiga Exec [10] allows listeners to be prioritized
for receiving messages. Consul [26] has an “order protocol” that enforces orderings on received messages.
Listeners in Garlan and Scott’s Ada extensions [17] receive messages in the order in which the messages are
defined statically in the source code. Real-time systems have hard and soft deadlines. ISIS (7] and Consul
[25] support atomic broadcast of messages.

3.2.7 Attributes

Participants, framework components, messages, and events may have attributes, which are named, typed
values. An attribute is referred to by an attribute name, and its value is called an attribute value. Defining
an attribute has three parts:

e Specify a name and a type for the attribute.
e Define a function that, given an attribute and an attribute value, assigns the value to the attribute.

o Define a function that, given an attribute, returns the attribute’s value.

The framework does not prescribe any particular use of attributes, but they are provided so that par-
ticipants and framework components may be identified as having certain properties or capabilities. For
example:

e Some useful message attributes are a participant ID attribute, indicating the ID of the participant
that sent the message; a timestamp attribute, indicating the time at which the message was sent; and
an event attribute, indicating the event that triggered the message.

e A listener may have operation attributes indicating that the listener is capable of performing particular
operations. For example, a listener that can print Postscript files might have an operation attribute
with the value print-postscript. Informers can query the registrar to learn which listeners provide
operations that they desire. Listeners can register to receive messages having a particular operation
attribute. Thus, attributes can be used to support participant location (directory) services for implicit
invocation mechanisms.



e A group of participants, messages, etc., can share a classification attribute that describes something
that the group’s members have in common.

e A priority attribute may indicate the relative importance of a participant, event, message, etc.

3.2.8 Groups

Items in the framework, such as participants and framework components, may be grouped recursively to
form a hierarchy of items. A simple example of a group is a mail alias, in which a single mail address is used
to represent a set of mail addresses. Groups have many uses:

e They may be used to support composition. A set of registrars, routers, and participants may be
grouped and treated logically as a single participant, which may then be a member of other groups.

e A group of participants may share a set of message attributes.

e A group of events may be considered logically equivalent so that a participant responds the same way
to any of them.

Formally, let G be the set of all groups. A group of items is composed recursively of items and groups
of items. Given a group g € G, the items and groups that g comprises are called the members of g. Groups
may be empty. A group may not contain itself directly or indirectly.

It is possible to model groups indirectly using attributes; that is, items that share an attribute can be
considered a group. Attributes, however, do not have special semantics associated with them, and issues
such as naming and multiple group membership can make an attribute-based grouping model awkward to
use. Groups appear in various integration products, though generally only participant groups are supported.
ISIS [7] provides support for several kinds of participant groups, in which the members have varying degrees
of awareness of each other. Field [30] supports participant grouping implicitly via message patterns: all
participants registering a given message pattern form a group, and messages matching the pattern are
multicast to the group members. Schooner [19] and Cronus [31] have multiple servers, each serving a group
of participants. CORBA [11] objects and SoftBench [18] tools may encapsulate multiple participants,
implicitly forming a group.

3.2.9 Other Issues

Other issues associated with the framework are synchronization, concurrency control, and access control.
While the enforcement of these issues is often the responsibility of lower-level subsystems (e.g., the oper-
ating system or the hardware), a mechanism specification may describe them and define policies for their
enforcement.

Messages may be sent via the router from informers to listeners either synchronously or asynchronously.
Which method is used depends on the synchronization preferences registered for the informer and listener
involved. A participant’s synchronization preferences may vary based on the messages’ content, type, or
attributes, or the participant’s state, or they may apply to a participant as a whole. Among integra-
tion products, a variety of synchronization methods are supported. For example, ToolTalk [33] permits
asynchronous message-passing only, Garlan and Scott’s Ada extensions [17] permit synchronous only, and
Polylith [15] permits both.

Concurrency control preferences may also be registered for participants. A participant may register a
compatibility matriz that indicates which messages the participant can accept concurrently. For example, a
participant that handles a printer queue might accept only one Print-File message at a time, but allow
concurrent Printer-Status messages querying the status of the queue. Concurrency control may impact
other aspects of the mechanism, such as synchronization.

In an integration mechanism, one may wish to permit or restrict access to particular messages, participant
attributes, message transformation functions, shared data objects, and so on. Some integration products
explicitly support access control. The Pilgrim Event Notifier [6] supports the access control provided by
DCE [5]. Zephyr [12] uses Kerberos [32] for authentification and access control. The vast majority of
integration mechanisms, however, do not explicitly support access control.

8.2.10 Specification of Mechanisms

Having defined the framework components, we now turn our attention to the framework itself. An integration
mechanism is an instantiation of the generic framework. When it is unambiguous to do so, we use the



simpler term mechanism. A mechanism specification is a description specifying instantiated properties of a
mechanism. After examination of many integration products, we have developed the following list of factors
that seem to be important in differentiating integration mechanisms. We would not claim that the list is
comprehensive, since different applications may have different integration requirements, but we believe that
it represents the core of a mechanism specification.

o Participant specification:

— Participant state. For example, a CORBA [11] object has a states that may affect its behavior.

— Listener message port semantics. For example, SDL BMS listeners access pending messages as
a queue, and Apple Events [2] listeners have random access to pending messages.

~ An adaptation method for converting modules into participants compatible with the mechanism.
For example, SoftBench comes with a product called Encapsulator for this purpose. Many
integration products do not provide such tools, and some do not specify the adaptation process
explicitly.

o Event and message specification:

— Message, message parameter, and event types. For example, Field [30] messages are strings, but
ACA (34] messages are abstract data objects.

— Message passing capabilities. For example, Field uses multicast, but ARexx [9] uses point-to-
point communication.

o Registrar and router specification:

— Registrar and router states. For example, a router state could include a history of all messages
that the router has handled.

— Registration methods. For example, Polylith [29] supports static registration only, SDL BMS
[3] dynamic registration only, and ToolTalk (33] both.

— Support for multiple registrars and routers. For example, SoftBench [18] has only one of each,
but Schooner [19] has multiple servers/routers.

e Message transforming function specification:

— Particular message transforming functions. For example, Field supports message filtering and
Forest supports message aggregation.

e Delivery constraint specification:

— Particular delivery constraints. For example, Consul [25] allows messages to arrive in a different
order than they were transmitted, but Garlan and Scott’s implicit invocation for Ada [17] makes
this impossible.

~ Policies for handling delivery constraint inconsistencies. For example, if a participant attempts to
register a constraint that is inconsistent with another that was previously registered, the registrar
could reject the new constraint or override the old constraint.

— Policies for handling delivery constraint violations. For example, real-time systems specify that
the violation of a time constraint indicates complete or partial failure of the system.

o Other specification:

— Policies for forming groups. For example, ISIS [7] permits the definition of groups with members
that may or may not be aware of one another.

— Synchronization capabilities, including policies for resolving mismatches. For example, the SDL
BMS supports asynchronous communication only, and Polylith supports both synchronous and
asynchronous communication.

— Policies for concurrency control. For example, blackboard systems [20] do not permit concurrent
access to the blackboard.



~ Policies for access control, including policies for handling violations. For example, Zephyr (12]
uses the Kerberos [32] authentification system for access control.

In addition, attributes and groups may be applied to events, messages, and framework components and used
to achieve desired semantics and flexibility in each of the above areas. For example, important messages
may be given a high-priority attribute, as in Q [24], and a registrar and router may be grouped to appear
as a single entity, as in Field’s Msg message server.

An initial mechanism specification statically describes the mechanism upon instantiation. As the mecha-
nism evolves over time, other mechanism specifications may be applied dynamically to change the mechanism.
For example, one might add new message transforming functions or change the number of routers.

The mechanism state is a snapshot of the mechanism at a moment in time. It includes the current
mechanism specification information and the states of all registrars, routers, and message transforming
functions in the mechanism.

3.2.11 Specification of Configurations

The configuration of a mechanism is the set of participants interacting in that mechanism. A configuration
specification describes participants and their interactions. In particular, it specifies which participants are
registered /unregistered, any information to be registered by participants (as described in Section 3.2.3), and
information about interactions between participants. Finally, attributes and groups provide a flexible means
for specifying additional participant semantics.

An initial configuration specification statically describes the configuration of the initial mechanism spec-
ification. Systems such as Polylith [29] provide this feature. As the mechanism evolves over time, other
configuration specifications may be applied dynamically to change the interactions of the participants. For
example, when a participant unregisters, the configuration specification changes. Systems such as the SDL
BMS [3] and ToolTalk [33] support such dynamic reconfiguration.

A configuration state is a snapshot of a configuration at a moment in time. It includes the current con-
figuration specification information and the states of all participants in the configuration. The configuration
state and mechanism state are known collectively as the system state.

4 Mappings

Many existing integration products may be mapped to the generic, event-based integration framework. This
section describes possible mappings of the underlying mechanisms of Field [30], Polylith [29], the CORBA
[11] specification, and the classical blackboard system [20].

4.1 Implicit Invocation: Field and Forest

Field [30] is based on a client-server architecture. Client programs, called tools, broadcast messages among
themselves via a central message server called Msg. All messages are ASCII strings. Using message patterns
similar to regular expressions, clients specify which classes of messages they want to receive. Msg delivers to
each client only the messages that match the client’s message patterns.

Forest [16] is an extension to Field that allows one to specify how tools should respond to certain
messages, without having to modify the source code of the tools. These specifications, called policies, are
external to the tools. An example policy is, “exiting the text editor should cause an automatic recompilation
of the program that was edited.”

Field and Forest have the following integration requirements. Tools need to broadcast messages via a
central message server, register their message patterns with the server, and receive only those messages that
match their patterns. Policies need to examine messages in transit and send other messages in response.
Finally, policies may have priorities that determine the order in which they are applied.

We now define a mapping for Field. Tools are mapped to participants. Msg is mapped to a group
containing a registrar and router. As a registrar, Msg handles message pattern registration. As a router,
Msg performs broadcasting. All of the messages in Field are of a single type Message with the message
string as its sole parameter. Message patterns are mapped to message transforming functions which examine
the content of the messages and determine if the message should be delivered to the participant (filtering).
Forest policies are mapped to message transforming functions that perform aggregation. Messages sent as
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a result of policies are tagged with a policy attribute, and delivery constraints are used to enforce policy
priorities.

4.2 Software Bus: Polylith*

In Polylith, individual programs, called tools, connect input and oulput ports to a software bus and send
and receive messages on named bus channels. Polylith is not a bus in the traditional sense, since channels
connect tools’ output ports directly to other tools’ input ports. A module interconnection language or MIL
specifies tools and their connections.

Polylith has the following integration requirements. Tools need to connect to the bus and send and
receive messages on named bus channels. MIL specifications define each tool’s interface, attributes (called
“algebras”), synchronization preferences, bus channels used, and connections of those channels to other tools’
channels. These specifications are modifiable without modifying the tools involved, but they are static, so
tools must be terminated and restarted in order for changes to take effect.

We now define a mapping for Polylith. Tools are mapped to participants. MIL is a language for
static configuration specifications defining tool input, output, attributes, synchronization preferences, and
connections to bus channels and other tools. The software bus is mapped to a group containing a registrar
and router. As a registrar, the bus permits tools to register their MIL specifications. As a router, the bus
creates the specified connections and transmits messages along them. Each set of tools that share an input
or output channel is mapped to a participant group, and the bus channel name is mapped to the ID of that
group. Sending a message on a channel is mapped to multicasting that message to the corresponding group
of participants.

4.3 CORBA

The Common Object Request Broker Architecture, or CORBA [11], is a specification of a software integra-
tion mechanism with an object-oriented architecture. In this architecture, programs, called clients, transmit
messages, called requests, to uniquely identifiable, encapsulated entities, called objects. In response to these
requests, the objects provide services to the clients. Objects have interfaces that describe their services to
the outside world. Interfaces are written in interface definition language or IDL. Connecting these clients
and objects is a server called the object request broker (ORB) that provides transparent object location and
delivery of requests.

CORBA is a very large and complex specification with more integration requirements than can be
addressed here, so we focus on clients, objects, ORB’s, and IDL. Clients and objects map to participants.
Object ID maps to participant ID and object state to participant state. Object services map to participant
attributes; for example, an object providing a printing service has a Print attribute. Requests map to
messages. An ORB maps to a grouped registrar and router. An object registers with an ORB via the ORB’s
registrar, permitting the ORB to perform object location and deliver requests to that object. Finally, IDL
is used to describe the interfaces that objects provide to clients, providing capabilities similar to those of
configuration specifications.

4.4 Blackboard Systems

A classical blackboard system consists of a global data repository called a blackboard, one or more software
modules called knowledge sources (KS’s) that access the blackboard, and a centralized control mechanism
or scheduler. Whenever the blackboard is modified by a KS, an event is broadcast to notify all KS’s of the
change. Based on that event, some KS’s may become interested in accessing the blackboard. An activation
record (AR) is created for each interested KS and stored in a second global repository called the agenda.
Based on some criteria, the scheduler chooses one AR from the agenda, permits the KS associated with
the AR to access the blackboard, and the cycle repeats. Note that there is no concurrent access to the
blackboard.

The classical blackboard system has the following integration requirements. KS’s need to specify their
interest in certain events. AR’s must be placed onto the agenda, and the scheduler must select one. The
KS'’s must read from and write to the blackboard. Finally, the scheduler must ensure that at most one KS
accesses the blackboard at a time.

4This mapping is for Polylith version 2.1, the current release. Documentation for later versions indicates support for more
dynamism.
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We now define a mapping for the classical blackboard system by describing each step of the blackboard
algorithm in terms of the framework.

1. Whenever the blackboard is changed by a KS, all KS’s are notified of the change.

KS’s map to participants, and the blackboard maps to a group containing a registrar and a
router. The registrar records which KS’s are interested in which messages. The router acts as
a sequential shared repository that stores blackboard data, as described in Section 3.2.4. The
blackboard broadcasts a BB-Change message whenever the blackboard is modified by a BB-Write
message. The message has a Change-Kind attribute describing the kind of blackboard change.

2. An AR is created for each KS interested in the change.

KS’s register to receive BB-Change messages and have an MTF that filters those messages based
on the Change-Kind attribute. On receipt of a BB-Change message, a KS sends a KS-Activate
message to the scheduler, indicating that it wants to operate on the blackboard, and then waits
for permission.

3. For each interested KS, the scheduler adds an AR to the agenda.

The scheduler is a participant that maintains the agenda and AR’s internally. On receipt of a
KS-Activated message, the scheduler adds a corresponding AR to the agenda.

4. If there is a KS operating on the blackboard, the scheduler waits. Otherwise, the scheduler gives one
KS permission to operate on the blackboard.

On receipt of a KS-Done message, indicating that the current KS is finished operating on the
blackboard, the scheduler selects a new AR from the agenda. The scheduler sends a KS-Start
message to the associated KS to signal it to execute. Note that the selection of the “best” AR on
the agenda is the famous blackboard control problem.

5. The selected KS operates on the blackboard.

After receiving a KS-Start message, the KS operates on the blackboard by sending it Read-BB
and Write-BB messages. Blackboard data is represented by the parameters of these messages. On
receipt of a Write-BB message, the router holds it until some KS, say k, sends a matching Read-BB
message, at which time the router sends the Write-BB’s parameters to k. Matches between
Read-BB to Write-BB messages may be determined by message attributes, types, parameters, or
other means.

Note that each Write-BB message causes the blackboard to broadcast a BB-Change message,
causing steps 1-3 to occur.

6. The selected KS finishes operating on the blackboard. The process repeats from step 4.
When the KS finishes, it sends a KS-Done message to the scheduler.

5 Conclusions

By defining a generic, event-based integration framework, we have identified common components of event-
based integration and provided a means for understanding, discussing, and comparing event-based integration
approaches. The framework provides characterizations and partial formalizations of participants, registrars,
routers, message transforming functions, delivery constraints, and the software module adaptation process.
It supports dynamic and static specification of the mechanism and configuration and can model many useful
integration approaches.

In the future, we plan to continue formalizing the model. For example, message transforming functions
are well-defined, but delivery constraints are much harder to capture formally because they vary widely. Two
other issues that bear investigation are scalability and interoperability. The framework supports composition
via groups and attributes, allowing the model to scale, and we plan to investigate to what extent composition
translates to actual scalability of implementations. The framework also provides the ability to identify
similarities and differences between mechanisms, which aids in understanding interoperability issues between
mechanisms. We plan to examine the extent to which this information can be used directly to support
interoperability.
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