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Abstract

In this paper we present stability and convergence results for Dynamic Programming-
based reinforcement learning applied to Linear Quadratic Regulation (LQR). The spe-
cific algorithm we analyze is based on @-learning and it is proven to converge to the
optimal controller provided that the underlying system is controllable and a particular
signal vector is persistently excited. The performance of the algorithm is illustrated
by applying it to a model of a flexible beam.
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1 Introduction

In many practical applications a stabilizing feedback control for the system may be known.
In this paper we discuss the problem of how to improve this controller and, under certain
circumstances, make it converge to the optimal. The approach we take can be classified
as direct optimal adaptive control and it is motivated by recent research on reinforcement
learning which uses the principles of Dynamic Programming (DP). DP-based reinforcement
learning algorithms include Sutton’s Temporal Differences methods [9], Watkins’ @)-learning
[12], and Werbos’ Heuristic Dynamic Programming [14]. Our approach is closely related to
Q-learning. We apply the method to the Linear Qudratic Regulator (LQR) problem and
we show that it converges to the optimal cost if the system is controllable and a particular
signal vector is persistently excited. This is one of the first convergence results for DP-
based reinforcement learning algorithms for a continuous state space. Previous results are
limited to discrete time, finite-state systems, with either lookup-tables or linear function
approximators. Watkins and Dayan [13] show that the @-learning algorithm converges,
under appropriate conditions, to the optimal ¢)-function for finite-state Markovian decision
tasks, where the @Q-function is represented by a lookup-table. Tsitsiklis [11] and Jaakkola,
Jordan, and Singh [6] describe @)-learning as a form of stochastic approximation. Sutton [9]
and Dayan [2] show that the linear TD()) learning rule, when applied to Markovian decision
tasks where the states are representated by a linearly independent set of feature vectors,
converges in the mean to V4, the value function for a given control policy U.

Despite the paucity of theoretical results, applications of DP based algorithms with a
continuous state representation have shown promise. For example, Tesauro [10] describes
a system using TD(A) that learns to play championship level backgammon, which can be
viewed as a Markovian decision task, entirely through self-play. It uses a multilayer percep-
tron trained using backpropagation as a function approximator. Sofge and White [8] describe
a system that learns to improve process control with continuous state and action spaces. Nei-
ther of these applications, nor many similar applications that have been described, have a
firm theoretical grounding as yet. They do, however, produce good results experimentally.
This paper takes a first step to provide a theoretical grounding for problems with continuous
state and action spaces.

2 Problem Statement

Consider the discrete-time, multivariable system
Lir1 = f(mt,ut) = Amt —|— But (]_)

with feedback control
Uy = Umt

Here A, B, and U are matrices of dimensions n X n, n X m, and m X n respectively and U
is chosen so that the matrix A 4+ BU has all of its eigenvalues strictly within the unit circle.
Associated with this system we assign a one step cost:

et = c(zg,us) = z By + uyFuy (2)
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where F is a symmetric positive semidefinite matrix of dimensions nxn and F' is a symmetric
positive definite matrix of dimensions m X m. The total cost of a state z; under the control
policy U, Vi(z¢), is defined as the discounted sum of all costs that will be incurred by using
U from time t onward, i.e., Vi(z:) = 12, viciri, where 0 < v < 1 is the discount factor.
This definition implies the recurrence relation

Vo(ze) = c(@e, Uze) + Vo(2e41)- (3)
Vi is a quadratic function [1] and therefore can be expressed as
Vo(:) = @i Koay, (4)

where Ky is the n X n cost matriz for policy U. U* denotes the policy which is optimal in
the sense that the total dicounted cost of every state is minimized. K™ represents the cost
matrix associated with U*.

It is a simple matter to derive U* [1] if accurate models of the system and cost function
are available. The problem we address is how to define an adaptive policy that converges to
U* without access to such models.

3 (-functions and Policy improvement

Denardo [3] and Watkins [12] defined the @-function for a stable control policy U as
Qu(z,u) = c(z,u) +7Vu(f (2, u)). (5)

The value Qu(z,u) is the sum of the one step cost incurred by taking action u from state
z, plus the total cost that would accrue if the fixed policy U were followed from the state
f(z,u) and all subsequent states. u need not be the action specified by the given control
policy for the state z. Qu(z,u) is defined for all states z and all admissible control signals
u. The function @y can also be defined recursively as

Qu(ze, ue) = (e, u) + YQu (@41, Ueyr), (6)
by noting that
Qu(z,Uz) = c(z,Uz) + yVu(f(z,Uz)) = Vy(2). (7)
For an LQR problem the ) function can be computed explicitly. We have
QU(mau) = c(m,u) + 7%(f(m7u))
= z'Ez + v'Fu + v(Az + Bu)'Ky(Az + Bu)
=z'(E +yA'KvA)z + v'(F + vB'KyB)u + yz' A'Ky Bu + yu'B' Ky Az

E+~A'KyA  vA'KB
:[m’“]ll j;KU; FlyB?KUB][m’u]

E il R ®

[m,u]IHU[m,u], (9)



where [z, u] is the column vector concatenation of z and w and Hy is a symmetric positive
definite matrix of dimensions (n +m) X (n +m). The submatrix Hy, is symmetric positive
definite.

Given the policy Uy and the value function Vi, we can we find an improved policy, Ug.1,
by following Howard [5] in defining Uy, as

Uiae = argmin [e(z, u) + 9V (f(2,4))].

But equation (7) tells us that this can be rewritten as

Ugt1z = argmin Qu(z,u).

We can find the minimizing u by taking the partial derivative of Qu(z,u) with respect to u,
setting that to zero, and solving for u. Taking the derivative we get

0Qu(z,u)
Ou

Setting that to zero and solving for u yields

= 2(F +vB'KyB)u + 2yB' Ky Az.

w=—(F++vyB'Ky,B) ' B'Ky, Ax.

Uk41

Since the new policy Uy, does not depend on z, it is the minimizing policy for all z. Using
(8), Ugs1 can be written as

-1
Uk-l—l =—-H HUk(Zl)'

Uy (22)

The feedback policy Ugyi is per definition a stabilizing policy — it has no higher cost
than Uj. A new @ function can then be assigned to this policy and the policy improvement
procedure can be repeated ad infinitum.

Earlier work by Kleinman [7] and Bertsekas [1] showed that policy iteration will converge
for LQR problems. However, the algorithms described Kleinman and Bertsekas required
exact knowledge of the system model (equation 1) and the one-step cost function (equation
2). The analysis presented in this paper shows how policy iteration can be performed without
that knowledge. Knowledge of the sequence of functions @y, is sufficient.

4 Direct Estimation of ()-functions

We now show how the function @)y can be directly estimated using recursive least squares
(RLS). It is not necessary to identify either the system model or the one-step cost function
separately. First, define the “overbar” function for vectors so that Z is the vector whose
elements are all of the quadratic basis functions over the elements of z, 7.e.,

— 2 2 2 21’
z = [ml,...,mlmn,mz,...,mgmn,...,mn_l,mn_lmn,mn] )

Next, define the function © for square matrices. ®(K) is the vector whose elements are
the n diagonal entries of K and the n(n + 1)/2 — n distinct sums (K;; + Kj;). The elements
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of z and O(K) are ordered so that 2’ Kz = z'O(K). The original matrix K can be retrieved
from O(K) if K is symmetric. If K is not symmetric, then we retrieve the symmetric matrix
%(K + K'), which defines the same quadratic function as K. We can now write

, -
Qu(z,u) = [ z,u ] Hy [ z,u ] = [ z,u ] O(Hy).
Finally, we rearrange equation (6) to yield

C(mt;ut) = Qu(mt;’ut) - 7QU(mt+1; Uﬂfft+1)
1

= [ Ly, Uy ]IHU [ Ly, Uy ] -7 [ mt-l—l;Umt-l—l ] Hy [ mt-l—l;Umt-l—l ]

/ /

= [ L, Ut ] ®(HU) - 7[mt+1,Umt+1] ®(HU)
= ¢;0U7

where ¢; = {[mt,ut] — y[zet1, UmH_l]}, and 6y = O(Hy).

Recursive Least Squares (RLS) can now be used to estimate 6. The recurrence relations
for RLS are given by

, Pu(i — hulec — $40u(i — 1))

0p(2) = 0,(s — 1) + T AR D, (10a)
Py(i) = Po(i — 1) — Pk(li;;)z;?iﬂjk&; 1) (10b)
P(0) = P,. (10c)

Py = BI for some large positive constant 8. 6 = O(Hy,) is the true parameter vector for

the function Qvy,. ék(z) is the #** estimate of 6. The subscript ¢ and the index i are both
incremented at each time step. The reason for the distinction between ¢ and 2z will be made
clear in the next section.

Goodwin and Sin [4] show that this algorithm converges to the true parameters if 8 is
fixed and ¢; satisfies the persistent excitation condition

1 N
el < Nz(ﬁt—i(ﬁ;—i <&l forall ¢t>Nyand N> N, (11)
i=1

where €y < €, and Ny is a positive number. But, it takes the algorithm an infinitely long
time to converge to the true parameters.

5 Adaptive Policy Iteration for LQR

The policy improvement process based on ()-functions and the ability to directly estimate
Hy (Section 4) are the two key elements of the adaptive policy iteration algorithm that is
the focus of this paper. Figure 1 gives an outline of the algorithm.

5



Each policy iteration step consists of two phases: estimation of the @-function for the
current controller, and policy improvement based on that estimate. Consider the £** policy
iteration step. Uj is the current controller. 6, = ©(Hy,), the true parameter vector for

the function Qy,. ék = ék(N) is the estimate of §; at the end of the parameter estimation
interval. Each estimation interval is N time-steps long. The RLS algorithm is initialized at
the start of the k" estimation interval by setting P,(0) = P, and initializing the parameter
estimates for the k" estimation interval to the final parameter estimates from the previous

interval, i.e., ék(O) = 9k_1(N). The index 7 used in equations (10) counts the number of
time steps since the beginning of the estimation interval. After identifying the parameters
O(Hy,) for N timesteps, one policy improvement step is taken based on the estimate 0y..
This produces the new controller Ui, and a new policy iteration step is begun.

Initialize parameters 6, (0).
t=0,k=1.
do forever {
Initialize P;(0) = F.
fori=1toN {
o u, = Ugz; +e;, where ¢, is the “exploration” component of the control
signal.

e Apply u; to the system, resulting in state z,,;.

e Update the estimates of the @-function parameters, A (2) using RLS
(equations 10).

o t—=t+41.
}
Find the symmetric matrix Hj that corresponds to the parameter vector 0.
Perform policy improvement based on fIk: Ugy1 = —fIk_(zlz)fIk(u).
Initialize parameters ék+1(0) = 6,.

E=k+1

Figure 1: The @)-function based policy iteration algorithm. It starts with the system in some
initial state zo and with some stabilizing controller Uy. k keeps track of the number of policy
iteration steps. t keeps track of the total number of time steps. 7z counts the number of time
steps since the last change of policy. When ¢« = N, one policy improvement step is executed.

Since the k™ policy improvement step is based on an estimate of O(Hy,), it is not clear
a priori that the sequence U, will converge to the optimal policy U*, or even that each
of the Ug’s is guaranteed to be stabilizing. The convergence proofs of Kleinman [7] and
Bertsekas [1] require exact knowledge of the system and take no account of estimation error.
Theorem 1 establishes that the adaptive policy iteration algorithm presented above does
indeed converge, under certain conditions, to the optimal controller.

Theorem 1: (Convergence of adaptive policy iteration). Suppose that {A, B} is a
6



controllable pair, that U, is a stabilizing control, and that the vector ¢(t) is persistently
excited according to inequality (11). Then there exists an estimation interval N < oo so
that the adaptive policy iteration mechanism described above generates a sequence {U, k =
1,2,3,...} of stabilizing controls, converging so that

Jim |[Ux = U™[ = 0,

where U* is the optimal feedback control matrix.

Proof: In order to prove this we need a few intermediate results concerning the policy
iteration scheme and RLS estimation. The results are summarized below and the proofs are
given in the appendix. First, define the function

o(Uk) = trace(Ky, ). (12)

Lemma 1. If {A, B} is controllable, U, stabilizing with associated cost matrix K; and U,
is the result of one policy improvement step from Uy, i.e. Uy = —y(F +yB'K,B)"'B'K, A,
then
AUy = Us||* < o(Uh) — o(Uz) < 6[|Us — Uaf?,
where -
0 < A =g(F) <= trace(F +vB'K:B)|| Y_~+"/?(A + BU,)|]?,
i=0

and o(-) denotes the minimum singular value of a matrix.

Lemma 2. If ¢, is persistently excited as given by inequaliy (11) and N > Ny, then we
have

. . 1
16k — Okl < en(]|6k — Or-1]l + [|0k—1 — Or-1]]), ~ where ex =
€oNpo
and pg is the minimum singular value of P,.
Define a scalar “Lyapunov” function candidate
sk = 0(Ux1) + [18k-2 — b s (13)
and suppose that
5; < 39 < 00 foral 0 <1<k (14)

for some upper bound 5¢. From this it follows that Uj_; is stabilizing in the sense that
o(Ug-1) < 3o (15)
and that the parameter estimation error is bounded so that
[0k—2 — Or—2| < 0. (16)

It also follows that that the control resulting from a policy update using accurate parameters,
Uf, is stabilizing and that o(U}) < 50. From continuity of the optimal policy update it then
follows that for every § > 0 there exists €5 > 0 so that

lo(U) — a(Ug)| < 8||U; = U for all ||U; — U|| < es. (17)
7



This implies that control laws in a sufficiently small neighborhood around the optimal are
stabilizing as well.

We will show that sg.; < si provided that the estimation interval N, is chosen to be
long enough.

Define )
Ve = |[Ok—1 — Ok-1]|,

and we get from Lemma 2 that for all &k
vk < N (Vk-1 + [|0k-1 — br—2]]), (18)
where limy o ey = 0. Now from the inductive hypothesis (assumption (14)) we have
vp_1 < 3g and |0k—2 — Ok—3|| < K1, (19)
where k; is a constant. By application of (18) we then get

v < en(80 + K1). (20)

It follows that vy = ||0k—1 — ék_1|| can be made arbitrarily small be choosing the estimation
interval N long enough.

U; is defined to be the result from applying one step of policy iteration using accurate
parameter values, i.e.

UI: = _H;11(22)Hk-1(21)7 (21)
whereas Uy, is the feedback law which results from applying the estimated parameters, i.e.
U = _Hk_-ll(zz) Hk-1(21)‘ (22)

The matrix inverse is guaranteed to exist when the estimation interval is long enough. From
equations (21) and (22) we now have

Uk — U]: - —.Z;:’-_l .Zflk_l(u) ‘I’ H_l Hk-1(21)'

e1(22) e1(22)
Hence
U — Up = H oo (Hery — Heagen) + (Hidan — Holoy) Herany

= H_ ooy (Heagary — Herin) + (Heany — Hk-l(u))ff;ll(u) H1ay).

From the definition of § we have
1 Hraizny = Hiaon | < 100-1 = Oual and || Huagan || < [[08-1]-
It follows that we have
[Ue — U < Ro(1 + x4 - 160r — O sl

where Ko 1s a positive constant, provided that N is sufficiently large. Since the estimated
parameters are bounded it follows that there exists another constant ko so that

U — Ul < ol|6k—1 — k1| = rovs. (23)
8



It follows from equation (20) that we have
10Uk — Ug|| < ensio(So + 1) (24)
It then follows from (17) that
o(Tk) — o(U7)| < §|Ut — Ui||  for all N such that exso(3o + 51) < es.

This implies that Uy is stabilizing if N is large enough and that there exists an integer N;
and an associated constant 4, so that

lo(Ug) — o(Uk-1)| < SHUk — Ug—1|| for all N > N;.

In other words, if the estimation interval is long enough, then the difference between two
consecutive costs is bounded by the difference between two consecutive controls. We use the
definition of the parameter estimation vector to write this as

10k—1 — Or_2|| < 61||Us — Up_1])? for all N > Ny, (25)
where 6; is a constant. We now re-write (25) as
10r-1 — Or—al] < 26:(|Ux — U—1[I* + |0z — Uill?).
From inequality (23) and the definition of v, we then get
161 — Or—a|| < 281 (w + Kovi), (26)

where

wi = [|Ug = Url]-
By combining equations (18) and (26) we then get

v < en(vp_1 + 28: (wi + Kowr)),
which we re-write as
v < enpn (vi1 + 28,w}), (27)
where
py = (1 — 28,k0en) .

According to the assumption we can choose N large enough so that 0 < uy < oo. This
gives a recursion for vg. The critical point to notice is that vy has a strong stability property
when the estimation interval is long. The parameter eypu is then small since ey converges
uniformly to 0 and p towards 1.

We now develop the recursion for o(Ug). First we have

o (U) = o(Ur1) = o(Uy) — 0(Ur1) + o(Us) — o(Uy). (28)

From equation (28) and Lemma 1, using (17) again, it follows that we can choose the update
interval so that we have a constant §, so that

o(U) = 0(Uk-1) < —A[UF = U |* + 6| U — Us|”
9



Using equation (23) we then get

—A||U} = Uea||* + Sario|6k—1 — bl

—Aw,zc + d2K0Vk.

O'(Uk) — O'(Uk_l) S
<

By using equation (27) and the recursion for v we then have
o(U) — o(Ug-1) < —A'w,zc + 8160enpn (ve—1 + 25211),26).

Equations (27) and (29) together define the system

Vg _ | evpn 0 Vp—1 4 2enpnds w2
o(Uk) dokoenun 1 o (Uk-1) —A + 28360eN N k:

In order to study this system we defined the function
sk = 0(Uk_1) + ve_1.

From the above we then have

Skr1 = Sk + (=1 + enpun(1 + 8260))vk—1 + (—A + 2enpnd2(1 + Ko))wy.

It now suffices to choose N so that € is small enough to give

1 —enpn(l+ d2k0) = €1 > 0
A —2enpunda(l + ko) = €3 > 0.

We then get
2
Sk+1 = Sk — €1Vk—1 — E2Wj, < Sp.

From this we conclude that sg; < s; and using induction we finally have

o0 o0
€1 kaSEO and e, Zwiﬁgo.

The result now follows since Uy is stabilizing.

6 Simulation results

(29)

Figure 2 demonstrates the performance of the adaptive policy iteration algorithm based

on Q-functions. We used a random exploration signal generated from a normal distribu-
tion in order to induce persistent excitation. This has worked very well in practice. The

demonstration system is a 20-dimensional discrete-time approximation of a Euler-Bernoulli
flexible beam supported at both ends. There is one control point. The scalar control signal
is the acceleration applied at that point. Up is an arbitrarily selected stabilizing controller
for the system. =z, is a random point in a neighborhood around 0 € R?°. There are 231
parameters to be estimated for this system, so we set N = 500, approximately twice that.

10



Panel A of Figure 2 shows the norm of the difference between the current controller and
the optimal controller. Panel B of Figure 2 shows the norm of the difference between the
estimate of the @)-function parameters for the current controller and the @-function param-
eters for the optimal controller. After only eight policy iteration steps the adaptive policy
iteration algorithm has converged close enough to U* and H* that further improvements are
limited by the machine precision. Although this demonstration is for a single-input system,
the algorithm performs equally well on multi-input systems.

le+03 T T T T T le+03
100 100
10F

-3

Dl S e M e R M M M R B A B B

=
oy

0.01
le-03
le-04
le-05
le-06
le-07
le-08
1e-09
le-10
le-11
le-12
le-13
le-14

0.01
le-03
le-04
le-05
le-06
le-07
le-08
1e-09
le-10
le-11
le-12
le-13
le-14

-U_KI

- H_KlI

g
IIH*

R e M e R s M B M M B

T R R R— T R R R—
k, number of policy iteration steps k, number of policy iteration steps

Figure 2: Performance of the adaptive policy iteration algorithm on a discretized beam
system.

Figure 3 demonstrates that the adaptive policy iteration algorithm can fail when the
assumptions of the convergence theorem are violated. That is, when either persistent excita-
tion is not maintained, or when the estimation interval, N, is too short. The demonstration
system is the same discretized beam used above. Panel A shows the results of violating the
persistent excitation assumption. As in the experiment described above, policy improve-
ment steps were performed every 500 time steps. However, the exploratory signal was a
constant zero, so ¢; was not persistently excited. The graph in panel A shows the size of
||zt||co growing rapidly to infinity after the first policy “improvement” step at time 500. The

lack of persistent excitation prevented lfIUl from being an adequate approximation to Hy,,
causing the “improved” controller, Us,, to be destabilizing. Panel B shows the results of a too
short estimation interval. In this experiment, policy improvement was performed every 100
time-steps instead of every 500 time-steps. Since there are 231 parameters to be estimated
the estimator could not have formed a good approximation to all of them. The graph shows
that the controller that resulted from the first policy “improvement” step was destabilizing
in this situation also.

7 Conclusions

In this paper we take a first step toward extending the theory of DP-based reinforcement
learning to domains with continuous state and action spaces, and to algorithms that use
non-linear function approximators. We concentrate on the problem of Linear Quadratic
Regulation. We describe a policy iteration algorithm for LQR problems that is proven to

11
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Figure 3: Performance of the adaptive policy iteration algorithm on a discretized beam
system when either (A) the persistent excitation condition, or (B) the estimation interval
conditions are violated.

converge to the optimal policy. In contrast to standard methods of policy iteration, it does
not require a system model. It only requires a suitably accurate estimate of Hy,. This is the
first result of which we are aware showing convergence of a DP-based reinforcement learning
algorithm in a domain with continuous states and actions.

The convergence proof for the policy iteration algorithm described in this paper requires
exact matching between the form of the @-function for LQR problems and the form of the
function approximator used to learn that function. Future work will explore convergence of
DP-based reinforcement learning algorithms when applied to non-linear systems for which
the form of the @Q-functions is unknown. It will be necessary in such cases to use more
general function approximation techniques, such as multilayer perceptrons.
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A Proof of lemma 1

Our proof of Lemma 1 requires some preliminary definitions and three subsidiary lemmata
A1 through A3.

Let U; be a stabilizing controller for this system, and let K; be the associated cost matrix.
Let U, be the result of performing the policy improvement algorithm on Uy, z.e.,

U, = —y(F + vB'K,B) "' B'K, A. (30)

Let K, be the cost matrix associated with U,. Define A; = A+ BU;, and Ay = A+ BU,.

We know [1] that the cost matrix Ky for a given control matrix U satisfies the equations

Ky =E+U'FU +~v(A+ BU) Ky (A+ BU), (31)
and
Ky =>_~'(A+ BU)"(E+U'FU)(A+ BUY. (32)
=0

Lemma A1l. If{A, B} is controllable, U, is stabilizing, and Uy = —y(F + yB'K, B) "' B'K A,
then
Ky — K =Y 74 (U1 — U2) (F +vB'K\B)(Uy — Us)] 43,
=0
where A, = A+ BU, and A, = A+ BU,.

Proof: First, rewrite K; as:

o0 o0

Ki = K1+ Y (YAY K1 AL) = Y (v AY K Aj)

=1 =1

= SR - YA A)
=0 =1

=Y (Y AYKLAY) = Y (v A [y As K1 A5 A3)
2=0 2=0
=0

Combining equations (32) and (33) we get

Kl _KZ = Z’)’ZAZZI [Kl —’)’AZIKlAZ—E—UZIFUZ] AZZ (34)

=0
Let us define D = [K; —vyAy) K1 Ay — E — U,' FU,).

Substituting from equation (31) into the definition of D, we get

D = E —|— UllFUl —|— ’)’AllKlAl - ’)’AZIKlAg - E - UZIFUZ

= UllFUl —|— ’)’AllKlAl - ’)’AZIKlAZ - UZIFUZ.
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Expanding A, K; A, yields

D = U/FU, + vA,'K, A,
—~A'K\ A — yA'K, BU, — yU,' B'K, A — 4U,' B'K, BU,
—U,'FU,
= U,//FU, + yA/'K A, —vA'KL A
—~A'K,BU, — yU,' B'K; A
—U,(F + vB'K,B)U.

Using the definition of U, from equation (30) now gives

D =U,/FU, + 7A/K A, —vA'K, A
+U,(F +vB'K,B)Us + Us'(F + vB'K, B)U,
—U,(F + vB'K,B)U,
= U,'FU, + vA/'K, A, — yA'K, A+ Uy (F + yB'K, B)U,.

Finally, expanding A;'K;A; and again using the definition of U, leads to

D =U,'FU,

+vA'K1A+~A'K,BU, + vU,'B'K, A+ vU,'B'K, BU,
—~vA'K A
+U,(F +vB'K1B)U,

=U,'(F +~vB'K,B)U;
+vA'K,BU, +vU,'B'K, A
+U,(F +vB'K1B)U,

=U,'(F +~vB'K,B)U, — U,'(F +yB'K, B)U;
—U,'(F +vB'K\:B)U, + U,/ (F + vB'K,1B)U,

= (U; — ) (F +vB'K1B)(U, — Us).

Substitute this final expression for D back into equation (34) to get the desired result

Ki— K, =Y 4 AY (Ui — U,)'(F +vB' K, B)(Uy — U,)] A

=0

Lemma A2. If{A, B} is controllable, U; is stabilizing, and Uy = —y(F + yB'K; B)_lB'KlA,
then
o(Uh) = o(Us) > A|[Us - Us*.
where 0 < A = g(F).
Proof: By Lemma A1, we know that

Ki— Ky =Y AV (Ui — U,)'(F +vB'K1B)(Uy — U,)] A}

=0

> (Uy — Up) F(Uy — Ua),
15



since all of the summands are positive.
Taking the trace of both sides we get

trace(K;) — trace(K,) = trace(K; — K3)
> trace((U; — Up)'(F + yB'K 1 B)(U; — Uy))
> o(F)|| Uy — Uaf?.

Noting that F' is positive definite and substituting from the definitions of ¢(U;) and o(Us)
gives us the final result

0 < O'(Ul) — O'(Uz) > AHUl — UZHZ.

Lemma A3. If{A, B} is controllable, U, is stabilizing, and Uy = —y(F + yB'K, B) "' B'K A,
then

o(U1) — o(Us) < 8||Ur — Ue|”.
where 0 < § = trace(F +vB'K,B)||G|]?, G = (Zg’;ofy(i/z)A;), A; = A+ BUj, and A, =
A+ BU,.
Proof: By Lemma A1, we know that

Ki— K, =Y Ay (U, — U,)'(F + yB'K1B)(Uy — U,)] A}

=0
< (ZWZ)A@’) (Us — Un)(F +B'K,B)(Us — Uy) (ZW”A;)
2=0 2=0

= GI(Ul — Uz)I(F + ’)’BIKlB)(Ul — Uz)G
Taking the trace of both sides we get

trace(K;) — trace(K») = trace(K; — K3)
< trace(G'(U; — U,)'(F +vB'K,B)(U, — U,)G)
< trace (F + vB'K, B)||G|*|Us — U:|)>.

Noting that (F + vB’'K; B) is positive definite and substituting from the definitions of o(U;)
and o(U,) gives us the final result

0 < O'(Ul) — O'(Uz) < 5||U1 — U2||2.

Lemma 1. If {A, B} is controllable, U, stabilizing with associated cost matrix K; and U,
is the result of one policy improvement step from Ui, i.e. Uy = —y(F +yB'K,B)"'B'K, A,
then

AUy = Us||* < o(Uh) — o(Uz) < 8[|Us — Uaf?,

where
o0

0 < A =g(F) <= trace(F +vB'K, B)|| Y_+"/?(A + BU,)'|]?,

2=0
and o(-) denotes the minimum singular value of a matrix.

Proof: Lemma 1 follows from Lemmata A2 and A3.
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B Proof of lemma 2

Lemma 2. If ¢, is persistently excited as given by inequality (11) and N > Ny, then we
have

1
6oNpo

16 — 8kll < en(||B — Orn|| + [|65=1 — Brsl), where ey =

and pg is the minimum singular value of P,.

Proof: Let us consider the k" estimation interval. 6 = O(Hy, ), the true vector of parame-

ters for the function Qy,. ék = ék(N) is the estimate of 8, at the end of the k™ estimation
interval. The parameter estimates are initialized for the k* estimation interval with the

final values from the previous estimation interval, z.e., ék(O) = ;. The RLS algorithm is
initialized at the start of the k*" estimation interval by setting the inverse covariance matrix
P,(0) = Py, and setting the initial parameter estimates to the final values from the previous

interval, i.e., ék(O) — 0,_,. Define ék(z) = 9k(z) — 0. Then following Goodwin and Sin [4]
we have 3 3
k(i) = Py(i)Pe(i — 1)1 0,(i — 1)
for all 2 > 0. Applying this relation recursively results in
01(1) = Px(3) Px(0) ™ x(0).

Taking the norms of both sides we have

16x(3)1| = | Pe(2) P (0) "6, (0)

< NPkl [1Pe(0) 7] - [162(0)]]- (35)

Now, Py(i)™* = Pp(0)™* + 2N, ¢r(i)ée(s)'. Therefore,

1P (@) 7| = 1 Pe(0) ™" + ;qﬁk(i)qﬁk(i)'ll

> |30 u(i)eli)|
> Neol (36)

We also know that .
1Pe(0)7H | = —. (37)

Po
Substituting (36) and (37) into (35) and using the definition of ey yields

165 — 6k(3)[| = [16x(3)|
< en||6x(0)|
= en[|6(0) — 6|
= en||fr—1 — 0|
= ENHék—l — O + 01 — Op_1||
< en(][8k-1 — 1]l + |1 — Ox-1])),
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and we have the desired result.
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