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Abstract

A method is presented for planning obstacle-avoiding paths for a system which ex-

hibits nonholonomic constraints. The method is based on the use of harmonic functions.

Linear constraints on the velocity of a nonholonomic system can be directly expressed
as Neumann boundary conditions for a harmonic function. Such boundary conditions
are easily represented in a resistive network. The resulting potential represents an in-
tegration of nonholonomic constraints over an admissible subset of configuration space.

The method is applied to path planning for simple wheeled vehicles.

1 Introduction

This paper draws on the relationship between harmonic functions and resistive networks to
propose a new method for planning the motion of nonholonomic systems. Simple nonholo-
nomic constraints [1] restrict the velocity of mechanical systems to a linear subspace of their
configuration space. These constraints bear a resemblance to the Neumann boundary condi-

tion for harmonic functions. Although nonholonomic constraints are not globally integrable,
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harmonic functions may be used to integrate these constraints over an admissible subset of
configuration space, resulting in a potential which guides the vehicle to a goal configuration.

Harmonic functions have been used in planning obstacle-avoiding trajectories for holo-
nomic systems (see Connolly and Grupen [2]). These functions are solutions to Laplace’s
equation and can be computed using resistive networks [3, 4]. Harmonic functions exhibit
several properties which are useful in robotics applications. These properties and their ap-
plications are discussed more fully in [2], but include the following:

e At any point, the function is the (weighted) average of values in the neighborhood.
¢ The function exhibits no local minima, other than at the specified goals.

e Trajectories produced by this method are smooth almost everywhere.

¢ The function can be interpreted directly as a collision probability [5].

¢ The method is complete.

Methods for computing these functions are typically very simple [6]: obstacles and goals
represent boundary conditions, and are held to fixed high and low potentials, respectively.
A relaxation is then performed on the remaining (free) points, such that the function at
any point is the (weighted) average of neighboring values. Other, more general properties of

harmonic functions are discussed in detail in (7] and [8].

2 Nonholonomic Constraints

Nonholonomic systems have received some attention in the recent robotics literature [9, 10,
11, 12, 13, 14, 15, 16, 17]. This is a natural consequence of the interest in planning and
controlling the motion of wheeled vehicles, since these are so common and are properly
treated as nonholonomic systems. A nonholonomic mechanical system is one whose motion
in configuration space is locally constrained. Traditional path planning techniques directly

treat mechanical systems as being holonomic: it is sufficient to model such systems as freely



moving points in a configuration space. A nonholonomic system can still be treated as a point
in an appropriate configuration space, but this point cannot move freely. It is constrained
to move instantaneously in a particular direction. One example of a nonholonomic system is
a steerable wheel in contact with the ground. The wheel can roll forward or backward, but
not to either side. In this paper, we show that harmonic functions can be employed to treat
nonholonomic constraints directly. In general, it is possible to locally constrain the flow for
a harmonic function in order to impose the nonholonomic constraints.

Kane [1] describes a holonomic system as one whose configuration variables are indepen-
dent. In other words, the system can be treated as a point moving freely through config-
uration space. This picture is not sufficient to model many vehicular systems. In wheeled
vehicles, for example, the contact between a wheel and the ground locally constrains the sys-
tem to move in a particular direction. The wheel cannot translate sideways along the axle.
Such a system has nonholonomic constraints on its configuration variables. Kane defines

simple nonholonomic constraints on the configuration g as:

n

> Aigi+ B =0 (G=1,...,m) (1)

i=1
where n is the dimension of the configuration space, and m is the number of constraints
imposed. Equation 1 is a linear constraint on the configuration space velocity (or instanta-
neous rate of change) of the mechanical system. Simple nonholonomic constraints restrict
the instantaneous velocity of the system to be within some linear subspace of configuration

space. Figure 1 illustrates such a system.

3 Nonholonomic Planning

Some treatments of planning in nonholonomic systems are based on the notion that a suitable
sequence of infinitesimal transformations can bring any simple nonholonomic system into any
new configuration [11]. The theory behind this relies on the notion that a properly defined

configuration space defines a Lie group, and that a suitable sequence of group operations



-
—"—
-

a wheel
trajectory

-

g: instantaneous
nonholonomic
constraint

Figure 1: The rolling wheel: a simple nonholonomic system.

(Lie brackets) can be constructed by which the system can travel infinitesimally to reorient
itself (see, for example, Li and Canny [11}). The intuitive picture here is approximately the
same principle used to maneuver a car into a tight parking space. The common treatment of
nonholonomic path planning involves the creation of a canonical path (using a conventional
path planner) followed by an infinitesimal reorientation stage to properly align the system to
this path, followed by a path execution [10, 11]. A final reorientation phase may be necessary
to obtain a desired goal orientation. One drawback of this technique is that in practice, the
reorientation phases can be time-consuming. In addition, physical systems cannot make
truly infinitesimal movements. This places practical limits on the ability of a system to
reorient itself arbitrarily.

Samuel and Keerthi [15], treat nonholonomic constraints directly as the boundary condi-
tions for an optimal trajectory, where the optimality criterion is minimum z,y distance and
minimum integrated steering angle. In contrast to other methods, the constraints in [15] are
incorporated directly into the trajectory generation algorithm. However, the penalty func-

tion used for avoiding obstacles in [15] is not well specified, and may not result in a complete



method. Moreover, this method appears to require the specification of intermediate goals.
This is not required in the harmonic function approach. Barraquand and Latombe [9] use
an exhaustive search to incorporate nonholonomic constraints. This, however, can be com-
putationally expensive, especially in large cluttered environments. In contrast, harmonic
functions which are computed using resistive networks can plan such trajectories rapidly.
Their speed also allows such networks to respond to changing environments in a predictable
fashion [2].

Nonholonomic constraints are equivalent to Neumann boundary conditions for the har-

monic function. Neumann boundary conditions constrain the gradient of function ¢:
Vé-i=d - (2)

where 7 is the normal to a surface which constrains the flow, and d is some constant. In
[2], d was set to zero, implying a flow that is orthogonal to the normal vector. Recall the

nonholonomic constraints in Equation 1. We will consider one constraint, written as:
n
Y ag+b=0 (3)
i=1

This can be written in vector form as:

-

§-da=-b (4)
Normalizing the vector @, and rewriting the resulting vector as # yields:

.. . =b
T )

In harmonic function control, the gradient of the harmonic function ¢ is used to determine

the tangent of the trajectory. Thus, the velocity of the system g will be proportional to V4.
The constant ¢ will denote the proportionality constant. This yields:

=}
Vo - =— 6
Ve R = 1G] (6)
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This is clearly a form of the general Neumann boundary condition. Thus, it is always
possible to represent simple nonholonomic constraints as a Neumann boundary condition for
the path planning problem. To see that simple systems always admit solutions (i.e., are not

overconstrained), the resistive network formulation will be useful.

3.1 Resistive Networks

The intuitive explanation for the nonholonomic constraints for a wheel is that the wheel can
only go in one direction for a particular steering angle. The wheel can be represented using a
3-dimensional configuration space: z,y, 8, where § is the wheel’s steering angle (@ € [0,27)).
The wheel will also be allowed to move forward and backward, if necessary.

Harmonic functions can be computed using resistive networks. This can be seen by

examining the discrete form for Laplace’s equation defined over a grid:

u(z) = 5= Y- u(z) ®)

where the z; are the grid neighbors. The value at a point z, therefore, is simply the average
of its neighbors’ values. This equation is identical to Kirchhoff’s voltage law for resistive
networks. It is derived in [2], but can also be found in many other sources ([6] or [18],
for example). The resistive grid can be used as follows: nodes corresponding to obstacle
configurations are pulled high (1 volt), while goal nodes are pulled down (0 volts). Current
will then flow between obstacle nodes and goal nodes, and the steepest voltage drops at free
nodes correspond to a gradient descent of the harmonic function (voltage as a function of
grid position). In practice, paths are generated by interpolating the function in the grid,
and projecting the interpolated gradient onto the vehicle heading.

Consider a resistive grid constructed to represent a configuration space. For a holonomic
system, the grid nodes are connected to their manhattan neighbors. The point representing

the current configuration is allowed to move in any direction in the grid. Figure 2 shows the
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Figure 2: The holonomic 3D grid: lines denote resistances, and every interior grid node is
connected to its manhattan neighbors.

connectivity of such a grid for a simple z,y,8 cspace. Only three orientations are shown,
corresponding to 0,%, and Z. Since these steering angles constrain the system, we must
design grid conductances to impose the appropriate nonholonomic constraints. With the §
discretization illustrated, this can be accomplished by connecting the appropriate subset of
the 8 nearest neighbors in each of the z, y-planes. A grid connectivity that properly captures
the nonholonomic constraints for each value of 4 is illustrated in Figure 3. Note that in each
z,y-plane, only those nodes that are neighbors in the direction of & are connected. Note also
that every node is connected to its neighbors in the adjacent constant-8 planes. Thus, the
grid is still connected (that is, there is a path between any two points), but the legal paths
through the grid are now constrained. Analogously, the valid flows for a nonholonomic system
in the continuous case are constrained by the current value of 8. Since the nonholonomic grid
is still connected, the Dirichlet problem is well-posed. Figure 3 also illustrates a trajectory
computed on the grid from (0,0,0) to (4,4, 3) in configuration space. Solution trajectories



Figure 3: The nonholonomic 3D grid: each constant-f plane has restricted connections in
order to constrain the flow to be in the direction of 4.

will turn # as the wheel is moving through z,y, until the wheel is perpendicular to its initial
orientation. The bold curve is the trajectory of the system in cspace. On the right is a
diagram showing the motion of a wheel corresponding to this trajectory. In contrast to
more conventional nonholonomic planning methods, this technique allows continuous and
simultaneous changes in the constraining degree of freedom (e.g., the steering angle), rather

than a sequence of discrete infinitesimal reorientations.

4 Implementation

4.1 The Unicycle Controller

The examples in this section rely on a simulation of a resistive grid which is similar to the
one shown in Figure 3. The system under consideration is a single wheel. Four @ directions
(8 € {0,%,%,3%}) are explicitly represented in the grid. The § dimension wraps around so
that § = v maps to the § = 0 plane. This results in a configuration space which represents

all unique headings of the wheel. The wheel has no preferred forward direction.



The system of equations corresponding to the resistive grid is derived from Kirchhoft’s
law: the voltage at a node is the weighted average of neighboring voltages. In every constant-
f plane, each node is connected to two neighbors in 8 (denoted by §+ and §—), and two z,y
neighbors (denoted zy+ and zy—). The z,y neighbors are determined by the value of § and
the local 8-neighborhood in that plane. For example, for a node at (z,y) in the § = % plane,
the zy+ neighbor has coordinates (z + 1,y + 1), and the zy— neighbor is at (z — 1,y — 1),
likewise for the other constant-4 planes. The resulting system of equations can be written

as:
H2,9,0) = 7 (Bers + Guu- + dbos + do-) ()

In this case, inter-node conductances are all equal. This equation can be generalized to the
case where inter-node conductances vary to generate a family of qualitatively distinct paths.
In implementation, the wheel’s simulated translation is constrained to be in the direction
of the current heading. The harmonic function is computed over the grid according to
Equation 9, and trajectories are obtained by using the gradient at each configuration as a
control command. The z,y component of the gradient (denoted by dz, dy) is projected onto
the current heading to generate the appropriate displacement along the current heading:

ds = —(8z cos 8 + dysin §),

this ensures that the interpolated harmonic function subscribes explicitly to the nonholo-
nomic constraint. In each control cycle, the simulated wheel advances along § by 4s and is
simultaneously rotated by the # component of the gradient, 86.

Figure 4 shows an example of a trajectory planned using the resistive grid formulation.
The wheel starts at an angle § = 0 (horizontal in the figure), and follows a smooth trajectory
until the goal is reached at § = 3.

In Figure 5, a second example is shown where the wheel must make its way out of a
narrow channel, and must reach the goal in a horizontal orientation. In this case, the wheel
stops and reverses direction after leaving the channel. The “cusp” (leftmost point) in the

trajectory is caused by a gradient whose z,y components are nearly zero with respect to the
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Figure 4: Example of a planned nonholonomic trajectory: the open square is a goal, the black
circle indicates starting position. The wheel is displayed as a line drawn at the appropriate
angle.
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Figure 5: Example of another planned nonholonomic trajectory. Here, the wheel starts in
the vertical orientation, and must reach the goal in a horizontal orientation. Note the point
on the left, where the direction of travel is reversed.
current orientation. A slight change in # (to orient the wheel toward the goal) increases the
z,y gradient once again, resulting in a reversal of the wheel’s previous direction of movement.
Finally, Figure 6 shows a more complicated set of channels. The start configuration is
at 8 = 3—4’5, and the goal orientation is § = 5. The wheel must exit the channel on the right,
and reenter on the left. Again, there is a cusp in the trajectory where the z,y component

Crosses zero.
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Figure 6: Example of a more complicated nonholonomic trajectory. The wheel must rotate
90 degrees to reach the goal in the left half of the Y-shaped corridor.
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4.2 The Bicycle Controller

The examples in this section employ a four dimensional resistive grid spanning § (absolute
steering angle), ¢ (the absolute heading of the rear wheel), z, and y. The figures illustrate
the front wheel of the bicycle as the arrow (to define absolute heading) with a circle to
designated the (z,y) position that being controlled.

Eight unique 6 and ¢ directions {0, %,%,3=, 7,8 & Tx} are explicitly represented in the
grid. The rotational configuration variables wrap around. This results in a configuration
space which represents all unique headings of both wheels. The resulting grid has dimension
8 x 8 x 16 x 16. Unlike the previous example, here we do not express the nonholonomic
constraints explicitly in terms of inter-nodal conductivities. In the unicycle examples, the
wheel heading, 8, defined the flow constraints in the z,y-plane, namely, (cos(f), sin(9)).
Since the constraint depends solely on 8, a grid aligned to 7/4 increments can be explicitly
represented in the 8-neighborhood of each z,y-node. The nonholonomic constraint for the
bicycle is defined in the ¢, z, y-plane, namely, (ﬂ;;ﬂ, cos(0), sin(8)), where L is the distance
between the axles of the two wheels. It is not an easy matter to align this constraint with
the configuration grid. Instead, we used local support in the grid to interpolate the potential
along the nonholonomic constraint and execute the same numerical relaxation (Equation 9)
as before.

Figure 7 is a simple task that demonstrates how flow in the grid expresses the non-
holonomic constraint. The square is the goal region in the configuration space. All four
configuration variables are specified in the goal configuration. Often, however, it is sufficient
to achieve the ¢, z,y goal and to ignore the steering angle.

Figure 8 shows a slightly more complicated trajectory. Here, vehicle backs up from the
initial horizontal, right facing configuration all the way to the ¢, z,y goal where the steering
angle is adjusted to achieve the goal. In the process of backing up, the rear wheel flips its

heading relative to the steering wheel. The reason that this occurs is because there are no

1The circle is drawn at the point at which the steering wheel contacts the ground, and is the also the
point at which the bicycle is articulated.
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Figure 7: The four dimensional, nonholonomic bicycle: the task is to navigate from the
horizontal configuration in the middle of the pane to the vertical configuration in the upper
right corner.
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Figure 8: Example of a linear, nonholonomic bicycle trajectory from the middle, rightfacing
configuration to the upper left, leftfacing configuration. The steering angle is permitted to
vary between —m and + relative to the rear wheel heading.
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constraints on the relative steering angle in this example. This is a linear, nonholonomic
system.

Figure 9 executes the same task as illustrated in Figure 8 but constrains the relative
steering angle to remain within +%. The vehicle begins from the right facing horizontal
configuration and drives forward while turning right toward the lower right corner of the
pane. After a small forward excursion, the bicycle backs up along a straight path segment
as shown. It repeats this strategy, small forward right turn followed by a straight backward
path segment, two more times until its heading is oriented toward the goal. At this point,
the bicycle executes a smooth forward path to the goal. This example highlights some of
the ways in which the resistive grid can be tuned to generate different responses. First, the
straight segments are not strictly continuous backward motions. They actually consist of
small backward then forward displacements that direct the rear wheel in an approximately
straight line. This is due to the inherent instability of this vehicle in the backward direction,
but is unnecessary. This character of the path is affected by the magnitude of the step
executed along the streamline, and the relative conductance in the 8 direction versus the
z,y,¢ direction. Second, the constraint on the relative steering angle is expressed as a
Dirichlet boundary condition. This is a repulsive boundary so that the steering angle tends to
remain at a zero relative heading with respect to the rear wheel. This generates the straight
line segments in the figure. This approach is a reasonable strategy when the optimality
criterion is the minimum integrated steering angle[15], but is not suited to paths in which the
number of cusps in the path is minimized[9]. Neumann boundary conditions are preferable

in this case.

5 Summary

A method has been presented for incorporating nonholonomic constraints into harmonic
function path planning. The key to this treatment is that the harmonic function approach
is capable — through the application of Neumann boundary conditions — of constraining

the system to move along a particular linear subspace of configuration space. The flow
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Figure 9: Example of a nonlinear, nonholonomic bicycle trajectory from the middle, rightfac-
ing configuration to the upper left, leftfacing configuration. A Dirichlet boundary condition
constrains the steering angle to +3 relative to the rear wheel heading.
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corresponding to the harmonic function is constrained to a particular direction corresponding
to the steering angle. In i)ractice, it is fairly simple to implement this scheme using a
constrained resistive grid.

In contrast to other approaches, the nonholonomic constraints are incorporated directly
into the harmonic function path planning method. Of particular interest is the fact that here,
changes in steering angle are made while the vehicle is in motion. Nonholonomic motion
planners which require initial reorientation (e.g, [10, 11]) do not exhibit this characteristic.
The harmonic function approach can vary the steering angle smoothly while the vehicle is
in motion.

While the resistive grid is “safe”, in the sense that obstacles will always be avoided, it is
also flexible, and through the variation of grid resistances will allow a wide range of possible
solutions to be expressed. The use of a resistive grid formulation begs the question: how
should grid conductances be set to produce “optimal” paths? This question underscores one
potentially powerful role for learning techniques in the context of robot motion planning.
In general, it will be difficult to preset conductances for all possible environments or robot
effectors. In the future, we intend to study ways in which learning algorithms can adaptively
improve the path quality while compensating for robot dynamics by varying the conductances

in the resistive grid.
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