TOWARDS SCALABLE COMPOSITIONAL
ANALYSIS*

James C. Corbett’ and George S. Avrunin

CMPSCI Technical Report 94-56
July 1994

Software Development Laboratory
Computer Science Department,
Lederle Graduate Research Center
University of Massachusetts
Ambherst, Massachusetts 01003-4601

*This paper has been submitted for publication. The research reported here was partially
supported by grants from the National Science Foundation and the Office of Naval Research.

fInformation and Computer Science Department, University of Hawaii at Manoa, Honolulu,
HI 96822

TOWARDS SCALABLE COMPOSITIONAL ANALYSIS

JAMES C. CORBETT AND GEORGE S. AVRUNIN

ABSTRACT. Due to the state explosion problem, analysis of large concurrent
programs will undoubtedly require compositional techniques. Existing compo-
sitional techniques are based on the idea of replacing complex subsystems with
simpler processes with the same interfaces to their environments, and using
the simpler processes to analyze the full system. Most algorithms for proving
equivalence between two processes, however, require enumerating the states
of both processes. When part of a concurrent system consists of many highly
coupled processes, it may not be possible to decompose the system into com-
ponents that are both small enough to enumerate and have simple interfaces
with their environments. In such cases, analysis of the systems by standard
methods will be infeasible.

In this paper, we describe a technique for proving trace equivalence of deter-
ministic and divergence-free systems without enumerating their states. (For
deterministic systems, essentially all the standard notions of process equiva-
lence collapse to trace equivalence, so this technique also establishes failures
equivalence, observational equivalence, etc.) Our approach is to generate nec-
essary conditions for the existence of a trace of one system that is not a trace
of the other; if the necessary conditions cannot be satisfied the systems are
equivalent. We have implemented the technique and used it to establish the
equivalence of some systems with state spaces too large for enumeration to be
practical.

1. INTRODUCTION

Concurrent, software is notoriously difficult to design and debug. Since such
software is increasingly a part of safety critical systems, methods and tools for as-
suring its reliability are badly needed [12]. One of the most error-prone aspects of
a concurrent system is the design of the communication protocol used by its coop-
erating agents. Fortunately, formal methods exist for aiding developers with the
design and verification of communication protocols. Process algebras and labeled
transition systems provide a foundation for representing and reasoning about con-
currency. Analysis techniques based on these models, such as reachability analysis,
are easily automated and can provide rigorous guarantees of a system’s confor-
mance to certain requirements. A reachability-based tool could, for example, prove
a safety critical Ada tasking program free from communication deadlocks or other
anomalies. In practice, however, the applicability of this kind of analysis is limited
by the state explosion problem: the number of states that must be examined usually
grows very quickly with the size of the program. Analysis of very large programs
will undoubtedly require compositional techniques, which exploit the modularity of
the program to reduce the complexity of the analysis.

2 J. C. CORBETT AND G. S. AVRUNIN

Several techniques for compositional reachability analysis have already been pro-
posed (e.g., [4,5,15]). The basic strategy of these techniques is to divide a large
system into smaller subsystems, verify each subsystem, and then combine the re-
sults of these analyses to verify the full system. For concurrent processes, this is
typically accomplished by decomposing the system into subsystems with simple
interfaces, proving each subsystem is behaviorally equivalent to a simple process
specifying the same interface with its environment, and then verifying the full sys-
tem using the simpler interface processes. The decomposition is repeated until the
subsystems are simple enough to analyze. For example, a system may contain a
group of processes that implement a network protocol. Although these processes
may have complex interactions with each other (e.g., because of sequence numbers,
acknowledgements, etc.), their interface to the rest of the system (i.e., send packet,
receive packet) is equivalent to a simple buffer.

The basis for a compositional analysis technique of this sort is a notion of equiva-
lence between processes that allows a complex process, representing a subsystem, to
be replaced by a simple process, representing the subsystem’s interface with its en-
vironment. This equivalence is proven by either constructing a relation between the
states of the subsystem process and the states of the interface process, or by hiding
internal actions of the subsystem process and minimizing until it becomes the in-
terface process. In any case, most existing algorithms for testing equivalences [6,10]
must enumerate the states of both processes.

In this paper, we consider the eventual application of compositional techniques to
very large and complex programs. It seems likely that such programs will contain
parts that cannot be further divided to yield a tractable analysis. Specifically,
suppose the implementation I of a particular module of a program has n tasks:
I=1| - | I,. Further suppose that I contains far too many states to enumerate
and that there is no subset of the I;’s that, when composed, has a simple interface
with its environment (i.e., the tasks are highly coupled). The specification S of
the module’s interface with its environment is another process S = Sy || --- || Sm
that may or may not be small enough to enumerate, but can be expressed as a
composition of small processes. To use a compositional analysis, we must prove
that S is equivalent to I, but we cannot use standard techniques since I (and
perhaps S) have too many states to enumerate.

Here, we show that such an equivalence can be proven for a restricted class
of systems. Specifically, we describe a technique for proving the trace equiva-
lence of a specification process S =51 || --- || Sy and an implementation process
I =1 | - || I, without enumerating the states of either S or I. The tech-
nique works from the component processes Si, ... ,Sm, l1,...,I, and involves the
generation of necessary conditions for the existence of a trace showing that the
equivalence does not hold. If these conditions cannot be satisfied, we may conclude
that the equivalence holds. The necessary conditions are similar to those used in
the constrained expression method for concurrent systems analysis [1,2]. The use
of necessary conditions results in a conservative analysis: the technique will never
report that inequivalent processes are equivalent, but it may sometimes be unable
to verify an equivalence that does hold.

Our technique is currently restricted to processes that are deterministic and
divergence-free. Informally, a deterministic process has the property that the set
of actions in which a process can engage is completely determined by the actions

TOWARDS SCALABLE COMPOSITIONAL ANALYSIS 3

in which it has engaged previously. For example, a process representing a reliable
network protocol should be deterministic: the packets it will deliver to the re-
ceiver should be completely determined by the packets it was given by the sender.
A divergence-free process is one that cannot engage in an unbounded number of
internal actions and thus ignore requests for interaction with its environment indef-
initely. Most reactive systems are divergence-free. For nondeterministic processes,
there is a hierarchy of many different kinds of equivalence (e.g., failure equivalence,
observational equivalence), but for deterministic processes, this hierarchy collapses
and all forms of equivalence are the same as trace equivalence.

We have implemented our technique and used it to establish the trace equiva-
lence of some systems with state spaces too large for enumeration to be practical.
The only other non-enumerative equivalence techniques we know of use Ordered
Binary Decision Diagrams (OBDDs) to represent the states. Examples of this
work are [3] and [9]. The successful application of OBDD-based methods depends
heavily on finding a good ordering for the state variables. While some heuristics
exist, especially for models of certain digital circuits, the successful application of
these methods to concurrent software systems with highly coupled tasks remains
extremely problematic.

This paper is organized as follows. Section 2 presents basic definitions used
throughout. Section 3 describes the method and Section 4 presents the results
of some experiments with the method. Finally, Section 5 concludes and discusses
future directions for this work.

2. DEFINITIONS

Formally, we regard a process as a finite-state automaton in a standard fashion.
States of a process can be regarded as tuples giving the values of all relevant local
variables, including the program counter, and a transition between states corre-
sponds to an event changing one or more of these variables.

Definition 1. A process P is a quadruple (S,%, A, sp) where S is a set of states,
Y is an alphabet, A C S x ¥ x S is a transition relation, and sp € S is the start
state.

A concurrent system is usually thought of as a collection of tasks or threads of
control, each of which might be modeled by an individual process. We use the
term “process” in the sense of process algebra, so our processes might represent
single tasks/threads or a group of tasks/threads executing concurrently. We define
a parallel composition operator that constructs a single process, representing a con-
current system, from the processes representing the tasks that comprise it. When
processes are composed in parallel, the resulting process may accept a symbol if
and only if every component containing that symbol can accept the symbol.

Definition 2. Given Pi,..., P, where P; = (5;,%;,A;, sp,), the parallel compo-
sition Py || --- || P, is defined as another process P = (S,%, A, sp) where: S =
Six---x8n, E=U,;Zi, sp = (sp,---,8p,),and ((s1,...,8n),a,(s],...,s,)) € A
iffforalli=1,...,n:

(agd¥iNs;=s)) V (a€X;A(s;,a,8;) € A;)

4 J. C. CORBETT AND G. S. AVRUNIN

We assume processes communicate in pairs (as in Ada and CSP). Given a sub-
system represented as a parallel composition P = Py || --- || P,, this divides the
symbols in Y into three disjoint sets:

Internal Actions: (X;,;) A symbol representing an internal action of a
single P; is in the alphabet of only that process.

Communication Actions: (X.,,;) A symbol representing communica-
tion between two P; is in the alphabets of exactly those two processes,
one of which is denoted the caller, and the other the acceptor.

Visible Actions: (X,;s) A symbol representing an unmatched communi-
cation with the environment is in the alphabet of exactly one P;. Although
they represent communications, we do not include visible actions in ¥,y .

When processes are composed, some of their actions cease to be interesting from
an external point of view. In most process algebras, such actions are hidden by
a special operator that renames them to a special “invisible” action 7. Here, we
take the approach of Valmari [14] and specify a set ¥,;s C ¥ of visible actions
(unmatched communications). Only the visible actions of a process are considered
when proving equivalence. With most techniques for proving equivalence, a process
P=P | ---| P, is considered a single composed entity, thus the actions in ¥,
and ¥;,; are not distinguished since they all represent actions internal to P. In
our technique, we do not construct P but work from its components Py || - -+ || Py,
thus we require the distinction between X.,,, and X;,;. The following definitions
are adapted from [14].

Definition 3. Let P = (5,X, A, sp) be a process and X,;s C ¥ be a set of visible
actions.

e For o € ¥*, vis(o) is the projection of o onto 3,5 (i.e., all invisible actions
are removed).

e 555’ where 0 = ay...a, € &%, iff Isg,...,s, € S such that sy = s,
Sm = ', and (s;—1,a;,s;) € Afori=1,... ,m.
o s5, where 0 = a1--- € ¥, iff Isy,... € S such that so = s and

(si_l,ai,si) eAfori=1,...

e A process P is divergence-free iff =30 € ¥*,p € (¥ — X,;5)¥ such that
sp>s, s for some s € S.

o For s € 9, neat(s) ={a € B|Fs' € S: s5s'}.

o 53¢ iff 30’ € T such that sSs' and o = vis(o').

o A process P is deterministic iff, for all s € S and ¢ € £*, s5s' and s—>s"
implies next(s') = next(s").

e Traces(P) = {0 € ¥*,,|3s € S: sp>s}.

e Processes P and P’ are trace equivalent iff Traces(P) = Traces(P').

3. METHOD

Most techniques for proving the equivalence of two processes involve refining a
partition of their state sets until all the states in each part are equivalent. Our
approach is to generate necessary conditions for the existence of a counterexample
showing that the equivalence does not hold. To prove that two processes are not
trace equivalent, we generate necessary conditions for the existence of a trace of

TOWARDS SCALABLE COMPOSITIONAL ANALYSIS 5

one that is not a trace of the other. If these conditions cannot be satisfied, we may
conclude that the equivalence holds. If the conditions can be satisfied, however,
the two processes may still be trace equivalent, since the conditions are necessary
but not sufficient. To be useful, the conditions must be strong enough so that they
are usually not satisfiable if the equivalence holds. Furthermore, generating the
conditions and checking their satisfiability must be tractable.

If two processes are not trace equivalent, there must be a trace of one that is not
a trace of the other. Given such a p of length at least 1, let o be the longest prefix
of p that is a trace of both processes. Then p = gajas .. .ay, with k£ > 0, and oa; is
a trace of one system but not of the other. This motivates the following definition.

Definition 4. Let 0 € ¥¥., and a € X,;;. We say that the pair (0,a) is bad for

processes S and I if o € Traces(S) N Traces(I) and
(i) oa & Traces(I) and oa € Traces(S), or
(ii) oa & Traces(S) and oa € Traces(I).

Processes S and I are not trace equivalent if and only if there exists a pair (o, a)
that is bad for S and I.

We now describe the generation of necessary conditions for the existence of a
bad pair for processes S and I. If these conditions are inconsistent, we know that
no bad pair can exist and therefore that S and I are trace equivalent. Generating
these necessary conditions does not require the construction of S = Sy || --- || Sm
or I =1 | - || I., but works from the component processes Si,...,S,, and
Iy, ..., I,. Any mention of states and transitions in the following description refers
to the states and transitions of the component processes Si,...,S,, and I1,...,I,.

To generate the necessary conditions, we adapt the basic integer programming
technique described in [1,2]. Given a set of communicating processes, that tech-
nique uses necessary conditions, in the form of linear inequalities, to either help
find a trace with certain properties or prove that no such trace could exist. A
trace can be viewed as a path in each component process beginning at the start
state such that the interactions between the processes represented by the paths are
consistent. Our technique finds a flow in each process such that the flows satisfy a
weaker consistency criterion. Specifically, we require that, for each communication
symbol, the processes containing that symbol agree on the number of times that
they accepted the symbol.

The basic technique produces a system of inequalities representing conditions
that must be satisfied by any trace. First, we assign a transition variable, x;, to
each transition ¢ that represents the number of times transition 7 is taken in the
trace. We also assign a connection variable, cj, to each state j that will be one if
the process is in that state at the end of the trace, and zero otherwise. We then
generate a flow equation for each state, equating the flow into the state with the
flow out of the state (i.e., the number of times the state is entered equals the number
of times it is exited). There is an implicit flow in of one at the start state and the
connect, variables are counted as flow out. Finally, we generate a communication
equation for each communication symbol, equating the number of times the tasks
containing the symbol accepted it. It is easy to show that the resulting inequality
system has an integral solution for every trace.

6 J. C. CORBETT AND G. S. AVRUNIN

Using this basic technique, we generate the necessary conditions for the existence
of a bad pair as follows. We generate separate systems of inequalities representing
necessary conditions for (i) and (%) of Definition 4; since these are essentially the
same except for exchanging S and I, we describe here only the method for (i)
To generate necessary conditions for the existence of o € X7, ,a € ¥,;s such that
oa € Traces(S) and oa & Traces(I), we generate the following inequalities:

e Jo € Traces(S) and 3o’ € Traces(I). We use the basic technique to gener-
ate flow and communication inequalities representing necessary conditions
for the existence of traces of S and I.

e o = o'. We generate a prefix consistency equation for each a € ¥,;s equat-
ing the number of occurrences of a in o with the number of occurrences of a
in o’. Like the communication equations, this enforces a weak consistency
between o and ¢’ and represents a necessary condition for o = ¢’.

e Ja € X,;s. Toselect the extension a € ¥,;5, we create an extension variable,
eq, foreach a € ¥,;,, that will be one if a is the extension. We then generate
an extension selection equation summing the extension variables to one.

e oga € Traces(S). We generate an extension enabled inequality for each
a € Y,;s that allows an extension symbol to be selected after ¢ only if
some component of S is in a state with a transition on that symbol.

e od'a ¢ Traces(I). We generate an extension excluded inequality for each
state in a component of I that allows the component to be in that state
after o' only if there are no transitions on a. However, we must exclude the
possiblity of stopping in a state with no a transitions when a state having
a transitions can be reached through a sequence of invisible actions. To
achieve this, we generate prefiz progress inequalities to prevent the compo-
nents of I from stopping in a state where some invisible action is enabled.
For each state j of a component of I with an internal action a € X;,; pos-
sible, we set ¢; = 0, thereby preventing the flow from stopping in state j.
For each communication action b € X.,,,, we generate an inequality that
prevents the caller and acceptor of b from both stopping in states where b
is possible.

The algorithm for generating the necessary conditions for the existence of a
bad pair is shown in Figure 1. Table 1 gives a list of abbreviations used in the
algorithm. Figure 2 gives a small example of a two-slot buffer implemented as
the parallel composition of two one-slot buffers and the inequalities generated by
the algorithm in Figure 1. For this example, ¥,;s = {a, b} where a represents data
being put into the buffer, b represents data being removed, and ¢ € X, represents
the data being passed between the two one-slot buffers. The inequalities have no
integral solution, proving that no bad pair satisfying condition (i) exists for this
example.

The prefix progress inequalities require some further comment. We are generat-
ing necessary conditions for ¢’a to not be a trace of I, while ¢’ is a trace of I. Our
conditions require flows through the components of I that are compatible with o',
in the sense of having each action occur the right number of times, and that reach
a state where it is not possible for an a action to occur. Even if an a action cannot
occur in the state reached after o', it may be possible to execute a after a sequence
of invisible actions. Since we want to prohibit a from being the next wvisible action,

TOWARDS SCALABLE COMPOSITIONAL ANALYSIS 7

Input: Processes Si, ... ,Sy comprising S
Processes I, ..., I, comprising I
Yvis = visible actions of S and I
Y com = communication actions between Sy,...,S, or I1,..., I,
3int = internal actions of S1,... , Sy, [1,... , I,
Output: A set of inequalities representing necessary conditions for the existence
of a pair (0,a) with oa ¢ Traces(I) and oa € Traces(S)

For each transition k of a process:
Create transition variable zy,
For each state j of a process:
Create connection variable c;
For each symbol a € X,;5:
Create extension variable e,

For each state j of a process:

Generate flow equation: start(j)+ Z Ty = Z T + ¢
kein(j) k€out(s)
For each symbol a € X.om:

Generate communication equation: E T = E Tr
kelab(a,call(a)) k€lab(a,acc(a))

Generate prefix progress inequality: Z cj + Z c; <1
j€enab(a,call(a)) j€enab(a,acc(a))

Generate extension selection equation: E e, =1

A€ yis
For each symbol a € ¥,;,:
Generate prefix consistency equation: Z Ty = Z T
k€lab(a,S) kelab(a,l)

Generate extension enabled inequality: e, < Z c;j
j€enab(a,S)
For each state j of a process of I:
If Ja € next(j) N Xjpe then
Generate prefix progress equation: ¢; = 0
Else

Generate extension exclusion inequality: ¢; + Z e, <1
a€next(j)

FIGURE 1. Algorithm for generating inequalities

we use the prefix progress inequalities to eliminate any flows leading to a state of [
in which some invisible action is possible. If an infinite sequence of invisible actions
is possible after o', these inequalities may eliminate all possible flows compatible
with o' even if (¢/,a) is a bad pair. Thus if I is not divergence-free, our inequali-
ties are not necessary conditions for the existence of a bad pair. Our method only

8 J. C. CORBETT AND G. S. AVRUNIN

acc(a) process that is acceptor for communication symbol a
call(a) process that is caller for communication symbol a
next(j) set of event symbols labeling transitions out of state j
enab(a,P) | set of states of process P having a transition labeled a
in(j) set of transitions into state j

lab(a,P) tranitions of process P labeled with event a

out(j) set of transitions out of state j

start(j) 1 if state j is a start state of a process, else 0

TABLE 1. Abbreviations Used in Algorithm

\V \V
! 5 °
Communication: (symbol)
a b a c
V (c) Te = T7
! 6 Prefix Progress: (symbol)
2 ° ; @ (c) cs +c6 <1
a b b Extension Selection:
C
eq+ep=1
3
@ ’ Prefix Consistency: (symbol)
(a) 1 + T2 = x5
S I (b) r3 + T4 = x8
Extension Enabled: (symbol)
Flow: (state) (a) ta <1t
(1) 14z =21 +c1 (b) ep <c2+c3
(2) o1+ T3 = To + T4 + Co Extension Exclusion: (state)
(3) Tro = T3 + c3 4) cateq <1
(4) 14+ x6 =25 +ca (5) s <1
(5) Trs = T + Cs (6) c6 <1
(6) 1+z8 =z7+cp (M) c6t+ep <1
(7) Tr7 = x8 + C7

F1GURE 2. Two Slot Buffer Example

applies, then, in the case in which both S and I are divergence-free (note that the
component processes I, ..., I, and Si,...,S,, need not be divergence-free). The
techniques of [7] can be used to check for this without enumerating the states of S
and I.

Theorem 1. If S and I are divergence-free and the inequality system generated by
the algorithm in Figure 1 has no integral solutions, no bad pair exists for S and I.
It follows that S and I are trace equivalent.

Proof. If there exists a bad pair (o, a), then we may construct an integral solution to
the inequality system as follows. We set e, to one and all other extension variables
to zero. Since o € Traces(S) N Traces(I), there exists a sequence of transitions
in each component of S and I that defines a path through that component. We
set each xj to the number of times transition & is taken in these paths, and set
c;j to the one if the process in in state j at the end of its path, otherwise we set

TOWARDS SCALABLE COMPOSITIONAL ANALYSIS 9

it to zero. It is easy to check that this assignment will satisfy all the inequalities
generated. [

Although our inequalities represent necessary conditions for the existence of a
bad pair, they are not sufficient conditions for several reasons. First, the com-
munication equations do not guarantee that there is a consistent ordering of the
communication symbols within the parallel compositions of S and I (e.g., one pro-
cess could accept a then b, while the other accepted b then a). Similarly, the prefix
consistency equations do not guarantee that there is a consistent ordering of the
visible actions between the trace found for S and the trace found for I. Thirdly, the
presence of cycles in the processes can allow cyclic flows that are not connected to
the path found within the process (e.g., if we added transition 9 from state 3 to itself
in the S process of Figure 2, then the flow equation for state 3, zg9+x2 = z3+x9+c3,
allows z9g = 1 even if state 3 is never visited).

Solutions to our inequalities may also arise due to nondeterminacy of S or I even
when no bad pair exists. This can occur because, in a nondeterministic system, it
may be possible to reach two states after a sequence of actions o', with a possible
in one state and not possible in the other. Thus there would exist a solution to
our inequalities corresponding to flows leading to a state in which a is not possible
after o’ even though o'a is a trace. Although this problem will not lead to incorrect
reports of equivalence, it means that our analysis is unlikely to be useful with
nondeterministic processes.

For these reasons, a solution to the inequality system may not correspond to a
bad pair. If such a solution is found, the analysis is inconclusive since the presence
of that solution implies nothing about the existence of another solution that does
correspond to a bad pair. In our experience with these conditions, we have found
that they are strong enough to verify equivalences of interesting systems, although
a much more extensive empirical investigation would be necessary to characterize
their applicability in general. In addition, we note that the technique of [7] can
be used to eliminate some spurious solutions. That technique involves splitting
the trace into segments, using the basic technique to generate an inequality system
for each segment, and then connecting the inequality systems together to form
necessary conditions for the entire trace. By placing restrictions on the segments, we
may prevent certain spurious matchings of communication actions or disconnected
cyclic flows at the price of larger inequality systems. For example, the method
presented here was unable to prove the equivalence of the stop and wait protocol
to a simple buffer. A spurious solution resulted from the loss of information on
the order of certain events. By splitting the trace into two segments, however, we
were able to strengthen the conditions and prove the equivalence. We are currently
exploring the range of applicability of this technique.

The worst case complexity of our algorithm is no better than that of those meth-
ods employing state enumeration. The complexity of checking trace equivalence
for deterministic processes is polynomial in the number of states in the processes.
Unfortunately, the number of states in a process P = P, || --- || P, is often propor-
tional to the product of the sizes of the components, and is thus exponential in n.
Our technique produces an inequality system whose size is proportional to the sum
of the sizes of the components. In particular, the number of variables/inequalities
is proportional to the number of transitions/states in the components. We then,

10 J. C. CORBETT AND G. S. AVRUNIN

however, apply integer linear programming (ILP), which is an NP-hard problem
for which we use an exponential-time decision procedure. Despite the complexity of
ILP, our experience with these kinds of inequality systems [2] suggests that they are
easier to solve than the general case, probably because a large part of the systems
are network flow equations (pure network flow systems can be solved in polynomial
time).

We conclude this section by noting that, when the equivalence does not hold,
the solution to the inequality system is usually helpful in showing why. For all of
the non-equivalent processes to which we have applied the method, the solution
obtained provided an example of a bad pair.

4. EXPERIMENTS

We have demonstrated the feasibility of our method by implementing it and
applying it to several examples. Here, we describe experiments on two scalable
examples. To conduct these experiments, we modified the Inequality Necessary
Condition Analyzer (INCA), an analysis tool for concurrent and real-time systems
that is descended from the constrained expression toolset [2]. INCA takes as in-
put a set of specification and implementation tasks specified in an Ada-like design
language. The tool translates the tasks into FSAs and then produces an inequality
system using the algorithm in Figure 1. The inequality system is solved using the
IMINOS optimization package and INCA then interprets the solution, if any. All
times we report are in CPU seconds on a SPARCstation 10 Model 41 with 64MB
of memory and include both user and system time.

The first example is a scaled version of the compositional buffer example shown
in Figure 2. Table 2 shows the results of proving that n one-slot buffers composed
end-to-end in parallel are trace equivalent to a single n-slot buffer. The columns
of the table show the problem size (n), the number of inequalities and variables
generated, the time to generate the inequality system, the time to solve the system,
and the total time. The two rows for each size represent the analyses for conditions
(i) and (i) of Definition 4, respectively.

The second example is adapted from a real world problem reported in [11] and
recently studied in the concurrency and distribution track of the Sixth International
Workshop on Software Specification and Design. This router problem models a
communication network with M input ports, each connected to a sender, and N
output ports, each connected to a receiver. Each sender repeatedly picks some
receiver and sends a message to that receiver through the network. The network
is implemented as an M by N grid of switching elements as shown in Figure 3.
Messages travel across the row of their sender and then down the column of their
receiver. In the original problem, messages were divided into multiple packets and
no flow control was specified. For our experiments, we used only single-packet
messages and assumed that a sender would wait for an acknowledgement (which
retraced the path of the message through the network) before sending another
message. Only the latter simplification was essential. Without it, the network
could buffer up to M x N messages and would not have a simple specification.

The router problem is interesting in that the external behavior of the system
is very simple but it is difficult to decompose the system into subsystems with a
simple visible behavior. We may specify the externally visible behavior of the router

TOWARDS SCALABLE COMPOSITIONAL ANALYSIS 11

Switches

Senders

Receivers

FiGUurE 3. Router Implementation

Size Time Size Time
Size | Ineqs | Vars | Gen | Solve | Total Size | Ineqs | Vars | Gen | Solve | Total
100 407 411 34 3 2 49 38 6 1
407 411 34 3 74 49 38 6 1
200 807 811 86 6 4 185 156 32 3
807 811 87 7 186 185 156 33 3
300 1207 | 1211 166 9 6 409 354 140 12
1207 | 1211 166 12 353 409 354 142 13
400 1607 | 1611 273 14 8 721 632 525 36
1607 | 1611 275 19 581 721 632 529 37 1127
500 2007 | 2011 412 19 10 1121 990 | 1599 84
2007 | 2011 417 29 877 1121 990 | 1621 81 3385
TABLE 2. Performance TABLE 3. Performance
on Compositional Buffer on Router
as the parallel composition of M processes, Si,..., Sy, each representing one of

the senders. Each of these specification processes accepts a visible action from the
environment requesting delivery of a message to a specific output port, then accepts
a visible action representing the delivery of the message by the intended receiver.
Although the number of states in the specification process S is N™, the size of
each S; is O(N).

The results of applying our method to prove a specification of the router problem
trace equivalent to an implementation are shown in Table 3. We used a square grid
son = M = N. The number of states in the specification of the size n version of
the problem is at least n”, and the number of states in the implementation is much
greater. The size of the inequality system is growing quadratically in n (linearly
in the number of components) and analysis times seem to be growing somewhat
faster, but much slower than n™. The larger sizes we ran are well out of the range
of state enumeration-based techniques for proving equivalence, which typically can
handle at most between 10° and 10° states. We do not know whether a symbolic

12 J. C. CORBETT AND G. S. AVRUNIN

OBDD-based technique would be capable of proving the equivalence; however, we
believe that the two-dimensional nature of the problem would make it difficult to
find a good variable ordering for the OBDDs.

5. CONCLUSION

We have taken a step towards applying compositional analysis to very large
systems by providing a method for proving the equivalence of processes without
enumerating their states. The strength of the method lies in its potential appli-
cability to very large processes for which existing enumeration-based approaches
would be intractible. The weakness of the method is that it is not always appli-
cable; currently, it works only for deterministic divergence-free processes and the
necessary conditions it employs may be too weak to prove the equivalence even if
it holds. Nevertheless, we have successfully applied the method to examples that
are far too large for existing enumeration-based approaches.

We are currently exploring ways to strengthen the conditions and extend their
applicability. As noted in Section 3, we are investigating the applicability of a tech-
nique for strengthening the conditions by splitting the trace into multiple segments.
We are also exploring ways to extend the method to nondeterministic processes and
stronger kinds of equivalence (e.g., failure equivalence) by using different flow equa-
tions that explore all possible paths.

ACKNOWLEDGEMENTS

This research was partially supported by grants from the National Science Foun-
dation and the Office of Naval Research.

REFERENCES

1. G.S. Avrunin, U. A. Buy, and J. C. Corbett. Integer programming in the analysis of concurrent
systems. In K. G. Larsen and A. Skou, editors, Computer Aided Verification, 3rd International
Workshop Proceedings, volume 575 of Lecture Notes in Computer Science, pages 92-102,
Aalborg, Denmark, July 1991. Springer-Verlag.

2. G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Automated analysis
of concurrent systems with the constrained expression toolset. IEEE Trans. Softw. Eng.,
17(11):1204-1222, Nov. 1991.

3. A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In v. Bochmann and Probst
[13], pages 97-108.

4. S. C. Cheung and J. Kramer. Enhancing compositional reachability analysis using context
constraints. In Proceedings of the First ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 115-125, Dec. 1993.

5. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proceedings of the
Fourth Annual IEEE Symposium on Logic in Computer Science, 1989.

6. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics based
tool for the verification of concurrent systems. ACM Trans. Prog. Lang. Syst., 15(1):36-72,
Jan. 1993.

7. J. C. Corbett. Verifying general safety and liveness properties with integer programming. In
v. Bochmann and Probst [13], pages 357-369.

8. C. Courcoubetis, editor. Computer Aided Verification, 5th International Conference Proceed-
ings, Elounda, Greece, 1993.

9. J. C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic equivalence checking. In Courcoubetis
[8], pages 85-96.

10. P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems
of equivalence. Information and Computation, 86:43—68, 1990.

TOWARDS SCALABLE COMPOSITIONAL ANALYSIS 13

11. D. May and P. Thompson. Transputers and routers: Components for concurrent machines. In
T. L. Kunii and D. May, editors, Proceedings of the Third Transputer/Occam International
Conference, Tokyo, May 1990. IOS Press.

12. L. Osterweil and L. Clarke. A proposed testing and analysis research initiative. IEEE Software,
pages 89-96, Sept. 1992.

13. G. v. Bochmann and D. K. Probst, editors. Computer Aided Verification, 4th International
Workshop Proceedings, volume 663 of Lecture Notes in Computer Science, Montreal, Canada,
1992. Springer-Verlag.

14. A. Valmari. On-the-fly verification with stubborn sets. In Courcoubetis [8], pages 397-408.

15. W. J. Yeh and M. Young. Compositional reachability analysis using process algebra. In Pro-
ceedings of the Symposium on Testing, Analysis, and Verification (TAV/), pages 178-187,
New York, Oct. 1991. ACM SIGSOFT, Association for Computing Machinery.

INFORMATION AND COMPUTER SCIENCE DEPARTMENT, UNIVERSITY OF HAWAII AT MANOA, HON-
oLuLU, HI 96822
E-mail address: corbett@hawaii.edu

DEPARTMENT OF MATHEMATICS, BoX 34515, UNIVERSITY OF MASSACHUSETTS AT AMHERST,
AMHERST, MA 01003-4515
E-mail address: avrunin@math.umass.edu

