Extracting Lines with a Reconfigurable
Mesh Parallel Processor !

Katja Daumiiller, Charles C. Weems and Alan R. Hanson

Image Understanding Architecture Laboratory
Department of Computer Science

University of Massachusetts, Amherst MA 01003

Technical Report 94-59
December, 1994

Abstract

In this paper, we present an algorithm for extracting straight lines from a grey-
level image. The algorithm is region-based, where each region is the underlying
structure for one line, but only pixels in the region with highest gradient magnitude
contribute to the line. The algorithm is optimized for both quality and speed, and
time was optimized for runs on the low-level part of the heterogeneous Image
Understanding Architecture (IUA), where it operates in nearly frame rate. Line
output of the algorithm was input to a performance evaluation algorithm, whose
results, together with timing experiments, show that the algorithm has a high
performance/quality ratio as compared with two other algorithms.

1This work was supported in part by Army Research Laboratory contract DAAL02-91-K-0047

Contents
1 Introduction

2 Related Work
2.1 The Plane Fit Algorithm
2.2 The Principal Axis Algorithm
2.3 Other Approaches

3 The Subregion Algorithm

4 Experiments

4.1 Quality Measurements

4.1.1 The Performance Evaluation Algorithm

4.1.2 Comparison of Line Output .

4.1.3 Performance Evaluation Results

4.2 Time Analysis
4.2.1 The Sequential Implementation
4.2.2 The Parallel Implementation .
4.2.3 Timing Results

4.3 Quality versus Timing Measurements

5 Analysis and Conclusions

- O ot o>

10

24
24
24
26
36
42
42
43
44
46

48

1 Introduction

Straight line extraction algorithms serve as input to other algorithms in a variety of vision
applications, and the line quality largely determines the usability of these algorithms.
Object recognition, for example, relies to a great extent on orientation information.
Heavily distorted lines make object recognition impossible. Another problem for object
recognition is false positive lines, especially if the lines are not just short lines attributable
to noise. The quality of the lines not only affects the quality or success rate (in this case)
of the application, but can also affect its speed. High fragmentation, for example, may
increase the run-time. This is especially crucial if the run-time depends exponentially
or polynomially on the number of lines. For example, the model-matcher in [1] runs in

order quadratic time over the number of lines.

Because of these effects, most line extraction algorithms ([2, 3, 10, 18, 20]) are ex-
plicitly designed to produce the best quality possible, often with a sacrifice of execution
speed. Slow line extraction algorithms, however, are a bottleneck for real-time applica-
tions and are also an impediment in an explorative and experimental setting. Fast line
extraction algorithms, on the other hand, tend to optimize primarily for speed, but with
low quality. We introduce an algorithm which runs at a speed comparable to a previous
fast algorithm [8] (henceforth called Principal Axis Algorithm), but whose output qual-
ity is comparable to the algorithm in [3] (henceforth called Plane Fit Algorithm). Our
straight line extraction algorithm (henceforth called the Subregion Algorithm) adopts
basic principles from the Plane Fit Algorithm. For optimization of speed, some features

are introduced that are similar to features in the Principal Axis Algorithm.

The Plane Fit Algorithm is a region-based algorithm, which first creates two sets
of regions and then fits a plane to the slope in each region. As all pixels of one region
contribute more or less to the line, these regions are called support regions.

The Principal Axis Algorithm was implemented as a fast sequential version of the Plane
Fit Algorithm. It also adopts the region scheme from the Plane Fit Algorithm, but does
all the computation only once and has a simpler approach for computing the line from

the regions.

The Subregion Algorithm was developed as a parallel algorithm on the low-level

part of the TUA [19], and design decisions were made to optimize speed on the IUA. The
IUA is a heterogeneous machine with a low-level SIMD mesh which has reconfigurable
broadcast buses. The reconfigurable broadcast buses offer hardware support to broadcast
a value or select the minimum/maximum value in a region quickly, which is a valuable
enhancement for region-based processing. On the other hand, care must be taken to
reduce the number of floating points operations as much as possible because of the lack

of a floating point co-processor.

After having developed an optimized algorithm on the IUA, a sequential version
was developed, which turned out to have comparable performance to the Principal Axis

Algorithm on sequential machines.

The algorithm itself adopts the region scheme from the Plane Fit Algorithm, but
replaces the plane fit with a least squares fit of selected points. It computes the line of the
underlying region by first splitting the support region into three parts in rough gradient
orientation, and then selecting points of highest gradient magnitude in each subregion.
One advantage of this scheme is that the parameters of the line depend less on the shape
of the region than in the Plane Fit Algorithm. In our approach, the lines are computed

from only one set of support regions, in manner similar to the Principal Axis Algorithm.

We evaluate the output quality of these algorithms with the help of a performance
evaluation method from the University of Washington [7, 12, 13]. Experiments were run
on three diverse image sets; the groundtruth having been received from the University
of Washington for one of them. For the sake of classifying the algorithm with respect to
quality and timing, the same experiments were also run for the Plane Fit and the Princi-
pal Axis Algorithm, and the performance evaluation method was applied to the results.
The paper next describes the related work, then introduces the Subregion Algorithm in

detail, and last shows results of the performance evaluation, along with timings.

2 Related Work

2.1 The Plane Fit Algorithm

Burns’ Plane Fit Algorithm [3] aims at extracting long, straight lines, not necessarily
of high contrast, which might have fluctuations in the gradient magnitude along their
length. Therefore, the first evidence for a line is determined by the gradient orientation.
Pixels are clustered in support regions if they are spatially adjacent and if their gradient
orientation is roughly the same. Computation of the gradient orientation was done with
a 2x2 mask, which achieves more sensitivity to detail and has a symmetrical response to

rotation of the line.

Figure 1: Region Partitioning Scheme with Overlapping Bucket Scheme.

Support regions are built according to a fixed partitioning scheme of the angle
domain, see Figure 1. This has the inherent disadvantage that lines whose orientation
lie on the borders of the slice in Figure 1, may have fragmented support regions. Burns
avoids this by introducing the method of overlapping buckets. A second fixed partitioning
scheme, which equals the first one, but rotated by half of the bucket size, creates a second
set of support regions. The line parameters are computed with plane intersections of the
weighted fit to the intensity values and the horizontal average pixel intensity plane,
within a support region. The weight favors intensity values of pixels with high gradient

magnitude. In the end, the redundant support regions are removed with a voting scheme,

where each pixel votes for one of the two associated support regions with the longer line.

Taking primarily the gradient orientation as evidence for a line and using the
plane fit method, the algorithm actually extracts long, straight lines as well as shorter
lines (see section 4.1 for results). In some cases, the orientation is slightly distorted,
because the calculation of the line parameters takes into account every pixel in the re-
gion. The time performance (see section 4.2) is about 6 to 10 times slower than the
Principal Axis Algorithm. This is likely due to processing the double SRRs and also
indicates that the plane fit itself is computationally expensive, which could be caused in

part by its use of 4 trigonometric functions and one square root function for each plane fit.

2.2 The Principal Axis Algorithm

Kahn and Kitchen’s Principal Axis Algorithm [8] focuses primarily on speed optimization.

For the gradient magnitude and orientation, it uses a 3x3 mask because, [8] ar-
gues, the 2x2 mask produces errors that are too large in the gradient orientation [9].
The scheme of support regions and overlapping buckets is adopted from the Plane Fit
Algorithm. For speed optimization, it uses a table lookup for the tangent. The algorithm
merges the two SRRs obtained from the overlapping bucket scheme into one before the
line extraction, so that the line extraction has to be performed only once. This is imple-

mented according to the following rule:

A pizel is linked to an adjacent pizel if it either falls into the same bucket in the
first partitioning scheme or if it falls into the same bucket in the second partitioning

scheme.

The drawback of this rule is that pixels with significantly different gradient orien-
tation can be classified into the same region, as a result of a gradual change in gradient
orientation. The resulting support regions therefore may not represent the supporting

pixels of an actual line.

The line extraction is implemented using the principal axis of the support region,
which is less costly to compute than a plane fit. The orientation of the principal axis is
computed using the small eigenvalues from a scatter matrix (which takes into account
the gradient magnitude of each pixel). This provides the orientation of the line, whereas
the position is determined by the centroid of the support region. The endpoints of the
line are obtained by intersecting the line with the bounding box of the support region.
With this scheme, the line extraction (including the computation of the endpoints) still
needs three trigonometric functions and one square root function, but has overall less

computation.

Results show that the quality of the Principal Axis Algorithm is not sufficiently
high for e.g. tracking lines consistently or recovering good orientation estimates (see
section 4), which can be either due to the merging scheme of the SRRs (results show
that lines are fragmented more) or due to the computation of the principal axis (the

orientation is sometimes very skewed).

2.3 Other Approaches

We review some of the more widely referenced line algorithms in this section and explain
the choice of the three that are used in this study. Most other line extraction algorithms
base their approaches on the linking of edge pixels from the edge extraction algorithms of
either [16], [5, 7] or [10]. We briefly review these edge extractors here. The Marr-Hildreth
operator of [16], for example, convolves the image with the Laplacian of a Gaussian, and
then declares step edges to occur at the zero-crossings of the convolved image. The Canny
operator [5] first smoothes the image by convolving it with a two-dimensional Gaussian
and then finds step edges at maxima of the smoothed gradient direction. Haralick [7] uses
a similar method, but finds the gradient with fits to parameterized surfaces. The Nevatia-
Babu edge extraction algorithm [10] uses the output of directional edge detection, i.e.
convolution with several different masks and determines the gradient orientation from
the highest responding mask. A threshold of the gradient magnitude in this direction
determines if the pixel is an edge pixel. After that, the edges are thinned.

The edge pixel map of these edge extractors may be precise, but in order to obtain
endpoints for straight lines, further evaluation has to be done, which, in case good quality
should be achieved, is equivalent to the effort after performing a convolution in the Plane

Fit and Principal Axis Algorithms.

The Boldt line algorithm [2] uses zero-crossings of the Laplacian to form edges.
Each zero crossing point creates a one-pixel wide line segment, whose gradient and po-
sition are determined by interpolation. After that, Boldt uses collinearity, proximity,
gradient orientation and similarity of contrast as measures for merging lines. Lines are
linked at different hierarchies until all parameters lie within the ranges of the measures.
The final replacement is done with a least squares fit. Although the algorithm produces
very good results, it is computationally expensive. The is in part caused by the zero-
crossings of the Laplacian, which recover high-frequency data, but do not consistently
follow the boundaries of an edge, and therefore produce fragmented boundaries that

require many line combinations to be tested.

The Nevatia-Babu [10] line-finder takes the input from the Nevatia-Babu edge ex-
tractor. It links edge points according to predecessor- successor structures, and similarity
in orientation. The edge segments are then approximated by a series of piecewise linear

segments. One-pixel gaps in the edge segments can be bridged.

Other algorithms take Canny’s edge point image as input. For example, the line
extraction algorithm in [18] links the edge points of Canny’s algorithm according to
templates of pixel constellations of edge orientations. Bridge pixels can link fragmented
segments, and special templates extend lines. The endpoints of the segments are the
endpoints of the lines. In the end, a collinearity measure is applied to merge two lines

into one with the two outer endpoints of the old line.

The following algorithms are two of the few examples of parallel and fast im-
plementations of straight line extraction algorithms in the literature. The algorithm in
[14] uses the Canny edge point image to link the edge points according to their dif-
ference in orientation and determine lines as endpoints of linked segments in a single
pass with special-purpose hardware. The implementation on the Connection Machine

[17] also takes Canny’s edge point image and links boundary segments with a parallel

'pointer-jumping’ algorithm. Then a parallel curve decomposition algorithm breaks the
boundaries into straight lines. In the end, a least squares algorithm puts the line into its

final position.

The algorithms above show that achieving lines with little fragmentation and good

orientation must include special cases and remedies to deal with the edge pixel map:

o The edge points could miss one or several pixels due to noise or low contrast. If
the pixels are in the middle or the ends of an edge pixel chain, bridge or extension
mechanisms have to be implemented. (as in [10, 18]) This is more likely to happen

with edge detectors which take into account the gradient magnitude.

o If edge pixel segments are to be merged or broken up into lines, a least squares
fit (as in [2, 17]) is more accurate than just using the outer endpoints or the new

endpoints at the breakpoints.

Implementing the first approach requires the use of larger windows, which could
slow down the algorithm or require an extra pass over the image. Implementing the
last approach also requires extra computation. Note that in the fast algorithms [14, 17],
no bridging or extending of edge segments is implemented, and only in [17] is the least

squares method applied.

Our approach aims at maintaining the quality of the Plane Fit Algorithm and
replacing expensive methods with fast, equivalent ones. In our algorithm, as well as the
Plane Fit Algorithm, line pixels which are not maxima of gradient magnitude, but have
roughly the same gradient orientation, are not considered a special case. Also, in our
algorithm as well as the Plane Fit Algorithm, the final line is approximated with a least
squares fit method.

In order to provide for an upper and lower quality bound, our approach is com-
pared to the Plane Fit and the Principal Axis Algorithm respectively throughout the
paper. Also, as the two algorithms have the same support region scheme as our ap-

proach, reasons for differences in quality can be explained in more detail.

3 The Subregion Algorithm

The algorithm can be described in three basic parts, which are the parts structurally
different from the Plane Fit Algorithm. The ’input’ and ’output’ to these basic parts
are standard gradient magnitude and orientation computations and a line parameters,
with which the endpoints are computed. There are also minor changes to achieve speed
computing the input representations and continuing from the output representations.

The three steps of the algorithm are:

1. Build the support regions with the overlapping bucket scheme and merge them into
a single set of support regions. — The Plane Fit Algorithm is operating on two sets

of support regions, the Principal Axis Algorithm on one also.

2. Split the support regions into at least three parts, taking the gradient orientation
of one arbitrary pixel as the orientation of the split. — This step is not necessary

in the Plane Fit Algorithm or the Principal Axis Algorithm.

3. Select n points of highest gradient magnitude in the subregions of the support re-
gions. Compute with line parameters in a least squares fit over the positions of
the 3 x n points. — The Plane Fit Algorithm computes the line with a weighted
least squares fit to the intensity values of the pixels, the Principal Axis Algorithm
computes the orientation with a principal axis (which is computed with a Scatter

Matrix) and the position of the line with the centroid of the support region.

From the historical development point of view, the Plane Fit Algorithm set the
desirable level of quality and gave the basic steps of the algorithm. The Principal Axis
Algorithm provided some fast techniques. Either parts of the fast techniques of the Prin-
cipal Axis Algorithm were adopted and improved, or new techniques developed, striving
to be as high in quality as the Plane Fit Algorithm at the particular step in the algorithm.
The notion of ’fast’ was set by the speed on the low-level IUA simulator with no virtu-

alization. In the low-level IUA with no virtualization, region communication operations

10

are especially fast, and floating point operations slow. In the following, it is shown for

the three steps how the IUA influenced the design of the algorithm:

The first step, the Principal Axis Algorithm 'merges’ the support regions before
the line is computed, which saves one computation of set of lines. It is a big improvement
in time and easy to implement on the low-level IUA. The decrease in quality, however,

is big, and so another criteria for region merging was found.

The second step might look like an addition of time, but actually adds only one
tenth (for most of the images) to the time of the whole algorithm on the IUA. Mainly
highest values have to be extracted out of regions and compared to local information.

This can be done with broadcasts and by selecting the minimum/maximum in a region.

For the third step, something less expensive and different from the method in the
Principal Axis Algorithm had to be found. For the IUA| the trigonometric functions in
the plane fit of the Plane Fit Algorithm are expensive, and therefore a method based
more on region communication was developed: Searching the 3 x n points of maximal
gradient magnitude takes only one tenth of the time for the whole algorithm (the 3 x n
peaks were extracted sequentially, because setting up the structure for a search in parallel
within the three subregions would be too expensive). Although there are no trigonomet-
ric functions for the least squares computation of the line it takes three fifth of the whole
algorithm, because of its many floating point multiplications and divisions. Here is a

complete description of the whole algorithm:

1. The gradient orientation and the gradient magnitude are computed.

The gradients in x and y direction are computed with a 3x3 Prewitt mask, where

the arctangent for the gradient orientation is obtained from a lookup table.

Previous line extraction algorithms have used either a 2x2 mask, as in the Plane

Fit Algorithm, or a 3x3 mask, where the 3x3 mask is either a Sobel or a Prewitt

11

operator. For the 3x3 mask, the author of [8] argues that it does not respond to
high-frequency, 1 pixel-wide regions, or to fine details. On the other hand, [9] found
that the 2x2 mask produces relatively large errors in the gradient orientation. In our
experiments with non-synthetic data, the 2x2 mask sometimes breaks long, straight
lines, which are important in outdoor-scene recognition. This can happen because
the 3x3 mask can smooth the influence of noise. Among the 3x3 masks, the Sobel
operator is slightly slower than the Prewitt operator because of the multiplication
with two (or leftshift), and is not significantly better [9]. In our experiments, the
Prewitt operator produced slightly better results and was slightly faster on the
IUA.

The gradient magnitude is computed by the sum of squares of the gradient in the
x-direction and the gradient in the y-direction. This provides slightly better results
than the sum of the absolute values, which was used in the Principal Axis Algo-

rithm.

. The support regions are built using the overlapping orientation bucket scheme.

and the two SRRs are merged

After filtering for Magnitude, the two SRRs are built in the same manner as in
the Principle Axis and Plane Fit algorithm, and they are then merged prior to line
fitting like in the Principal Axis algorithm. The merging process itself, however, is
different from that of the Principal Axis algorithm. It is based on a voting scheme
with each pixel voting for the SRR with the bigger support region covering the
pixel. The new region is then a subregion of the voted region. The construction

begins by setting a flag associated with each pixel:

12

Set puzel’s flag to one iff its surrounding support region in the first SRR contains

more pizels than its surrounding support region in the second SRR, otherunse set

pizel’s flag to two.

With this rule, the flag assigns a SRR to every pixel. After setting the flag, the
final support regions are connected with a connected components algorithm using

the following merging criteria:

(a) two adjacent pixels have the same flag

(b) two adjacent pixels belong to the same bucket in the SRR assigned by the flag

The application of this rule on a real image is shown in Figure 2. In the figure, the
first SRR and the second SRR of a subimage are shown in the top row along with
the final SRR of the Principal Axis algorithm and the Subregion algorithm in the
bottom row.

The Principal Axis Algorithm creates the final SRR as a union of the first and the
second SRR (see section 2.2). The Subregion algorithm, however, builds a subset of
either the first or the second SRR. In the figure, pixels are at intersections of region
links, and one pixel wide support regions or pixels below the threshold of gradient
magnitude are not shown. The numbers to the top right of the pixels indicate the

bucket number with a resolution of 0.5 in the range of 0 to 9.5.

The Figure shows that for the diagonal center region, the Subregion Algorithm
picks the left SRR, and creates a subregion of it (which is identical to the region
in the top left SRR). The Principal Axis Algorithm creates the smallest superset
possible of the center region in the top left and right SRR. Due to its merging
scheme, it links regions together which could have a very different bucket number.
In the figure, the bucket numbers in the final region differs by 3 which equals 108

degrees! At this point, pixels in the region do not represent the same straight line

13

11 1 1 1 11 1 1 1
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

252 2 2 252 2 2

Figure 2: Merging SRR’s with the Subregion Algorithm and the Principal Axis Algorithm
on a subimage. Pixels are at intersections of region links, and one pixel wide support
regions or pixels below the threshold of gradient magnitude are not shown. The Numbers

to the top right of the pixels indicate the bucket number, rounded to 0.5 in the range of
0 to 9.5.

14

any more. This is one of the reasons why lines in the Principal Axis Algorithm can

be distorted.

In the Subregion Algorithm the size of the support region is used as a criterion
for merging the two SRRs. Using the size of the region is a good approximation
of the length of the line, which is not known at this point. Usually, regions are
largest when the orientation of the line lies in the middle of the bucket, and they
get fragmented when the orientation of the line lies on the edges of the bucket, and
some pixels associated with the line fall into another bucket. Therefore, regions are
bigger at the optimal bucket partitioning and get fragmented at the suboptimal

bucket partitioning.

The merging scheme maintains a spatial separation of regions, which means that
each pixel has a unique region to which it is assigned. This has been done mainly
for the reason that a well-defined region representation allows one processing step
for the region operations; otherwise, two steps would be necessary on the IUA,
and additional processing in the sequential implementation. Therefore, little time

savings would be gained in comparison to the Plane Fit Algorithm.

In the Plane Fit Algorithm, lines can intersect and maintain the full support region
for the better SRR. The disadvantage of having a well-defined region representa-
tion is that lines with similar orientation that are collinear (perhaps originating
from the same line) or nearly parallel could ’compete’ for pixels. In general, such
competition happens mostly in the outskirts of a region and was observed more for
irregularly shaped regions with no real underlying line. In case two lines compete
for pixels around their endpoints, one line wins and gets longer, while the other
one gets shorter. Between collinear line segments, however, the gap is often filled
with pixels of completely different orientation, so that ’competing for pixels’ does

not take place.

15

3. Split the support regions into parts.

In order to obtain an accurate least squares straight line fit to pixels in the support
region, the fit should be made using points of highest gradient magnitude more or
less evenly distributed along the length of the resulting line. However, in practical
applications, variations in the line contrast along the length of the line could easily
result in clustering of the highest gradient values. Therefore, in order to ensure
a distributed selection of points, the support regions that were constructed in the

previous step are split into parts.

Here, we describe the split into three parts. With only two parts, the splitting line
could lie directly at the location of a cluster and the line could still be distorted.
As speed 1s a concern in the Subregion Algorithm, we chose three for the number
of subregions. Also, results in practice show that there is a minimal improvement

from three to four subregions.

Splitting the support region is done in the direction of the gradient of one of its
arbitrarily chosen pixels. The choice of the pixel does not matter because every
pixel’s orientation differs by at most one Bucket Size from the real orientation of
the line. As the default value for the number of buckets is 10, this would be a

maximal orientation error of 36 degrees.

Usually, the bucket ID corresponds to the orientation of the shape of a support re-
gion. If a straight line is underlying the support region, the support region has an
oval shape, which is split along its minor axis. We convert the gradient orientation
of the arbitrarily chosen pixel into the slope m. Through every point (z;,y;) in the

support region, we draw a line with slope m and obtain:

ti=yi —z;-m,

where t; represents a value on the y-axis. Naturally, some points (z;,y;) have the

same t;.

16

tmin

The line representation of slope and intercept was preferred over the radius and
angle representation because trigonometric operations are expensive on the IUA,

and also on sequential machines they are costly.

After assigning a t; to every point (z;,y;), we look for the ¢, and ¢4, which are
the most distant ¢; from each other on the y-axis (x-axis for vertical slope). Figure

3 shows the construction of the split.

Figure 3: Split of support region (shaded region) into three parts. The three new subre-
gions are indicated by the light gray, medium gray and dark shaded regions

The lines with slope m through ¢,,;, and £,,,, are only ’touching’ the region and they
are the most extreme lines which still intersect with region pixels in the selected

orientation.

Choose two arbitrary points inside the support regions which lie on the lines through
tmin and tpq. and call them p,;, and pree, as shown in Figure 3. Next, the line
segment from pin tO Prmas 1s divided into three parts of equal length, with points
p1 and p, as splitting points. The final splitting lines [; and /5 pass through p; and
p2 with slope m, so that they divide the region into three parts along its length.

17

This formulation works for values of m that are not too large, otherwise numerical
instability is introduced. We found that m > 150 and m < —150 are satisfactory
boundaries for considering m to be vertical, in which case ¢,,;, and t,,,, are the

most distant vertical lines touching the support region.

Figure 4: Split of support region into three parts. The black pixel is the arbitrarily chose
pixel, which determines the slope of line 11 and 12. The square pixels lie in the light gray
area, the circles in the medium gray area, and the triangles in the dark shaded regions.

Figure 4 shows the split for the final support region of the Subregion Algorithm
in Figure 2 from the previous step. The support region is evenly split along its
long axis, although the arbitrary pixel giving the orientation (the black pixel) is a
border pixel of the support region (and, as we will see in Figure 6, also distant to

the output line).

18

4. Select n points of highest gradient magnitude in the subregions of the

support regions

n points of highest gradient magnitude are selected in each subregion, where the
number of selected points is equal in each subregion. Given all the pixels in the
support region, in this step, clearly the gradient magnitude is the final evidence for
line pixels. Not all line pixels, however, have to be selected in order to retrieve a

good approximation of the line.

The setting of the parameter n is a tradeoff between speed and accuracy. We
have selected three points in every subregion for our implementation, which should
prevent outliers to be responsible for a whole subregion. Large numbers of n,
however, are not always favorable. In case almost all points in the subregions get
selected as points of highest gradient magnitude, the least squares fit in step 5
would rather be an approximation of the orientation of the support region than of

the orientation of the line.

The same support region as in the previous figure is shown in Figure 5 without
shading, where the selected points are black circles, squares and triangles, depend-
ing on their subregion. Also, the ranking in gradient magnitude is shown, with
one meaning the highest score. Note that the subregion with triangle points has
a lower ranking for all three points than the other regions. This is an example of
fluctuation of gradient magnitude along the line, and therefore shows the necessity

of subregions.

5. Retrieve the position and orientation of the line with a least-squares fit method.

In this step, the line parameters are computed from the points selected in the pre-
vious step. The line is represented in slope m and intercept t. In the ideal line

match, for every pixel 1 on the line, the following equation is true:

19

Figure 5: 9 selected points of highest gradient magnitude with triangles, circles and
squares representing points in the subregions. The filled black points represent the points
of highest gradient magnitude, where their numbers are equivalent to a ranking of their
gradient magnitude values.

20

Yyi=m-z; +1

The error function to be minimized consists of the differences between the y coordi-
nates of the pixels and the virtual y coordinate of the line at the same x coordinates.
This error is squared for every pixel, and the sum of the squares is the error func-
tion E. In order to prevent numerical instability for lines with vertical slopes, the
x and y-coordinates are exchanged for regions in which the gradient orientation of

an arbitrary pixel produces a slope above one.

The least squares method was chosen because it has a linear solution, and is there-
fore easy to implement and executes quickly on the IUA, where trigonometric func-
tions and iterative arithmetic floating point functions are costly. With the least
squares fit, trigonometric functions are avoided, making it faster. Furthermore,
the least squares fit produces optimal results in the absence of outliers. If outliers
are present, the selection of several points in each subregion smoothes the effect to

some extent.

The ’distance’ from each pixel in the support region to the line is used to determine
if pixels are ’on the line’ or not. If |m| < 1, 'distance’ means the vertical distance
of each pixel to the line; if |m| > 1, 'distance’ means the horizontal distance of each

pixel to the line. The pixels are labeled ’on the line’ if ’distance’ is < 0.5.

. Compute the endpoints of the line.

In this step, the integer coordinates of the endpoints of the lines are computed.

The endpoints are the pixels in the region 'on the line’ (see previous subsection)
which are furthest away from each other. This is implemented by selecting the
highest and lowest value obtained by concatenating the short values row and column
index of the pixels ’on the line’ into an integer value. In order to select the maxima
and minima of this integer value for endpoint extraction, one of the row or column
values has to be subtracted from the image row size or column size first, depending

on the slope of the line. If the slope of the line is positive, both row and column

21

values have maxima or minima at the endpoints. (assuming an x-y coordinate
system for the columns and rows). If the slope is negative, one of the row or

column values has to be subtracted from the image row size or column size first.

Figure 6: The final line, showing the line from the least squares fit with integer and
floating point endpoints.

Integer endpoints are an approximation to floating point endpoints in small images.
Figure 6 shows the final line of the example from the last steps, and also the
deviation from the floating point endpoints, computed with slope and intercept
from the least squares method. The figure shows that the orientation error in this
example is about 5 degrees. This is the maximal orientation error, because the real
endpoint was directly between two integer points, and the line has only length 5.
A line with length 15, for example, would only exhibit a maximal deviation of 2

degrees.

Note in Figure 6 also the slight deviation of the orientation of the real line from the
orientation of the support region. This was the reason for making the recovery of
the line independent from the shape of the support region, in contrast to the Princi-

pal Axis Algorithm, where the line is dependent on the shape of the support region.

22

7. Apply the filtering values.

Lines may now be filtered on the basis of their features, such as length or contrast.
Note that line contrast is computed as the average of the gradient magnitude of the
line points. Pixels that by themselves do not exceed a certain gradient magnitude

are already filtered out in the first step.

Experimental results which compare the Subregion, Principal Axis and Plane Fit

Algorithm are reported in the next section.

23

4 Experiments

In order to verify the performance/quality ratio for the Subregion Algorithm, both line
output quality and speed were measured. The same experiments were also done for the
Plane Fit Algorithm and the Principal Axis Algorithm, for doing comparisons with other
established algorithms. Hereby, the expectation is that the comparison to the Plane Fit
Algorithm yields superior quality and worse speed for the Plane Fit Algorithm, and the

comparison to the Principal Axis Algorithm yields worse quality and superior speed.

Methods of estimating the output quality of lines include comparing directly the
line output of several algorithms with the measure of the eye, or comparing specific mea-
sures of a performance evaluation algorithm. Assessing the line quality with the measure
of the eye determines how the lines reflect lines in the real image, but might not give
accurate information about the use of the lines by other algorithms. A performance
evaluation algorithm provides some performance parameters, but might provide mislead-
ing information on the global quality of the lines obtained. In this paper, line outputs
from all three algorithms are compared on three image sets, and then compared in terms
of the performance evaluation algorithm described in [11]. For speed comparisons, the
three algorithms were run on the SPARC-10 on the three image sets and the Subregion
Algorithm was run on the IUA Simulator for two image sets. The performance/quality

ratio is then computed from the obtained quality and speed measures.

4.1 Quality Measurements
4.1.1 The Performance Evaluation Algorithm

The performance evaluation algorithm introduced in [11] is based on pixel-wise compar-

isons of groundtruth segments and recovered segments and works on integer endpoints.

First, an association list between recovered line segments and ground truth seg-
ments is created by searching a one-pixel wide stripe which is oriented orthogonal to
the groundtruth line for every groundtruth pixel. The length of the stripe is limited on
both sides of the groundtruth line by the truncated half of the 'interval width’, which is

24

currently set to 6 (then the total length of the stripe is 7, also counting the groundtruth
pixel). For every groundtruth pixel, the closest occurrence of a recovered line pixel is
recorded. The association list indicates which recovered segments cover how much (de-
termined by a ’vote count’) of one groundtruth segment. Start and endpoints of the re-
covered segments are then projected to their groundtruth segments in the association list.
Final assignments to the groundtruth segments are made first for the recovered segments
with the highest vote count. If a projected segment which occupies less groundtruth
pixels overlaps with a projected segment which occupies more groundtruth pixels (and
whose final assignment is done first), the former is filtered out if the overlap is bigger
or equal to the truncated half an 'operand width’. Currently, the 'operand width’ is set
to 5 (which means that only overlaps of up to size two are allowed). Final assignments,
however, only happen if the recovered segment has less than double the pixels of the
vote count. In the end, the permanently assigned segments serve as input for several

statistics.

The statistics computed with this performance evaluation algorithm are the mean
and variance of several performance parameters. The following is a description of the
performance parameters that are used later in this paper. A '+’ in the itemized descrip-
tion means that the performance parameter has been added for this evaluation. The
(m) means that the computation of the performance measure has been modified. In the
descriptions, 'assigned segment’ signifies a recovered segment which has been associated

with a groundtruth segment.

e random length: length of recovered segments which are filtered out in matching

process of the algorithm
e segment length: length of assigned segment

e max. segment length: length of longest assigned segment (no record if no

assigned segments)

o +excess length: total length for which assigned segments projected onto their

groundtruth segment exceeded the endpoints of the groundtruth segment (no record

25

if no assigned segments)

e gap length: length of gaps between adjacent assigned segments projected onto
their groundtruth segment; parameter is set to one if adjacent segments overlap

(no record if no assigned segments or only one assigned segments)

e (m)fragmentation: number of recovered lines per groundtruth segment (set to

zero if no assigned segments)

e orientation error: difference in orientation between assigned segment and groundtruth

segment

¢ +min. orientation error: smallest orientation error in the assigned segments,

for every groundtruth segment (no record if no assigned segments)

¢ +midpoint distance to groundtruth: perpendicular distance of the midpoint

of the assigned segment to its groundtruth segment

e +groundtruth coverage: percentage of coverage of groundtruth segment (no

record if no assigned segments)

The performance parameter fragmentation was modified to take into account the
groundtruth segment with no or one assigned segment. The original version recorded the
number of breaks in each groundtruth segment, but no record was made for a groundtruth

segment which had zero or only one assigned segment.

4.1.2 Comparison of Line Output

Comparisons were done using three sets of images; the image sets were selected assuring
variety with respect to several criteria, namely image size, contrast, brightness and num-
ber of lines present in image. Groundtruth was selected by hand for the first two image
sets. Hereby, in each image lines were selected which satisfy at least one of the following

criteria (a set of lines should satisfy many of them): lines essential to the image content,

26

lines with low contrast across the line, lines with high contrast along the line, lines with
slow gradient change, lines which are long, lines which have different angles and lines

which are in general not easily detectable.

The first image set was selected to test if the algorithms works well on a variety
of images with completely different settings, such as contrast and brightness. The set
consisted out of 10 mixed indoor/outdoor images which are 256 x 256 large and have each
15 to 35 groundtruth lines associated with them. Only lines greater or equal to length
16 were selected. With the second set, a 256 x 256 motion sequence, it was tested if lines
can be tracked consistently over several frames. The image set contains 7 images, and in
each image 27 to 35 groundtruth lines were selected by hand from corresponding cones
and other corresponding objects. The third image set tested how well the algorithms
extract lines in aerial images. It is an aerial motion sequence, taken from an artificially
built outdoor model scenery (the RADIUS modelboard) with camera parameters different
from the other two sequences, and the images slightly larger than 1024 x 1024 pixels.
The groundtruth in this image set was taken from the University of Washington [11] with
958 to 2266 groundtruth lines in each of the eight images.

Figures 7 to 13 show the real image, the groundtruth lines, and the line outputs
of the three algorithms. The following paragraphs explain the line output for the three

algorithms on the three image sets.

The First Image Set

Figure 7 shows three indoor and one aerial image of the first image set. The first
image (numbering from left to right), taken from a motion sequence, displays lines with
high contrast across the line, low contrast along the line and relatively fast change in
gradient magnitude; basically it contains lines ideal for line extraction algorithms. The
second image as well as the third image contain different lightening conditions. In the
third image, some lines are high contrast, and some dark lines and not clearly discernible
with the eye. The fourth image contains many lines with low contrast and lines which

are difficult to classify as lines.

27

L)

/ \///\//

i
/\\

\
AN AN /
\///

b

/\/ V/
l// \\//g\\,/ \\\\//

f w\//
p\\/& \/* <

>\,
5,

\>Av’\,\
PS5

Figure 7: First four images of first image set. The top row shows the real image and the
second row the groundtruth. The third, fourth and fifth rows show the output for the
Subregion, the Principal Axis and the Plane Fit Algorithm respectively.

i

\

WX

=\

S

s

=N

i»t//

NI //\‘

|
/\\///;/\\\/ \

v
RUASN / N e ——— N

N 8*57\ v //T
/H

H\j V/\‘ b
lgb\\‘\, [
Nl nﬁn‘ﬂ/\

\\

/\\’\\ 4\/\7/

- | —_— ‘H r\ /:\
i S
N /\./ \/ .4* \ = RS
iz I //4\ = R N
/// >) o P e
-, \ing N = \\
PN SN ~ |
VA z >,
Ly

< T -
i [T
A t
\ W/“‘\ T

Figure 8: Fifth to seventh image of the first image set. The top row shows the real image
and the second row the groundtruth. The third, fourth and fifth rows show the output
for the Subregion, the Principal Axis and the Plane Fit Algorithm respectively.

29

Figure 9: Eighth to Tenth image of the first image set. The top row shows the real image
and the second row the groundtruth. The third, fourth and fifth rows show the output
for the Subregion, the Principal Axis and the Plane Fit Algorithm respectively.

30

Throughout the four images, the quality of all algorithms does not differ greatly.
Closer examination of the line output, however, reveals that the Plane Fit Algorithm
detects detail very well - even the scale on the left border of the first image is detected.
The Subregion Algorithm detects some low contrast and blurred lines well (the right
ceiling border in the second image), but does not always extend lines until corners (the
posters on the wall of the second image), and the Principal Axis Algorithm sometimes
fragments lines into smaller lines with high orientation error (see horizontal line to the
right of the box in image one, border lines of the floor in image two or dark rectangle in
top right of image four). These fragmented lines are not always low-contrast lines; the

line in the first image one has high contrast across the line.

Figure 8 shows three outdoor scenes which have some straight lines with high
contrast and fast gradient change, but also lines which have no clear-cut boundary and
still are discernible as lines for the observer. Examples for the first kind come mostly
from man-made objects, whereas examples for the latter kind are lines in nature like the
horizon line and border lines between occluded man-made objects and lines in nature,
like the border between the road and grass. In the images, most lines of the first kind are
extracted well by the three algorithms, for example, the white stripe on the right border
of the street in the third image (numbering from left). The roof of the house in the right
side of the same image, however, is not extracted by the Principal Axis Algorithm and
the window is only recovered by the Plane Fit Algorithm which is again best at recovering
details in small objects. Concerning border lines of man-made objects to nature, there
are examples where every one of the three algorithms works best. The Principal Axis
Algorithm, for example, recovers the three wires in the top of the second image best.
It misses, however, essential parts of the house in the left side of image three and does
not recover short lines to represent the tree. Also, it fragments the boundary of grass to
pavement in images one and three. The Subregion Algorithm recovers the hidden roof in
left side of the third image best (see groundtruth) and has mostly lines with the correct
orientation in the surrounding of the groundtruth line. The Plane Fit Algorithm recovers
the grass to pavement border line in image three best, but fragments the bottom right

border in the first image.

In Figure 9, some outdoor images with many straight lines from nature and bound-

31

aries to occluded man-made objects (like roads) are shown. The Subregion Algorithm
works best in detecting the two horizontal blurred lines in the bottom right of the second
image. The Plane Fit Algorithm recovers the roof of the house in the first image well,
and shows superiority in recovering detail with the cottage in the first image, the traffic
sign in the second image and the metal stand in the third image. The Principal Axis
Algorithm recovers the line on the left side of the road in the second image best, but is
worst on recovering the roof of the house and structure of the cottage in the first image.
It also does not recover any detail of the metal stand in the third image. The Principal
Axis Algorithm, however, is the only algorithm that does not merge the horizon line in

image three.

In summary, the following observations can be recorded from the first image set,

along with the explanation for their cause:

e The Plane Fit Algorithm is best at recovering detail. The reason is that it operates
with a 2 x 2 mask, which was not chosen for the Subregion Algorithm because of

bad experimental results.

e The Principal Axis Algorithm has high fragmentation, also with high contrast, fast
changing gradient lines. This can be due to the implementation of the arctangent
used for computing the gradient. In the table lookup, pixels which have slightly
different approximate horizontal orientation fall into a different bucket with both

region representations. This can also be the case with diagonal orientation.

e The Principal Axis Algorithm has a high orientation error with some lines. This
can be due to the merging scheme of the two SRRs into the final SRR, as well as
the computation of the line as a Principal Axis. The continuous linking of pixels
with other pixels which have slightly different orientation can change the shape of
the support region. Computation of the final line as a principal axis, however, uses
the shape of the support region.

The final SRR in the Principal Axis Algorithm can also be the cause for a lack of

lines, for example in the second image of Figure 8.

32

o The Plane Fit Algorithm and the Subregion Algorithm sometimes merge groundtruth
lines or do not recover lines because they are merged with other groundtruth lines.
Examples of this phenomenon are the wires in the second image of Figure 8 or the
horizon line in the third image of Figure 9. The problem could be adjusted by

increasing the bucket size, at the price of increased fragmentation.

The Second Image Set

The second set of images tests how well line correspondences are recovered out of
a motion sequence. The groundtruth lines are the cones, the two wastebaskets and the
door frame. Figure 10 shows image one to three (numbering from the left), and Figure
11 shows image four to seven, where a noisy image has been taken out between images

four and five.

In the line output, the cones are recovered unfragmented by all algorithms. Merg-
ing the cones with the vertical wall structures, however, is a problem for all the algorithms.
The same cones are merged, except for the sixth image, where the Plane Fit Algorithm
does not merge the left cone. The difference between the Subregion Algorithm and the
other algorithms is that instead of recovering a line with slight slope for the cone as well
as the wall, it only approximates the line on the wall. The reason for this is that the
points of highest gradient magnitude lie at the top of the cone for the first and second
subregion, and further up on the wall for the third subregion, so the resulting line ap-
proximates more the wall line and does not lie in the support region at the level of the

cone.

The bottom plates of the cones are tracked consistently by the Plane Fit and the
Subregion Algorithm, but they are only recovered in fragments by the Principal Axis
Algorithm, being the fragmentations at different locations within the plate lines. The
same is true for the Principal Axis Algorithm with the smaller wastebasket. The door
frame and the bigger wastebasket are also fragmented at different locations in the image
sequence, but there are consistent pairs of fragmentation patterns. In general, although it

does not recover the merged lines to the full length of the cone, the Subregion Algorithm

33

=
=<]

< VL
—= =

—

igd
I
M
<
:‘4'\\
1z ’\M
——=_ gl
T,%if‘
A
7
N 7‘T
Z— L
W
AN
==
\ |
| T = Uiy e - <
W == =
- = ——— |\
N N
‘(///”\/; ’/‘%‘4\‘\
—
=32
AN —
/73
73
N
/-
=
~J
— ="
‘t—[g

A
TxL
e
| T
QAT
e
e
N
AN

\4\’»
=

Figure 10: First three images of the second image set. The top row shows the real image
and the second row the groundtruth. The third, fourth and fifth rows show the output
for the Subregion, the Principal Axis and the Plane Fit Algorithm respectively.

34

j
= L
= —/
! :‘/,\ﬂ/,/\\ﬂW/m\‘ﬂ\\‘\mﬂw
N//m;fv/ ,,':“\MA\I =
W=
! \ \
! F’ﬂ:\kw
\:”ﬂﬁm >
P~
- M}V\\H — /M//

== 7
N/ s 77
| F— L e] —— T

g%@fg;\nﬂm‘@/ / g@ s e

:;2,: N = mﬂmuli\rﬂ ! \>> W :W/ﬂﬂ? (R
W= g =
== ||, =
\\ = ﬂu//z\ﬂ/,/ | S ///:\ ;
SN
/ Jz ///v/ /

Figure 11: Last four images of the second image set. The top row shows the real image
and the second row the groundtruth. The third, fourth and fifth rows show the output
35

for the Subregion, the Principal Axis and the Plane Fit Algorithm respectively.

tracks lines more consistently than the Principal Axis Algorithm.

All the itemized observations recorded for the first image set were also made in the second

image set.

The Third Image Set

The last image set tests how the algorithms work on aerial images, as shown
in Figure 12 and Figure 13, which are the second and fourth of the eight images in the
aerial image sequence. The line output shows that the Principal Axis Algorithm produces
highly fragmented lines, but that the fragmentation is mostly on the horizontal lines. It
also produces lines where no evidence of a line is visible with the eye (see the two diagonal
lines in the top left of Figure 13), and sometimes has high orientation errors (see the line
distorted by 90 degrees in box with stripes in the bottom right corner of Figure 12 or
the two large squares in the middle bottom of Figure 13). The Subregion Algorithm
and Plane Fit Algorithm do not produce the same fragmentation or orientation errors,
and their distinction is that the Plane Fit Algorithm recovers more detail. With some
long lines, however, the Subregion Algorithm produces better orientation estimates, for

example the square in the bottom right of Figure 13.

In the third image set, all the observations from the first and second image set
can be repeated except for merging support regions with different underlying lines. The

list of observations can be extended by one for the third image set:

e The Principal Axis Algorithm sometimes recovers lines with no line association in
the image. The reason is that originally small regions could expand in the region
merging step due to gradual gradient change, which puts pixels with completely

different gradients in one region.

4.1.3 Performance Evaluation Results

Table 1 compares the performance parameters for the three algorithms on the three im-

age sets. Hereby, the evaluation results are for integer endpoints, and the endpoints of

36

-f_J

n000000 00nnn

i

Figure 12: Second image of the third image set. The top row displays the real image and
the groundtruth image, and the bottom row the Subregion Algorithm (left), the Principal
Axis Algorithm (middle) and the Plane Fit Algorithm (right).

37

