?_*‘I E“—‘T E""‘ﬂ

Recursive Automatic Algorithm
Selection for Inductive Learning

Carla E. Brodley
Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003 USA
brodley@cs.umass.edu

COINS Technical Report 94-61
August 1994

RECURSIVE AUTOMATIC ALGORITHM SELECTION

FOR INDUCTIVE LEARNING

A Dissertation Presented
by

CARLA E. BRODLEY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 1994
Department of Computer Science

L.

AL S S S S

E

€ !

E E g

A B U

A

© Copyright by Carla E. Brodley 1994

All Rights Reserved

RECURSIVE AUTOMATIC ALGORITHM SELECTION

FOR INDUCTIVE LEARNING

A Dissertation Presented
by

CARLA E. BRODLEY

Approved as to style and content by:

Paul E. Utgoff, Chair

Andrew G. Barto, Member

Wendy Lehnert, Member

Victor R. Lesser, Member

Michael Sutherland, Member

W. Richards Adrion, Department Head

Department of Computer Science

o

1

gy

£

E

-

This dissertation is dedicated to Antony Lloyd Hosking

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Paul Utgoff for his time,
energy and humor in teaching me how to conduct research. His high standards in
research, writing and professional conduct have made an excellent role model. I will
miss our research discussions and our marathon Hearts games.

I thank the members of my thesis committee, Andy Barto, Wendy Lehnert and
Victor Lesser for their insightful comments and suggestions. Mike Sutherland’s
statistical expertise was a great resource throughout my time here.

The machine learning lab has been a great environment for exploring ideas. I
thank Jeff Clouse for always being available and interested in discussing new ideas
with me, and for his friendship and support over the last five years. Sharad Saxena,
Jamie Callan, Tom Fawcett, Margie Connell and Neil Berkman have each provided
me with valuable feedback and interesting discussions over the years.

I thank Paula Magdich for suggesting that I take my first computer course. She
and Mark Friedl have been a constant source of encouragement both at McGill and
in graduate school. I would like to thank Malini Bhandaru, Carol Broverman, Adele
Howe, Marty Humphrey, Susan Lander, and Dorothy Mammen for their friendship
and advice throughout my years in graduate school.

I thank Emily Alston-Fallonsbee for always being there when I needed to express
joy or doubt. My parents I thank for providing an environment in which pursuing my
goals was made easy. Together with my sister they have been a unflagging source of
encouragement and support that instilled in me the confidence to realize my dreams.
Finally and most importantly, I thank my husband Tony Hosking for his support,
encouragement, and his ability to help me see situations in a calm and rational fashion.
His belief in me made finishing my degree a reality.

This research was supported by the National Science Foundation under Grant
No. IRI-9222766, and by the National Aeronautics and Space Administration under
- Grant No. NCC 2-658.

S

£

g

E"_“‘ﬁ

ABSTRACT

RECURSIVE AUTOMATIC ALGORITHM SELECTION
FOR INDUCTIVE LEARNING
SEPTEMBER 1994
CARLA E. BRODLEY
B.A., MCGILL UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Paul E. Utgoff

The results of empirical comparisons of existing learning algorithms illustrate
that each algorithm has a selective superiority; each is best for some but not all
tasks. Selective superiority arises because each learning algorithm searches within a
restricted generalization space, defined by its representation language, and employs
a search bias for selecting a generalization in that space. Given a data set, it is
often not clear beforehand which algorithm will yield the best performance. The
problem is complicated further because for some learning tasks, different subtasks
are learned best using different algorithms. In such cases, the ability to form a
hybrid classifier that combines different representation languages will produce a more
accurate classifier than employing a single representation language and search bias.

This dissertation presents an approach to overcoming this problem by applying
knowledge about the biases of a set of learning algorithms to conduct a recursive
automatic algorithm search. The approach permits classifiers learned by the available
algorithms to be mixed in a recursive tree-structured hybrid, thereby allowing different
subproblems of the learning task to be learned by different algorithms. The Model
Class Selection System (MCS), an implementation of the approach, combines decision
trees, linear discriminant functions and instance-based classifiers in a tree-structured
hybrid classifier. Heuristic knowledge about the characteristics that indicate one bias
is better than another is encoded in the rule base that guides MCS’s search for the
best classifier. An empirical evaluation illustrates that MCS achieves classification
accuracies equal to or higher than the best of its primitive learning components for
a variety of data sets, demonstrating that domain-independent knowledge about the

biases of machine learning algorithms can guide an automatic algorithm selection
search.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS v

ABSTRACT s e, vi

LISTOF TABLES e s st xi

LIST OF FIGURES xiii
Chapter

1. INTRODUCTION e et 1

1.1 The Problem of Selective Superiority 2

1.2 Homogeneous versus Hybrid Classifiers 3

1.3 Automatic Algorithm Selection 3

1.4 Recursive Automatic Algorithm Selection 4

1.5 OverviewoftheResults. 5

1.6 Guide to the Dissertation 6

2. AUTOMATIC ALGORITHM SELECTION 7

2.1 Solving the Selective Superiority Problem 8

2.1.1 A Categorization of Automatic Algorithm Selection Methods 9

2.1.2 Desired Properties 9

2.1.3 Heuristic Search Using Knowledge 10

2.2 One-shot Selection P 12

2.2.1 Using Accuracy Estimates 12

2.2.2 Using Other Characteristics 12

2.3 Using Feedback during Learning 14

2.3.1 Iterative Change Based on Concept Form 15

2.3.2 Iterative Change Based on Measures of Previous Classifiers . 17

2.3.3 Fixed-order Search 23

vii

| S S

F—-—,

2.3.4 Optimization o e 26
2.3.5 User-specified Strategy 26
2.4 DiSCuSSION v vt e e e e e e e e e e e 27
3. HYBRID CLASSIFIERS ittt i it e e 30
3.1 Desired Properties 32
3.2 Existing Approaches. 0 oo 33
3.2.1 Explicit Combination 33
3.2.2 Stacked Generalization 35
323 Boosting e e 38
3.3 A General Recursive Hybrid Algorithm 38

4. A RECURSIVE AUTOMATIC ALGORITHM SELECTION SYS-
TEM . . e e e e e e e e e 41
41 DesignGoals oo 41
42 Model Classeso i i it i 43
4.2.1 Univariate Decision Trees 43
4.2.2 Linear Discriminant Functions 44
4.2.3 Instance-Based Classifiers 47
4.2.4 Differences and Similarities 48
43 Search Strategy L. 49
4.3.1 Choosing a Global Model Class Bias 51
43.2 HeuristicRuleBase 51
4.3.3 Description of the Rules 53
4.3.4 Pruning Hybrid Classifiers 59
44 AnExample 61
44.1 Tree Construction 61
442 TreePruning. 64
5. EVALUATION st e 66
5.1 MCS’s Rule Based Search Strategy 66
5.1.1 DataSets 67
5.1.2 [Experimental Method 69
5.1.3 Comparison of MCS to its Primitive Components 70
5.1.4 Comparison of MCS to Other Hybrid Algorithms 73

viii

5.1.5 Benefits of Pruning Alternatives 76
5.1.6 Benefits of One-ply Deeper Search 7
5.2 Representational Biases of MCS B 78 -
5.2.1 Individual Model Classes 78 ’
5.2.2 Hybrid Combinationso oo v e, 83 =
53 Summary. 85)
L
6. CONCLUSIONS st 87
6.1 Summary of the Dissertation 87 -
6.1.1 MCS: The Design and Implementation 88
6.1.2 Results Obtained by Using MCS to Form Classifiers 89 w
6.1.3 Implications of the Results 89
6.2 Contributions 90 «
6.3 Issues for Future Research 91
APPENDICES .
A. CODING TESTS AND ERRORVECTORS 93
A.l Coding a Univariate Test 93
A.2 Coding a Linear Machine 93 =
A3 Coding Real Numbers 93
B. COMPUTING THE INFORMATION-GAIN RATIO OF A TEST 95 o
B.1 Univariate Tests 95
B.2 Linear Combination and Instance-Based Classifier Tests 96
C. A SAMPLE OF THE CLASSIFIERS FOUND BY MCS 97 -
Cl Breast Cancer nninin. 97
C.2 Congressional Votes 97
C.3 Diabetes e 98 -
C4 Glass Recognition 99
C5 Heart Disease i i it i ittt e it i 99
C.6 Hepatitis o e e e e e e e e 99 e
C7 ImisPlants e 99
C.8 Landsat e 100 |
CO9 LED-TDigitottt 101 =
C.A0LED-24 Digit« v v v i it e e 102
C.dlLiver Disorder ¢ i v it vt it e e e 102 N
C.12Lymphography e 103
CA3Pixel e e e e 103
C.14 Road Segmentation 103 -
ix =

g

it

.

—

C.15 Vowel Recognition« v v v v vt v i e

C.16 Waveform
BIBLIOGRAPHY

................................

................................

Table
2.1
2.2
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.11
4.12
5.1
5.2
5.3
5.4
5.5

LIST OF TABLES

Page
An illustration of the selective superiority problem 8
Catalogue of automatic algorithm selection systems 28
Algorithm for forming a tree-structured hybrid 39
General recursive algorithm 50
Rule for when candidateset = {}: 53
Rules for when candidateset = {U}: 54
Rule for when candidate set = {LCT,}: 55
Rules for when candidate set = {LCT;,LCT;_,}: 56
Rule for when candidate set = {U.LCT,}: 56
Rules for when candidate set = {ULCT;}: 57
Rules for when candidate set = {LCT;,IBCx}: 58
Rule for when candidate set = {UJIBCg}:. 59
Rule for when candidate set = {IBC;,IBCryr}: 59
Partial trace of MCS’s search strategy 63
Partial trace of MCS’s pruning strategy 65
Accuracy of MCS and its primitive components 71
Results of paired t-tests of MCS and primitives 71
Model classes in the MCS classifiers 72
Accuracy of MCS and three other hybrid methods 74
Results of paired ttests of MCS and other hybrid methods 75

¢ g € o ETY ET BT BT g7

E‘“ 1

E

5.6
5.7
5.8
5.9

Training time of hybrid algorithms (seconds) 76
Contribution of pruning alternatives. PR 7
Contribution of depthsearch, 78
Classification overlap (percentage) 82

xii

LIST OF FIGURES

Figure Page
3.1 The concept heart attack; “+”: positive instance, “-": negative instance. 31
3.2 Classifier induced for the concept heart attack using a hybrid formalism. 32
3.3 A hybrid classifier that explicitly assigns a classifier to each subspace. . . 34
3.4 A hybrid classifier that combines the classification decisions of m classifiers. 36
4.1 Example of a hybrid tree-structured classifier. 42
4.2 Aninstance-based classifier. 47
4.3 Representation similarities. 48
4.4 Representation differences. 49
4.5 An example instance space; “+”: positive instance, “-”: negative instance

and the corresponding univariate decision tree. 55
4.6 Choices of hybrid classifier pruning method. 60
4.7 Hybrid constructed by MCS for the Glass dataset. 61
4.8 Hybrid produced by MCS after pruning. 64
5.1 Hypothesis space of MCS’s primitive representation languages. 80
5.2 An example in the intersection of instance-based and univariate decision

treeclassifiers. e e 80
5.3 An example in the intersection of instance-based and linear combination

classifiers. e 81
5.4 An example in the intersection of linear combination and univariate deci-

sion tree classifiers. L L o 81
5.5 Hypothesis space of MCS’s hybrid representation. 84

xiii

A

~

M

5.6 Piecewise approximations of a curved boundary from the given data . .

85

CHAPTER 1
INTRODUCTION

A fundamental problem in machine learning is how to form a generalization from
a set of examples. Given a set of examples, each described by a set of features and
labelled with a class name, the goal of a classifier construction algorithm is to form
a generalization of the examples that can be used to classify previously unobserved
objects with a high degree of accuracy.

Several dozen classifier construction algorithms have been developed in the last
few decades, including various versions of perceptron, DNF cover, version space,
decision tree, instance-based, and neural-net algorithms. The results of empirical
comparisons of existing algorithms illustrate that each algorithm has a selective
superiority; it is best for some but not all tasks. Selective superiority arises because
each learning algorithm searches within a restricted generalization space, defined by
its representation language, and employs a search bias for selecting a generalization
in that space.

Given a data set, it is often not clear beforehand which algorithm will yield
the best performance. In such situations, someone wanting to find a classifier for
the data will be confused by the myriad choices, and will need to try many of
them in order to be satisfied that a better classifier will not be found easily. The
problem is complicated further because for some learning tasks, different subtasks
are learned best using different algorithms. In such cases, the ability to form a
hybrid classifier that combines different representation languages will produce a more
accurate classifier than employing a single representation language and search bias.

In this dissertation we present an approach to overcoming this problem by applying
knowledge about the biases of a set of learning algorithms to conduct a recursive
automatic algorithm search. The approach permits classifiers learned by the available
algorithms to be mixed in a recursive tree-structured hybrid, thereby allowing different
subproblems of the learning task to be learned by different algorithms. In the
remainder of this chapter we describe the selective superiority problem and outline
its causes in more detail, we introduce our approach to recursive automatic algorithm
selection, and we present an overview of the results of this dissertation.

g

1.1 The Problem of Selective Superiority

Several dozen inductive learning algorithms have been developed over the last
few decades. In every case, the algorithm can boast one or more superior learning
performances over the others, but none is always better. The results of empirical
comparisons of existing learning algorithms illustrate that each algorithm has a
selective superiority [Weiss & Kapouleas, 1989; Aha, Kibler & Albert, 1991b; Shavlik,
Mooney & Towell, 1991; Salzberg, 1991]. This is because each algorithm is biased,
leading to a good fit for some learning tasks, and a poor fit for others. Given a
learning task, the maximum achievable accuracy depends on the quality of the data
and on the ability of the learning algorithm to form the most accurate classifier for
that data set. In this dissertation, we assume that the input representation and the
data are given, and we focus instead on how learning is affected by the choice of
learning algorithm.

An algorithm’s success in finding a good generalization for a given data set depends
on two factors. The first is whether the algorithm’s representation space contains a
good generalization. In statistics, this space is called the algorithm’s model class. For
example, the model class of a symbolic, univariate decision tree algorithm is the set
of all possible hyper-rectangular regions that are separated by decision boundaries
orthogonal to the feature axes. The model class of a perceptron learning algorithm
is the class of linear discriminant functions. Because an algorithm’s model class
defines the space of possible generalizations, not even an exhaustive search strategy
can overcome a poor choice of model class. The second factor of an algorithm'’s
success is its search bias. Even algorithms that search the same model space have
shown selective superiority due to different search methods. "For example, if a set
of instances is not linearly separable then the Least Mean Squares (LMS) training
rule provides a better solution than the Absolute Error Correction rule (AECR)
for learning the weights of a linear discriminant function [Duda & Hart, 1973]). The
situation is reversed when the instances are linearly separable; LMS is not guaranteed
to find a separating hyperplane, whereas AECR is.

In many cases, the choice of learning algorithm can be made on subject matter
considerations. However, when such prior knowledge is not available, one needs a
method for determining the learning algorithm that will produce the most accurate
classifier for instances in the domain. Traditionally, this task has fallen on the
shoulders of the data analyst. In this dissertation we present an approach to automatic
algorithm selection, designed to solve the selective superiority problem.

The creation of systems that search multiple representation spaces increases the
autonomy of learning machines. Ultimately, a human will no longer be required to
select a learning algorithm. This increase in autonomy will make machine learning
techniques accessible to a wider range of scientists. They will no longer need to
understand the representational biases of the available learning algorithms, because
this step in the analysis of data will now be automated.

1.2 Homogeneous versus Hybrid Classifiers

One can characterize inductive learning algorithms as searching either a homo-
geneous or hybrid hypothesis space. A homogeneous hypothesis space is one that
contains a single representation language. For example, univariate decision trees
and linear discriminant functions are each single representation languages. A hybrid
hypothesis space is a one that combines different homogeneous hypothesis spaces; each
hypothesis is expressed using one or more representation languages. For example,
a representation language that mixes linear discriminant functions and univariate
decision trees in a hypothesis defines a hybrid hypothesis space.

Selecting a learning algorithm that employs a homogeneous representation bias
assumes that a classifier for the data set is best represented using a single represen-
tation language. For some data sets this may not be the case; different subspaces of
the learning task may be best learned using different representation biases, indicating
that forming a hybrid classifier will result in higher classification accuracy than a
homogeneous classifier. Indeed, one goal of this research is to demonstrate that
for some data sets, different subproblems are best learned using different learning
algorithms.

Constructing a hybrid classifier requires a method for partitioning the data into
useful subspaces and a method for choosing the best learning algorithm for each
subspace. Therefore, the problem of automatically selecting the best algorithm for
a set of data needs to be addressed when creating a hybrid classifier construction
algorithm.

1.3 Automatic Algorithm Selection

Selecting the best algorithm for a data set in the absence of prior knowledge is a
search problem. One well-known approach from statistics is to use cross-validation
[Linhart & Zucchini, 1986], which performs an exhaustive search through the space
of candidate methods. However, as the number of alternatives increases, the time
required to search for the best algorithm may become impractical due to the com-
putational expense of performing a cross-validation. One of the oldest methods in
Artificial Intelligence for reducing search effort is to use knowledge about the problem
domain.

Our objective is to solve the selective superiority problem through automatic
algorithm selection. Here the problem domain is selection of the best learning
algorithm for a given set of data. The search space is defined by the data set and the
set of candidate algorithms. In this domain, knowledge stems from understanding the
biases of the candidate algorithms and how this can be applied to guide the search
for the best algorithm/model class for a given set of data.

1.4 Recursive Automatic Algorithm Selection

In this dissertation we study the problem of how to select the best learning bias for
a data set, and we investigate the utility of combining different representations and
search biases in a hybrid tree-structured classifier. Our approach recursively selects
an algorithm (a representation and search bias), from a set of candidates, with which
to construct each node of a hybrid tree-structured classifier. To select an algorithm
our approach iteratively fits a classifier to the data using the representation and search
bias currently considered best for the data set. Next it computes measures of how
well the resulting classifier fits the data. The measures are used to decide whether
the best classifier has been found or whether to search further, and if so which bias
to try next.

The ability to perform an effective search relies on knowledge of how to recognize
whether and why an algorithm is a poor choice, and on using this information to
select a better one. We have encoded this knowledge into a set of heuristic rules that
work together to guide a search for a best representation language and search bias.
Our approach is based on the following hypothesis: Domain independent knowledge
about data characteristics in the form of feedback from learning can effectively guide
an automatic algorithm selection search.

Our approach to automatic algorithm selection is applied recursively, providing
a mechanism for mixing the available model classes to form a hybrid classifier. The
ability to choose a single model class is not lost, but the approach also permits
hybrid classifiers. The hypothesis space of hybrid classifiers is larger than the
hypothesis space of homogeneous classifiers defined by the union of the homogeneous
representation languages contained in the hybrid space. By increasing the space of
possible hypotheses we increase the probability that for a given data set, a good
generalization will exist in the space searched. Increasing the search space does not
ensure that a good generalization will be found; it depends on the search algorithm.
Therefore, a second hypothesis of this research is: Our knowledge-based search strategy
for finding a hybrid classifier will produce a classifier that is never worse than, and
for some data sets is better than, any homogeneous classifier produced by its primitive
components.

We have implemented the approach in a system named the Model Class Selection
system (MCS). MCS combines three commonly used representations into a recursive
tree-structured hybrid classifier. Given a data set, MCS selects the most appropriate
of the three model classes, decision trees, linear discriminant functions and instance-
based classifiers by applying a hill-climbing search guided by a set of heuristic rules.
Our choice of these three representation languages stems from the results of empirical
comparisons, which illustrate that these three languages produce classifiers of widely
differing accuracy for different data sets; each of the three was selectively superior for
some data sets.

For each model class, MCS can choose among one or more search biases for fitting
a classifier to the data. After choosing a model class and search bias with which to

construct a classifier, MCS partitions the data set using the classifier and applies the
search recursively to each resulting subset of the data that contains instances from
more than one class. Once a classifier has been fit that classifies each instance in the
training data correctly, MCS applies a heuristic pruning procedure to ensure that the
resulting classifier does not overfit the training data at the expense of generalization.

1.5 Overview of the Results

In this dissertation we explore the advantages of a recursive heuristic approach to
hybrid classifier construction. We examine the utility of applying knowledge about
the biases of learning algorithms to guide a search, which uses feedback from the
learning process. We demonstrate, both analytically and experimentally that some
data sets are best learned by a hybrid classifier construction algorithm. Specifically,
we demonstrate the following:

1. Hybrid classifiers subsume the homogeneous primitive algorithms that they
combine. We provide both empirical and analytical evidence. The analytical
evidence illustrates how the space of decision boundaries that can be represented
by the hybrids increases the ability to select an accurate classifier for a larger set
of learning tasks over selecting among the homogeneous primitive algorithms.
Our empirical results illustrate that the classifiers produced by MCS are never
less accurate than any of the primitive algorithms, and for some data sets are
more accurate.

2. Domain independent knowledge about the biases of machine learning algorithms
can guide the search for a best learning bias. The results of an empirical
comparison illustrate that MCS is never less, and is sometimes more accurate,
than the best of its primitive learning algorithms, demonstrating that MCS is
a robust automatic algorithm selection system. Our evaluation of the heuristic
rule set, we use data sets that were not used in rule development, demonstrating
that general domain independent knowledge exists and can effectively guide an
automatic algorithm selection system.

3. Using knowledge increases accuracy and reduces time over methods that form
hybrid classifiers by exhaustively trying all possible algorithms at each node
and selecting among them using one source of feedback. Indeed, the results
of an empirical comparison demonstrate that these “knowledge-poor” methods
perform worse than the best of the primitive algorithms for some data sets.
In contrast, our knowledge-based approach performs equal to or better than
each of the primitive algorithms, and equal to or better than the other hybrid
methods.

€.

£

B

4. An analysis of the decision boundaries that each model class can represent, of
the decision boundaries that their combination into a hybrid can represent, and
what types of boundaries the hybrid cannot represent.

In the past few years many researchers have studied the importance of learning
bias to the success of finding an accurate classifier for a set of data. A multitude
of empirical comparisons have illustrated that selective superiority is a problem that
needs solving. In this dissertation, we illustrate that a recursive knowledge-based
automatic algorithm selection system can subsume its primitive homogeneous learning
algorithms, thereby solving the selective superiority problem for these algorithms. In
addition, we demonstrate that for some data sets different subspaces require different
learning biases, illustrating that hybrid classifiers perform better than homogeneous
classifiers for these data sets.

1.6 Guide to the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2 we dis-
cuss the selective superiority problem in more detail and describe existing approaches
to automatic algorithm selection. In addition, we describe how knowledge about
the biases of machine learning algorithms can guide a heuristic search for the best
representation and search bias for a given set of data. In Chapter 3 we discuss
the issues that must be considered when designing a hybrid classifier construction
algorithm, we describe existing hybrid classifier construction algorithms, and we
present our recursive approach to combining different representations in a hybrid
classifier. The MCS system, an implementation of the approach, is described in
Chapter 4. Specifically, we describe MCS’s model classes and search strategy, and
we present a detailed example of MCS applied to a learning task. In Chapter 5 we
evaluate our approach. We first present experimental results comparing MCS to each
of its primitive learning algorithms and to the traditional approach of cross-validation.
We then present a comparison of MCS to three other hybrid algorithms that each
apply all possible algorithms to construct each test node in the hybrid tree. The
second half of Chapter 6 is devoted to analyzing the representational biases of MCS’s
model classes. We discuss the increase in representational power of the hybrids
produced by MCS over the primitive model classes. In addition, we investigate what
types of data sets the hybrids (and primitive model classes) can and cannot represent
well. Finally, Chapter 6 presents a summary of the dissertation, its contributions
and the issues for future investigation uncovered by this research.

CHAPTER 2
AUTOMATIC ALGORITHM SELECTION

Given a set of data, the goal of an inductive learning algorithm is to form a
generalization of the data that classifies previously unseen instances accurately. The
maximum accuracy achievable depends on the quality of the data and on the ability
of the learning algorithm to form the most accurate classifier for that data set. In
this dissertation, we assume that the input representation (the features describing the
instances) and the data are given and we focus instead on how learning is affected by
the choice of learning algorithm.

For any given data set, exhaustively searching the entire space of possible hy-
potheses is computationally intractable. In order to find an accurate hypothesis in a
reasonable amount of time, learning algorithms employ a restricted hypothesis space
bias and a preference ordering bias for hypotheses in that space [Dietterich, 1990].
Empirical comparisons among algorithms illustrate that no single bias exists that is
best for all learning tasks. [Weiss & Kapouleas, 1989; Aha, Kibler & Albert, 1991b;
Shavlik, Mooney & Towell, 1991; Salzberg, 1991]. The manifestation of this problem
is the selective superiority that we observe for each learning algorithm; each algorithm
is best for some, but not all tasks [Brodley, 1993];

An example of the selective superiority problem is shown in Table 2.1. Each row
shows the accuracies of the classifiers formed by three different learning algorithms.
The accuracy for each method is the average across ten runs for the test set; for each
run the data was split randomly into a training set (90%) and a test set (10%).- The
data sets are described in Chapter 5 and the algorithms are described in Chapter 4.
The problem that no single algorithm is best for all tasks is apparent: for the Glass
Recognition data set the decision tree is best; for the Vowel Recognition data set the
k-nearest neighbor is best; and for the Waveform data set the linear discriminant is
best.

In this dissertation we present a knowledge-based automatic algorithm selection
system designed to solve the selective superiority problem. The problem of selecting
an appropriate learning bias is complicated further because for some learning tasks,
different subtasks are learned best using different concept representation languages.
In such cases, a hybrid representation language bias is better than selecting a single
representation language. In Chapter 3 we will discuss hybrid classifiers. In this
chapter we first discuss automatic algorithm selection as a solution to the selective

)

C__

£ .

E""‘W

g'_‘_\

Table 2.1 An illustration of the selective superiority problem

k-Nearest Linear Decision
Data Set Neighbor Discriminant Tree
Glass Recognition 68 56 75
Vowel Recognition 50 37 39
Waveform 66 83 69

superiority problem, outlining the desired properties of such a solution and presenting
a knowledge-based approach that has these properties. We discuss the existing
approaches in this context, breaking our discussion into two parts based on how
an approach chooses an algorithm. Section 2.2 describes “one-shot” approaches to
selection; these methods gather any information that they need and then make a
one-time decision. Section 2.3 describes approaches that may change the algorithm
based on some type of feedback from the learning process. Finally, in Section 2.4 we
discuss the strengths and limitations of the various existing approaches.

2.1 Solving the Selective Superiority Problem

To solve the selective superiority problem an automatic algorithm selection system
must select the learning algorithm that will produce the most accurate classifier for
previously unseen instances. A learning algorithm has two components that affect this
ability: its representation language (model class) and its search bias. A representation
language defines the set of possible generalizations for a data set. An algorithm'’s
search bias determines how the generalization space defined by its representation
language is searched (the order in which generalizations are considered and how search
is terminated). For example the Widrow-Hoff algorithm [Duda & Hart, 1973] has
a representation language of linear-discriminant functions and uses the least-mean
squares error correction rule to search the generalization space defined by linear-
discriminant functions of the data. A change in either of these two components can
change the algorithm’s ability to produce an accurate classifier.

In this section we first describe a categorization of automatic algorithm selection
systems, defining precisely what we mean by automatic algorithm selection. We then
discuss the desired properties of an automatic algorithm selection system that would

solve the selective superiority problem. Finally, we describe our knowledge-based
approach to automatic algorithm selection.

2.1.1 A Categorization of Automatic Algorithm Selection
Methods

We can categorize an automatic algorithm selection system by the type of selection
it performs. There are three general types of selection:

1. Select among different representation languages, but use the same search bias
for each representation.

2. Retain the representation language, but select among different search biases.

3. Select among learning algorithms that differ in both representation language
and search bias.

An example of a change in only the representation language is the addition of
higher order terms to a linear discriminant function. The same search bias for learning
the weights of the function is retained but the addition of new terms changes the
search space for a generalization of the data. The second type of selection chooses
among several possible candidate search biases, retaining the same representation.
For example, selecting between the Widrow-Hoff procedure and the Absolute Error
Correction Rule [Nilsson, 1965] for determining the weights of a linear discriminant
function is a change in search bias but not representation. Finally, the last type of
selection chooses among algorithms that differ in both representation language and
search bias. For example, choosing between a linear discriminant algorithm and a
univariate decision tree algorithm is an example of both types of change. In our
discussion of existing approaches we indicate one or more of these types of selection
that each approach is designed to handle. Hereafter when we call a learning method
an automatic algorithm selection system we mean a method that performs any of
these three types of selection.

2.1.2 Desired Properties

In creating an automatic algorithm selection system one desires that it have the
following properties:

1. That it select a best of the set of candidate learning algorithms for each learning
task.

2. That it not require a prohibitive amount of time to select a best algorithm for
a set of data.

3. That it choose among candidate algorithms that are each suited to different
distributions of data.

£

S

é_“*.

Given a learning task, an automatic algorithm selection system should select
a best algorithm for that task from the set of candidate algorithms.! We define
a best algorithm from a set of learning algorithms to be one that when used to
classify previously unseen instances does so with no more errors than any of the other
candidate algorithms.

An automatic algorithm selection system should not take a prohibitive amount of
time. By selecting among a set of algorithms one enlarges the search space for finding
a classifier for a set of data over the space searched by any individual algorithm in
the set. With an increase in search space one desires an efficient search algorithm to
ensure a computationally feasible search.

Finally, there is no reason to choose among search biases or representations that
would each produce the same classifier for all sets of data. Ideally, each algorithm
would possess different strengths. For example, a univariate decision tree is best
for concepts represented by a set of hyper-rectangles that are orthogonal to the
feature axes; a linear discriminant function is best for concepts represented by a
single hyperplane. By choosing between the two, one strictly increases the number
of learning tasks for which accurate classifiers can be learned, over either individual
algorithm. Systems that select among different search biases should also have this
property. For example, the Least Mean Squares (LMS) and Absolute Error Correction
Rule (AECR) [Duda & Hart, 1973] each have different strengths. When the instances
are linearly separable AECR is guaranteed to find the separating hyperplane, whereas
LMS is not. When the data are not linearly separable LMS is preferable to AECR,
because the error corrections of AECR will not cease, and the classification accuracy
of the linear discriminant function will be unpredictable [Duda & Hart, 1973].

2.1.3 Heuristic Search Using Knowledge

To select a learning bias from a set of possibilities, one can examine the data
set to find characteristics for which we know one bias is better than another. For
example, if the instance space is linearly separable, then we know that a linear
discriminant function is a good hypothesis space bias (representation language) and
that the absolute error correction rule [Duda & Hart, 1973] will guarantee that a
best linear discriminant function is found. Our approach to automatic algorithm
selection relies on knowledge about the characteristics that indicate that a particular
bias is appropriate, and on the ability to determine whether a data set has those
characteristics.

There are many measurable characteristics of data sets. For example, one can
characterize data sets by whether the instances are described by numeric or symbolic
(nominal) features, or by a measure of correlation among the features and the class
labels. The challenge is in uncovering characteristics that will indicate the best
bias, and further, whether such characteristics can be computed. Rendell and Cho

!Two or more algorithms may be equally suited to a task.

10

(1990) point out that “data character” plays an extensive role in determining the
behavior of learning algorithms. Their view of concepts as functions over the instance
space led them to define geometric characteristics such as concept size (proportion of
positive instances) and concentration (a characterization of the distribution of positive
instances through the instance space), which they subsequently illustrate have a large
effect on learning.

A different way to characterize a data set is by constructing a classifier using a
particular bias and then examining the resulting classifier to determine whether the
bias was appropriate, and if not, what would be a better bias. For example, the
model class of a univariate decision tree is a poor choice when the features are related
linearly. In such cases, the features will be tested repeatedly along a path in the
decision tree, giving evidence that a series of tests are being used to approximate
a non-orthogonal partition of the data that is not easily represented by a series of
hyper-rectangles. This characteristic indicates that a better bias would be to form a
linear discriminant functions.

Our approach to automatic algorithm selection computes characteristics of a
data set using feedback from a search through the space of available representation
and search biases. The approach iteratively fits a classifier to the data using the
representation language and search bias currently considered best for the data set.
Next it computes measures of how well the resulting classifier fits the data. The
measures are used to decide whether a best classifier has been found or whether
further search is required, and if so which bias to try next.

The ability to perform an effective search relies on knowledge of how to recognize
whether and why an algorithm is a poor choice, and on using this information to
select a better one. We have encoded this knowledge into a set of heuristic rules
that work together to guide a search for a best representation language bias. Our
approach is based on the following hypothesis: Domain independent knowledge about
data characteristics in the form of feedback from learning can effectively guide an
automatic algorithm selection search.

Indeed, a recent focus of research in machine learning is to understand the tasks for
which a particular algorithm will perform better than some specified set of alternatives
[Feng, Sutherland, King, Muggleton & Henry, 1993; Aha, 1992; Shavlik, Mooney
& Towell, 1991]. Prior to this focus on knowledge-based approaches to automatic
algorithm selection, the strategy was to try all candidate methods and choose one
based on estimates of their accuracies. Of course these methods are also using
a characteristic of the data set to make a selection; the accuracy of a particular
algorithm is a descriptive characteristic of the data set. An important difference
between the traditional approach and the approach presented in this dissertation is
that traditional approaches apply all candidate algorithms to the data before making
a selection, whereas our approach may choose an algorithm without trying all of them.

In Chapter 4, we describe a set of heuristic rules used to guide the automatic
algorithm selection search. The heuristic rules form an expert system for selecting an
appropriate learning bias for a set of data. In the remainder of this chapter we describe

11

£

%'—_T

g“‘—"'\

existing approaches to automatic algorithm selection and discuss their potential to
be a general solution to the problem of selective superiority.

2.2 One-shot Selection

We define one-shot selection methods to be those that select a learning algorithm
based on some criterion that is computed once. In Section 2.2.1 we describe a one-shot
selection method that uses an estimate of the classification accuracy of each algorithm
to select among a set of candidate algorithms. In Section 2.2.2 we describe four
approaches that each use characteristics (other than an estimate of accuracy) of the
data to select the most appropriate learning algorithm.

2.2.1 Using Accuracy Estimates

One well-known approach to automatic algorithm selection from statistics is to
use cross-validation [Linhart & Zucchini, 1986]. Given a set of data, an n-fold cross-
validation splits the data into n equal parts. Each candidate algorithm is run =
times; for each run, n — 1 parts of the data are used to form a classifier, which is then
evaluated using the remaining part. The results of the n runs are averaged and the
algorithm that produced classifiers with the highest average classification accuracy
is selected. Recently, Schaffer (1993) applied this idea to selecting a classification
algorithm. The results of an empirical comparison of a cross-validation method (CV)
to each algorithm considered by CV, illustrated that on average, across the test-suite
of domains, CV performed best. Cross-validation is a general method that can be
used to select among algorithms that differ in representation language or search bias.

2.2.2 Using Other Characteristics

An algorithm that performs an initial selection attempts to determine which
learning algorithm, from a finite set of possible algorithms, appears most promising
for the given data set; the choice is made before the actual learning begins. In this
section we describe three such approaches and we include a fourth algorithm ACR
[Saxena, 1991b], which although not originally designed to perform initial algorithm
selection, could be modified to perform this task.

The approach taken by the VBMS system [Rendell, Seshu & Tcheng, 1987] is to
select a learning algorithm based on problem space characteristics, such as the number
of features and the number of examples. VBMS is a system that tries to learn the
situations for which the bias of each candidate learning algorithm is appropriate.
VBMS clusters algorithms based on their performance. Given a new learning task,
the system selects an algorithm based on what it has learned and then runs it. If
the resulting performance is not at the level desired, then VBMS tries the next best

12

algorithm. This process continues until satisfactory performance is reached or the
system runs out of algorithms to try. When this process is finished, VBMS updates
its statistics that relate problem characteristics to algorithm performance.

A recent focus of research in machine learning is to understand the tasks for which
a particular algorithm will perform better than some specified set of alternatives [Feng,
Sutherland, King, Muggleton & Henry, 1993; Aha, 1992; Shavlik, Mooney & Towell,
1991; Weiss & Kulikowski, 1991]. The knowledge resulting from such efforts can be
used to form a heuristic search procedure for automatic algorithm selection. In the
STATLOG project, sixteen algorithms were compared across twelve data sets (Feng,
et al. 1993). One of the goals of the project was to discern what characteristics of
data sets suit particular algorithms. Twelve statistical characteristics were uncovered
that they think will be useful for predicting which of the algorithms will perform the
best for a given task. However, the heuristics about these characteristics that were
put forth have not at this point been evaluated on any data sets not used in the
original comparative study.

Aha (1992) presents a method that generalizes case studies of algorithms to gener-
ate rules characterizing when differences in performances among learning algorithms
will occur. The method takes a data set, for which performance of the various
algorithms is different, and then models the data set to create an artificial data
set whose characteristics are similar to the actual data set’s characteristics. Next the
set of algorithms is run on several versions of the artificial data; each version has a
different setting of the parameters for generating the data set. The algorithms are
evaluated on the different versions of the data set, and a rule is derived to summarize
when the performance differences occur. Rules are extracted by CN2 [Clark & Niblett,
1989] from the performance results of the algorithms on the artificial data sets. Aha
points out that although the rules derived from the method are highly constrained,
they are more useful than results of most empirical comparisons of algorithms, which
merely tell you which algorithm performs the best for a set of data.

The third method for selecting an algorithm, the ACR algorithm, was developed
to select which of two instance representations permits a learning algorithm, call it
X, to induce the better generalization [Saxena, 1991b]. ACR selects which of the two
given representations enables X to represent the entire set of instances in fewer bits.
The algorithm is based on the Minimum Description Length Principle (MDLP) which
states that the best hypothesis to induce from a data set is the one that minimizes
the length of the code needed to represent the data. The codelength of a hypothesis is
the number of bits needed to represent the hypothesis plus the number of bits needed
to represent the error vector resulting from using the hypothesis to predict the data
[Rissanen, 1989). '

ACR uses the compressibility of the data as a measure of the suitability of an
instance representation for a learning algorithm. By estimating the number of bits
required to describe or code a finite set of examples, ACR is able to rank different
instance representations without estimating the accuracies directly. Empirical results
show that using ACR to rank representations is more time efficient and produces

13

£

E__

better results than estimating directly the performance of the learning algorithm
with the different representations.

Although originally created to determine which of two input representations is
better suited to the learning task, Saxena suggests that ACR could be applied to
automatic algorithm selection [Saxena, 1991a]. Given one input representation, ACR
would select which of two learning algorithms will produce a better compression of
the data. However, to ensure a fair comparison, the coding schemes for assigning the
number of bits to a hypothesis must not be biased to favor the hypotheses produced by
one learning algorithm over another, which may be difficult because finding provably
optimal codings is unsatisfiable.

2.3 Using Feedback during Learning

In this section we describe approaches to automatic algorithm selection that use
feedback from the learning process to change the representation language or search
bias. The approaches can be divided into five categories, based on the strategy used
to search for a best algorithm:

1. Iterative change based on concept form: These methods use the form of
the learned classifier to change the learning algorithm’s underlying representa-
tion language.

2. Iterative change based on measures of previous classifiers: These
methods use numeric measures of classifiers learned using previous choices of
representation/search bias to guide the search for the best learning algorithm.

3. Fixed-order search: Search through the space of algorithms is conducted in
a pre-specified order.

4. Optimization: This approach optimizes novelty and performance in the

space of algorithms (the bias space) defined by the user-specified learning and
performance measurement strategies.

5. User-specified strategy: This approach allows the user to specify the strategy
for searching for the best learning bias.

This categorization allows us to examine the differences in the control strategies
for automatic algorithm selection. In the discussion of each system we answer the

following questions:

e What are the candidate representation languages and search biases?

o What type of feedback does the method use to guide search?

14

o Is the method restricted to one type of selection (i.e., does it select the
representation language but fix the search bias)?

o How does the system determine when to stop searching?

2.3.1 Iterative Change Based on Concept Form

One approach for changing the underlying representation language of a learning
system is to evaluate the form of a classifier induced from a set of training instances,
described in an initial vocabulary, and then change the representation language
with respect to this evaluation. In general, methods that employ this approach
perform the following cycle until some criterion is satisfied: induce a classifier using
instances described in language L;, use the induced classifier to modify L; to produce
Liy, and then repeat using L;;,. By changing the instance description language,
the system changes the underlying representation language of the learning system.?
These methods have been called data-driven approaches to constructive induction
[Michalski, 1983]. The systems described in this section have a cyclical refinement
approach to model selection. Once the instance representation has been changed, the
previous classifier is discarded and a new classifier is induced using the new instance
representation.

A system starts with an initial feature set, Fi, equal to the set of input features.
On each successive iteration of a select-fit cycle, new features are created by forming
Boolean combinations of the current feature set, F.. (Initially F, = F;.) The system
decides which features to combine by examining the form of the classifier induced
using F,.. Because the combination operator used by these systems is binary, a Boolean
feature comprised of n of the initial features requires n iterations of the select-fit cycle.
Although the order in which features are generated depends on the current classifier,

the search bias of these systems is fixed to search from simple to complex feature sets.

A feature set F;y; is more complex than F; if ELF:‘"}“' | feature;| > EIJ-I;"I | feature,],

where | F;| is the number of features in feature set F; and |feature;| is the number of
features from F that are combined to form feature;.

FRINGE constructs Boolean combinations of the initial set of features to overcome
the tree replication problem [Pagallo & Haussler, 1990]. FRINGE executes the
following cycle until no new features are generated: induce a decision tree and then
generate new features by forming conjunctions of pairs of features that occur at the
fringe of the tree. Given a leaf labeled positive, a new feature is formed by taking the
conjunction of the two tests immediately above the leaf. Empirical results show that
FRINGE consistently outperforms a decision tree algorithm that forms tests based
on only the initial Boolean input features.

Several extensions to the original FRINGE algorithm have been implemented.
Because a small Conjunctive Normal Form (CNF) concept may not have a small DNF

?Note that the data has not changed; no new measures of the domain have been added.

15

€ _

E p

—

representation, the dual-FRINGE algorithm was created to generate features useful
for CNF concepts [Pagallo, 1990]. For each leaf labeled negative in the tree, dual-
FRINGE forms a new feature by taking the disjunction of the two tests immediately
above the leaf. Symmetric-FRINGE is the result of combining both the FRINGE
and dual-FRINGE algorithms. The behavior of dual-FRINGE on CNF concepts was
similar to that of FRINGE on DNF concepts, however the symmetric version was
slightly less effective.

A third extension to FRINGE was introduced by Yang et al. (1991). Their
system, DC-FRINGE, is similar to symmetric-FRINGE. The difference lies in the
use of context to decide if a proposed feature should be generated. DC-FRINGE
restricts the construction of disjunctions to situations in which the sibling of the leaf
is also a leaf and the sibling of the parent is a positive leaf. DC-FRINGE performs
better than symmetric-FRINGE for the test cases. The authors attribute this to the
fact that the extra disjunctions produced by symmetric-FRINGE cause the decision
tree algorithm to overfit to the training instances, thereby causing a decrease in the
predictive accuracy.

A fourth extension, an algorithm called LINT, is a strict generalization of
FRINGE. LINT learns (0,1) DLF functions (i.e., disjunctions of linear threshold
functions such that each non-zero weight has a magnitude 1.0). The cyclic feature
generation process is identical to FRINGE’s, except that the features at the fringe
of the tree are used to define a linear function. LINT sets the weight corresponding
to a feature tested at a node, whose children are both leaves, to 1. If one child
is leaf and the other is a test-node, then the weight is set to 1 if the leaf is labeled
negative and to -1 if it is labeled positive. For each linear combination LINT generates
the complete set of linear threshold functions. This set is obtained by varying the
threshold. Because all of the independent variables of the function are Boolean, the
cardinality of this set is finite and is equal to the range of the function. LINT was
tested for r-of-k linear threshold functions, small disjunctions of r-of-k functions and
on small random linear threshold functions. The results show that while LINT works
well for small (0,1)DLF concepts, it does not do well for linear threshold functions
with arbitrary weights.

CITRE [Matheus, 1990] uses the form of a decision tree induced from a set of
instances, described by a set of Boolean features, to construct new terms. CITRE
is similar to FRINGE, but the feature formation heuristic is slightly different. The
system creates new terms by forming a conjunction for each pair of features found on
a path to a positive-labeled leaf of the constructed decision tree. It uses two domain
specific feature pruning techniques for the domain of tic-tac-toe and then generalizes
the remaining features by changing common constants to variables. The resulting
feature set is pruned using an information theoretic to retain only 27 features during
each iteration; it retains the 9 initial features and the 18 best-ranked constructed
features. A new tree is grown and the process repeats until only one positive-labeled
leaf remains in the decision tree. Results show that for the domain of tic-tac-toe

16

CITRE realizes a 15% increase in accuracy over the accuracy obtained by applying
ID3 [Quinlan, 1986] to a set of instances described by only the nine initial features.

2.3.2 Iterative Change Based on Measures of Previous Clas-
sifiers

In this section we describe systems in which a classifier (or model for the data) is
selected, or a new one is proposed, in response to computed measures of the previously
learned classifiers.® Specifically, we describe approaches to representation selection in
statistics, numerical discovery methods that use mathematical relationships among
the features to guide search, feature construction methods for learning polynomial
functions, and incremental algorithms that adjust the representation language during
learning.

Representation Selection in Statistics: Existing automatic algorithm
selection systems in statistics are designed to select among different representation
languages. These methods fit a model (or classifier) to the data, perform statistical
tests to determine the fit of the model, and then may change the representation lan-
guage or halt depending on the results of diagnostic statistical tests. There are several
methods for selecting an appropriate representation and all require specification of
the entire set of terms to be considered for inclusion in the model. Term selection is
a special case of representation selection. Before discussing the control strategies for
term-selection, we first describe the general approach to model formation in statistics.

Model selection in statistics refers to the process of estimating the relationships
among the variables of a given data set [Chatterjee & Price, 1977]. Given one
dependent variable, y, and k independent variables, z,, z,, ..., Tk, the goal of statistical
model selection is to find a functional relationship, y = f(z,23,...,Zk, €), which
explains or predicts the data. The z; are often called predictor variables because the
predicted value of y, y, depends on the values of the z;. The disturbance terms,
€, =1, .., k, are unobserved and represent the underlying disturbance process of the
data. One of the most widely used tools to estimate this functional relationship is
regression analysis.

Regression analysis is a set of data analysis techniques used to help a human
data analyst understand the interrelationships among variables in a particular en-
vironment. Using regression analysis requires that one make the assumption that
the data represent some stochastic process. There has been significant research on
selecting and fitting linear models to the available data, and our discussion will focus
on these techniques. A linear model is any function that is linear in its parameters.
The value of the highest predictor variable in the model is called the order of the
model. For example, y = fBo + Bz + B2z% + € is a second-order linear regression

3 A similar approach is taken by the IPUS system [Lesser, Nawab & Klassner, to appear March
1995], which iteratively adjusts the parameters of its signal processing algorithms based on feedback
from the results of previous settings.

17

P

£ __

model. The general linear model for the variables z,, ,, ..., Z is written in the form:
Yy = BoZ6+ P1Z1 + ... + BpZ, + €, where Zg = 1 is a dummy variable (usually unity)
and each Z;, : € {1,2,..,p}, is a general function of ,,z,, ..,z and can take on any
form. The B; are the true population parameters of the model. The goal of regression
analysis is to find estimates, b;, for the 5;.

The most popular method for finding estimates, b;, for the true population pa-
rameters of a linear model is the ordinary least squares (OLS) method. Its popularity
is due to the fact that it provides minimum variance unbiased estimates of variable
interactions that can be expressed additively. This is true only if the underlying
stochastic process has the following two properties: the disturbance terms of the
variables, €;,7 = 1, .., p are random quantities (¢ = }¢;), and they are independently
distributed with mean zero and constant variance, o2.

The least squares method was invented independently by C. F. Gauss and A. M.
Legendre [Draper & Smith, 1981]. The method finds estimates, b; (for the £;) by
minimizing the sum of the squared residuals, €;,7 = 1,..,n, where n is the number
of observed data points. The residual error, e;, of the regression equation, y =
bo + 012y + b2, + ... + b, Z, + e, measures the difference in the value predicted for
the dependent variable, y;, and the observed value y;, for 7 = 1, .., n.

If the disturbance terms of the independent variables are not independently
distributed, then one must use the method of general least squares (GLS) (also called
weighted least squares) [Draper & Smith, 1981]. GLS requires a specification of a
matrix of weights, {2, which captures all systematic information about the disturbance
process.

Examination of the fit of a particular regression equation to the data requires a
further assumption about the residuals: for a small data set the e; must be normally
distributed [Chatterjee & Price, 1977]. (Due to the Central Limit Theorem this is
always true for large data sets.) The two assumptions, that the residual is a random
variable with mean zero and constant variance o, follow from the assumptions about
the disturbance terms (i.e, that the ¢;,2 = 1,..k are random variables, with zero
mean and an unknown constant variance, o?) [Draper & Smith, 1981]. To measure
the fit of a regression equation to the data, we can measure the proportion of total
variation about the mean Y explained by the regression. The proportion is computed
by R? = 3(Y; — ¥)?/ Z(Y; — ¥)2. R? falls between 0 and 1 and we can measure its
significance using an f-test [Chatterjee & Price, 1977).

With the advent of computers, automated representation selection procedures
have been created. There are several methods for selecting the appropriate represen-
tation, and all require specification of the entire set of terms Z; to be considered for
inclusion in the model. The terms (called features in machine learning) can be taken
from the set of initial variables, z;,7 = 1,2,...k, and any function of these variables.
We present the three most commonly used procedures for selecting the appropriate
terms. A more comprehensive list can be found in Draper and Smith (1981).

18

The first procedure evaluates all possible subsets of the terms to form a model
[Chatterjee & Price, 1977]. This method gives the analyst the maximum amount of
information available concerning the relationships between y and the Z;’s. This can
be intractable if there are many terms to be considered for inclusion in the equation;
given p terms, the total number of equations to be considered is 2. To evaluate
the different regression equations one of several different criteria can be used. The
choice of which criterion to use should be related to the intended use of the regression
[Hocking, 1986]. For example, if the objective is to obtain a good description of the
independent variable and the OLS method is used, then the R? statistic is a good
choice [Hocking, 1986]. Another commonly used criterion is the residual mean square
error, RMS, = SSEp/(n — p), where SSE, is the residual sum of squares for a
p-term equation given n data points. Given two equations, the one with the smaller
RMS is preferred. For a detailed discussion of RMS see Chatterjee and Price (1977).
For a description of other criteria and their relationship to the intended use of the
regression see Hocking (1986).

Because of the computational intractability of evaluating all possible regression
equations, various methods have been proposed for evaluating only a small number
of subsets by adding or deleting terms one at a time according to a specific criterion.
The two most common are stepwise forward selection (SFS) and stepwise backward
elimination (SBE) [Draper & Smith, 1981]. SFS begins with no terms in the model
and adds one term Z; at a time until either all terms are in the model, or until a
stopping criterion is satisfied. The first term to be included is the term that has the
highest simple correlation with the dependent variable y. If the regression coefficient
of this term is significantly different from zero, then it is retained in the equation and
a search for the second term proceeds. The second term to enter the equation is the
term that has the highest correlation with y, after y has been adjusted for the effect
of the first term, i.e., the term that has the highest correlation with the residuals
from the first step.

SBE begins with all possible terms in the model and eliminates them one by one.
The term to be eliminated is the one that makes the smallest contribution to the
reduction of the error sum of squares as measured by its i-ratio (the ratio of the
regression coefficient to the standard error of its coefficient). If all the t-ratios are
significant, then the full set of terms is retained in the model. After each term is
eliminated, the equation is re-fit and the regression coefficients in the new equation
are examined. The procedure terminates if all t-ratios are significant or only one term
remains.

In addition to examining the significance of the coefficients of the individual
variables to determine which model to use, one can use either the R? or the RMS
criterion to judge each regression equation computed by the SFS and the SBE
procedures. These criteria can be used to terminate the stepwise procedures. Finally
a word of caution about the stepwise regression methods is needed. Use of both the
t-test and the ftest assumes that the data are from independent samples. The manner
in which these tests are used in the stepwise procedures violates this assumption.

19

-

L)

L

R A

T

e

Therefore, these procedures are typically used with caution by the human analyst.
Their purpose is to give the analyst a rough idea of the form of the model, rather
than to select a model without human intervention.

Linear models can represent a wide variety of relationships. However there are
situations in which a non-linear model is appropriate. For example, suppose informa-
tion about the form of the relationship between the dependent and the independent
variables indicates that it is non-linear. Any model not of the form given above is
called a non-linear model. For example, y = ef1+82°+¢ and y = (8,/8,)(e?t — e#t) +¢
are two non-linear models. Note that the first example is intrinsically linear and can
be transformed into a linear model by taking the log of both sides of the equation,
however, there is no transformation to make the second example linear. If a model
is intrinsically linear, then it should be transformed and the regression coefficients
estimated using the resulting linear model. A non-linear model can be solved using the
least squares method for the non-linear case, and Draper and Smith (1981) describe
this method. Little work has been done on automatic representation selection for
non-linear models, because if a data analyst decides to use a non-linear model, then
he or she usually knows the form of the model.

Measuring Numeric Relationships Among Variables In this section we
describe learning systems that search for a mathematical function of a data set by
looking for numeric relationships among the variables. The goal of such systems is to
find a mathematical function, y = f(z1, %2, ..., z,), that explains or predicts the data.
Specifically, they search for a mathematical function of the independent variables,
1, Z2,..., Ty, that predicts the the value of the dependent variable, y, to some
pre-specified degree of accuracy. Such systems are performing numerical function
approximation. These systems use the following iterative control strategy: find
numeric relationships among the existing set of terms and then test these relationships
to see if any of them can predict the independent variable, y. If all of the proposed
relationships fail to predict y, then add these relationships to the existing set of terms
and begin again. The initial set of terms is the set of input variables.

The BACON programs [Langley, 1986] perform a depth first search for a poly-
nomial function of the independent variables. The search is guided by the repeated
application of heuristic production rules to find relationships among the current set
of terms. A term is either an initial variable or a polynomial function of the initial
variables. At each node in BACON’s search tree, the system holds n—1 of the n terms
constant and varies only one term, call it z;. It uses the heuristic production rules
to analyze the function y = fi(z;), when z,, ..., z, are held constant. The heuristics
search for one of two relationships: y = cz; or y = c¢/z;. If either relationship is
found, then the system adds a new dependent term, y/z, = c or yz; = c respectively,
to the set of terms at that node in the search tree. In addition, if the system detects
a linear relationship, ¥y = ¢z, + ¢, then it adds (y — ¢;)/z1 = ¢; to the list of
dependent terms. At each level in the search, the system examines each independent
variable’s relationship to each of the dependent terms. If any relationships are found,
then the system continues searching in a depth-first order, otherwise it backs up a

20

node in the tree and tries the next relationship that was found at that node. The
system terminates its search when a dependent term is found that has a constant
value or if the search exceeds a user specified search depth. In summary, BACON
uses a depth-first search to find the first equation (called a law in BACON) that is
able to predict the value of the user specified dependent variable.

ABACUS is a system that discovers multiple equations for numeric data [Falken-
hainer & Michalski, 1986]. The system first discovers a set of equations that explain
the data and then uses the A? algorithm [Michalski & Chilausky, 1980] to generate
rules for when each equation should be used. Unlike other quantitative discovery
systems, ABACUS does not require the user to specify the dependent variable(s).
ABACUS searches a potentially infinite space of polynomial functions. It forms a
proportionality graph by looking for qualitatively proportional relationships among
the input variables. Variable z is qualitatively proportional to variable y if, for some
subset of the data, = increases when y increases or z decreases when y increases. In a
proportionality graph a vertex represents a term and an edge represents the qualitative
proportional relationship between two terms. A term is either an input variable or
a polynomial combination of a subset of the input variables. The combinations are
constrained by the use of dimensional analysis. To find an equation the system
first performs a proportionality graph search and if that fails, it then performs a
suspension search. The proportionality graph search performs a depth-first search
of each bi-connected component of the initial proportionality graph according to the
equation formation heuristics. The search continues until a new term has a level
of constancy greater than a pre-specified threshold or until all combinations have
been exhausted. The suspension search is a beam search, in which for each level
in the generated search tree the nodes are divided into active and suspended nodes.
Suspended nodes are those whose constancy is less than a preset threshold. A new
level in the search tree is created by testing the proportionality the active nodes have
among themselves and to all active nodes at earlier levels. The search continues until
an equation is found or the user specified search depth is reached. If this depth is
reached, then the system backtracks one level and re-activates the suspended nodes at
that level. When an equation is found, all of the data points that it covers are removed
from the data set, and the search begins again using the remaining data points, until
all data points are covered by some equation or the systems deems the remaining
points miscellaneous. The model space of all polynomial functions is infinite and
ABACUS limits its search through user specified parameters. The search through
the space is a beam search from simple to complex models. Because the system has
the ability to backtrack, in the worst case the suspension search degenerates into a
simple breadth-first search.

COPER [Kokar, 1986] takes a different approach to quantitative discovery from
the ABACUS and BACON systems. COPER uses dimensional analysis to constrain
the search for a polynomial equation of the input variables. The system first finds
the relevant arguments of the function and then finds the functional form. To find
the relevant arguments, COPER performs the following cycle: it first generates all

21

dimensionless products of the current set of terms (called the independent arguments)
and then selects a base set from the independent arguments. A base set is a maximal
set of the arguments that cannot be expressed in terms of any of the other arguments.
COPER then re-expresses the remaining independent arguments in terms of the base
arguments. To determine if this set of arguments is complete, COPER divides the
data points into orbits. An orbit is a set of points for which the derived values
remain constant when the base arguments are varied. The system then calculates
the predicted values of the function in each orbit and compares these values to the
observed values. If the difference is significant, then the system searches for a new
descriptor that reduces this difference by considering all possible ways of combining
the existing arguments while obeying the laws of dimensional analysis. After the
set of relevant arguments has been found, COPER iterates over each base to search
for a simple polynomial formula. If none of these give satisfactory results, then
it reconsiders each base using more complex polynomials. COPER can potentially
search an exponential number of formulae, because both the number of bases and
the number of polynomial functions considered, can be exponential in the number of
variables.

Feature Construction for Learning Polynomial Functions: Sutton and
Matheus (1991) present a method for learning higher order polynomial functions from
examples using linear regression and feature construction. Their system begins by
performing a regression on the training set to learn a regression equation for the model
y = ko + k121 + ... + kpzp, where p is the number of input variables. If the residual
error is approximately zero, then the system halts; otherwise the feature construction
process is triggered. For each iteration of the algorithm, one new feature is generated
by taking the product of two of the current features. To determine these two features
the system calculates the potential of each feature in the current set. A feature’s
potential is the regression of the squared error of the current function over the squared
values of the feature. There are n? ways to choose a new feature, where n is the size
of the current feature set. To constrain the search, the m << n? most promising
pairs of the current features are selected, as judged by the magnitude of sum of the
two features’ potentials. For each of the m pairs, the system then computes the joint
potential of the pair by regressing their product onto the squared error. The pair
with the highest joint potential is included in the equation and the system regresses
the new equation onto the training data. This process continues until the residual
error of the current system is approximately zero. Note that this system relies on the
regression to zero the coefficients of irrelevant features. This assumption is correct if
the noise in the data set is systematic, however if it is not, then the coefficients of
irrelevant features will be close to zero and therefore the features will remain in the
equation.

Incremental Algorithms that Adjust the Representation In this section
we describe two incremental concept learning algorithms, STAGGER [Schlimmer,
1987] and IB3-CI [Aha, 1991a], which adjust the representation language during the
learning process. An incremental learning algorithm updates the concept description

22

after each new instance is observed, such that after each update the current concept
description can be used to classify all previously observed instances with a high degree
of accuracy. Both systems can adjust the representation language in response to just
one instance: a change in the representation is triggered by an incorrect classification.

STAGGER’s objective is to learn a set of numerically weighted features called
elements: an element is a Boolean function of the attribute values. STAGGER
associates two weights with each element: the logical necessity (LN) and the logical
sufficiency (LS) of the element. Each time STAGGER observes a new instance, it
matches each element against the instance and uses the elements’ weights to predict
whether the instance is a positive or negative example of the concept. STAGGER
then updates the LN and LS weights. If STAGGER predicts the incorrect class for
an instance it creates new features by applying the Boolean operators AND, OR and
NOT to the existing set of features using a set of heuristics to propose combinations.
New features are retained as long as their predictive performance stays above that of
their component elements. STAGGER has an initial bias toward linearly separable
concepts, but can shift its bias by creating new elements if the performance of the
classifier is inadequate. The order in which STAGGER searches for new features is
from simple to complex, but unlike other systems described that have this ordering,
STAGGER has the ability to backtrack.

IB3-Cl is an instance-based learning (IBL) algorithm that constructs new features
in response to classification errors. IBL algorithms represent concept descriptions
with a set of stored instances, and update the concept description after each instance
is processed. IB3-CI integrates IB3 [Aha & Kibler, 1989] with STAGGER. Like
STAGGER, IB3-CI uses LN and LS weights to guide its feature formation process.
Its objective is to reduce the similarity between two instances (the new instance and
the stored instance judged most similar) when a misclassification occurs. Features
that match the positive and mismatch the negative instances are paired by their
increasing summed LN weights. A new feature is formed by taking the conjunction
of the first logically unique pair. It replaces a previously constructed feature with
the lowest max(LS,1/LN) value with the new feature if the store is full. The size of
the store, the maximum number of features permitted in the current set, is a system
parameter. It then repeats the process with the pairs ordered by their decreasing LS
values. IB3-CI was applied to the tic-tac-toe endgame problem [Matheus, 1990]. The
results show that feature construction improves the learning performance over IB3
substantially (approximately 20%) for this data set.

2.3.3 Fixed-order Search

In this section we describe methods for automatic algorithm selection that search
the space of algorithms using a fixed order. We first describe the perceptron tree
algorithm [Utgoff, 1989], which selects between two algorithms that differ in both
representation and search bias. We then describe the E* algorithm [Schaffer, 1990]
which conducts an ordered search through six functional forms to fit to the data.

23

-

E‘Au .

A

A A

—

ghate

E

Finally, we describe fixed-order search methods for selecting an appropriate net
architecture.

A perceptron tree, combines a univariate decision tree with linear threshold units
(LTUs) [Utgoff, 1989]. Utgoff defines a perceptron tree to be either an LTU or an
attribute test, with a branch to a perceptron tree for each value of the attribute;
a decision tree in which every leaf node is an LTU. The depth-first, recursive tree
growing procedure chooses between two types of classifiers, a symbolic attribute test
or an LTU, to place as a test at each node in the tree. At each subspace, or node,
as determined by the partially formed tree, the algorithm first trains an LTU. If the
subspace is linearly separable, as determined by a heuristic measure, then the LTU
is retained as a Boolean test at that node. If the subspace is not linearly separable,
then the space is split via a symbolic attribute selected using an information-theoretic
measure. The control strategy for the perceptron tree algorithm employs a fixed order
selection strategy; it first tries an LTU, if that fails, it then grows a symbolic decision
tree node. v

There are two successor systems to the original perceptron tree algorithm, PT2
[Utgoff & Brodley, 1990] and LMDT [Utgoff & Brodley, 1991]. Both removed the
explicit choice between the two learning algorithms. Each node in a tree created by
PT2 or LMDT is a linear discriminant function (for LMDT each node is a linear
machine [Nilsson, 1965]). PT2 and LMDT each use a variant of Sequential Backward
Elimination [Kittler, 1986] to select the terms to include at each node. SBE was
described in Section 2.3.2.

Schaffer’s E* algorithm searches a finite space of candidate models [Schaffer, 1990].
It implements a fixed order search through six possible functional forms, y = ko+k,z",
where n € {—2,—1,—.5,.5,1,2}. The motivation for the order in which the functional
forms are considered is to have E* emulate the way a statistician would search for
a model relating the two variables, y and z. The tests that E* uses to select the
best model are: a measure of fit, MF = 1/(1 — R?), of each equation, to select the
best model and the ¢-test to determine if the coefficients for an equation should be
zero. The thresholds for these tests were chosen to emulate the choices a statistician
would make. The system can also output the null answer, “no relationship found” if
no equation passes the tests.

Adaptive neural net algorithms change the representation language used to learn
a classifier to overcome the difficulty of specifying the correct net architecture for a
given learning task. If we restrict learning in artificial neural networks to adjustments
of the weights at each node, then a good generalization can be learned only if the
network designer picks the appropriate network architecture for the problem at hand.
The number of input and output units are typically specified by the task. Selecting
an architecture consists of picking the number of hidden units and specifying the
connections among the input, output and hidden units. It is a well known problem
that a network with too many hidden units overfits the training instances and in the
worst case results in rote learning, whereas a network with too few hidden units

24

overgeneralizes. Both cases decrease the ability of a trained network to classify
previously unseen instances correctly.

A neural net algorithm that chooses its own architecture frees the human architect
from the trial and error process often required to find a best architecture. There
are two basic approaches for changing the net architecture dynamically. The first
approach starts with a large net and removes hidden units/connection until further
removal appears as if it will result in overgeneralization [Mozer & Smolensky, 1989;
Hanson & Pratt, 1989; Karnin, 1990; Le Cun, Denker & Solla, 1990] The second
approach starts with a small net and adds units as deemed necessary for learning the
concept [Gallant, 1986; Honavar & Uhr, 1988; Ash, 1989; Frean, 1990b; Fahlman &
Lebiere, 1990].

There are two approaches for removing units and/or connections. After the
network has been trained, algorithms that use the first approach compute the
importance of each unit/connection for keeping the error rate low, and then eliminate
some number of the least important units. Training then continues on the resulting
network [Karnin, 1990; Le Cun, Denker & Solla, 1990; Mozer & Smolensky, 1989].
The second approach for reducing the size of the net is to modify the actual weight
training algorithm such that unnecessary connections or units have zero weight or
output after training. Weight decay achieves this end: the weight on each connec-
tion is decremented toward zero by a certain factor at each update. The weights
corresponding to important connections move away from zero and unimportant ones
move toward zero as learning proceeds. Alternatively, weight decay can be performed
implicitly by changing the error function. Hanson and Pratt’s (1989) method adds
terms to the error function to penalize hidden units that have small outputs.

There are several algorithms that start with a small net and add units/connections
to decrease the classification error of the net. These methods differ in when and
where new units are added to the net during training. Honavar and Uhr’s (1988)
generation method grows links and adds units whenever the net’s performance is
not improving. The process halts when the net converges. Ash’s (1989) dynamic
node creation algorithm trains networks that have only one hidden layer. If the
rate of decrease in the error falls below a preset threshold, a new fully-connected
unit is added. The upstart algorithm uses binary units and grows a binary tree-
structured network [Frean, 1990b]. Two new children are added if a parent cannot
classify the instances correctly; the children correct the output of the parent. The
cascade correlation algorithm starts with one layer [Fahlman & Lebiere, 1990]. If
the required mapping can not be learned by the one layer, then a hidden unit is
added as a hidden layer and trained while the previously trained weights are frozen.
More hidden units are added until the correct mapping is learned. The new unit is
fully connected to the input layer and to the unit added previously. Gallant (1986)
proposes three constructive network architectures: the tower, the inverted pyramid
and the distributed construction. New units are added if the current net is incapable
of classifying the instances to a specified degree of accuracy. When a new unit is
added, the coeflicients of the existing units are frozen.

25

2.3.4 Optimization

Tcheng, Lambert, Lu and Rendell (1989) created a system that couples induction
with optimization to search the inductive bias space. This space is defined by the
observed examples and a subset of the system’s set of learning algorithms (chosen by
the user). The system contains two components: the Competitive Relation Learner
(CRL) and the Induce and Select Optimizer (ISO). CRL is a generalized recursive
splitting algorithm that produces decision trees in which each internal node is either a
univariate test or an arbitrary hyperplane (generated randomly). Each leaf node can
be a univariate test, a neural network, a k-nearest-neighbor classifier or a regression
model (linear, quadratic, logarithmic or exponential). CRL applies all user specified
learning algorithms to the set of instances observed at a node in the partially formed
tree. CRL evaluates each resulting classifier using the accuracy for the training set, the
accuracy of an independent test set or a n-fold crossvalidation (the user specifies the
choice of evaluation measurement procedure). The recursive tree formation strategy
continues until the error is less than T, the number of examples at a node is less than
T, or the time consumed is greater than T3. The choice of stopping criterion, T}, and
its value are specified by the user.

Because trying all of the learning algorithms is computationally expensive, the
second component of the system, ISO, optimizes the search for the correct inductive
bias. To select which bias to apply (which learning strategy) ISO balances nowvelty
and performance in the bias space. The bias space is defined by the user specified
learning and error measurement strategies. The novelty measure, which is set by the
user, directs search to points in the bias space far away from strategies that have
already been tried. The chosen performance measure directs search to points that
have a low error rate. Note that this approach assumes that one can structure the
bias space such that learning algorithms that are similar in bias and performance are
close to one-another.

The system begins by probing randomly in the bias space to produce n opti-
mization data points, (X;,O;), where X; represents a bias point and O; measures
its credibility as measured by X;’s error. ISO uses these data points to train its
optimization function. From this point on, the search uses the optimization function
to select the next point in the bias space to explore. The next point can either be a
partially formed classifier (a point already visited) or a new learning strategy. How
long the system spends with one learning strategy is a user controlled parameter. The
system halts when CRL’s stopping criteria are met.

2.3.5 User-specified Strategy

The SBS testbed [Provost & Buchanan, 1994] allows the user to choose an
inductive policy for forming a generalization. An inductive policy is a search strategy
for searching the inductive bias space. It includes the search algorithm (called bias
transformation operators) and a performance evaluation function. Typically, an

26

evaluation function will specify a tradeoff between accuracy and the reduction of
some cost (eg., time, space, or complexity of the concept description). Note that the
evaluation function could also be maximization of accuracy.

This approach requires an explicit representation of the bias space. SBS is built
around a multiclass version of the RL learning system [Provost & Buchanan, 1992).
RL is a learning method that allows many different biases to be specified explicitly,
such as the beam search width and the complexity limit on rules. SBS repeats the
following cycle until a stopping criterion is met: choose candidate biases using the
bias transformation operators; run RL with each bias; compare biases (rule sets) using
the chosen evaluation function; and then choose the best bias. Three basic search
strategies are: select one bias at random, exhaustively search bias space, and choose
among several biases selected at random from the bias space.

Provost and Buchanan(1994) give three extensions to these basic policies. Firstly,
one can add structure to the bias space by adding domain knowledge or knowledge
about biases to order biases or restrict search from considering some biases. Secondly,
the results from searching with the first ¢ biases can be used to determine the next
appropriate bias to try. This extension assumes that new biases can be formed
from existing biases in a useful manner. An example of this is the SFS algorithm
described in Section 2.3.2. The final extension builds concept descriptions based
on elements learned in several different biases. This strategy assumes that partial
concept descriptions can be used to construct coherent concept descriptions and can
be evaluated for “goodness”.

2.4 Discussion

In this section we discuss our knowledge-based approach and the other existing
approaches’ potential to be a general solution to the automatic algorithm selection
problem. In Table 2.2 we show the type of selection that each approach handles with
an “X”. Methods that can perform all types of automatic algorithm selection are
general approaches — they can be used for any set of candidate algorithms. Note that
we do not mean the specific implementation, but rather the general approach behind
the implementation.

Our knowledge-based approach is a general approach to automatic algorithm
selection; it can select among different representations or search biases. Our approach
incorporates many of the features of existing systems. Like the methods described in
Section 2.3 it uses feedback during learning to guide the search for the best algorithm.
Unlike many of these methods it does not exhaustively examine all candidate learning
algorithms.

Crossvalidation, and ISO/CRL are general approaches that can be applied to
any mix of representation and search bias. Both methods require exhaustive search
through the space of candidates to ensure that the best algorithm has been selected.

27

el

E_“‘“ bl

Table 2.2 Catalogue of automatic algorithm selection systems

Approach/System Representation Search Bias Both
Only Only

Knowledge-Based Approach X

Crossvalidation X

VBMS

STATLOG

Generalize Case Studies

ACR

Fringe, CITRE

SBE and SFS Term Selection

BACON, ABACUS, COPER

Feature Constr. for Poly. Fns.

STAGGER, IB3-CI

Perceptron Trees

E‘

Adaptive Neural Nets

ISO/CRL (Optimization)

SBS Testbed

X
X

P s

PAPE PSP e

X X
X X

Neither of these approaches use information about why a particular algorithm is
unsuited to the given data set, and therefore must search randomly. In addition,
in the case of ISO/CRL, the system gives the same time limit to each learning
strategy. Some algorithms require more time than others. Therefore, if a particular
algorithm produces a classifier with a high error rate it is unclear whether this is due
to insufficient training time.

ACR has the potential to be a general approach, but has only been applied
to initial feature selection. In using ACR to select among different representation
languages, one must ensure that the coding schemes for assigning the number of
bits to a hypothesis not be biased to favor the hypotheses produced by one learning
algorithm over another. This is difficult because finding provably optimal codings is
unsatisfiable.

The ideas behind STATLOG are promising for a general approach to automatic
algorithm selection. However, thus far the heuristics resulting from STATLOG have
not been incorporated (tested) in an automatic algorithm selection system. Using one
set of learning problems to derive a decision process for selecting among algorithms
based on characteristics of the data was shown to be promising in Aha’s method for
generalizing case studies. The difficulty is in coming up with characteristics of data
sets that allow one to distinguish among different learning algorithms. The work in
this area is preliminary, but hopefully will continue over the next few years.

28

Considering candidate algorithms in a fixed order is a general selection method.
However fixed-order selection methods implement biases that may be inappropriate
for some learning tasks. In the perceptron tree algorithm, effort is wasted determining
that a space is not linearly separable; training an LTU requires significantly more time
than selecting a single attribute test. In addition it may be that a subset of the input
variables would produce a test superior to either a univariate test or a test based on
all of the input variables.

Allowing the user to specify the inductive policy is a general approach. However,
to pick a policy that does not result in exhaustive search, one requires significant
knowledge about the biases of the learning system to structure the bias space.

The remainder of the methods described in this chapter select among representa-
tion languages. None of these methods is a general approach to automatic algorithm
selection system. This does not mean that the ideas incorporated in each approach
could not be used for part of an automatic algorithm selection system. Indeed the
idea of using the performance results of algorithms already tried to help select the
next candidate algorithm is a promising one and in Chapter 4 we will see many of
these ideas incorporated into a new general approach.

29

E“‘- ‘

E_m_]

o

CHAPTER 3

HYBRID CLASSIFIERS

One can characterize learning algorithms as searching either a homogeneous,
heterogeneous or hybrid hypothesis space. A homogeneous hypothesis space is one
that contains hypotheses expressed in a single representation language. For example,
univariate decision trees and linear discriminant functions are each single representa-
tion languages. A heterogeneous hypothesis space contains hypotheses from several
different representation languages; each individual hypothesis is expressed in one of
the representation languages contained in the heterogeneous space. For example, a
hypothesis space that contains hypotheses expressed as either a linear discriminant
function or a univariate decision tree is a heterogeneous hypothesis space. Finally, a
hybrid hypothesis space is a space that combines different homogeneous hypothesis
spaces; each hypothesis is expressed using one or more representation languages.
For example, a representation language that mixes linear discriminant functions and
univariate decision trees in the same hypothesis defines a hybrid hypothesis space.

Traditionally, machine learning researchers have created inductive learning algo-
rithms that form homogeneous classifiers. Restricting a learning algorithm to one
that employs a homogeneous representation bias assumes that a classifier for the
data set is represented best using a single representation language. (This is also true
of heterogeneous hypothesis spaces; although one can select among different homo-
geneous biases, the end result is still a classifier expressed in a single representation
language.) However, for some data sets this may not be the case; different subspaces
of the learning task may be learned best by employing different representation biases,
indicating that forming a hybrid classifier will result in higher classification accuracy
than a homogeneous classifier. For example, consider the following concept: heart
attack caused by a weight problem. A heart attack can be caused by two extremes,
obesity or anorexia.! Given a set of positive and negative training examples described
by three attributes, sex, height and weight, a concept learner needs to learn the
subconcepts “underweight” and “overweight”. These two subconcepts are different
depending on whether the patient is a woman or a man. A single linear threshold unit
(LTU) is not appropriate for the entire instance space because the space is not linearly

! Anorexia patients typically have a potassium deficiency due to lack of food, which in turn may
cause heart failure.

30

)
height height
6’5" 6’5" b .
6’0’9 6’09’) - ++ +
56’ 526 .- i + +
+ + 4

507 5°0” T ./t + +
4’5 4°5” L

50 100 150 200 250 weight 100 150 200 250 300 weight

sex = female sex = male

wn,

Figure 3.1 The concept heart attack; “+”: positive instance, “-”: negative instance.

separable, as can be seen in Figure 3.1. Moreover, a symbolic decision tree algorithm
would have difficulty learning a compact generalization for this concept because it
would need to approximate the hyperplanes with a series of splits orthogonal to each
of the axes.

A better solution (shown in Figure 3.2) is a hybrid formalism that combines LTUs
and decision trees. This example illustrates that choosing initially between a decision
tree and an LTU will not yield as succinct and accurate a classifier as combining both
representation languages and employing a control strategy to choose between them,
for each subspace of the instance space. For such cases one would like to mix different
representations and search biases to create a hybrid classifier.

We define a hybrid classifier to be one that combines different homogeneous
classifiers. There are three general approaches. In the first approach a hybrid classifier
consists of a set of n homogeneous classifiers, one for each of n distinct regions
(subspaces) of the instances space. This requires a method for determining how to
partition the space into n distinct regions and how to form a homogeneous classifier for
each region. The second type of hybrid classifier combines the classification decisions
of several different homogeneous classifiers. For each of these two approaches each
homogeneous learning algorithm in the hybrid learns a classifier for a set of data
without the influence of any other algorithm; what set or subset of the data is
given to each homogeneous learning algorithm and how the resulting classifiers are
combined differs depending on the hybrid classifier formation algorithm. Finally,
like the second approach, the third approach combines the classification decisions of
different homogeneous classifiers, but the classifiers are not trained independently.

The need for hybrid classifiers is based on the hypothesis that for some data
sets different parts of the instance space are learned best using different learning
algorithms. In this chapter we first outline the desired properties of a hybrid classifier
construction algorithm. We then describe existing approaches, pointing out the
limitations of each. We focus our discussion on algorithms that ezplicitly choose

31

|-

£

E"—*’v

Figure 3.2 Classifier induced for the concept heart attack using a hybrid formalism.

among and mix different learning algorithms. Examples of systems that contain
various properties of different algorithms can be found in Schlimmer (1986), Brodley
and Utgoff (1992), Clark and Niblett (1989), and Towel, Craven and Shavlik (1991).
We conclude this chapter with a description of our approach to hybrid classifier
construction that is designed to have the properties outlined in Section 3.1.

3.1 Desired Properties

In creating a hybrid classifier construction system one desires that it have the
following properties:

1. That it subsume its primitive components.

2. That it partition the data set into subspaces that each are learned best by one
of the candidate homogeneous classifiers.

3. That it select a best classifier (hybrid or homogeneous) for each subspace of the
instance space.

4. That it combine algorithms that are each suited to different distributions of
data.

A hybrid classifier construction algorithm should subsume its primitive compo-
nents; for any given data set it should produce a classifier at least as accurate
as the classifier produced by each of its primitive homogeneous algorithms. If our

32

hypothesis that for some data sets different subspaces are learned best by different
algorithms is true, then for these data sets the hybrid classifier should be more
accurate than classifiers produced by each of the homogeneous algorithms. This
requires that the hybrid classifier formation algorithm partition the instance space
into subspaces that each are learned best by one of the primitive homogeneous
algorithms. The ability to combine different representation languages in a single
hybrid structure allows a space of classifiers that is strictly richer than the union of
its constituent homogeneous components. In designing a search strategy for a hybrid
classifier construction algorithm, one does not want to lose the option of picking a
single homogeneous classifier, which requires an ability to recognize whether the best
classifier is a homogeneous or hybrid classifier for a given set of instances.

As discussed in Chapter 2, there is no reason to combine algorithms that would
each produce the same classifiers for each set of data. The algorithms included in the
set of candidates considered by the hybrid classifier construction algorithm should
be complementary [Utgoff, 1989]. There are two components of each algorithm that
must be considered: the algorithm’s representation language and its search bias for
selecting a generalization. Concepts or subconcepts that are difficult to represent
well in one language may be easy to represent in another. Indeed, a system that can
combine different representation languages and search biases can represent accurately
a larger class of concepts.

3.2 Existing Approaches

An important distinction among hybrid classifier construction algorithms is the
way in which they combine the different primitive algorithms. There are three basic
approaches to constructing a hybrid classifier. The first is to assign explicitly a
different classifier for each mutually exclusive subset of the data [Tcheng, Lambert,
C-Y Lu & Rendell, 1989; Utgoff, 1989], which requires a method for splitting the
data into mutually exclusive subsets. Given an instance, a decision procedure is used
to decide to which subspace it belongs and the classifier for that subspace is used to
classify the instance. A second approach is to apply each of several different learning
algorithms to the entire set of data and then to combine their outputs [Wolpert, 1992;
Breiman, 1992; Zhang, Mesirov & Waltz, 1992]. A third approach uses different
subsets of the training data to train each of a set of classifiers and then classifies
previously unseen instances using some scheme to combine the outputs of the set. In
Sections 3.2.1, 3.2.2 and 3.2.3 we describe each of these approaches in detail.

3.2.1 Explicit Combination

Methods that explicitly assign different classifiers to different subspaces of the
instance space require a procedure to determine whether one of the homogeneous

33

. E___

£

S T

_

instance
Subspace
Selector
instance instance instance
Classifier 1 Classifier 2 . Classifier m
/
class class class

Figure 3.3 A hybrid classifier that explicitly assigns a classifier to each subspace.

classifiers is ideal for a given space (or subspace) or whether the space should be split
into a new set of subspaces. Once further splitting is deemed necessary, the next
step is to find a partition of a space that creates subspaces that are each learned
well by one of the homogeneous learning algorithms. The ability to partition the
instance space into homogeneous subspaces, that are each ideal for one or more of
the candidate homogeneous learning algorithms, allows a hybrid algorithm to find the
best hybrid classifier for the entire instance space.

In Figure 3.3 we show a hybrid classifier that assigns explicitly a different classifier
for each of m mutually exclusive subspaces of the instance space. To classify a
previously unseen instance, it first selects the correct subspace and then returns the
class label assigned by the classifier for that subspace. Note that the procedure used
to assign the instance to a subspace is also a classifier; it classifies the instance as
belonging to a particular subspace.

In designing an algorithm that forms a tree-structured hybrid classifier, one must
decide whether classifiers of each representation language can be at any test node
in the tree or whether classifiers from certain representation languages are only
permitted in some parts of the tree. For example, the Perceptron Tree algorithm
[Utgoff, 1989] is a recursive hybrid-classifier construction algorithm that combines
decision trees and linear threshold units. Utgoff defines a perceptron tree to be a
decision tree in which each leaf node is a perceptron and each test node is a univariate
symbolic test. In terms of the organization shown in Figure 3.3, the subspace selector

34

is a univariate decision tree and each of the m classifiers is a perceptron. The search
strategy of Perceptron Trees was discussed in Chapter 2.

In the AIMS system [Yerramareddy, Tcheng, Lu & Assanis, 1992], the model
formation component, CRL [Tcheng, Lambert, C-Y Lu & Rendell, 1989], forms a
recursive hybrid structure. CRL partitions the instance space recursively by selecting
among the user-specified decomposition strategies (univariate tests and arbitrary
hyperplanes). After CRL determines that further decomposition (partitioning) is
not desirable, it searches for the best of a user-specified subset of a univariate test, a
neural network, a k-nearest-neighbor classifier or a regression model (linear, quadratic,
logarithmic or exponential). CRL restricts the types of tests permitted at internal
nodes of the tree to decomposition strategies; in the context of Figure 3.3 the subspace
selector is a decision tree consisting of univariate tests and arbitrary hyperplanes.

A different approach to forming a hybrid classifier is taken by Jacobs, Jordan,
Nowlan and Hinton (1991). Their goal is to reduce the interference effects that occur
when training a single multilayer network to perform different subtasks on different
occasions; interference effects lead to slow learning and poor generalization. Jacobs
et al. reduce such interference effects by using a system composed of several different
“expert” networks plus a gating network that decides which of the experts should be
used for each training case. During training, the gating network allocates a new case
to one or a few experts, and if the output is incorrect the weight changes are localized
to these experts (and the gating network). Therefore each expert can specialize in
different cases and there is no interference among the weights of different experts.
Each expert is a feedforward network and all experts receive the same input and have
the same number of outputs. The gating network is also feedforward and receives the
same input as the expert networks and has one output unit for each of the n experts.
The gating network makes a stochastic decision about which single expert to use on
each occasion. The selector acts like a multiple-input, single-output stochastic switch;
the probability that the switch will select the output from expert j is p;, where p; is
the output of unit j of the gating network.

3.2.2 Stacked Generalization

The second general approach to forming hybrid classifiers is to apply each of
several different learning algorithms to the entire set of data and then to combine
their outputs [Wolpert, 1992; Breiman, 1992; Zhang, Mesirov & Waltz, 1992]. Such
approaches have been called Stacked Generalization [Wolpert, 1992]. To construct
such a classifier requires specifying the primitive components and selecting a combi-
nation scheme. Ideally, the primitive components are chosen such that each works
well on different data sets (as discussed in Section 3.1).

Stacked generalization can be seen to be a more sophisticated version of crossvali-
dation, which is a “winner takes all” strategy for combining the individual classifiers.
In stacked generalization, the combination scheme can be simply a weighted average
or another learning algorithm can be applied to determine how the outputs of the

35

S

e

-

instance instance instance
Classifier 1 Classifier 2 Classifier m
class class class
Combiner
class

Figure 3.4 A hybrid classifier that combines the classification decisions of m
classifiers.

primitive classifiers should be combined. In Figure 3.4 we show the structure of
a hybrid classifier constructed using stacked generalization. A previously unseen
instance is classified by applying each of the m classifiers to assign m class labels and
then using a combination strategy to output a single label. The “combiner” takes as
input the outputs of the m classifiers. Note that it could also input the feature values
of the instance to be classified.

Wolpert (1992) presents a general method for forming a stacked generalization
of m classifiers.? For each of the n instances, construct all m classifiers using the
remaining n — 1 instances. Classify the n** instance using each of the m classifiers to
create a vector of the predictions, guess,,. Couple guess,, with the true class label
to create a training instance of the “level-one” data. This process creates n instances
of level-one data that are used to train the combiner. Note that one can add other
information to each level-one data point, such as the values of the features of the
instance [Wolpert, 1992]. After the combiner is trained, the full set of data is used to
construct each of the m classifiers.

3Stacked Generalization can also be used to adjust for the biases of a single classifier, but we
restrict our discussion here to the hybrid case. The reader is referred to Wolpert (1992) for non-hybrid
uses of stacked generalization.

36

In a crossvalidation selection of the single best classifier, the level-one data would
be used to select the best classifier. Wolpert’s idea is that the level-one data has more
information in it and can be used to construct good combinations of the guesses of
the primitive algorithms. Wolpert shows that using level-one data to form nonlinear
combinations of three nearest neighbor classifiers achieves a performance improvement
of 20% over selection of the best single classifier by crossvalidation for the Nettalk
data. However, each of the three nearest neighbor classifiers was given access to a
single input letter slot (slot 3, slot 4 and slot 5). Therefore, Wolpert states that it
is possible that either backprop or a nearest neighbor classifier that had access to all
seven slots might achieve better performance for this data set. For more details on
how the experiment was performed see Wolpert (1992).

Breiman (1992) illustrates that stacking regressions can improve performance.
Breiman states: “If the vector of independent features is high dimensional and the
sample size N is not large compared to the number of variables, then it is known
and agreed that the ordinary least squares predictor has too much variance and
needs modification.” A difficulty is that the two solutions to this problem, variable
subset selection and ridge regression, each work on opposite ends of the “coefficient
spectrum.” Subset selection works well if there are a few large coefficients and the rest
are zero or nearly zero; whereas ridge regression works well if there are many small
non-zero coefficients but no large ones. Breiman shows empirically that combining
regression predictions using stacked generalization results in more accurate predictors
of the dependent variable, y, than the traditional strategy of picking the best one
(typically by crossvalidation). In the particular cases that were tried, the linear

3

combination, ¢ , B;P;, of the k predictors P;, did not always result in a prediction
error lower than the best of the individual regression equations. However, when
the coefficients, ;, were constrained to be non-negative, the linear combination did
illustrate lower prediction error than each of the individual regression equations.
Indeed, in some cases the improvement was substantial.

Zhang, Mesirov and Waltz (1992) developed a hybrid system to predict the
secondary structures of proteins. The hybrid’s performance was better than each
of the individual classifiers in the hybrid and than all previously reported methods
applied to this domain. Each of a memory-based reasoning system, a statistical
method (which uses Bayes theorem) and a neural network were trained on the same
half of the data. The outputs of these trained “experts” on the second half of the
data were used as inputs to train the combiner, which is a neural network. After the
combiner is trained, each expert was then retrained on the entire data set.

One problem with Stacked Generalization is that these methods can result in
a hybrid classifier that is less accurate than one of the primitive components if a
bad combination scheme is used [Wolpert, 1992]. Indeed, it is an open problem
how to form a procedure for choosing or combining the outputs of the primitive
learning components. Much of the success of these efforts is due to finding a good

3For a description of regression analysis see Chapter 2 Section 2.3.2.

37

| AR S

|

L.

L.

e

_—

—

|

—

representation and search bias for forming the classifier used as the combiner. In
the case of stacked regression [Breiman, 1992] the researcher needed to discover that
non-negative coefficients led to a performance improvement, whereas unconstrained
coeflicients could lead to a performance decrease over the best individual regression.

3.2.3 Boosting

A third approach to forming hybrid classifiers originates from Schapire (1990).
The general idea is to use different subsets of the data to train different classifiers.
To classify an instance, the outputs of the classifiers are combined using a particular
combination scheme. The algorithm for training proceeds as follows. Train the first
classifier using a set of N training examples, then flip a fair coin. If the coin is heads,
pass new instances through the first classifier until it misclassifies an instance, and
add this instance to a second training set. Otherwise if the coin is tails, pass instances
though the first classifier until it finds an instance that it classifies correctly and add
this instance to the second training set. Repeat this process until enough patterns
have been collected and then train the second classifier with this new training set.
The first two classifiers are then used to produce the training set for a third classifier
in the following manner: classify new instances using the first two trained classifiers.
If the classifiers disagree on the classification, add this instance to a third training set.
Continue this process until enough instances are generated to form a third training
set. Then train the third classifier. Once the third classifier has been trained, the
entire set is used to classify instances.

To classify an instance, each of the three classifiers is applied to the instance, and
a class label is assigned using the following voting scheme: if the first two classifiers
agree, then that is the class label. Otherwise assign the class label as classified
by the third classifier. Boosting has been applied to improve the performance of
neural networks, but there is no reason that it could not be applied to other types of
learning algorithms. When neural networks are used, one useful modification to the
basic boosting algorithm is to add together the three sets of outputs from each of the
three networks to obtain one set of outputs [Drucker, Schapire & Simard, 1993]. This
modification reduced the error rate by 0.5

3.3 A General Recursive Hybrid Algorithm

In this section we describe a new approach to hybrid classifier construction. Like
the systems described in Section 3.2.1 our approach creates a tree-structured hybrid
classifier. Unlike Perceptron Trees [Utgoff, 1989] and CRL [Tcheng, Lambert, C-Y
Lu & Rendell, 1989], our method makes no distinction between decomposition and
learning strategies; any of the primitive learning algorithms can be used to form
a subspace selector or classifier. We do not enforce any restriction because there

38

Table 3.1 Algorithm for forming a tree-structured hybrid

Form Classifier(instances)

IF instances from a single class
THEN return(class)
ELSE select the best algorithm from the set of candidates to create a classifier
partition the instances using the classifier
for each partition call Form Classifier(partition)

is no evidence that the best decomposition of a given data set can be found with
orthogonal partitions (univariate tests) or arbitrary hyperplanes. Indeed specifying
that the decomposition partitions must be orthogonal to the feature axes restricts the
way in which subspaces can be formed and may preclude finding a partition for which
each subspace is ideally suited for one of the algorithms. Furthermore, partitioning
the space with an arbitrary hyperplane is in conflict with the goal of decomposing
the space into learnable subspaces. By chance one may be found, but our approach
searches explicitly for partitions of the data that create subspaces easily learned by
one of the candidate homogeneous learning algorithms.

Given a data set, the goal of our approach is to select the most appropriate of
a set of candidate learning algorithms. The approach applies a hill-climbing search
guided by a set of heuristic rules. Next, the data set is partitioned using the classifier
formed by the chosen algorithm and the search is applied recursively to each resulting
subset of the data that contains instances from more than one class. Once a classifier
has been fit that classifies each instance in the training data correctly, the next step is
to apply a heuristic pruning procedure to ensure that the resulting classifier does not
overfit to the noise in the training data. The general recursive algorithm for forming
a hybrid classifier is shown in Table 3.1.

Constructing a hybrid classifier requires a method for partitioning the data into
useful subspaces and a method for choosing the best learning algorithm for each
subspace. Therefore, the problem of automatically selecting the best algorithm for
a set of data needs to be addressed when creating a hybrid classifier construction
algorithm.

The space of hybrid classifiers is strictly larger than the space of homogeneous
classifiers defined by the homogeneous representation languages contained in the
hybrid space. By increasing the space of possible hypotheses we strictly increase
the probability that for a given data set, a good generalization will exist in the space
searched. Increasing the search space does not ensure that a good generalization
will be found; it depends on the search algorithm. Therefore, a hypothesis of this
research is: Our knowledge-based search strategy for finding a hybrid classifier will

39

e .

& ‘_i

produce a classifier that is never worse than, and for some data sets is better than,
any homogeneous classifier produced by its primitive components.

Another consideration is the cost of searching a larger space. Our empirical results,
reported in Chapter 5, illustrate that merely increasing the search space by permitting
hybrid classifiers will not lead to an increase in performance; one needs a search
strategy that will not be misled by the larger number of possibilities. In addition, a
comparison of our method to several other hybrid classifier construction algorithms
illustrates that applying knowledge about the biases of the homogeneous algorithms to
search this larger space can substantially reduce the time needed over knowledge-poor
methods.

40

CHAPTER 4

A RECURSIVE AUTOMATIC ALGORITHM
SELECTION SYSTEM

We have implemented our recursive automatic algorithm selection approach,
producing the Model Class Selection system (MCS). Given a set of data, MCS
builds a classifier using a set of heuristic rules to guide a hill-climbing search for
the best representation and search bias from which to form a test for each node in a
hybrid classifier. Figure 4.1 shows an example of a hybrid classifier that MCS might
construct. The root of the tree is a linear combination test, the left subtree is an
instance-based classifier and the right subtree is a two-node univariate decision tree.
Each leaf node is labeled with one of three classes (A, B, or C). In this chapter we
first describe the design goals of our implementation. We then describe MCS’s model
classes, search strategy, and the data-set characteristics, computed during search,
that lead MCS to prefer one bias over another. We conclude with a detailed example
of MCS applied to a learning task.

4.1 Design Goals

The implementation of our recursive automatic algorithm selection approach
was designed with several goals in mind. In Chapters 2 and 3 we outlined the
desired properties of an automatic algorithm selection system and a hybrid classifier
construction algorithm, respectively. By combining these properties we derive the
following list of abilities that an implemented system should have:

1. Choose among and combine candidate algorithms that are each suited to
different distributions of data.

2. Subsume its primitive components.

3. Select a best classifier (hybrid or homogeneous) for each subspace of the instance
space.

4. Avoid a prohibitive amount of time to select a best algorithm for a set of data.

41

Led

e

C B

Figure 4.1 Example of a hybrid tree-structured classifier.

We chose the following three primitive representation languages: linear discrim-
inant functions, decision trees and instance-based classifiers. Our choice of these
three representation languages stems from the results of empirical comparisons, which
illustrate that these three languages produce classifiers of widely differing accuracy for
different data sets; each of the three was selectively superior for some data sets. An
analytical evaluation of the three representation languages provided further evidence
that for many data sets the three would form widely differing classifiers. In Sections
4.2 and 5.2 we discuss in more detail the differences and similarities among these
three languages.

The remaining three abilities, listed above, drove the development of the rule base
and search strategy of MCS. In order to avoid a prohibitive amount of time to select
a best test for each node in the hybrid classifier, the rules were designed to cut off
unpromising avenues of search. For example, there is no need to explore various linear
combinations of the features if there are strong indications that a single univariate
test is a better test.

To arrive at an implementation that subsumes its primitive components and
selects a best classifier for each subspace of the instance space requires careful
generation of the rule set. This trial and error process starts with a basic knowledge
of the strengths and weaknesses of each of the included primitive algorithms. The
representation languages included in MCS had the added benefit of being three of the
most extensively used languages in both machine learning and statistics. This meant
that a body of knowledge about their biases existed prior to the implementation of
MCS. We were able to draw on this body of knowledge to begin the formation of the
rule base. Building on this basic knowledge we then began a trial and error process
for generating and debugging rules that we describe in Section 4.3.2.

42

4.2 Model Classes

MCS combines three primitive representation languages (model classes): linear
discriminant functions, decision trees and instance-based classifiers. For each model
class there are many different algorithms for searching for the classifier that best fits
the data. In this section we first describe the algorithms included in MCS. Specifically,
we describe each representation language, its corresponding search bias, and how
different types of data (numeric and symbolic) and missing values are handled. We
conclude with a discussion of the differences and similarities among the three model
classes.

4.2.1 Univariate Decision Trees

A univariate decision tree is either a leaf node containing a classification or an
attribute test, with for each value of the attribute, a branch to a decision tree. To
classify an example using a decision tree, one starts at the root node and finds the
branch corresponding to the value, for the attribute tested, observed in the example.
This process repeats at the subtree rooted at that branch until a leaf node is reached.
The resulting classification is the class label of the leaf.

There are many different decision tree algorithms [Moret, 1982; Breiman, Fried-
man, Olshen & Stone, 1984; Quinlan, 1986]. During tree construction, at each node,
one wants to select a test that best divides the instances into their classes. There
are many different partition-merit criteria that can be used to judge the “goodness
of a split”; the most common appear in the form of an entropy or impurity measure.
Breiman, et al. (1984), Quinlan (1986), Mingers (1989), Safavian and Landgrebe
(1991), Buntine and Niblett (1992), and Fayyad and Irani (1992b) discuss and
compare different partition-merit criteria.

MCS’s approach to constructing decision trees is to use information theory to
select a best attribute to place as a test at a node. An information theoretic metric
measures the gain in information if attribute A; is used to form a partition of the
instances observed at a node. Such metrics aim to reduce the impurity of each
resulting partition. The impurity of a partition is at a minimum if it contains
elements of only one class. The impurity is at a maximum if all classes are equally
represented in the partition [Breiman, Friedman, Olshen & Stone, 1984]. To find a
best univariate test for a set of instances, MCS chooses a test that maximizes the
Information-Gain Ratio metric [Quinlan, 1986]. In Appendix A we describe how to
compute this measure.

One desires that a decision tree algorithm be able to handle both unordered
(symbolic) and ordered (numeric) features. Univariate decision tree algorithms
require that each test have a discrete number of outcomes. To meet this requirement,
each ordered feature A; is mapped to a set of unordered features by finding a set of
Boolean tests of the form A; > b, where b is in the observed range of A;. MCS finds
the value of b that maximizes the Information-Gain Ratio. To this end, the observed

43

E-__‘l

|

. _

L _

&r 4_‘!

e

—

~ A

values for A; are sorted and the midpoints between class boundaries are evaluated
[Quinlan, 1986; Fayyad & Irani, 1992}

An issue that must be addressed for any learning algorithm that handles real-world
tasks is how to handle missing values in the data. During tree construction and when
using the tree to classify an instance, MCS fills in missing values for a univariate test
as follows: if a numeric attribute’s value is missing it substitutes the sample mean
[Sutton, 1988]; and if a symbolic attribute’s value is missing then it substitutes the
most frequently observed value [Quinlan, 1989).

4.2.2 Linear Discriminant Functions

To construct a linear combination test for a set of data, MCS represents the test as
a linear threshold unit for two-class tasks and as a linear machine for multiclass tasks
[Nilsson, 1965]. A linear threshold unit (LTU) is a binary test of the form WTY > 0,
where Y is an instance description (a pattern vector) consisting of a constant 1 and
the n features that describe the instance. W is a vector of n + 1 coeflicients, also
known as weights. If WTY > 0, then the LTU infers that Y belongs to one class A,
otherwise the LTU infers that .Y belongs to the other class B. When an LTU is a test
node in a decision tree it has two branches, one for each class.

A linear machine (LM) is a set of R linear discriminant functions that are used
collectively to assign an instance to one of the R classes [Nilsson, 1965]. Let Y
be an instance description (a pattern vector) consisting of a constant 1 and the n
features that describe the instance. Then each discriminant function g;(Y) has the
form WTY, where W; is a vector of n+1 coefficients. A linear machine infers instance
Y belongs to class 7 if and only if (V5,7 # i) g(Y) > g;(Y). For the rare case in
which g;(Y) = g;(Y) some arbitrary decision is made: our implementation of an LM
chooses the smaller of 7 and j in these cases. When an LM is a test node in a decision
tree it has R branches, one for each observed class in the instances.

Each feature included in a linear combination test must be numeric. To include
symbolic features in linear combination tests, MCS maps each symbolic (unordered)
feature to one or more numeric features [Hampson & Volper, 1986; Utgoff & Brodley,
1990]. For a two-valued symbolic feature, MCS simply assigns 1 to one value and —1
to the other. If the feature has more than two observed values, then each feature-value
pair is first mapped to a propositional feature, which is TRUE if and only if the feature
has the particular value in the instance [Hampson & Volper, 1986]. The two-valued
propositional feature is then mapped to a numeric feature, where a value of TRUE is
mapped to 1 and a value of FALSE is mapped to —1. This mapping avoids imposing
any order on the unordered values of the feature. With this encoding, one can create
linear combinations of both ordered and unordered features.

An LTU (LM) is biased toward concepts that are linearly separable. If, however,
the space is not linearly separable then an LTU (LM), trained using the absolute
error correction rule [Duda & Hart, 1973], can not represent the concept and as a
result will misclassify some percentage of the instances. There are several training

44

procedures aimed at finding a good LTU (LM) even when the space is not linearly
separable. One such procedure is the thermal training rule, which enables a linear
threshold unit to converge to a set of boundaries using an annealing coefficient [Frean,
1990a]. Utgoff and Brodley (1992) have adapted this idea to a linear machine and we
use their method to train linear machines in MCS. Qur choice of this method is based
on the results of an empirical comparison that illustrated that the thermal training
rule performed better than several other alternatives across a range of different tasks
[Brodley & Utgoff, in press).

In MCS, we add a new modification to this procedure to address the problem
that the weights found by this rule depend on the order in which the instances are
presented; a bad ordering can lead to an inaccurate classifier. To ameliorate this
problem we apply the thermal training procedure ten times, ordering the instances
differently each time. This produces ten LTUs (LMs), each with a different set of
weights. MCS chooses the LTU (LM) that maximizes the Information-Gain Ratio
metric. In Appendix A we describe how to compute this metric for linear combination
tests.

In addition to finding a good set of weights, one wants to eliminate noisy and
irrelevant features with the goal of increasing predictive accuracy. For most data
sets it will be impossible to try every possible subset of the set of features because
the number of possible combinations is exponential in the number of features.
Therefore, some type of heuristic search procedure must be used. To select the
terms to use with a linear discriminant function, MCS applies one of three search
procedures: Sequential Backward Elimination (SBE) [Kittler, 1986], a variation of
SBE, Dispersion Sequential Backward Elimination (DSBE), which uses the form of
the function to determine which terms to eliminate [Utgoff & Brodley, 1991], and
Sequential Forward Selection (SFS) [Kittler, 1986]. The choice of which of these
search biases to apply is determined dynamically during learning, depending on the
hypotheses that have already been formed.

A Sequential Backward Elimination search is a top-down search method that starts
with all of the features and tries to remove the feature that will cause the smallest
decrease of some partition-merit criterion that reflects the amount of classification
information conveyed by the feature [Kittler, 1986]. Each feature of a test either
contributes to, makes no difference to, or hinders the quality of the test. An SBE
search iteratively removes the feature that contributes least to the quality of the
test. It continues eliminating features until a specified stopping criterion is met. To
determine which feature to eliminate, the coefficients for i linear combination tests,
each with a different feature removed, are computed. MCS selects the subset of the
features that maximizes the Information-Gain Ratio. MCS searches as long as the
accuracy of the current test based on ¢ features is either more accurate or is not more
than 10% less accurate than the accuracy of the best test found thus far, and two or
more features remain to be eliminated. This heuristic stopping criterion is based on
the observation that if the accuracy drops by more than 10%, the chance of finding
a better test based on fewer features is remote [Brodley & Utgoff, in press].

45

'

g—-w——.

A Sequential Forward Selection search is a bottom-up search method that starts
with zero features and tries to add the feature that that will cause the largest increase
of some partition-merit criterion. An SFS search iteratively adds the feature that
results in the most improvement of the quality of the test. It continues adding features
until the specified stopping criterion is met. During the process of adding features,
the best linear combination test with the minimum number of features is saved. When
feature addition ceases, the test for the decision node is the saved linear combination

‘test. MCS applies the SFS search until either no more features remain to be added

or the accuracy of an LTU (LM) decreases by more than 10% when a new feature
is added. The resulting LTU is the LTU with the largest Information-Gain Ratio
observed during the SFS search.

The Dispersion-Guided Sequential Backward Elimination (DSBE) search is a
variation of the SBE algorithm, which uses the weights of the LTU (LM) to determine
which features to eliminate [Brodley & Utgoff, in press]. DSBE selects the feature to
remove that contributes the least to discriminability based on the magnitude of the
weights of the LTU (or LM). This reduces the search time by a factor of n; instead
of comparing n linear combination tests when deciding which of the n features to
eliminate, DSBE compares only two linear combination tests (T; to T;—;). To be able
to judge the relative importance of the features by their weights, we normalize the
instances before training using the standard normal form (i.e., zero mean and unit
standard deviation).

For an LTU test, we measure the contribution of a feature to the ability to
discriminate by the magnitude of its corresponding weight. We choose the feature
corresponding to the weight of smallest magnitude as the one to eliminate. For an
LM test, we evaluate a feature’s contribution using a measure of the dispersion of
its weights over the set of classes. A feature whose weights are widely dispersed has
two desirable characteristics. Firstly, a weight with a large magnitude causes the
corresponding feature to make a large contribution to the value of the discriminant
function, and hence discriminability. Secondly, a feature whose weights are widely
dispersed across the R linear discriminant functions (R is the number of classes)
makes different contributions to the value of the discrimination function of each
class. Therefore, one would like to eliminate the feature whose weights are of smallest
magnitude and are least dispersed. To this end, DSBE computes, for each remaining
feature, the average squared distance between the weights of the linear discriminant
functions for each pair of classes and then eliminates the feature that has the smallest
dispersion. This measure is analogous to the Euclidean Interclass Distance Measure
for estimating error [Kittler, 1986).

To handle missing values for linear combination tests, MCS fills them in using the
sample mean. After normalization the sample mean of each feature is equal to zero.
In a linear combination test this has the effect of removing the feature’s influence
from the classification, because a feature with a value of zero does not contribute to
the value of the linear combination. The normalization information is retained at

46

po
Lty

Ci
p C
C:
C,
C,

012345678 X

SHNWANAIR W

Figure 4.2 An instance-based classifier.

each node in the tree. During classification, this information is used to normalize and
fill in any missing values of the instance to be classified.

4.2.3 Instance-Based Classifiers

An instance-based classifier (IBC) is a set of n distinct instances, each from one
of m classes, that are used to assign an instance to one of the m classes. A simple
IBC is the k-nearest neighbor (k-NN) classifier [Duda & Hart, 1973], which classifies
an instance according to the majority classification of its k nearest neighbors. MCS
employs a NN algorithm that stores each instance of the training data. To determine
how near one instance is to another, MCS computes the Euclidean distance between
the two instances. When an IBC is embedded in a decision tree as a test node, it has
a branch for each of the observed classes.

Computing the distance between symbolic features, either requires a special
procedure [Aha, 1990] or the conversion of the symbolic features to a numeric
representation. To handle symbolic data, MCS encodes each symbolic variable as
one or more propositional variables and then maps each propositional variable to
a numeric variable as described in the previous section. In order that all variables
contribute equally to classification decisions, MCS normalizes variables using standard
normal form, i.e., zero mean and unit standard deviation.

In Figure 4.2 we show a simple instance-based classifier consisting of five instances,
each described by two features (X and Y) and labelled as one of two classes (C,
and C;). If a 1-NN were used the resulting classification for the instance labelled I
would be class 2. If a 3-NN were used then the IBC would label I as class 1. Our
implementation of an instance-based classifier treats all features equally and assigns
equal importance to the k nearest neighbors of the instance to be classified. (There

47

£

o

-

+ 4+ + +

All 3 representations
define the same partition

Figure 4.3 Representation similarities.

are methods for weighting the features in the distance calculation and for weighting
the importance of the neighbor’s votes [Duda & Hart, 1973; Aha, 1990].

To search for a best value of k, MCS estimates the classifier’s accuracy with the
following measure: for each instance in the training data, classify that instance using
the remaining instances. The system selects the value of k that produces the highest
number of correct classifications for the training data. The order in which values for &

are evaluated is determined by the heuristic rules, which are described in the Section
4.3.2.

4.2.4 Differences and Similarities

Classifiers constructed from any one of these three languages each form a
piecewise-linear partition of the given instance space. They differ in how (where)
the boundaries may be placed in the space. A univariate test of feature F; represents
a decision boundary that is orthogonal to F;’s axis. A univariate decision tree defines
a set of orthogonal decision boundaries that partition the instance space into a set
of hyper-rectangular regions each labeled with a class name. A set of R linear
discriminant functions defines a set of R regions in the instance space, separated
by hyperplanes, each labeled with a different class name. An instance-based classifier
defines a piecewise-linear partition of the instance space; the number of blocks is
determined by the number and distribution of the instances, and the choice of k, which
is the number of nearest neighbors to examine when classifying an unlabeled instance.
The result is a set of regions, each labeled by a different class name, separated by
piecewise-linear boundaries.

Given a data set, the placement of boundaries for a univariate test is restricted to
being orthogonal, but which features are used and the placement of each boundary
along a feature’s axis is determined by the search bias. For a linear discriminant
function, the search bias determines both the orientation and placement of the hy-
perplane decision boundary by learning the coefficients of each discriminant function.
For an instance-based classifier, the orientation and placement of the piecewise-linear

48

- - +
| +
a: Univariate decision b: Linear discriminant ¢: k-NN classifier
tree partition function partition partition

Figure 4.4 Representation differences.

boundaries are determined by the distribution of the training instances and the choice
of k.

In Figure 4.3 we show an instance space for which classifiers from each of the
three model classes would define an identical partition of the instance space, given
the goal of partitioning the instances into regions, each containing instances from only
one class. For many data sets, classifiers from each of the three model classes will
define different partitions. Figures 4.4a, 4.4b, and 4.4c illustrate the type of partition
each model class might define for a simple instance space consisting of five negative
and three positive examples of the concept to be learned. Which of these concept
representations is best depends on where in the instance space the true concept
boundary lies. MCS’s rule-based search strategy addresses this problem by using
feedback from the learning process to determine which of the three representation
biases is best for the given instance space.

4.3 Search Strategy

MCS searches for a hybrid classifier from the available model classes using a
hill-climbing search to select a test for each node in the tree-structured classifier.
A set of heuristic rules is used to decide which model classes to try, which model
classes to avoid, and to determine when a best test at each node has been found.
The instance space is partitioned according to the chosen test, and the search is
applied recursively to each resulting subset that contains instances from two or more
classes. The general recursive procedure of MCS is shown in Table 4.1. After MCS
has constructed a hybrid classifier that perfectly partitions the training instances into
regions each labeled with a single class name, it applies a pruning algorithm to reduce
the estimated error of the classifier as computed for an independent set of instances.

49

e

A

L

L _

TR

Table 4.1 General recursive algorithm
Form Classifier(instances)

IF instances from a single class
THEN return(class)
ELSE select the best algorithm to create a classifier
partition the instances using the classifier
for each partition call Form Classifier(partition)

One problem that can occur during MCS’s search is when two tests (classifiers)
appear equally good for the set of instances observed at a node in the tree. The
current version of MCS differs from our original version [Brodley, 1993] in order to
handle these situations better. If two tests appear equally good at a node, and do
not perfectly partition the set of instances at that node, then MCS examines whether
one defines a better partition of the data than the other. In a decision tree, test
nodes have one of two functions, depending on their position in the tree. Test nodes
whose children are each leaves serve as classifiers of the subspace defined by the tree
above them. Internal test nodes (nodes for which at least one child is not a leaf
node) partition the instance space into subspaces. For example, in Figure 4.1, the
linear combination test (LCT) partitions the space into two subspaces and the IBC
node serves as a classifier for one of the subspaces. The Information-Gain Ratio is a
heuristic method judging the quality of a partition test. Another way to judge the
quality of a partition test is to examine the accuracy of the subtree whose root is that
test.

In cases for which two tests appear equally good, MCS builds a subtree, of depth
one, for each of the two candidate tests. One partition test is judged better than
another if its subtree’s accuracy is higher than the other test’s. MCCS builds a subtree
by constructing a classifier for each subset of the instances defined by the partition
test. Which representation language and search biases are used to construct classifiers
for each subspace depends on the context of the comparison. In our description
of MCS'’s rules we detail how these choices are made. The two subtrees are then
compared using the heuristic rules to determine which of the two partition tests to
place at that node. In cases for which the two tests each partition the set of instances
perfectly, MCS selects the simpler of the two tests. After one of the tests is selected,
MCS discards its subtree.

Even with the addition of the depth-one search, MCS may still have difficulty
selecting among tests that appear equally good. In particular, this can happen when
the measures of the set of candidate tests yield conflicting results. For example,
suppose that the information score of test T is greater than that for T3, but Ty's
accuracy is higher than T)’s. In such cases it is unclear which test to choose. To

50

address these situations we have added a global model-class bias to MCS, which is
determined automatically before MCS begins to construct a classifier. We describe
how this global bias is selected in Section 4.3.1.

To address further the problem of not being able to distinguish which of a set
of tests will result in a more accurate classifier, MCS retains the most accurate of
the remaining alternative tests when it selects a test for a node in the tree. This
alternative can be different from the selected test, because MCS’s heuristic rules may
select a test that is less accurate, but that makes the subspaces easier to learn. The
decision of whether to replace the subtree rooted at that test in the tree with the best
of the alternatives is performed during the pruning stage.

In the remainder of this section we first describe a method for choosing a global
model-class bias for MCS. Next we describe the measures used in MCS’s rules and how
the rules were developed. We then describe MCS’s heuristic rule base, focusing on
a discussion of why certain data-set characteristics lead MCS to prefer one bias over
another. Finally, we describe MCS’s pruning strategy, which differs from traditional
decision-tree pruning algorithms to take into account the fact that a hybrid decision
tree has tests constructed from different representation languages.

4.3.1 Choosing a Global Model Class Bias

Before MCS begins its search for a hybrid classifier, it examines the data set
to determine which of the homogeneous model classes leads to the most accurate
classifiers for random subspaces of the data set. This model-class bias is used by
MCS to help decide among a set of candidate tests when measures of the tests do not
indicate clearly a best test.

To choose a global bias, we do the following ten times: randomly select one half of
the training data and apply each of the primitive learning algorithms to the resulting
subspace of the data. We evaluate each primitive algorithm using the remaining
instances. If one of the model classes performs better than the rest, for the majority
of the ten random subspaces, then we input this model class as the global bias for
MCS. If the results of the analysis were mixed, then we do not specify a bias for MCS.
In the description of the rules we describe how this global bias influences MCS’s search
strategy.

4.3.2 Heuristic Rule Base

The heuristic rules guide a hill-climbing search for a best test to place at a node
in the hybrid classifier. The rules detect various characteristics of the data that lead
MCS to prefer a test from one model class over other tests within the same or different
model classes. At each stage during the search, MCS retains a set of candidate tests;
initially this set is empty. During search, the heuristic rules determine when a best
test has been found, whether further investigation of other model classes is needed,
or whether to search further within one model class.

51

. N (R A

i

Each rule may compute one or more of the following measures to judge the quality
of a candidate test: the Information-Gain Ratio, the accuracy, and whether a test
compresses the data. The first two measures are computed for any test, whether
it is a univariate test, a linear discriminant function, a 4NN classifier, or even an
entire subtree. The Information-Gain Ratio and accuracy of a univariate test or a
linear combination test are computed directly from the training instances. For a
kNN classifier, we employ a leave-one-out strategy for generating the class counts to
compute the Information-Gain Ratio and accuracy of the classifier. Specifically, we
classify each of the instances in the classifier using the remaining instances.

Our judgement of whether a test compresses the data is based on the Minimum
Description Length Principle, which states that the best “hypothesis” to induce from
a data set is the one that minimizes the length of the hypothesis plus the length of
the exceptions [Rissanen, 1989]. The codelength of a classifier (the hypothesis) is the
number of bits required to encode the classifier plus the number of bits needed to
encode the error vector resulting from using the classifier to classify the instances.
We say that a test compresses the data if the number of bits required to represent
the test and its corresponding error vector is less than the number of bits required to
represent the error vector of the instances. In the rules, we examine only univariate
and linear combination tests for compression.! The details of how to compute the
codelength of these two types of tests are described in Appendix B.

Before describing the rules in detail we first outline how the rule set was developed.
Our method was a cyclical process of trial and error. We began with general ideas
about the situations in which one model class would be preferred to another. These
ideas were culled from the literature and from our own experience with these three
model classes. For example, it is fairly well-known that instance-based classifiers
perform well for data sets for which all the features are relevant. However, if many
features are irrelevant then they are known to perform poorly [Aha, 1990]. Whenever
possible we reference the original source of a rule in the description of the rules
presented in Section 4.3.3.

We encoded our general heuristics into a set of rules such that no conflict resolution
is required. We then used four data sets, Iris, Breast, Pixel and Heart Disease, which
are described in Chapter 5 to debug the rules. MCS generates a detailed rule trace,
which prints out the decision made at each step in the search at a node, all of the
available measures of the set of data observed at the node, and measures of the
classifiers that have already been tried. In Section 4.4 we present such a trace. After
a run, we examined this detailed rule trace to decide whether MCS had made the
correct decisions in the search. In particular, we looked for cases for which MCS
produced a classifier that was less accurate than the best of its primitive components.
We pinpointed where in the rule trace MCS made a decision that led it away from
the best model class. We then altered the rules to ensure that the better decision

1Lack of compression is used to decide whether an instance-based classifier should be tried.
Therefore the rules do not test whether an IBC compresses the data.

52

Table 4.2 Rule for when candidate set = {}:

IF (number instances < hyperplane capacity) OR (global-bias = U) THEN fit(U)
ELSE fit(LCT,,)

was made and re-ran MCS on that data set. Once we had corrected the problem for
that data set, we ran MCS with the new rules across all four development data sets.
If performance did not decrease for the other data sets then the rule(s) remained,
otherwise we examined why the new rule(s) hindered performance and readjusted
the rule set. This cyclical process involved many months of experimentation. In the
following description of the rules we describe the general intuition behind each rule
and in some cases give illustrative examples.

4.3.3 Description of the Rules

The description of the rules is organized by the model classes the search strategy
has investigated, which we designate as the candidate set. In the description of the
rules we use four symbols: fit(T) adds a new test, T, to the candidate set; select(T)
terminates search and selects T from the candidate set to use as a test at that node;
delete(T) removes T from the candidate set, because MCS has determined that it is
not as good as the other candidates; and examine-alt(T) compares the accuracy of
T to the alternative test (if it exists) and the chosen test, and retains the alternative
with the highest accuracy. The rules are shown in Tables 4.2 through 4.10, and we
spend the remainder of this section describing and motivating each rule.

Initially the candidate set is empty and MCS must decide where in the model
space to begin the search. To this end, MCS examines the number of instances
relative to the number of features that describe each instance. When the ratio of
instances to features is small, either a univariate test (U) or an instance-based test
(IBC) is preferred over a linear combination test (LCT). The rule shown in Table
4.2 determines whether to start the search with a univariate test or an LCT. (The
rules shown in Table 4.3 address the case where an IBC would be preferred to a
univariate test in the case of a small number of instances.) Specifically, if the number
of training instances is fewer than twice the number of features used to describe each
instance (the capacity of a hyperplane) [Duda & Hart, 1973] then MCS starts with a
univariate test; otherwise the search begins with an LCT based on all n features. This
rule is motivated by the observation that when there are too few instances relative to
the number of features, then there are many possible orientations of the hyperplane
that are consistent with the data, and not enough information to choose among
the possibilities. This rule is overridden when the global model-class bias is toward
univariate decision trees; in this case the first test formed is always a univariate test.

53

E_+ B

E

£

—=-

Table 4.3 Rules for when candidate set = {U}:

IF accuracy(U) = 100% THEN select(U)

ELSIF average difference in info of each feature to best is < ¢ THEN
starting with U, fit(LCT;) using SFS

ELSIF U does not compress the data THEN
IF the number of instances < hyperplane capacity THEN fit(LCT,,)
ELSE fit(IBCy=;)

ELSE select(U) AND recurse

This does not preclude the investigation of an LCT; it may however reduce search
effort.

The rules shown in Table 4.3 determine whether the initial choice of a univariate
test was appropriate or whether further exploration of other model classes is required.
Recall that at this point the candidate set = {U}. If the univariate test perfectly
partitions the data, then there is no need to search for a more complex test, and
search halts. Otherwise MCS tries to determine if a univariate test representation is
inappropriate by checking for the presence of one of two different data characteristics.
The first characteristic is whether no single feature is superior to all the rest. In
these cases a linear combination test may provide a better partition of the data. An
example of such a situation is shown in Figure 4.5, which shows a two-dimensional
instance space and the corresponding univariate decision tree, which approximates
the hyperplane boundary, z + y < 8, with a series of orthogonal splits. In the figure,
the dotted line represents the hyperplane boundary and the solid line represents the
boundary defined by the univariate decision tree. This example illustrates the well
known problem that a univariate test using feature F; can only split a space with a
boundary that is orthogonal to F;'s axis [Breiman, Friedman, Olshen & Stone, 1984].

In an earlier version of the rules we explicitly tested for such situations, but we
found that by examining the the relative difference in the information score of the
best feature to the other features we could catch such situations and save a substantial
amount of time. If the average difference of the best U to each of the others is less than
a threshold, ¢, then MCS explores whether a linear combination test will do better.
We have set ¢ to 0.20. To this end, MCS starts with a best feature (the one chosen for
the univariate test) and performs an SFS search. Note that if the univariate test was
initially chosen based on the global bias (indicated by the number of instances being
greater than the capacity of a hyperplane), then the system fits an LCT based on all
n features and uses the rules shown in Table 4.6 to decide where next to guide the
search. The second characteristic is whether a univariate test compresses the data.
It is known that the information-theoretic measure does not provide reliable results
if the number of training instances is too small [Quinlan, 1987; Aha, 1990]. In these

54

¥ /x>2\
S Y .+ . y>4
4 L. N, + /\
— +
3 - v, H- x> 5 +
- - b
- '.,.. + /\
2 - -
e .°'... + - y>2
'] - e A
])
01 23 45 6 X +
Figure 4.5 An example instance space; “+”: positive instance, “-”: negative

instance and the corresponding univariate decision tree.

Table 4.4 Rule for when candidate set = {LCT,}:

IF the instances are linearly separable THEN fit(LCT,-;) using DSBE
ELSE fit(U) AND examine-alt(LCT,)

cases, an instance-based classifier is more likely to be appropriate because there is no
minimum number of instances required to form an IBC. If neither of the above two
characteristics is observed then there is no indication that a better model class will
be found, and the univariate test is selected.

If the first model class tried (as determined by the rule shown in Table 4.2) was an
LCT based on all n of the input features, then MCS applies the rule shown in Table
4.4 to decide whether to continue searching within the class of linear combination
tests or whether to explore other model classes. Linear combination tests are ideal for
linearly-separable instance spaces. MCS looks for this characteristic by examining the
accuracy of a linear combination test that has been fit to the data. If the LCT based
on all n features is 100% accurate then we know that the space is linearly separable,
and all that remains to be done is to search for the smallest set of features to include in
the test while retaining linear separability. This is achieved by a sequential backward
elimination search procedure (DSBE) that eliminates features one by one using the
magnitudes of the corresponding weights to determine which features to eliminate
[Brodley & Utgoff, in press]. _

Even if a test is not 100% accurate, the space still may be linearly separable if
some of the features are removed from the linear combination test; removing noisy
features from the LCT will increase its accuracy. However, given no certainty of
this being the case, the system fits a univariate test to the data and then uses the
additional information that this will provide to determine where next to direct the
search.

55

L

| A N

E"A =

Table 4.5 Rules for when candidate set = {LCT;, LCT;_,}:

IF there is more than one feature in LCT;_; THEN
IF accuracy(LCT;_;) = 100% THEN fit(LCT;-,) AND delete(LCT;)
ELSIF LCT; compresses data THEN select(LCT;) AND examine-alt(LCT;_,)
ELSE fit(U) AND delete(LCT;_;)

ELSE select(LCT; OR LCT, based on accuracy)

Table 4.6 Rule for when candidate set = {U,LCT,}:

IF info(U) > info(LCT,) AND accuracy(U) > accuracy(LCT,) THEN
fit LCT; using SFS, starting with U AND delete(LCT,)
ELSE fit(LCT;) using SBE

If the accuracy of an LCT based on all n features indicated that the instance space
was linearly separable, then the application of the rule shown in Table 4.4 created
the candidate set = {LCT;,LCT;_;}, where ¢ = n. The rules in Table 4.5 determine
whether further feature elimination should take place and if not, what to do next.
MCS continues to eliminate features as long as there are more than two features in the
smaller of the two linear combination tests and the accuracy of the smaller of the two
is 100%. If the system eliminates features until there is only one remaining, then it
selects this test. Otherwise it checks to see whether the best LCT; does not compress
the data, indicating that it may be too complex for the data. In this case the system
fits a univariate test to see if it will compress the data. This rule is motivated by the
observation that although an LCT may perfectly partition the training data, it may
be overfitting to noise in the instance space. Building a subtree of univariate tests
allows MCS to do more fine-grained pruning.

The rule shown in Table 4.6 handles the point in search where both a best
univariate test and an LCT based on all n features have been added to the candidate
set. If both the information score and the accuracy of the univariate test are higher
than the LCT, then there is evidence that the best test is univariate, but MCS
explores the option that a small LCT may be a better test, by constructing an LCT
using SFS, starting with the feature in the univariate test. This rule is based on
results of previous research that illustrate that the bias of an SFS search can lead to
a better LCT than an SBE search for some data sets [Brodley & Utgoff, in press].
Otherwise, there is no reason to believe that a better LCT could not be found, and
the system searches for one using SBE.

56

Table 4.7 Rules for when candidate set = {U,LCT;}:

IF ((global-bias = Uni) AND
(info(U) > info(LCT;) OR accuracy(U) > accuracy(LCT;))) OR
((global-bias = lct) AND
(info(U) > info(LCT;) AND accuracy(U) > accuracy(LCT;))) OR
((global-bias = none OR ibc) AND (info(U) > info(LCT;)) THEN
examine-alt(LCT;)
IF U compresses the data THEN select(U) AND recurse
ELSE fit(IBCk=2) AND delete(LCT;)
ELSE examine-alt(U)
IF LCT; compresses the data THEN select(LCT;) AND recurse
ELSE fit(IBCk=2) AND delete(U)

If the candidate set contains a univariate test and an LCT, based on i features
formed using either an SBE or SFS search (candidate set = {U,LCT;}), then MCS’s
next action depends on whether there is a global model-class bias. If the bias is
toward univariate decision trees, then the system forms a univariate subtree of depth
one. This is because in many cases a single univariate test will not have as high an
information score or accuracy as an LCT. Because an LCT is more complex than
a U, a fairer comparison is an LCT to a univariate tree of depth one. In addition,
MCS biases the information score and accuracies of the two tests by their complexity.

Specifically it uses the following weight: g.';:, where T is the number of instances and

v is the number of features in the test [Quinlan, 1993]. This has the effect of penalizing
the more complex test. MCS uses these weighted information scores and accuracies
in the rules shown in Table 4.7. If the bias is not for univariate trees but the two
tests are close in either information score or accuracy (within 10% of one another),
then the system creates subtrees for both the LCT and the univariate test, for which
each of the children can be classifier from any of the three model classes. Rather
than choose erroneously between the two models, MCS is exploring which of the two
tests make the subspaces easier to learn. To construct the subtree, MCS chooses a
classifier for each subspace from the set of a best univariate test, an LCT test and a
k-NN (k=1) test. The chosen test is the one that maximizes the Information-Gain
Ratio.

MCS compares the information score and accuracy of the two tests (possibly
subtrees at this point) to decide whether to select one of the tests or whether an
instance-based classifier should be examined. MCS prefers U to LCT if one of the
following three cases is true: the global bias is toward univariate decision trees and
either the accuracy or the information score of U is better; the global bias is toward

57

[

€.

R

Table 4.8 Rules for when candidate set = {LCT;,IBCy}:

IF accuracy(IBC;) > accuracy(LCT;) THEN
fit(IBCry1) AND delete(LCT;)
ELSIF ((global-bias = IBC) OR
(more than half the features remain in LCT;) OR
(accuracy(LCT;) - accuracy(IBC) < 10%)) THEN
Until accuracy(IBC) < accuracy(IBC,) increase k
IF accuracy(IBC) > accuracy(LCT;) THEN
select(IBC:) AND examine-alt(LCT;) AND recurse
ELSE select(LCT;) AND examine-alt(IBC,) AND recurse
ELSE select(LCT;) AND examine-alt(IBC,) AND recurse

linear combination tests and both the information score and accuracy of U are higher
than the LCT; and if there is not global bias or it is toward instance-based classifiers,
then only the information score is considered. If U is preferred, then the system
examines whether U compresses the data. If it does then the search halts and U is
selected. If U does not compress the training data, then MCS examines whether an
instance-based classifier is a better model. Note that MCS retains the ability to select
the LCT during pruning by examining whether it would make a good alternative. If
the LCT is preferred over U, then the system performs the same compression analysis,
making a decision of whether to select the LCT or examine an IBC using the same
criteria as for the univariate test case.

If the candidate set = {LCT;,IBCi=,}, then MCS decides whether further ex-
ploration of IBC tests is required using the rules shown in Table 4.8. If the global
bias is not for instance-based classifiers, then the accuracies of the LCT and IBC are
weighted by their complexity as described above. If the accuracy of the IBC is higher
than the LCT’s, then MCS explores the IBC model class, by increasing the value of k
(the number of nearest neighbors to examine during classification). In addition, MCS
examines whether the LCT would make a good alternative. If the IBC’s accuracy is
not higher than the LCT’s accuracy, but one of the following three cases is true then
MCS explores higher values of k for the IBC: the global bias of MCS is toward an IBC;
more than half the features remain in the LCT; or there is a less than 10% difference
in the accuracies of the IBC and the LCT. The second case captures situations in
which IBCs do well because all (or most) of the features are relevant. The third case
catches situations for which a 1-NN is a poor choice but a NN is a good choice (k
> 2). MCS evaluates an IBC for increasing values of k until the accuracy of the IBC
drops lower than that of a 2-NN (equivalent to a 1-NN) classifier. At this point MCS
selects between the IBC or the LCT. Finally, if the LCT is the better test, then it
selects LCT and retains the IBC as a possible alternative, but does not investigate

58

Table 4.9 Rule for when candidate set = {U,IBC.}:

IF accuracy(U) > accuracy(IBC,) THEN

select(U) AND examine-alt(IBC,) AND recurse
ELSIF accuracy(IBCy) < 100% THEN fit(IBCy,,) AND delete(U)
ELSE select(IBC,) AND examine-alt(U) AND recurse

Table 4.10 Rule for when candidate set = {IBC,IBCi,}:

IF accuracy(IBCg4,1) > accuracy(IBC) THEN fit(IBCiy,) AND delete(IBCy)
ELSE select(IBC,) AND recurse

other values of k. Note that only accuracy is used here, because in most cases when
an IBC is selected as a test no subtree will be needed.

When search has led MCS to believe that the best candidate test is a univariate
test or an IBC, MCS applies the rules shown in Table 4.9. If the global bias is for
univariate tests, then MCS grows a subtree of depth one for the univariate test in
which each node of the subtree is a univariate test. MCS then biases the univariate
subtree and the instance-based classifier by their complexities if the global model-class
bias is for univariate trees. The system selects U if its accuracy is higher than that of
the IBC. Otherwise it explores the IBC model class. The test not chosen is examined
to see whether it would make a good alternative.

To reach the point in the search where the two best candidate tests are each
instance-based classifiers, the accuracy of IBC,—, was higher than either a univariate
test, an LCT, or both. The rule shown in Table 4.10 handles the situation in which
MCS has decided that the best model class is instance-based classifiers and is now
searching for the value of k that leads to the best heuristic accuracy on the training
data using the leave-one-out scheme described in Section 4.2 above.

4.3.4 Pruning Hybrid Classifiers

To address the problem of overfitting in the hybrid formalism, the system prunes
back the classifier as computed for an independent set of instances [Breiman, Fried-
man, Olshen & Stone, 1984; Quinlan, 1987]. Overfitting occurs when the classifier
overfits the training data at the expense of generalization, which can occur in both
noisy and noise-free domains. In the case of domains that contain noisy instances
(instances for which the class label is incorrect or some of the feature values are

59

e

(.

L.

B A B A
a: Tree before pruning. b: Subtree replaced c: Subtree replaced
with a leaf node. with alternative.

Figure 4.6 Choices of hybrid classifier pruning method.

incorrect) finding the classifier that maximizes the accuracy for the training data
may overfit to the noise in the training data, and subsequently perform poorly for
previously unseen instances.

Our approach to pruning a hybrid classifier differs from the traditional approach to
pruning decision trees. Traditionally, each non-leaf subtree is examined to determine
the change in the estimated classification error if the subtree were replaced by a leaf
labeled with the majority class of the training examples used to form a test at the
root of the subtree. The subtree is replaced with a leaf if this lowers the estimated
classification error; otherwise, the subtree is retained.

A hybrid classifier that mixes different model classes has test nodes of varying
complexity. This can cause problems when deciding whether to replace a test node
with a class label; a complex test may overfit the training data, but removing it may
decrease the accuracy of the classifier. In such cases, one wants to replace the test
with one that is less complex. In addition, as described in Section 4.3, test nodes in a
decision tree have one of two functions: to partition or classify the instances observed
at that node. During the tree construction phase, MCS saves the most accurate
candidate test if it was not chosen as the test for that node (Currently, MCS does
not bias the storage of alternatives toward less complex tests. An issue for future
research is to examine the utility of saving both the most accurate alternative and a
less complex test for consideration during pruning.) During pruning, in addition to
deciding whether to retain a subtree or replace it with a leaf, our approach examines
whether replacing the subtree with the alternative would result in a lower estimated
classification error than either of the two other choices. In Figure 4.6 we show these
three options: Figure 4.6a illustrates the option of retaining the original tree (the
alternative would be deleted); Figure 4.6b illustrates the option of replacing a subtree
with a leaf node; and Figure 4.6¢c illustrates the option of replacing a subtree with
the saved alternative.

60

A
1:3632:38;3:9;4:7:5:5;6:15
LCT_8(LCT_9)
B W
1:33;2:6 1:3;2:18;3:1 2:9;3:8 2:1;4:7 5 2:4;6:15
U(LCT_9) U(LCT_9) U U LCT_2(LCT.9)
¢ N /N /\ /\
1:11;2:8 1:22;2:1 2 3 2 4 2 6
U(IBC_1) LCT_3(LCT_9)
1 2
1:3;2:4;3:1
D E 2 v

1:10;2:1 1:4;2:1 /\
U U
N /\

1:3;3:1 2
U

"\

1 3

Figure 4.7 Hybrid constructed by MCS for the Glass data set.

4.4 An Example

To illustrate how MCS’s search strategy creates a hybrid classifier, we present a
detailed example of MCS in action. Our example is from an actual run of MCS on
the Glass Recognition task. For this data set, the task is to identify a glass sample
taken from the scene of an accident. The 213 examples were collected by the Home
Office Forensic Science Service at Aldermaston, Reading, UK. There are six types
of glass and each instance is described by nine numeric features. We have split the
discussion of our example into two parts. Section 4.4.1 describes how the hybrid
tree was constructed from the training instances and Section 4.4.2 describes how the
hybrid tree is pruned back to avoid overfitting to the training data.

4.4.1 Tree Construction

In Figure 4.7 we show the hybrid tree constructed by MCS before pruning. In
Table 4.11 we show a trace of MCS’s search for part of the tree (nodes A - F). Each
node in Figure 4.7 shows the class distribution of instances, the type of test selected
by MCS, and the alternative test (if one was chosen). For example to construct Node
A, 110 training instances were used: 36 of class 1, 38 of class 2, 9 of class 3, 7 of class
4, 5 of class 6, and 15 of class 6. The test selected by MCS was a linear combination

61

-

Ly

o

test based on eight features and the alternative was a linear combination test based
on nine features. Node A has a branch for each linear discriminant function (recall
that a linear machine has a linear discriminant function for each class).

In Table 4.11 we show the actions taken by MCS at each step in the search
for Nodes A - F. At each node the candidate set starts out empty. Depending
on the number of instances, MCS fits either a linear combination test based on all
nine features or MCS finds a best univariate test. Note that for this data set, the
hyperplane capacity is 18 (twice the number of features).

To create Node A, after MCS has fit an LCT based on all nine features, it examines
the LCT and determines that it is not 100% accurate. The next step is to find a best
univariate test. At this point the LCT based on all nine features is stored as an
alternative test as it is the most accurate test observed thus far. MCS next decides to
search for a better LCT, using SBE, because the Information-Gain Ratio of the LCT
based on nine features is higher than that of the univariate test. (For an explanation of
why the Information-Gain Ratios are negative, see Appendix B). The SBE algorithm
returns an LCT based on eight features. At this point the LCT is selected from the
candidate set because it has the highest information score and because it compresses
the data.

The first three steps of the search for a test for Node B are the same as for Node
A. At the point in the search when the candidate set contains the best univariate test
and a linear combination test based on eight features? found by the SBE algorithm,
MCS decides that a depth search is necessary because the univariate test and LCT
test appear almost equally good. Consequently MCS creates a subtree of depth one
for each of these tests and then compares the subtrees. MCS determines that the
subtree whose root is a univariate test is the better of the two. However, because
the univariate test does not compress the data, MCS investigates an instance-based
classifier. MCS finally selects the univariate test because its subtree is 100% accurate
whereas the IBC is not.

To create Node C, MCS first finds a best univariate test. Seeing that the univariate
test does not compress the data, MCS next tries an IBC. Because the accuracy and
the information score of the univariate test are better than those of the IBC, MCS
selects the univariate test. However, MCS retains the IBC as an alternative, because
the difference in its accuracy from the univariate test is less than 10%.

Nodes D and E have similar search histories. The first step in the search is to fit
a univariate test, which is then selected because it is 100% accurate.

To create Node F, MCS first finds an LCT based on all nine features. Next
MCS tries to find an LCT based on fewer features, because the LCT based on all
nine features is 100% accurate. The result of this search is an LCT based on three
features. This smaller LCT does not compress the data, leading MCS to find a best
univariate test. Since the univariate test is not 100% accurate, MCS selects the LCT
based on three features.

%It is a coincidence that SBE found LCT based on eight features for each of Node A and B.

62

Table 4.11 Partial trace of MCS’s search strategy

63

Node Candidate Set Action Reason
A {} fit LCT, -9 110 > hyperplane capacity
{LCTp=s} fit U accuracy(LCT,) < 100%
select alt LCT,—g
{ULCT..o} fit LCT; info(LCTe=-.396) > info(U=-1.656)
{U,LCT;=s} select LCT;=s info(LCTg=-.304 > info(U=-1.656) -
B {} fit LCT -9 39 > hyperplane capacity
{LCTn=s} fit U accuracy(LCT,) < 100%
select alt LCT,.—¢
{U,LCT,=s} fit LCT; info(LCTg=-.594) > info(U=-532), but
accuracy(LCTy=94.8)>accuracy(U=84.6)
{U,LCT;=s} depth search U and LCTj close
fit IBCye, info(S-U=0.0) > info(S-LCTs=-0.167)
but U does not compress
{UJIBCr=1} select U accuracy(S-U=100) > accuracy(IBC=89.7)
C {} fit U 16 < hyperplane capacity
{U} fit IBCg=1 U does not compress data
{U,IBCr=1} select U accuracy(U=87.5) > accuracy(IBC=81.2)
and info(U=-.589) > info(IBC=-.851)
select alt IBCk=; acc(IBC) is within 10% of acc(U)
D {} fit U 11 < hyperplane capacity
{U} select U accuracy(U) = 100%
E {} fit U 5 < hyperplane capacity
{U} select U accuracy(U) = 100%
F {} fit LCT, 23 > hyperplane capacity
' {LCTp=s} fit LCT; accuracy(LCT,) = 100%
{LCT;=3} fitU LCT;-3 does not compress the data
{U,LCT;=3} select LCT;-3 accuracy(LCT;=100) >accuracy(U=95.7)

—

..

.

AR

L

Figure 4.8 Hybrid produced by MCS after pruning.

4.4.2 'Tree Pruning

In Figure 4.8 shows the tree for the Glass Recognition data set after pruning. In
Table 4.12 we show the information considered by MCS to make its pruning decisions
for Nodes C-F in the order in which the decisions were made. The first test node
considered for pruning is Node D (see Figure 4.7). Of the seven pruning instances,
the original test classified three correctly. There was no alternative test at Node D
and MCS decided to replace the test with leaf labelled with class 1, because it did
not reduce the accuracy of the node.

At Node E, no pruning instances were observed. MCS replaces such test nodes
with a leaf labelled with the class observed most frequently in the training data, which
in this case was class 1.

To decide whether to prune Node C, MCS compares the classification accuracy
of the original univariate test, the alternative IBC test and with the maximum class.
The highest count of correct classifications was for the alternative test and MCS
replaces the original test at node C with its alternative, producing the node labelled
C’ in Figure 4.8.

At Node F, both the alternative test and replacing the original test with the
maximum class would result in the same accuracy for the pruning data, which is
higher than the original test’s accuracy. Therefore, MCS replaces the test with class
1, which is the maximum class.

64

”
Table 4.12 Partial trace of MCS’s pruning strategy y
Node D: 7 instances :
Original Test = U, CC = 3 o
Alternative = none
Max Class = 1, CC = 3 |
Decision: replace with leaf labelled with class 1 -

Node E: 0 instances _
Original Test = U, CC =0 e
Alternative = none
Max Class = none, CC =0
Decision: replace with leaf labelled with class 1 o

Node C: 7 instances ,
Original Test = U, CC = 3 -
Alternative = IBC-;, CC =5
Max Class = 1, CC =3

Decision: replace with alternative

Node F: 12 instances wd
Original Test = LCT3, CC =9
Alternative = LCTy, CC = 10 ‘
Max Class = 1, CC =10 w
Decision: replace with leaf labelled with class 1

65 ol

[

'

CHAPTER 5
EVALUATION

This chapter provides an evaluation of MCS. The evaluation is split into two parts:
Section 5.1 provides an empirical evaluation of MCS’s performance across a variety of
learning tasks and Section 5.2 discusses the representational strengths and limitations
of MCS. In Section 5.3 we summarize the results of the evaluation.

The empirical evaluation has several objectives. Firstly, we want to determine
whether our predictions of the best bias based on data-set characteristics, computed
during search, works well in practice. Secondly, we want to know whether there
exist real-world data sets whose underlying concept is best represented by a hybrid
classifier. Thirdly, we evaluate various aspects of MCS’s search strategy to understand
the contribution each makes to MCS’s performance.

Our analysis of the representational biases of MCS is aimed at gaining a clear
understanding of the strengths and weaknesses of the primitive model classes in MCS
and how representational ability expands when the model classes are mixed in a
tree-structured hybrid classifier. The analysis examines the similarities and differences
of instance-based, linear discriminant and univariate decision tree classifiers from a
representational point of view. Building on this analysis we examine how the space
of hypotheses that can be represented changes when these three model classes are
combined in a hybrid.

5.1 MCS’s Rule Based Search Strategy

In this section we present the results of several experiments that illustrate that the
rules in MCS choose an appropriate learning bias using characteristics of the data set,
computed from feedback from the learning process. Our experiments were designed
to test the two hypotheses put forth in Chapter 1. The hypotheses were:

1. Domain independent knowledge about characteristics in the form of feedback
Jrom learning can effectively guide an automatic algorithm selection search.

2. Our knowledge-based search strategy for finding a hybrid classifier will produce
a classifier that is never worse than, and for some data sets is better than, any
homogeneous classifier produced by its primitive components.

66

We report the results of four comparisons. The first compares MCS to its primitive
components. The results, reported in Section 5.1.3 illustrate that MCS is sometimes
more accurate and is never less accurate than each of its primitive components across
a variety of data sets, demonstrating that the heuristic rule-based search strategy
solves the selective superiority problem for these algorithms.

In Section 5.1.4 we report the results of a comparison of MCS to three other
hybrid classifier construction algorithms. Each of the three applies all of the primitive
algorithms in the construction of each test node in the tree. The results of the
comparison illustrate that merely increasing the search space by permitting hybrids
will not increase accuracy. MCS’s knowledge-based approach is demonstrated to
be both more accurate and less time-consuming than the alternative three hybrid
methods.

The last two experiments were designed to evaluate that contribution that con-
sidering alternatives during pruning and searching one ply deeper make to MCS’s
performance. In Section 5.1.5 we report the results of a comparison of MCS run
with and without pruning alternatives. The results show that in some cases pruning
alternatives increase MCS’s performance. In Section 5.1.6 we report the results of
a comparison of MCS run with and without the ability to search one ply deeper
(when the rules indicate that it should). The results indicate that allowing MCS to
search one ply deeper does not improve accuracy by a statistically significant amount.
However, taken together these two aspects of MCS’s search do improve performance
significantly.

5.1.1 Data Sets

In this section we describe the data sets used in our empirical comparisons. We
chose these data sets because they represented a cross-section of different domains
and different types of characteristics. In addition, as we will see in Section 5.1.3 this
test suite is not biased toward one of the primitive homogeneous algorithms; each
of the primitive algorithms is selectively superior for at least 20% of the data sets.
The Breast Cancer, Heart Disease, Iris Plants, and Pixel data sets were used for rule
development. The results of an earlier version of MCS for the Hepatitis, LED-7 Digit
Recognition, Road Segmentation, Congressional Votes and Vowel Recognition data
sets were reported in Brodley (1993).

Breast Cancer: The breast cancer data consists of 699 instances, described by nine
numeric features. The class of each instance indicates whether the cancer was
benign or malignant [Mangasarian & Wolberg, 1990).

Congressional Votes: In this domain the task is to classify each of 435 members
of Congress, in 1984, as Republican or Democrat using their votes on 16 key
issues. There are 392 values missing.

67

J—

Diabetes: The task is to decide whether a patient shows signs of diabetes according
to World Health Organization criteria. Each of 768 instances is described by
eight numeric features.

Glass Recognition: For the Glass data set, the task is to identify a glass sample
taken from the scene of an accident as one of six types of glass using nine
numeric features. The 213 examples were collected by B. German of the Home
Office Forensic Science Service at Aldermaston, Reading, UK.

Heart Disease: The Heart data set consists of 303 patient diagnoses (presence
or absence of heart disease) described by thirteen symbolic and numeric at-
tributes [Detrano, Janosi, Steinbrunn, Pfisterer, Schmid, Sandhu, Guppy, Lee
& Froelicher, 1989).

Hepatitis: The task for this domain is to predict from test results whether a patient
will live or die from hepatitis. There are 155 instances, each described by 19
features (both numeric and symbolic features). There are 167 values missing in
this data set.

Iris Plants: Fisher’s classic data set [Fisher, 1936], contains three classes of 50
instances each. Each class is a type of iris plant. Each instance is described by
four numeric attributes.

Landsat: The task for this domain is to predict the type of ground cover from
satellite images. Each of 1000 instances is described by seven features (the
channels) and labeled with one of four types of ground cover.

Lymphography: This data set consists of 148 instances, each described by nineteen
attributes and labeled as one of four classes.

LED-7 Digit Recognition: The data for the LED-7 digit recognition problem
consists of ten classes representing whether an LED display shows a 0-9. Each
of seven Boolean attributes has a 10% probability of having its value inverted.
There are 500 instances. Note that this is not the version of the data set reported
in Breiman et al (1984), for which the Bayes optimal rate is known to be 74%.

LED-24 Digit Recognition: The data for the LED-24 digit recognition problem
consists of ten classes representing whether an LED display shows a 0-9. Each
of seven Boolean attributes has a 10% probability of having its value inverted.
The remaining 17 attributes are irrelevant. There are 200 instances.

Liver Disorder: The task for this domain is to determine whether a patient has a
propensity for a liver disorder based on the results of six blood tests. There are
353 instances.

68

Pixel: In the pixel segmentation domain the task is to learn to segment an image
into one of seven classes. Each of the 3210 instances is the average of a 3x3 grid
of pixels represented by nineteen low-level, real-valued image features.

Road Segmentation: The data come from four images of country roads in Mas-
sachusetts. Fach instance represents a 3X3 grid of pixels described by three
color and four texture features. The classes are road, road-line, dirt, gravel,
foliage, trunk, sky, tree and grass. There are 2056 instances in this data set and
105 values are missing.

Vowel Recognition: The task is to recognize the eleven steady-state vowels of
British English independent of the speaker. There are ten numeric features
describing each vowel. Eight speakers were used to form a training set, and
seven different speakers were used to form an independent test set. Each of the
15 speakers said each vowel six times creating 528 instances in the training set
and 462 in the test set. For runs using this data set we retained the original
training and test sets.

Waveform: This data set originates from Breiman et al (1984). In this version of
the data set there are 300 instances each described by forty continuous-valued
attributes.

5.1.2 Experimental Method

In this section we describe the experimental method used in each of the experi-
ments reported in this chapter. In each experiment we compare two or more different
learning methods across a variety of learning tasks. For each learning method, we
performed ten runs on each data set.! For each run we split the original data randomly
into 70% training data, 20% pruning data and 10% testing data. To ensure that the
distribution of instances across the classes of a data set is the same in the training,
pruning and test sets, we first sorted the data into their classes. We then dealt
the instances out randomly to the training, pruning and test sets in the specified
proportions (70, 20 and 10). Each method in a comparison was run using this
partition.?

To estimate the accuracy of classifiers produced by each method, we average, for
each method, the results of the ten runs. In the experiments we report both the
sample average and standard deviation of each method’s classification accuracy for
the independent test sets. To determine the significance of the differences between

1 For the Vowel data set, we used the original training and test sets and therefore did not perform
multiple runs.

20ur goal in ensuring an even distribution of classes among the training, testing and pruning
sets was to reduce variation in performance across different runs. We wanted both the data used for
training and testing to mirror the distribution of the entire data set.

69

E M

two learning methods we used paired {-tests. Because the same random splits of each
data set were used for each method, the variances of the errors for any two methods
are each due to effects that are point-by-point identical.

One learning algorithm, Thermal Training, has a random component: the result-
ing linear combination test’s weights depend on the order in which the instances are
observed. To eliminate this effect when comparing MCS to the primitive class of
linear discriminant functions, we ran both of these algorithms with the same random
seed. Therefore, if MCS determines that a single linear combination test (LCT) is
the best classifier for the data, then the linear combination test’s weights will be
identical to those produced by running the primitive learning algorithm. We used the
same random seed for each of the hybrid algorithms (described in Section 5.1.4) so
that if each determines that a single LCT is the best classifier for the data, then the
LCT’s weights will be identical to those produced by MCS or the primitive learning
algorithm for an LCT.

5.1.3 Comparison of MCS to its Primitive Components

Our first experiment is a baseline comparison of MCS to a univariate decision
tree algorithm, a linear discriminant algorithm (which constructs a linear machine
for multiclass tasks) that builds a classifier using all of the input features, a k-nearest
neighbor algorithm (k = 1), and to a method that uses a ten-fold crossvalidation (CV)
over the training data to select the best method. Our goal in this first comparison is
to illustrate what the accuracy of a classifier produced by MCS would be #f MCS had
selected a single homogeneous representation. For each of the sixteen data sets, Table
5.1 shows the sample average and standard deviation of the classification accuracy
for ten runs. In Table 5.2 we show the results of a paired #test between MCS and
each of the primitive learning methods.?

For three of the sixteen data sets (Heart Disease, Lymphography and Road
Segmentation) MCS constructed a classifier that is statistically significantly (at the
0.05 level using a paired #-test) more accurate than each of its primitive components.
For the Glass Recognition, Landsat, LED-24 Digit, Pixel, Vowel Recognition and
Waveform data sets, the accuracy of the classifier produced by MCS is identical to the
best of the other algorithms. For the remaining data sets, MCS produced classifiers
that are not statistically different from the best homogeneous classifier for each data
set.

The problem that no single model class will be best for all tasks is illustrated
by the results for the individual model classes; for some data sets the difference
between the accuracy of the best and the worst of the primitive algorithms is greater
than 20. In contrast, the classifiers found by MCS for each data set were never
significantly less accurate and were sometimes significantly more accurate than the

3For the Vowel data set, we used the original training and test sets and therefore ran each
algorithm once.

70

Table 5.1 Accuracy of MCS and its primitive components

Data Set kNN LCT UTree Ccv MCS
Breast Cancer 96.2+21 972125 95726 97.2+25 962+ 1.7
Congressional Votes 94.5+ 3.4 96.2+23 96.2+26 957+22 964+ 23
Diabetes 716+ 43 720+54 725%+31 733+33 73.7+43
Glass Recognition 68.3 +83 56.1+135 750+95 68.9+88 75.0%£095
Heart Disease 76.6 81 797157 T76+49 T79.0+57 83.1+44
Hepatitis 8201+89 800+54 840+7.2 813482 847+ 10.0
Iris Plants 927+66 920+X42 93370 92.7+6.6 96.0+ 4.7
Landsat 81.7+ 25 69.5+16.0 822+33 803+45 822144
LED-7 Digit 543+ 98 723142 743+40 742+40 73.3+44
LED-24 Digit 375+ 128 575+77 625+12.1 63.1+11.9 62.5+ 13.8
Liver Disorder 615+40 621+58 665+6.7 629+79 674+98
Lymphography 80.7+59 736+68 77.1+81 80.7+59 8.0%7.1
Pixel 9541+ 21 89.7+22 938+18 954+21 954+2.1
Road Segmentation 789+ 16 76.0+70 81.3+17 81.3+17 834+1.9
Vowel Recognition 50.2 + 38.7 £ 40.5 £ 50.2 £ 50.2 £
Waveform 664+ 74 832+61 686192 832161 83.2+£6.1

Table 5.2 Results of paired t-tests of MCS and primitives

Data Set IBC LCT UTree CV
Breast Cancer 1.000 0.163 0.390 0.163
Congressional Votes 0.410 0.996 0.336 0.373
Diabetes 0.173 0.115 0.207 0.713
Glass Recognition 0.005 0.011 1.000 0.018
Heart Disease 0.016 0.056 0.000 0.063
Hepatitis 0.382 0.163 0.815 0.323
Iris Plants 0.430 0.297 0.433 0.666
Landsat 0.656 0.042 1.000 0.129
LED-7 Digit 0.000 0.349 0.121 0.216
LED-24 Digit 0.000 0.285 1.000 0.590
Liver Disorder 0.133 0.102 0.842 0.214
Lymphography 0.054 0.006 0.033 0.054
Pixel 1.000 0.000 0.056 1.000
Road Segmentation 0.000 0.004 0.008 0.008
Waveform 0.000 1.000 0.003 1.000
71

£

Table 5.3 Model classes in the MCS classifiers

Data Set Leaves kNN LCT UT Hybrids Prim. Alg
Breast Cancer 50 0.3 1.6 2.1 5 LCT
Congressional Votes 25 0.0 0.3 1.2 3 UTree

Diabetes 12.7 23 3.4 6.0 9 IBC

Glass Recognition 125 03 03 10.2 4 Utree

Heart Disease 29 09 05 05 3 IBC(6), LCT(1)
Hepatitis 25 12 02 01 4 IBC(5), LCT(1)
Iris Plants 35 05 1.0 0.0 3 IBC(1), LCT(6)
Landsat 16.6 3.5 1.8 44 9 IBC

LED-7 Digit 284 0.8 2.1 125 9 LCT

LED-24 Digit 149 0.3 0.1 11.8 4 Utree

Liver Disorder 82 1.5 2.8 2.9 9 LCT
Lymphography 44 0.9 04 0.0 4 IBC(5), LCT(1)
Pixel 70 10 00 0.0 0 IBC

Road Segmentation 541 24 4.7 25.7 10

Vowel Recognition 11.0 1.0 0.0 0.0 0 IBC

Waveform 3.0 0.0 1.0 0.0 0 LCT

best of the primitive algorithms; indicating that a hybrid can provide a significant
performance improvement for some data sets. This property of robustness is desirable
in an automated algorithm selection system.

From these results we conclude that MCS’s rules effectively choose a learning bias
that produces an accurate classifier for each data set. The relationships that we have
drawn, from data-set characteristics to bias allow MCS to find a classifier at least as
accurate as the best of its primitive components and sometimes better. In contrast,
the CV method is never statistically significantly more accurate and is sometimes less
accurate than the best primitive algorithm for each data set.

Table 5.3 shows the average over the ten runs of the number of leaves and the
number of test nodes, of each type of model class, in the MCS classifiers. The last two
columns are not averages; the second to last column shows, out of the ten runs, the
number of classifiers produced by MCS that were hybrids and the last column shows
the primitive algorithm(s) that was chosen by MCS when it did not produce a hybrid.
For example, MCS produced a hybrid in three of the ten runs for the Iris Plants data
set. Of the remaining seven runs, MCS selected an LCT six times and an IBC once.
For one data set, MCS produced a hybrid for each of the ten runs. For four data sets
MCS produced a hybrid for nine of the ten runs. Except for the Road Segmentation
data, this did not result in higher accuracy for MCS than the best of the primitive
algorithms. For three cases, Pixel, Vowel Recognition and Waveform, MCS found a
classifier that is identical to the best primitive algorithm. For the remainder of the
data sets, the results are mixed.

72

In many cases MCS formed a hybrid classifier, but its accuracy was not signifi-
cantly different from the best of the primitive algorithms. In previous work [Brodley,
1993] we reported results of an experiment that calculated the percentage overlap
in the classification decisions made by MCS and the best primitive algorithm for
each data set. Qur conclusion in that experiment was: because all of the primitive
algorithms are piecewise linear, for many data sets they will each form classifiers that
define the same decision boundaries (Figure 4.3 in Section 4.2 illustrates one such
case). In Section 5.2 we explore these representational similarities in greater detail.

5.1.4 Comparison of MCS to Other Hybrid Algorithms

In our second experiment we compared MCS to three hybrid algorithms, which
have the same primitive components as MCS, but different search strategies. The
three algorithms, RAcc, RInfo and RCV each search for the best classifier for each
node by trying all possible algorithms. All three have the same general recursive
procedure shown in Table 4.1. They differ from MCS in how the best algorithm
is chosen for a data set. The classifiers compared at each node in the tree are a
univariate test, a k-nearest neighbor (they search for the best value of k) and two
linear combination tests, one constructed using SF'S the other using SBE.

The three hybrid algorithms differ in the criterion used to choose among the
candidates. RAcc uses the accuracy of the classifiers on the training data. RlInfo
uses the Information-Gain Ratio [Quinlan, 1986]. Finally, RCV uses the results of a
four-fold crossvalidation to select the best learning algorithm, and then applies that
algorithm to the set of data observed at the node to produce the classifier to place
at that node in the hybrid tree. It is important to note that the comparison criteria
used by RAcc, RInfo and RCV to choose a classifier are part of the feedback used by
MCS to guide the rule-based search strategy.

The results of the experiment are shown in Table 5.4. In Table 5.5 we show
the results of a paired ttest of MCS with each of the other hybrid methods. MCS
is statistically significantly more accurate than RAcc for three data sets. MCS is
significantly more accurate than Rlnfo for three data sets and more accurate than
RCV for three data sets. None of the methods is significantly more accurate than
MCS for any of these sixteen data sets.

A comparison of RAcc, RInfo and RCV to the primitive algorithms shows
that each performs worse than the best of the primitive algorithms for some data
sets. RAcc is statistically significantly worse than a univariate decision tree for the
Congressional Votes, Hepatitis and LED-7 data sets, worse than an instance-based
classifier for the Lymphography data, and worse than a linear combination test for
the Waveform data set. RInfo is significantly worse than the best primitive algorithm
for the Glass Recognition, Hepatitis, Lymphography and Waveform data sets. RCV
is significantly worse than the best primitive algorithm for the Congressional Votes
and Waveform data sets. In contrast, MCS never produced a classifier than was
significantly less accurate than the best of the primitive algorithms.

73

Table 5.4 Accuracy of MCS and three other hybrid methods

Data Set RAcc Rinfo RCV MCS

Breast Cancer 965+ 23 96.7+19 968+3.0 96.2+1.7
Congressional Votes 940+32 955+18 952423 964+23
Diabetes 724+ 45 T745%+46 73.0+34 73.7143
Glass Recognition 689+ 60 622+63 689+60 75095
Heart Disease 824+ 57 80060 824147 83.1+44
Hepatitis 81.3+88 813188 833+1.1 84.7+10.0
Iris Plants 96.0 £+ 4.7 96.7+ 47 947142 96.0 % 4.7
Landsat Segmentation 83.7+36 821+29 826+31 822+44
LED-7 Digit Recognition 724+39 738+39 746=+44 733%44
LED-24 Digit Recognition 60.0 + 13.2 59.4 + 12.9 60.6 £ 1.3 62.5 £ 13.8
Liver Disorder 626 +82 67.1+87 624160 674+09.38
Lymphography 743+77 74377 779198 85.0+71
Pixel 954+ 21 954+£21 954+21 954+21
Road Segmentation 83.7+14 832+20 83917 834+19
Vowel Recognition 50.2 + 50.2 £ 50.2 + 50.2 +
Waveform 786+ 86 T786+86 T782%x7.2 832%6.1

The results demonstrate that using feedback characteristics in a “knowledge-poor”
way can lead to worse performance than the best of the primitive algorithms. These
three algorithms attempt to choose a best algorithm with which to form each node in
the hybrid classifier, but they do so using a single selection criterion that may not be
appropriate for the given data set. For example, RAcc performs worse than a linear
discriminant function for the Liver Disorder data set (the best primitive algorithm
for this data set), whereas Rlnfo performs roughly the same as a linear discriminant
function. This difference is due to the bias used to select the classifier for each node
in the hybrid tree; the bias of the Information-Gain Ratio is preferable to the bias
of accuracy for this data set. Indeed, the results show that performing automatic
algorithm selection with an inappropriate bias can lead to worse performance than
the best of the primitive algorithms.

In contrast, MCS is never worse than the best of the primitive algorithms. MCS’s
strategy for selecting an algorithm is itself a static bias; the rules do not change for
a particular data set. However, MCS’s strategy does not depend on only one source
of feedback; the rules are designed to account for situations in which two or more
measures yield conflicting results. For example, even if an LCT (based on i features)
1s more accurate than an IBC (k=1) for the training data, MCS continues to explore
IBCs if more than half of the features remain in the LCT or the difference in accuracy
is less than 10% (see Table 4.9).

From the results of this experiment we conclude that MCS is more robust than
each of the other methods. In addition, MCS is, on average, less time consuming

74

Table 5.5 Results of paired #tests of MCS and other hybrid methods

Data Set RAcc RInfo RCV
Breast Cancer 0.619 0.428 0.458
Congressional Votes 0.021 0.579 0.144
Diabetes 0.457 0.579 0.772
Glass Recognition 0.072 0.005 0.072
Heart Disease 0.726 0.160 0.642
Hepatitis 0.230 0.230 0.327
Iris Plants 1.000 0.678 0.990

Landsat Segmentation 0.092 0.930 0.713
LED-7 Digit Recognition 0.294 0.519 0.090
LED-24 Digit Recognition 0.747 0.680 0.697

Liver Disorder 0.163 0.919 0.023
Lymphography 0.007 0.007 0.044
Pixel 1.000 1.000 1.000
Road Segmentation 0.579 0.778 0.285
Waveform 0.010 0.010 0.053

than each of the other hybrid classifier construction algorithms. In Table 5.6 we show
the average across the ten runs of the number of seconds that each method used to
form a hybrid classifier.* MCS requires less time than RAcc in twelve cases, RInfo in
thirteen cases and RCV in all sixteen cases. For cases in which RAcc and RInfo took
less time than MCS, the difference can be attributed to RAcc and Rlinfo selecting
tests early on that preclude further search. For example, when an instance-based
classifier is chosen for which k is equal to 1, no subtree will be grown below such
a node. If for many nodes in the tree an IBC is selected over a linear combination
or a univariate test, and if none of the three is 100% accurate for the training data,
search terminates more quickly then if the linear combination or univariate test were
chosen. For example, RAcc produced hybrid trees for the Diabetes data set that on
average have 4.6 leaves (the trees produced by MCS have on average 12.7 leaves) and
for which the majority of the test nodes are instance-based classifiers.

The results illustrate that MCS’s rules not only produce more accurate classifiers
than the other methods’ more exhaustive approach to searching for a classifier at a
node, but MCS requires less computation time, on average. The reduction in time
is due to the fact that MCS does not necessarily need to try each algorithm at each
node, unlike the other three methods.

4All algorithms were performed on a DEC 3000 running under OSF/1.

75

e

Table 5.6 Training time of hybrid algorithms (seconds)

Data Set RAcc RInfo RCV MCS
Breast Cancer 91.7 87.6 354.1 67.2
Congressional Votes 144.1 2714 391.1 128.2
Diabetes 165.0 2144 765.6 1725
Glass Recognition 37.9 63.6 167.9 71.2
Heart Disease 133.1 150.7 702.5 80.7
Hepatitis 1284 128.1 864.6 70.9
Iris Plants 3.0 3.2 11.3 2.6
Landsat Segmentation 2556.7 195.7 777.6 1813

LED-7 Digit Recognition 203.6 1449 524.3 164.7
LED-24 Digit Recognition 718.6 716.3 2722.7 803.2

Liver Disorder 271 51.1 161.5 38.7
Lymphography 122.6 1226 615.9 75.1
Pixel 1310.4 1809.3 4782.4 1076.3
Road Segmentation 1292.1 624.2 2863.6 528.0
Vowel Recognition 149.0 149.0 459.0 83.0
Waveform 1530.0 1530.2 2556.1 834.2

5.1.5 Benefits of Pruning Alternatives

In this experiment our goal is to examine the benefits of saving an alternative
test at a node for consideration during pruning. A pruning alternative is saved if it is
difficult to distinguish between two tests for the set of data observed at a node. During
pruning, the alternative replaces the chosen test only if it increases the accuracy
on the pruning data. In the first two columns of Table 5.7 we report the average
accuracy of the classifier found by MCS for each data set with and without using
pruning alternatives. In the last two columns we report the average time required
when MCS was run with and and without pruning alternatives. From the results
we see that pruning alternatives increased the classification accuracy in four cases
(Heart Disease, Iris, Liver Disorder and Waveform). For the Waveform data set this
difference was significant. Pruning alternatives decreased the accuracy (by more than
0.1) for only the Road Segmentation data set, but the difference was not statistically
significant. The difference in time is negligible; only a few extra seconds were required
to consider alternatives.

Although this aspect of MCS’s search helped in only four cases, we believe that
this is a promising direction for future research and we would like to explore this idea
in conjunction with other pruning schemes. Indeed, one possible extension would be
to store a test that is simpler than the chosen test. This would address situations in
which the chosen test overfits the training data, but pruning it from the tree causes

76

Table 5.7 Contribution of pruning alternatives

Data Set Accuracy Training Time

PA noPA PA noPA
Breast Cancer 96.2 96.5 67.2 65.9
Congressional Votes 96.4 96.2 128.2 76.8
Diabetes 73.7 73.9 1725 1711
Glass Recognition 75.0 75.6 71.2 68.4
Heart Disease 83.1 82.4 80.7 77.4
Hepatitis 84.7 84.7 70.9 72.4
Iris Plants 96.0 92.7 2.6 2.5
Landsat 82.2 82.1 181.3 177.6
LED-7 Digit 73.3 73.4 164.7 162.1
LED-24 Digit 62.5 62.5 803.2 798.5
Liver Disorder 67.4 63.8 38.7 40.0
Lymphography 85.0 83.6 83.2 82.2
Pixel 95.4 95.5 1076.3 1061.7
Road Segmentation 83.4 84.3 528.0 4923
Waveform 83.2 77.5 834.2 835.8

more errors. In such cases, replacing the test with a simpler test might be the best
choice.

5.1.6 Benefits of One-ply Deeper Search

In this experiment our goal is to examine the benefits of allowing one-ply deeper
search. Recall that MCS searches one ply deeper if it cannot distinguish which
of two tests appears more promising. In the first two columns of Table 5.8 we
report the average accuracy of the classifiers found by MCS with and without using
one-ply search. The last two columns report the average time MCS spent forming
classifier when one-ply search was and was not used. Searching one ply deeper,
when MCS can’t distinguish between two candidate tests, increased accuracy in six
cases (Congressional Votes, Glass Recognition, Landsat, LED-7 Digit, LED-24 Digit
and Liver Disorder). However, for none of these cases is the difference statistically
significant at the 0.05 level. It is important to note that although the increases in
accuracy of one-ply deeper search over no extra search were not significant, these
increases coupled with the increases due to using pruning alternatives are significant.
Allowing MCS search one ply deeper never decreased the accuracy, but it did increase
the amount of time required to form a classifier. From these results we conclude
that more investigation of when to apply deeper search is necessary to bring down
computation time; because in most cases allowing extra search does not increase
accuracy, it could be applied less frequently.

77

R

L.

Table 5.8 Contribution of depth search

Data Set Accuracy Training Time

SD noSD SD no SD
Breast Cancer 96.2 96.2 67.2 38.0
Congressional Votes 96.4 94.5 78.8 96.2
Diabetes 73.7 73.6 1725 125.7
Glass Recognition 75.0 68.9 71.2 38.3
Heart Disease 83.1 83.1 80.7 71.9
Hepatitis 84.7 84.7 70.9 711
Iris Plants 96.0 96.0 2.6 2.4
Landsat 82.2 82.1 181.3 152.1
LED-7 Digit 73.3 72.8 164.7 132.0
LED-24 Digit 62.5 58.1 803.2 342.9
Liver Disorder 67.4 65.9 38.7 29.2
Lymphography 85.0 85.0 83.2 82.3
Pixel 95.4 95.5 1076.3 1057.6

Road Segmentation 83.4 83.4 528.0 530.4
Vowel Recognition 50.2 50.2 149.0 149.0
Waveform 83.2 83.2 8342 834.0

5.2 Representational Biases of MCS

In this section we leave aside the issue of whether a search algorithm can find
a good classifier for a set of data and focus entirely on whether a model class can
represent the true concept underlying a data set. We first explore the representational
strengths and limitations of each of the individual model classes contained in MCS.
Building on this analysis we then examine the representational capabilities and
limitations of the tree-structured hybrid classifiers produced by MCS.

5.2.1 Individual Model Classes

Classifiers constructed from any one of MCS’s three model classes each form a
piecewise-linear partition of the given instance space. They differ in how (where) the
boundaries may be placed in the space.

A univariate test of feature F;, represents a decision boundary that is orthogonal to
feature F;'s axis (and parallel to all the other feature axes). A univariate decision tree
defines a set of orthogonal decision boundaries that partition the instance space into
a set of hyper-rectangular regions each labeled with a class name. Univariate decision
trees are biased toward concepts that can be expressed as Boolean combinations of
the input features. The set of available branches at a test node in the decision tree
represents a disjunction, whereas each path in the tree (from root to leaf) represents

78

a conjunction. When there are non-Boolean relationships among the features, a
univariate decision tree can fail to capture the concept definition correctly.

A strength of univariate decision trees is that they need not evaluate all of the
input features, which is desirable for representing concepts that are described by a
subset of the input features. Indeed for many tasks, the set of relevant features may
be unknown, and applying a univariate decision tree algorithm to such tasks can
generate feedback as to which features are relevant to the task. For example, Cardie
(1993) uses univariate decision trees to find a useful subset of the available features
for a natural language processing task. The subset is then used in an instance-based
classifier.

Univariate decision trees are the best representation for concepts defined by hyper-
rectangular regions that are orthogonal to the feature axes. However, they can be
used to approximate other types of boundaries. For example, a univariate decision
tree can approximate a hyperplane boundary (see Figure 4.5). The quality of the
approximation depends on the concentration of instances in the data set that are
near the hyperplane boundary. The more dense the concentration the more accurate
the univariate decision tree approximation will be. However, this will increase the
size of the decision tree, and result in a description of the concept that is less precise
than using a model class that is designed to represent hyperplanes, such as linear
discriminant functions.

A set of R linear discriminant functions defines a set of R regions in the instance
space, separated by hyperplanes, each labeled with a different class name. Linear
discriminant functions are ideal for concepts for which the R classes are linearly
separable. If a concept is not-linear then a linear discriminant function cannot
represent it accurately. For example, a linear discriminant function would do poorly
for each of the concepts shown in Figures 5.2 and 5.6.

An instance-based classifier defines a piecewise-linear partition of the instance
space; the number of blocks is determined by the number and distribution of the
instances, and the choice of k, which is the number of nearest neighbors to examine
when classifying an unlabeled instance. The result is a set of regions, each labeled
by a different class name, separated by piecewise-linear boundaries. Instance-based
classifiers do best when all features are equally important because each feature
contributes equally in the calculation of the distance between two instances. There
are heuristic methods for weighting the contribution of each feature, but for some
data sets, these methods decrease the accuracy of the classifier [Aha, 1990]. If a
subset of the features describing the data are not relevant to the concept definition
then an instance-based classifier that does not weight the features will have trouble
representing such a concept.

Even given their different representational biases, for some concept definitions, the
best hypothesis defined by each of the three model classes will be the same, given the
goal of perfectly partitioning the instances into their classes. Figure 4.3 illustrates an
example of such a case. For other data sets, all three will define different hypotheses.
In Figure 5.1 we show a Venn Diagram of the concepts that can be represented by

79

A

¢

Univariate
Decision
Trees

Linear
Combination
Classifters

Instance
Based
Classifiers

Figure 5.1 Hypothesis space of MCS’s primitive representation languages.

Y Y
+ + + +
+i— — £+ —
X X
a: IBC and UTree b: LCT

Figure 5.2 An example in the intersection of instance-based and univariate decision
tree classifiers.

the primitive model classes contained in MCS. The diagram depicts the fact that the
three model classes intersect in hypothesis space. To illustrate that the intersection
of any two model classes is non-empty we present an example from each. (In Figure
4.3 we saw an example of the intersection of all three model classes.)

Figure 5.2 shows an example of a data set for which an instance-based (IBC) and
a univariate decision tree (Utree) classifier would define the same hypothesis, but a
linear discriminant classifier (LCT) would define a different hypothesis. Given that
the true concept definition is the one found by the instance-based classifier and the
univariate decision tree, this is an example from the intersection IBC N Utree.

Figure 5.3 shows an example of a data set for which an instance-based and a linear
discriminant classifier would define the same hypothesis, but a univariate decision tree
would define a different hypothesis. Given that the true concept definition is the one
found by the instance-based classifier and the linear discriminant classifier, this is an
example from the intersection IBC N LCT.

80

e
Ty EE
— 4+ =
+ +.=
+—= +.=
& —
X X
a: IBC and LCT b: UTree

Figure 5.3 An example in the intersection of instance-based and linear combination
classifiers.

Y + c— Y _|_ -
+ +
+i— +i—

X X
a: LCT and UTree b: IBC

Figure 5.4 An example in the intersection of linear combination and univariate
decision tree classifiers.

Figure 5.4 shows an example of a data set for which a linear discriminant and a
univariate decision tree classifier would define the same hypothesis, but an instance-
based classifier would define a different hypothesis. Given that the true concept
definition is the one found by the linear discriminant classifier and the univariate
decision tree classifier, this is an example from the intersection LCT N UTree. Figure
5.4 illustrates a situation in which an IBC is a poor choice because not all of the input
features are relevant to the concept definition. In this example, only the value of X is
relevant to the concept definition. If the feature Y were removed from the IBC, then
it too could represent the correct hypothesis. Indeed, there are algorithms designed
especially to rid IBCs of the problem of irrelevant features {Aha, 1990; Cardie, 1993].

One question of interest is how large is each space that represents the overlap
among two or more of the three model classes? Although we know of no way
to answer this question analytically, we can provide some empirical analysis. In
the above discussion we have held the search algorithm separate from a model
class’s representational ability. In the following experiment we cannot enforce this
separation.

To examine the overlap in the model classes we would like to examine the
differences among the decision boundaries each classifier forms. To this end, we

81

Table 5.9 Classification overlap (percentage)

Data Set IBC-LCT IBC-Utree LCT-Utree All Three
Breast Cancer 97.0 95.9 96.1 94.5
Congressional Votes 94.0 93.1 96.7 91.9
Diabetes 74.1 73.6 80.0 63.8
Glass Recognition 55.0 64.4 49.4 37.2
Heart Disease 78.3 76.9 82.1 68.6
Hepatitis 91.3 83.3 82.7 78.7
Iris Plants 95.3 92.7 94.7 91.3
Landsat Segmentation 70.3 81.8 74.9 64.7
LED-7 Digit Recognition 61.8 61.7 85.0 56.0
LED-24 Digit Recognition 41.3 36.9 58.1 23.1
Liver Disorder 56.5 63.8 56.8 38.5
Lymphography 76.4 81.4 78.6 68.6
Pixel 88.5 91.8 87.3 84.4
Road Segmentation 75.0 81.2 78.7 69.3
Waveform 66.8 60.4 68.6 48.6

compute a heuristic measure of the similarity between two classifiers’ boundaries:
we compute the percentage overlap in the classification decisions that each makes.
Although this does not tell us the exact difference in the decision boundaries, it gives
a rough measure of how different these boundaries are for classification of the types
of instances observed in the domain of interest.

After each of MCS’s primitives learning algorithms was run using the same random
split of a data set into training and test sets®, we computed the overlap between the
classification decisions made by each pair of learning algorithms on the test set; we
counted the number of the instances in the test set that were classified the same
way by each of two classifiers constructed using different algorithms. In Table 5.9
we report the average for each data set, over ten runs, of the classification overlap
percentage between each pair of classifiers and among all three classifiers. The higher
the percentage, the closer the decision boundaries are for classification of instances
likely to be observed in the domain. For example, the largest pair-wise overlap for
the Diabetes data set is between LCT and Utree. This indicates that the LCT defines
decision boundaries that are more similar to Utree’s boundaries than IBC’s. We show
the largest pair-wise overlap for each data set in boldface.

The first observation to make from the results of this experiment is that no pair
is more similar than any other pair across the entire set of tasks. Obviously, for an

5The experimental method is described in Section 5.1.2.

82

individual task, one pair will have a higher overlap than the others, but there is no
trend.

Combining the results reported in Tables 5.1 and 5.9, we observe that in twelve
out of fifteen cases the highest overlap is between the two most accurate model classes
for the data set. This makes sense because classifiers from these two model classes
are closer to defining the true concept definition and therefore their boundaries are
more similar. In six cases the largest overlap for a data set is higher than the best
accuracy for that data set. When the overlap is higher than the best accuracy this
means that the two classifiers are misclassifying some of the same instances the same
way. In five cases the overlap is lower than the best accuracy and in the remaining
four cases they are about the same. When the overlap is lower than or equal to the
accuracy it means that they are either not classifying the same instances correctly or
when they misclassify an instance they do so as different classes. Note that in the case
of data sets that have only two classes, an overlap that is lower than the minimum
accuracy of the two methods indicates that they are not classifying the same subset
of the instances correctly.

In conclusion we should restate that in the overlap experiment we cannot separate
the affects of the model class and the search bias for that model class. Indeed we find
it highly likely that by using a different search bias these results would change. What
this experiment does provide is some insight into trying to understand the differences
in these model classes.

5.2.2 Hybrid Combinations

In this section we explore the representational strengths and weaknesses of the
model class of tree-structured hybrids that combines univariate decision trees, linear
combination tests and instance-based classifiers. Combining all three individual model
classes overcomes many of the representation problems of each of the individual
classes. For example, the problem that a linear discriminant function can only
represent lineararly separable concepts is eliminated because the hybrid classifier can
represent a series of hyperplanes; the children of a linear machine test, in the tree,
can correct the classification errors of the parent. None of the homogeneous model
classes can represent a curved boundary and this remains true of the hybrid model
class as well, but the hybrid model class can approximate a curved boundary.

In Figure 5.5 we show a Venn Diagram of the hypothesis space of all piecewise-
linear classifiers. Clearly the hypothesis space of MCS is at least a large as the union
of the three primitive model classes; by selecting among the three homogeneous model
classes MCS can choose a hypothesis in the union of the three model classes. The
question is how much larger is the space when hybrids are permitted? A linear
combination test can represent any arbitrary hyperplane in the space. Permitting a
tree of linear combination tests will allow the representation of any piecewise-linear
concept definition. Therefore MCS’s hypothesis space is equal to the entire class of
piecewise-linear concept boundaries. Note that we are in no way stating that all

83

|

Picce-wise
Linear
Classifiers

Univariate
Decision
Trees

Linear
Combination
Classifiers

Instance

Classifiers

Figure 5.5 Hypothesis space of MCS’s hybrid representation.

of these can be found by the search strategy of MCS, but merely that the hybrid
representation can represent them.

Our reason for including all three model classes, is that just because we can
represent all piecewise classifiers with a tree of linear discriminant functions does
not mean that the existing search algorithms for linear discriminant functions can
find the best piecewise-linear classifier. We include univariate decision trees and
instance-based classifiers because they have different search biases (preference biases)
that may lead to a more accurate concept representation than the biases of using
linear discriminant function algorithms only. Indeed in the overlap experiment we
saw strong evidence that the different search biases find different hypotheses for many
of the data sets.

Although a concept definition that defines a curved boundary in the instance space
cannot be represented precisely by a piecewise-linear classifier it can be approximated.
For a finite population (eg. all two-class concepts described by five Boolean features)
it is not possible for a concept to be defined by curved boundaries. For infinite
populations (any task for which one or more of the features is continuous) there
can be concept descriptions that are not piecewise linear. However, to produce a
classifier in a finite amount of time, a finite set of data is used to form the classifier,
and therefore the curved boundary can be approximated by a finite number of linear
segments. (If there is an infinite amount of data, then there is no piecewise-linear
approximation of a curved boundary that contains a finite number of pieces.) As the
number of instances observed near the boundary is increased so too will the number
of segments in the piecewise-linear approximation.

In Figure 5.6 we depict a data set from a concept description that has a curved
boundary in the instance space. The figure illustrates how the number of pieces in a
piecewise-linear approximation increases as the concentration of instances around
the concept boundary increases. Although a piecewise-linear representation can

84

Y Y
S . S + + bt
IR L:{/»\ Lf-"* %;,{
X X X

Figure 5.6 Piecewise approximations of a curved boundary from the given data

approximate a curved concept description boundary it does not provide as precise
a definition as using a representation that naturally represents curves, such as Taylor
polynomials.

5.3 Summary

In this chapter we evaluated the MCS’s performance and representational ability.
The results of an empirical comparison of MCS to its primitive components illustrate
that MCS produces classifiers that are sometimes more accurate and never less
accurate than each of the three homogeneous algorithms. This result indicates that
the heuristic rule-based search strategy implemented in MCS solves the selective
superiority problem for these algorithms. In some cases, MCS produced classifiers
that were statistically significantly more accurate than the best primitive algorithm,
illustrating that for some data sets a hybrid bias is best.

The results of an empirical comparison of MCS to three other hybrid classifier
construction algorithms illustrate that merely increasing the search space by permit-
ting hybrids will not increase accuracy. Each of the three methods is statistically
significantly worse than MCS for several of the data sets. In contrast, MCS produced
classifiers that were always equal to or better than each of the other hybrid methods.

The other three hybrid methods exhaustively try each of the primitive algorithms
at a node to generate a set of candidates. Each method chooses a test from this set
using a different criterion. In contrast, MCS’s rules use the criteria of these methods,
but rather than selecting a classifier for each data set based on a single source of
feedback, MCS’s rules use more than one source of feedback to make a selection.
Moreover, when the various measures yield conflicting results, MCS applies more
search before making a decision. For example, when choosing between a univariate
test and a linear combination test, and the measures of accuracy and the Information-
Gain Ratio give conflicting results, MCS applies one-ply deeper search rather than rely
on only one of these measures. The results demonstrate that MCS’s knowledge-based
approach is both more accurate and less time-consuming than the alternative three
methods.

We evaluated the contribution to MCS’s performance of pruning alternatives and
search depth. Our results indicated that although both increased performance in
some cases, more work in both of these areas needs to be done. Specifically the rules

85

g_’_j

S

Ve

for applying deeper search need to be more stringent to cut back on computation
time, and other criteria for retaining alternative tests needs to be explored.

In our evaluation of the representational biases of MCS, we first examined the
strengths and limitations of the homogeneous model classes. We illustrated that
there is some overlap among the three model classes in hypothesis space. We then
extended our evaluation to include the hybrid tree-structured classifiers produced
by MCS. We concluded that the hybrids can represent any piecewise-linear concept
definition, but can only approximate concept definitions that split the instance space
with curved boundaries.

86

CHAPTER 6
CONCLUSIONS

The objective of this research was to study the problem of how to select the best
learning bias for a data set. The research was motivated by the selective superiority
results of empirical comparisons among learning algorithms, which illustrate that no
single bias exists that is best for all learning tasks [Brodley, 1993). The problem
of selecting an appropriate learning bias is complicated further because for some
learning tasks, different subtasks are learned best using different biases. This chapter
summarizes the results obtained in this dissertation and their implications toward
solving the selective superiority problem in machine learning. We conclude with a
discussion of the issues for future investigation uncovered by this research.

6.1 Summary of the Dissertation

This dissertation presented a new approach to automatic selection of an appro-
priate bias for a given data set. The approach uses a set of heuristic rules to perform
a hill-climbing search for the best hypothesis space (model class) and search bias for
a given data set. The rules measure characteristics of the data set by using feedback
from the learning process. In addition, the approach has the ability to select different
biases for different subspaces of the learning task, thereby forming a hybrid classifier
of the data. In the dissertation we tested the following two hypotheses about the
approach:

1. Domain independent knowledge about characteristics in the form of feedback
from learning can effectively guide an automatic algorithm selection search.

2. Our knowledge-based search strategy for finding a hybrid classifier will produce
a classifier that is never worse than, and for some data sets is better than, any
homogeneous classifier prodiced by its primitive components.

In this section we summarize the research conducted to validate these two claims.

We begin by describing the design and implementation of the Model Class Selection
System (MCS), a recursive automatic algorithm selection system. We then discuss the

87

| A A

g"—ﬂ

results obtained from applying MCS to a variety of learning tasks. We conclude this
section with a discussion of the implications of these results for solving the selective
superiority problem.

6.1.1 MCS: The Design and Implementation

Our approach to automatic algorithm selection applies knowledge about the biases
of machine learning algorithms to guide the search for the best algorithm to apply
to a given set of data. The approach computes characteristics of a data set using
feedback from a search through the space of available representation and search
biases. The approach iteratively fits a classifier to the data using the representation
language and search bias currently considered best for the data set. Next it computes
measures of how well the resulting classifier fits the data. The measures are used by a
heuristic rule-based search strategy to decide whether a best classifier has been found
or whether to search further, and if so which bias to try next.

Our approach has the ability to select different learning biases for different sub-
spaces of the learning task. We included this ability because choosing among a set of
learning algorithms that each employ a homogeneous representation bias assumes that
a classifier for the data set is represented best using a single representation language.
For some data sets this is not the case; different subspaces of the learning task may
be best learned employing different representation biases, indicating that forming
a hybrid classifier will result in higher classification accuracy than a homogeneous
classifier.

We implemented our recursive automatic algorithm selection approach producing
the Model Class Selection system (MCS). Given a set of data, MCS builds a classifier
using a set of heuristic rules to guide a search for the best representation language,
from which to form a test, for each node in a hybrid classifier. MCS combines three
primitive representation languages that have been used extensively in both machine
learning and statistics algorithms: linear discriminant functions, decision trees and
instance-based classifiers. Our choice of these representation languages stemmed
from the results of empirical comparisons, which illustrate that these three languages
produce classifiers of differing accuracy for different data sets; each of the three was
selectively superior for some data sets. Classifiers constructed from any one of these
three languages each form a piecewise-linear partition of the given instance space.
They differ in how (where) the decision boundaries may be placed in the space.

MCS searches for a hybrid classifier from the available model classes using a
hill-climbing search to select a test for each node in the tree-structured classifier.
A set of heuristic rules is used to decide which model classes to try, which model
classes should be avoided, and to determine when a best test at each node has been
found. The instance space is partitioned according to the chosen test, and the search
is applied recursively to each resulting subset that contains instances from two or
more classes. After MCS has constructed a hybrid classifier that perfectly partitions
the training instances into regions each labeled with a single class name, it applies a

88

pruning algorithm to reduce the estimated error of the classifier as computed for an
independent set of instances.

6.1.2 Results Obtained by Using MCS to Form Classifiers

Our experimental results demonstrated that MCS performed as well as or better
than each of its primitive learning algorithms across a variety of learning tasks,
illustrating that MCS is a robust method for choosing among the biases of decision
trees, linear discriminant functions and instance-based classifiers. In MCS we have
solved the selective superiority problem for these algorithms by providing a robust
automatic algorithm selection system.

The classifiers found by MCS for each data set were never significantly less accurate
and were sometimes significantly more accurate than the best of the primitive algo-
rithms, indicating that a hybrid can provide a significant performance improvement
for some data sets. In many cases MCS formed a hybrid classifier, but its accuracy
was not significantly different from the best of the primitive algorithms. We attribute
this phenomenon to the fact that all of MCS’s primitive model classes and the
hybrids produced by MCS are from the set of piecewise-linear concept descriptions
and therefore, will define similar hypotheses for many data sets. However, both the
empirical results and the analysis of representational bias indicate that using MCS,
strictly increases the number of data sets for which a good generalization can be found
over its primitive components.

The results of an empirical comparison of MCS to three hybrid algorithms that
each apply all candidate algorithms to construct each node of a hybrid tree illustrated
that MCS’s knowledge-based search strategy is less time consuming and produces
more accurate classifiers. Each of the three other hybrid algorithms, RAcc, Rlnfo
and RCV, performed worse than MCS for several data sets, and for some data sets,
worse than the best of the primitive learning algorithms. In contrast, MCS never
produced a classifier than was less accurate than the best of the primitive algorithms,

illustrating that using the feedback characteristics in a “knowledge-poor” way can .

lead to worse performance than the best of the primitive algorithms. Unlike the
other three hybrid methods, MCS’s rule-based search strategy does not get misled by
the larger search space that permitting hybrids creates. We conclude that MCS is
more robust and less time consuming than each of the other methods.

6.1.3 Implications of the Results

Our results support the claim that domain-independent knowledge about char-
acteristics in the form of feedback from learning can effectively guide an automatic
algorithm selection search. First, recall that twelve of the data sets used in the
empirical evaluation were not used to develop the rule base. Second, MCS was never
less accurate than each of its primitive components. Taken together this provides

89

[_

L

B

—

strong support for the claim that domain independent knowledge about the biases of
machine learning algorithms exists and is useful for automatic algorithm selection.

In addition, our results support the claim that our knowledge-based search
strategy for finding a hybrid classifier produces classifiers that are sometimes better,
but never worse than a homogeneous classifier. Although we have no analytical proof
of this claim, our results across sixteen data sets in our empirical evaluation of MCS
provide strong support for such a claim. MCS created classifiers that were significantly
more accurate than each of the homogeneous classifiers for three of the sixteen data
sets. For the remaining thirteen, the accuracy of the hybrid classifiers produced by
MCS was equal to the best of the homogeneous learning algorithms. Indeed our
comparison to “knowledge-poor” hybrid classifier construction algorithms indicated
that a knowledge-based strategy both increases accuracy and decreases computation
time over algorithms that exhaustively try all candidate learning algorithm in the
construction of each node in a tree-structured hybrid classifier.

6.2 Contributions

For the past few years researchers have become increasingly aware that selecting
an appropriate learning bias plays a pivotal role in the success of forming an accurate
classifier for a set of data. However, prior to this research no one had codified this
process as a set of heuristic rules that use feedback from learning to guide an automatic
algorithm selection search. This research illustrates that general domain independent
knowledge about the biases of machine learning algorithms can be used to guide the
search for the best learning bias.

The results obtained in the dissertation demonstrate that there are real-world
data sets for which different subspaces require different learning biases. Our results
comparing MCS to three “knowledge-poor” approaches illustrate that care must be
taken in forming hybrid classifiers; an ineffective search algorithm for forming a
hybrid classifier can lead to worse performance than selecting the best of a set of
homogeneous classifiers. In contrast MCS is a robust recursive automated algorithm
selection system.

The automation of classification learning is an ongoing concern in the machine
learning, pattern recognition and statistics communities. As the amount of data
and knowledge about the world continues to increase, so does the need for data
analysis techniques that compress and help to make sense of the data. Inductive

generalization provides a technique for both data compression and understanding.

The creation of systems that search multiple representation spaces increases the
autonomy of learning machines. Ultimately, a human will no longer be required to
select a learning algorithm, making machine learning techniques accessible to a wider
range of scientists. They will no longer need to understand the representational biases

90

of the available learning algorithms, because this step in the analysis of data will now
be automated.

6.3 Issues for Future Research

This research has uncovered several directions for future investigation in automatic
bias selection for classifier formation. The evaluation of the representational strengths
and limitations of MCS illustrated that MCS can only approximate non piecewise-
linear concept definitions. One direction in which to extend MCS is to include a
non-linear model class, such as neural nets or higher-order polynomial functions. A
question of interest is whether the performance of MCS would increase substantially
with such an addition.

Indeed, one problem with evaluating MCS’s performance is that it is unclear
for many data sets whether better performance can be achieved. Unless one can
exhaustively enumerate all possible concept definitions for a data set and know
which is the best, it is impossible to know whether MCS has achieved the maximum
obtainable accuracy for these data sets. It may be the case that because of noise in
the data set, squeezing out more accuracy is impossible. For example, for the LED-7
data set, we know that univariate decision trees and MCS each form a classifier whose
accuracy is near the maximum obtainable accuracy. If we can find data sets for which
we know the maximum obtainable accuracy, then we will be able to evaluate more
precisely the performance of automatic algorithm selection systems.

MCS contains several different measures of how well a classifier fits the data,
but there are many more. Indeed, at the beginning of the search at a node, MCS
determines where to begin the search based on a simple test relating the number
of features to the number of instances. A direction in which to extend MCS is
to incorporate the results of efforts such as the STATLOG project (Feng, et al.
1993) in order to reduce the amount of search required. One of the results of the
" STATLOG project is a study that relates statistical measures of a data set to the
performance of different algorithms. Measures such as homogeneity of covariances
and skewness were used to explain differences in the performances of a set of machine
learning, statistical and neural net algorithms on a test-suite of classification tasks.
The knowledge resulting from this type of study could be used to begin a heuristic
search. By starting the search from a promising part of the space, it stands to reason
that the time required to find a best classifier would be greatly reduced.

In our comparison to the other hybrid methods, we observed that for some data
sets it was a better to use the Information-Gain Ratio and for others it was better
to use accuracy to select a test at a node. This is an example of how using the same
model class (in this case tree-structured hybrids), but using different search biases can
lead to significantly different performances. In our implementation of MCS, we chose a
single search bias for each homogeneous model class (except for the selection of terms

91

'

—

for inclusion in an LCT). An extension would be the inclusion of other search biases
for each of the homogeneous model classes. For example, univariate decision trees
in MCS were built using the Information-Gain Ratio. Perhaps, for some data sets it
is better to use accuracy, and we would like a way to determine this automatically.
For instance-based classifiers, MCS selects a value for k using accuracy.! For some
data sets it may be better to use the Information-Gain Ratio or some other criterion.
We conjecture that the performance of MCS could be increased with the addition of
other search biases for the homogeneous model classes.

Searching one ply deeper, for cases in which the measures could not distinguish
between two classifiers, was found to contribute little to MCS’s performance, but at
a large cost in terms of the time required to form a classifier. Perhaps a better use of
this time would be to employ a more restrictive test for when to apply further search
and then to search deeper at those points. One criterion we used to determine when
to search deeper examines whether the measures of two tests are within 10% of one
another. A closer examination on a per-run basis could indicate if this is too loose a
criterion. Another experiment of interest is to study the effects of a deeper search on
MCS’s performance. Indeed, it would be useful to to characterize those situations in
which a deeper search depth helps in order to apply one-ply search more judiciously.

Saving alternative tests during search for consideration during pruning helped
increase MCS’s performance, at an insignificant time cost. We feel that this is a

- promising direction for future research for any tree-structured classifier — hybrid or

not. One possible extension is to retain alternative tests only if they are simpler than
the chosen test. This would alleviate the problem that during pruning a complex test
at a node overfits the training data, but removal increases the error estimate more
than retaining the complex test. Another future direction is to investigate the utility
of selecting an alternative at a node using a different criterion than that used to select
the actual test. This would be beneficial for data sets for which the bias of the best
criterion to use changes as the algorithm proceeds deeper in the tree. In most cases
the assumptions that can be made about the distribution of the instances is no longer
true when constructing a test node for a subset of the instances (unless the subset is
drawn randomly).

In conclusion, this research has uncovered many promising areas of future research
in automatic learning bias selection. The results have indicated that a recursive
knowledge-based automatic algorithm selection system can significantly increase the

predictive accuracy of classifiers formed for sets of data over its primitive learning
components.

1Recall that k is the number of nearest neighbors considered when classifying an instance.

92

APPENDIX A
CODING TESTS AND ERROR VECTORS

To determine the number of bits required to code a consistent hypothesis we need
to code both the hypothesis induced by the learning algorithm and the errors that the
hypothesis makes. To code the error-list we use Cover’s (1973) enumerative encoding
scheme. To code a linear machine or a univariate symbolic test we assume a fixed
ordering for the features and that the receiver of the code knows this order. We code
both the test and the error vectors of each partition resulting from the test. For
the following discussion let k equal the number of classes, let n equal the number of
attributes and let V'(a;) equal the number of distinct values for attribute a;.

A.1 Coding a Univariate Test

We need log,(n) bits to specify which attribute is being tested. If the test
is discrete, then for each branch we encode the value of the branch, which takes
V(a;)logs(V(a;)) bits. If the attribute is continuous, then we need to code the value
of the range and we use the method specified below for coding real numbers. In
addition we need need V'(a;)log,(k) bits to code the class label for each branch of the
tree.

A.2 Coding a Linear Machine

We need k bits to specify which classes have a linear discriminant in the linear
machine. We code each linear discriminant as a vector of numbers using the method
described below for coding real numbers. To represent variables that have been
eliminated from the linear machine we assign their weights the value zero.

A.3 Coding Real Numbers

We first try to reduce the precision necessary to retain the same accuracy. For
example given the number 23.67000 it is only necessary to code 23.67. There are two

93

e

oy

£

ways we can encode a real-valued number. The first method multiplies the number
by 10® to achieve a precision to the z** decimal place and then codes the result as
an integer. The second method encodes the integer part of the number separately
from the fractional part. The fractional part is then treated as an integer. We choose
the second method as in our experiments the code for 23 plus the code for 67 was
generally less than the code for 2367. We use Elias’ (1975) asymptotically optimal
prefix code for integers. An additional bit is needed to code the sign.

94

APPENDIX B

COMPUTING THE INFORMATION-GAIN
RATIO OF A TEST

In this appendix we explain how the gain-ratio information theoretic measure is
calculated for univariate, linear combination or instance-based classifier tests. The
gain-ratio information theoretic measure for a test, T}, in a decision tree measures
the gain in information if the test is used to partition the instances. We use same
formula as the decision tree algorithm ID3 uses, and for a detailed explanation of the
gain-ratio metric and its underlying assumptions see Quinlan (1986).

B.1 Univariate Tests

For the two class case, let p and n be the number of instances labeled positive
and negative in the training set, respectively. Let v be the number of distinct values
observed for attribute A, and let p; and n; be the number of positive and negative
examples for which attribute A takes on value i. Then the gain-ratio for attribute A
is given by the formula: gain(A)/IV(A), where

¢ gain(A) = I(p,n) — E(A), measures the gain in information if attribute A is
used as a test at the node.

e I(p,n) = - +nlog-zp e — sialoget, is the information required for classifica-
tion.

e E(A)=Y1, 2;:‘1[(pi, m:), is the expected information required for a tree with
root A.

e IV(A)=-%1_, ﬁ'—log BiE% measures the information of the values of A.

For the multiple class case: let k be the number of distinct classes observed in
the training instances; let C equal the total number of observed instances; let v be
the number of values observed for attribute A; let ¢;,7 = 1,..,k be the number of
observed instances labeled class j; and let ¢;;,7 = 1,...,k,%2 = 1,..,v be the number of

95

observed instances labeled class j with value z for attribute A. Then for the multiple
class case, the gain-ratio for attribute A is given by the formula: gain(A)/IV(A),
where

o gain(A) = I(cy,...,cx) — E(A)

o e,y) = — Tk, Glogy &
— v 2§=l i
[) E(A) = —‘L—I(Cl';, ceey Ck',')

i=1 C

. IV(4) = -1,

k A
E,’:x Cjii lo Zj:l Cjii
c 927¢

B.2 Linear Combination and Instance-Based Classifier Tests

To calculate the information gain for a linear machine or an instance based
classifier we use the formula for the multiple class case. The number of values
(branches) for a test is equal to the number of observed classes, k. The gain-ratio for
test T, is given by the formula: gain(T)/IV(T), where

o gain(T) = I(¢1,...,cx) — E(T)

o I(cy,..) = — Z_,;:l %1092%
>
. E(T) = ?:1 —J%!;'.I(cl,i) A% ck,i)

oy ko
o IV(T) = - 5, Tzt 1og, Lz

96

APPENDIX C

A SAMPLE OF THE CLASSIFIERS FOUND BY
MCS

In this appendix we show a sample MCS tree for each of the sixteen data sets
used to evaluate the MCS system. The purpose is to show the hybrid structure of the
trees found by MCS. In our experimental results we report the average of ten different
partitions of each data set into training and test sets. The tree depicted here for each
data set is the tree found for the first partition.

C.1 Breast Cancer

LCT:ios
LEAF: benign
U
U

IB k=3

| U

| | LEAF: malignant
| | LEAF: benign

| | LEAF: malignant

| LEAF: malignant
LEAF: malignant
LEAF: malignant

C.2 Congressional Votes

U
LEAF: democrat
LEAF: republican

97

L

L.

C.83 Diabetes

LCTi:G
LCT;':S

|
|
I
I
I
|
|
|
|
I
|
|
I
|
|
|
I
I
I
I
I
I
I
|
I
|
|
|
I
I

U

U
I
|
I
I
I
I
I
|

U

LCT{=7

| LEAF: 1

| LCTis

| LEAF: 0

| LEAF:1

LCT;=s
LEAF: 1
LEAF: 0

|

| | LEAF:1

| | LEAF: 0

| IBCy=s

| LEAF:1

| LCTir

| LEAF: 1
| LEAF: 0

LCT;=s
| LEAF:1
| LEAF: 0
LCT(:B
LEAF: 1
U
LEAF: 0
IBCi=s
U
| LEAF: 1
| LEAF: 0
LEAF: 0

LEAF: 0
IBCk=3

LEAF: 1
LEAF: 0

LCTi=r
| LEAF: 1

98

| LEAF: 0
LEAF: 0

C.4 Glass Recognition

IBCi-3
LEAF: 1
LEAF: 2
LEAF: 3
LEAF: 5
LEAF: 6
LEAF: 7

C.5 Heart Disease

IB Ck=3
LEAF: absence
LEAF: presence

C.6 Hepatitis

IB Ck=5
LEAF: 2
LEAF: 1

C.7 Iris Plants

LCTix
LEAF: Iris-setosa
IBCp=s
l LCTi=2
| | LEAF: Iris-versicolor
| | LEAF: Iris-viginica
| LEAF: Iris-viginica
LEAF: Iris-viginica

99

r

-

g

g

C.8 Landsat

LCT;-s
U
| LEAF: 2
| U
| LEAF:2
| U
| LEAF: 2
| LCT;-6
| LEAF: 2
| U
| | LEAF: 2
| | LEAF: 4
| LEAF: 1
IBCi=3
| LEAF: 2
| IBCg=4
| | LEAF: 4
| | U
| | | IBCi=s
| | | | LEAF: 2
| | | | LEAF: 4
| | | LEAF: 4
| | LEAF:1
| LCT{=3
| LEAF: 4
| LEAF:1
LEAF: 1
LEAF: 0
LCT;-,
LEAF: 3
LEAF: 1
LEAF: 2

100

C.9 LED-7 Digit

LCT;=¢
LEAF: 0
U
| U

| | LEAF: 3
| | LEAF: 0

| LEAF:

IB Ck=4

| LEAF:
| LEAF:
| LEAF:

IB Ck:l

| LEAF:
| LEAF:
| LEAF:
| LEAF:

LEAF: 9
1B Ck=3

| LEAF:
| LEAF:
| LEAF:

8

0
6

O O N = [

—

Py)

NN OTO

101

e

e .

r__.

C.10 LED-24 Digit

LEAF: 7
LEAF: 1

IB Ck:?

C.11 Liver Disorder

U

LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:

QO W O I DNODHWrO

LCT;-4
| LEAF: 1
| LCTizs
| U

| LEAF: 2
| LEAF:

LEAF:
LEAF:

I
|
| LCTis
I
I

U
| U

| | LEAF:
| | LEAF:

| LCTi=4

| LEAF:
| LEAF:

LEAF: 2

102

C.12 Lymphography

LCT:':IZ
LEAF:
LEAF:
LEAF:
LEAF:

O W~ N

C.13 Pixel

IBCr=
LEAF: BRICKFACE
LEAF: SKY
LEAF: FOLIAGE
LEAF: CEMENT
LEAF: WINDOW
LEAF: PATH
LEAF: GRASS

C.14 Road Segmentation

| LEAF: FOLIAGE
| LEAF: FOLIAGE
LEAF: ROADLINE

| LEAF: TRUNK
LEAF: ROADLINE
LEAF: SKY-TREE
IBCj—

IBCi_s
LEAF: ROAD
IBCg=4
| LEAF: ROADLINE
| U
| | U
| 11U
| | | | LEAF: FOLIAGE
| | | | IBCe=1
| | | | | LEAF: FOLIAGE
| | | | | LEAF: TRUNK
| | | | | LEAF: ROAD
| |
|
|

103

el

| LEAF: SKY-TREE
| LEAF: TRUNK

| LEAF: ROAD

| LEAF: FOLIAGE
| LEAF: GRASS
LEAF: GRAVEL
LEAF: SKY

LCTi—r

| LEAF: FOLIAGE
| LEAF: ROADLINE
| LEAF: GRASS

| LEAF: TRUNK
LEAF: DIRT

C.15 Vowel Recognition

IBCi=1
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:
LEAF:

= O 00 =3 OO U b W N O

C.16 Waveform

IBCp=6
LEAF: 0
LEAF: 2
LEAF: 1

104

BIBLIOGRAPHY

Aha, D. W., & Kibler, D. (1989). Noise-tolerant instance-based learning algorithms.

Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(pp. 794-799). Detroit, Michigan: Morgan Kaufmann.

Aha, David W. (1990). A study of instance-based algorithms for supervised learning
tasks: Mathematical, empirical, and psychological evaluations. Doctoral disserta-

tion, Department of Information and Computer Science, University of California,
Irvine, CA.

Aha, D. W. (1991a). Incremental constructive induction: An instance-based ap-
proach. Machine Learning: Proceedings of the Eighth International Workshop (pp.
117-121). Evanston, IL: Morgan Kaufmann.

Aha, D. W, Kibler, D., & Albert, M. (1991b). Instance-based learning algorithms.
Machine Learning, 6, 37-66.

Aha, D. W. (1992). Generalizing from case studies: A case study. Machine Learn-
ing: Proceedings of the Ninth International Conference (pp. 1-10). San Mateo, CA:
Morgan Kaufmann.

Ash, T. (1989). Dynamic node creation in backpropagation networks, (ICS Report
8901), San Diego, CA: University of California, Institute for Cognitive Science.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification
and regression trees. Belmont, CA: Wadsworth International Group.

Breiman, L. (1992). Stacked regressions, (Technical Report No. 367), University of
California, Berkeley.

Brodley, C. E., & Utgoff, P. E. (1992). Multivariate versus univariate decision
trees, (Coins Technical Report 92-8), Amherst, MA: University of Massachusetts,
Department of Computer and Information Science.

Brodley, C. E., & Utgoff, P. E. (in press). Multivariate decision trees. Machine
Learning.

Brodley, C. E. (1993). Addressing the selective superiority problem: Automatic
algorithm/model class selection. Machine Learning: Proceedings of the Tenth
International Conference (pp. 17-24). Amherst, MA: Morgan Kaufmann.

105

Cardie, C. (1993). Using decision trees to improve case-based learning. Machine
Learning: Proceedings of the Tenth International Conference (pp. 25-32). Ambherst,
MA: Morgan Kaufmann.

Chatterjee, S., & Price, B. (1977). Regression analysis by ezample. New York: John
Wiley and Sons.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning,
3, 261-283.

Cover, T. M. (1973). Enumerative source coding. IEEE Transactions on Informa-
tion Theory, IT-19, 73-77.

Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S.,
Guppy, K., Lee, S., & Froelicher, V. (1989). International application of a new

probability algorithm for the diagnosis of coronary artery disese. American Journal
of Cardiology, 64, 304-310.

Dietterich, T. G. (1990). Machine learning. Annual Review of Computer Science,
4.

Draper, N. R., & Smith, H. (1981). Applied regression analysis. New York: John
Wiley and Sons.

Drucker, H., Schapire, R., & Simard, P. (1993). Improving the performance in
neural networks using a boosting algorithm. Advances in Neural Information
Processing Systems, 5, 42-49.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New
York: Wiley & Sons.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory, IT-21, 194-203.

Fahlman, S. E., & Lebiere, C. (1990). The cascade correlation architecture. Ad-

vances in Neural Information Processing Systems, 2, 524-532.

Falkenhainer, B. C., & Michalski, R. S. (1986). Integrating quantitative and
qualitative discovery: The ABACUS system. Machine Learning, 1, 367-401.

Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued
attributes in decision tree generation. Machine Learning, 8, 87-102.

Feng, C., Sutherland, A., King, R., Muggleton, S., & Henry, R. (1993). Comparison
of machine learning classifiers to statistics and neural networks. Preliminary Papers

of the Fourth International Workshop on Artificial Intelligence and Statistics (pp.
41-52).

106

Fisher, R. A. (1936). Multiple measures in taxonomic problems. Annals of Eugen-
ics, 7, 179-188.

Frean, M. (1990a). Small nets and short paths: Optimising neural computation.
Doctoral dissertation, Center for Cognitive Science, University of Edinburgh.

Frean, M. (1990b). The upstart algorithm: A method for constructing and training
feedforward neural networks. Neural Computation, 2, 198-209.

Gallant, S. I. (1986). Optimal linear discriminants. Proceedings of the International
Conference on Pattern Recognition (pp. 849-852). IEEE Computer Society Press.

Hampson, S. E., & Volper, D. J. (1986). Linear function neurons: Structure and
training. Biological Cybernetics, 53, 203-217.

Hanson, S. J., & Pratt, L. Y. (1989). Comparing biases for minimal network

construction with backpropagation. Advances in Neural Information Processing
Systems, 1, 177-185.

Hocking, R. R. (1986). The analysis and selection of variables in linear regression.
Biometrics, 32, 1-49.

Honavar, V., & Uhr, L. (1988). A network of neuron-like units that learn to perceive
by generation as well as reweighting of its links. Proc. of the 1988 Connectionist
Summer School.

Jacobs, R. A., Jordan, M. L., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation, 3, 79-87.

Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained
neural networks. IEEE Trans. on Neural Networks, 1, 239-242.

Kittler, J. (1986). Feature selection and extraction. In Young & Fu (Eds.), Handbook
of pattern recognition and image processing. New York: Academic Press.

Kokar, M. M. (1986). Determining arguments of invariant functional descriptions.
Machine Learning, 1, 403-422.

Langley, P. (1986). Machine learning and discovery. Machine Learning, 1, 363-366.

Le Cun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. Advances
in Neural Information Processing Systems, 2, 598-605.

Lesser, V., Nawab, S. H.,- & Klassner, F. (to appear March 1995). IPUS: An
architecture for the integrated processing and understanding of signals. Artificial
Intelligence.

Linhart, H., & Zucchini, W. (1986). Model selection. NY: Wiley.

107

E

Mangasarian, O. L. , & Wolberg, W. H. (1990). Cancer diagnosis via linear
programming. SIAM News, 23, 1-18.

Matheus, C. J. (1990). Feature construction: An analytic framework and an appli-
cation to decision trees. Doctoral dissertation, Department of Computer Science,
University of Illinois, Urbana-Champaign, IL.

Michalski, R. S., & Chilausky, R. L. (1980). Learning by being told and learning
from examples: An experimental comparison of the two methods of knowledge
acquisition in the context of developing an expert system for soybean disease
diagnosis. Policy Analysis and Information Systems, 4, 125-160.

Michalski, R. S. (1983). A theory and methodology of inductive learning. In
Michalski, Carbonell & Mitchell (Eds.), Machine learning: An artificial intelligence
approach. San Mateo, CA: Morgan Kaufmann.

Moret, B. M. E. (1982). Decision trees and diagrams. Computing Surveys, 14,
593-623.

Mozer, M. C., & Smolensky, P. (1989). Skeletonization: A technique for trimming
the fat from a network via relevance assessment. Connection Science, 1, 3-26.

Nilsson, N. J. (1965). Learning machines. New York: McGraw-Hill.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning.
Machine Learning, 71-99.

Pagallo, G. M. (1990). Adaptive decision tree algorithms for learning from ezamples.
Doctoral dissertation, University of California at Santa Cruz.

Provost, F. J., & Buchanan, B. G. (1994). Inductive policy: The pragmatics of
bias selection , (Technical Report ISL-94-4), University of Pittsburgh, Intelligent
Systems Laboratory, Department of Computer Science.

Provost, F. J., & Buchanan, B. G. (1992). Inductive policy. Proceedings of the
Tenth National Conference on Artificial Intelligence (pp. 255-261). San Jose, CA:
MIT Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-
machine Studies, 27, 221-234.

Quinlan, J. R. (1989). Unknown attribute values in induction. Proceedings of the

Sizth International Workshop on Machine Learning (pp. 164-168). Ithaca, NY:
Morgan Kaufmann.

108

Quinlan, J. R. (1993). Combining instance-based and model-based learning. Ma-
chine Learning: Proceedings of the Tenth International Conference (pp. 236-243).
Amherst, MA: Morgan Kaufmann.

Rendell, L., Seshu, R., & Tcheng, D. (1987). Layered concept learning and
dynamically variable bias management. Proceedings of the Tenth International
Joint Conference on Artificial Intelligence (pp. 308-314). Milan, Italy: Morgan
Kaufmann.

Rendell, L., & Cho, H. (1990). Empirical learning as a function of concept character.
Machine Learning, 5, 267-298.

Rissanen, J. (1989). Stochastic complezity in statistical inquiry. New Jersey: World
Scientific.

Salzberg, S. (1991). A nearest hyperrectangular learning method. Machine Learn-
ing, 6, 251-276.

Saxena, S. (1991a). Predicting the effect of instance representations on inductive
learning. Doctoral dissertation, Department of Computer Science, University of
Massachusetts, Amherst, MA.

Saxena, S. (1991b). An algorithm to evaluate instance representations, (TR-91-21),
Ambherst, MA: University of Massachusetts, Computer and Information Science
Department.

Schaffer, C. (1990). A proven domain-independent scientific function-finding al-
gorithm. Proceedings of Eighth National Conference on Artificial Intelligence (pp.
828-833). MIT Press.

Schaffer, C. (1993). Selecting a classification method by cross-validation. Prelim-
wnary Papers of the Fourth International Workshop on Artificial Intelligence and
Statistics (pp. 15-25).

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5,
197-227.

Schlimmer, J. C., & Granger, R. H., Jr. (1986). Incremental learning from noisy
data. Machine Learning, 1, 317-354.

Schlimmer, J. C. (1987). Concept acquisition through representational adjustment.
Doctoral dissertation, University of California, Irvine.

Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991). Symbolic and neural learning
algorithms: An experimental comparison. Machine Learning, 6, 111-144.

109

[P

Sutton, R. S. (1988). NADALINE: A normalized adaptive linear element that learns
efficiently, (GTE TR88-509.4), GTE Laboratories Incorporated.

Sutton, R. S., & Matheus, C. J. (1991). Learning polynomial functions by feature
construction. Machine Learning: Proceedings of the Eighth International Workshop
(pp- 208-212). Evanston, IL: Morgan Kaufmann.

Tcheng, D., Lambert, B., C-Y Lu, S., & Rendell, L (1989). Building robust learning
systems by computing induction and optimization. Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (pp. 806-812). Detroit,
Michigan: Morgan Kaufmann.

Towell, G., Craven, M., & Shavlik, J. (1991). Constructive induction in knowledge-
based neural networks. Machine Learning: Proceedings of the Eighth International
Workshop (pp. 213-217). Evanston, IL: Morgan Kaufmann.

Utgoff, P. E. (1989). Perceptron trees: A case study in hybrid concept representa-
tions. Connection Science, 1, 377-391.

Utgoff, P. E., & Brodley, C. E. (1990). An incremental method for finding multi-
variate splits for decision trees. Proceedings of the Seventh International Conference
on Machine Learning (pp. 58-65). Austin, TX: Morgan Kaufmann.

Utgoff, P. E., & Brodley, C. E. (1991). Linear machine decision trees, (COINS
Technical Report 91-10), Amherst, MA: University of Massachusetts, Department
of Computer and Information Science.

Weiss, S. M., & Kulikowski, C. S. (1991). Computer systems that learn. Palo Alto:
Morgan Kaufmann.

Weiss, S. M., & Kapouleas, I. (1989). An empirical comparision of pattern recogni-
tion, neural nets, and machine learning classification methods. Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence (pp. 781-787).
Detroit, Michigan: Morgan Kaufmann.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.

Yang, D. S., Rendell, L., & Blix, G. (1991). Fringe-like feature construction a
comparitive study and a unifying scheme. Machine Learning: Proceedings of the
Eighth International Workshop. Evanston, IL: Morgan Kaufmann.

Yerramareddy, S., Tcheng, D. K., Lu, S.-, & Assanis, D. N. (1992). Creating and
using models for engineering design. IEEE Ezpert, 8, 52-59.

Zhang, X., Mesirov, J. P., & Waltz, D. L. (1992). Hybrid system for protein
secondary structure prediction. Journal of Molecular Biology, 225, 1049-1063.

110

	TR 94-61-1
	TR 94-61-2
	TR 94-61-3
	TR 94-61-4
	TR 94-61-5.pdf

