E

B

il -

o

Incremental Dynamic Programming for
On-Line Adaptive Optimal Control

Steven J. Bradtke

CMPSCI Technical Report 94-62

August 1994

NOTE: This thesis is available via anonymous ftp from the site ftp.cs.umass.edu
in the directory pub/techrept/techreport/1994.

T

_—

—

£

INCREMENTAL DYNAMIC PROGRAMMING FOR
ON-LINE ADAPTIVE OPTIMAL CONTROL

A Dissertation Presented

by

STEVEN J. BRADTKE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1994

Computer Science

© Copyright by Steven J. Bradtke 1994

All Rights Reserved

N A N T

——

g‘“‘gﬂ

-

—

INCREMENTAL DYNAMIC PROGRAMMING FOR
ON-LINE ADAPTIVE OPTIMAL CONTROL

A Dissertation Presented

by

STEVEN J. BRADTKE

Approved as to style and content by:

Andrew G. Barto, Chair

B. Erik Ydstie, Member

Roderic A. Grupen, Member

Paul E. Utgoff, Member

W. Richards Adrion, Department Head
Department of Computer Science

To
my wife,
Gloria,
and to our children,
Thomas and Molly

L e - B bt i E_t

E_ &

L. &

B £]

i

g—v

£

A

' U T T

T

C

B

S

——

P

ACKNOWLEDGEMENTS

I wish to thank Dr. Andrew G. Barto for the many contributions he made to
this dissertation. The work described here grew out of many discussions on the
theory and practice of Reinforcement Learning, Dynamic Programming, and function
approximation. The intellectual climate he fostered was instrumental to my growth
as a scientist, and his personal support and encouragement helped me through several
trying periods.

I would like to give special thanks to Dr. B. Erik Ydstie, my guru on the theory
of Linear Quadratic Regulation. My discussion of the application of Reinforcement
Learning to adaptive optimal Linear Quadratic control would have been considerably
weaker without his extensive and always cheerful help.

The Adaptive Networks Laboratory was always a pleasant and intellectually
stimulating workplace, due to the high caliber of my fellow staff members. I would
like to especially thank the following, who helped make my years in the group so
rewarding: Richard Yee, Mike Duff, Bob Crites, Jonathan Bachrach, Satinder Singh,
Vijaykumar Gullapalli, Neil Berthier, Robbie Jacobs, and Brian Pinette.

Finally, I would like to thank Glo, Tommy, and Molly for their patience and
understanding as I trudged slowly to the completion of this dissertation. They make
everything possible.

g‘-_!

O

ey

£

E——- o

.

g——-—\

-

e

o

E“““ﬁ

ABSTRACT

INCREMENTAL DYNAMIC PROGRAMMING FOR
ON-LINE ADAPTIVE OPTIMAL CONTROL

SEPTEMBER 1994
STEVEN J. BRADTKE

B.S., MICHIGAN STATE UNIVERSITY
M.S., UNIVERSITY OF MICHIGAN
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

Reinforcement learning algorithms based on the principles of Dynamic Program-
ming (DP) have enjoyed a great deal of recent attention both empirically and theo-
retically. These algorithms have been referred to generically as Incremental Dynamic
Programming (IDP) algorithms. IDP algorithms are intended for use in situations
where the information or computational resources needed by traditional dynamic
programming algorithms are not available. IDP algorithms attempt to find a global
solution to a DP problem by incrementally improving local constraint satisfaction
properties as experience is gained through interaction with the environment. This
class of algorithms is not new, going back at least as far as Samuel’s adaptive
checkers-playing programs, but the links to DP have only been noted and understood
very recently.

This dissertation expands the theoretical and empirical understanding of IDP
algorithms and increases their domain of practical application. We address a number
of issues concerning the use of IDP algorithms for on-line adaptive optimal control.
We present a new algorithm, Real-Time Dynamic Programming, that generalizes
Korf’s Learning Real-Time A* to a stochastic domain, and show that it has com-
putational advantages over conventional DP approaches to such problems. We then
describe several new IDP algorithms based on the theory of Least Squares function
approximation. Finally, we begin the extension of IDP theory to continuous domains
by considering the problem of Linear Quadratic Regulation. We present an algorithm
based on Policy Iteration and Watkins’ @Q-functions and prove convergence of the
algorithm (under the appropriate conditions) to the optimal policy. This is the first
result proving convergence of a DP-based reinforcement learning algorithm to the
optimal policy for any continuous domain. We also demonstrate that IDP algorithms
cannot be applied blindly to problems from continous domains, even such simple
domains as Linear Quadratic Regulation.

vi

E‘—‘“ E_““) é'—‘w E-———-.

E

BB

E"“—"‘v

P

E

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ittt v
ABSTRACT ottt e e e e e e e e e e e e vi
LISTOF TABLES et et e e e e X
LISTOF FIGURESttt ittt ittt it i e e xi
Chapter
1. INTRODUCTION ittt i e e e 1
1.1 Several Challenges for Incremental Dynamic Programming 1
1.1.1 On-line convergence 1
1.1.2 Continuous Problems 2
1.1.3 Issues of Representation and Function Approximation 3
1.1.4 Model-based vs. Model-free methods 3
1.1.5 Hidden state information 5
1.2 Organization of the Dissertation 5
2. MARKOV DECISION PROBLEMS AND DYNAMIC PROGRAM-
MING e e e e e e e 7
2.1 Markov Decision Problems
211 Thegridworld 9
212 Backgammon.t 11
2.2 Dynamic Programming 11
221 Greedy Policies 0. 13
222 SynchronousDP 13
2.2.2.1 Evaluatingapolicy 14
2.2.2.2 Valuelteration 15
2.223 PolicyIteration 15
223 AsynchronousDP 16
2.2.4 Temporal Difference Methods 18

3. REAL-TIME DYNAMIC PROGRAMMING 20 L

3.1 State-SpaceSearch 20
3.2 Learning Real-Time A* 22
3.3 Stochastic Shortest Path Problems 23 &
3.4 Real-time Dynamic Programming 24
3.5 Adaptive Real-time Dynamic Programming 26 -
36 Real-Time@-learning 28
3.7 Exploration. e 28 -
38 Experiments, 30 o
3.8.1 The Race Track Problem 30 ~
382 Results 32
3.9 Iterative Deepening Real-time Dynamic Programming 41
3.10 Conclusions 45 B
4. NEW ALGORITHMS FOR TEMPORAL DIFFERENCE LEARN- =
ING . . e e 47
41 The TD(A)learningrule 47 wd
4.2 Previous convergence results for TD(A) 48
4.3 Probability 1 convergence of on-line TD(0) 50 |
4.4 The Normalized TD(A) learningrule 51 ~
4.5 A Least Squares approach to TD learning 52 :
4.5.1 Linear Least Squares function approximation 52 ted
452 Algorithm LSTD 54 N
453 Convergenceofalgorithm LSTD 56
454 Proofof Theorem44 58 =
455 Proofof Theorem4.5 59
456 Algorithm RLSTD 59
4.5.7 Dependent or extraneous features 60 wd
4.6 A related algorithm of Werbos 61 -
4.7 Choosing analgorithm 63 s
48 The TDerrorvariance0uo.ouo... 64
49 Experiments e e e 64 ‘
4.9.1 Selecting learningrates 67 =
410 Conclusions it i e e e e e e 67 :
.
5. TEMPORAL DIFFERENCE METHODS FOR LINEAR QUAD-
RATIC SYSTEMS it ittt ittt 69
5.1 Linear Quadratic Regulation 70 N
5.2 @-functions and Policy improvement 71
5.3 Direct Estimation of @-functions 72 o
5.4 Adaptive Policy Iteration for LQR 73
5.5 Demonstration of the adaptive policy iteration algorithm in simulation 78 -
e
viii

é—\

e &

———

i
L

e B BT

E» -y

e |

—

&

5.6 Comparison with model-based adaptive optimal control 81

5.7 The Failure of Optimizing Q-learning for LQR 83

5.8 Adaptive Optimal Control of the Input-Output Behavior 85

5.9 Distributed Adaptive Control 90

5.10 Dealing with a Stochastic System 94

511 Conclusions i i i i i it e e e e e e 95

8. CONCLUSIONS e e e e e 97
APPENDICES

A. PROOF OF THEOREMS FROM CHAPTER 3 99

A.l Proof of Theorem 3.3 99

A.2 Proofof Theorem 3.4o e... 101

B. SIMULATION DETAILS FOR CHAPTER 3 103

C. PROOF OF THEOREMS FROM CHAPTER 4 104

C.1 Proofs for Section4.5.1 104

C.2 Proofs for Section 4.5.2 105

C.3 Proofs for Section4.53 107

D. PROOFS OF LEMMAS FROM CHAPTER 5 108

D.1 Proofof Lemma5.1 108

D.1.1 Preliminary Definitions 108

D12 LemmaD.1......... 108

D13 LemmaD.2., 110

D14 LemmaDJ3. 111

D.2 Proofof Lemma .2, 111

BIBLIOGRAPHY e e s e 113

ix

Table
3.1
3.2

3.3

4.1
4.2

5.1

LIST OF TABLES

Page
Example Race Track Problems 34
Summary of Learning Performance on the Small Track for RTDP,
ARTDP,and RTQ 37
Summary of Learning Performance on the Larger Track for RTDP,
ARTDP,and RTQ it 39
Notation used in the discussion of the TD()) learning rule 49
Notation used in the discussion of Least Squares algorithms. 53
Cost comparisons between the centralized and distributed adaptive
policy iteration algorithms 94

&

g BT & BT

é"‘—*\

R

g T

LIST OF FIGURES

Figure

2.1 Thebasiccontrolcycle
2.2 Anexampleofagridworld.
2.3 The policy iteration algorithm

2.4 The computational model for asynchronous dynamic programming . .

2.5 The Q-learning algorithm
3.1 Real-Time Heuristic Search
3.2 Receding Horizon Control
3.3 Learning Real-Time A*.
3.4 Trial-based Real-Time Dynamic Programming
3.5 Trial-based Adaptive Real-Time Dynamic Programming
3.6 Trial-based Real-Time @-learning
3.7 Example Race Tracks
3.8 Performance of Three Real-Time Learning Algorithms on the Small

Track o e e
3.9 Performance of RTQ on The Small Track for 5,000 Epochs
3.10 Performance of Three Real-Time Learning Algorithms on the Larger

Track . . . o o e e e e e e e e e e e e
3.11 Performance of RTQ on The Larger Track for 7,500 Epochs
3.12 Iterative Deepening RTDP,
3.13 A recurrent stochastic shortest path problem
3.14 Off-line solution to partial proper policy problems
4.1 Trial-based TD(A) for absorbing Markov chains.

Page

4.2 Trial-based LS TD for absorbing Markov chains
4.3 LS TD for ergodic Markovchains

4.4 Comparison of RLS TD and NTD(A) on a 5 state ergodic Markov
chain e

5.1 The Q-function based policy iteration algorithm
5.2 TIlustration of the flexiblebeam

5.3 Performance of the adaptive policy iteration algorithm: policy conver-
BEICE . . v v i it i e e e e e e e e e e e e e e

5.4 Performance of the adaptive policy iteration algorithm: parameter
COMVETGENCE . & & & v v v v e vt e e e e e e e e et e e e e e o

5.5 Performance of the adaptive policy iteration algorithm: regulation
performance e

5.6 Theimpact of insufficient excitation on the performance of the adaptive
policy iteration algorithm.

5.7 The impact of a short estimation interval on the performance of the
adaptive policy iteration algorithm.

5.8 State-space model based adaptive optimal control
5.9 An optimizing Q-learning algorithm for LQR: Algorithm A
5.10 An optimizing @)-learning algorithm for LQR: Algorithm B
5.11 SISO adaptive optimal control: delay 2
5.12 SISO adaptive optimal control: delay 3
5.13 SISO adaptive optimal control: delay 5
5.14 The distributed policy iteration algorithm based on @-learning

5.15 Application of the distributed adaptive policy iteration algorithm to a
flexible beam L L L.

5.16 Performance of the distributed adaptive policy iteration algorithm . .

CHAPTER 1

INTRODUCTION

Reinforcement learning algorithms based on the principles of Dynamic Program-
ming (DP) have enjoyed a great deal of recent attention both empirically and theo-
retically. These algorithms have been described generically as Incremental Dynamic
Programming (IDP) algorithms [92]. IDP algorithms are intended for use in situ-
ations where the information or computational resources needed by traditional DP
algorithms [6, 7, 67] are not available. IDP algorithms attempt to find a globally
optimal solution by incrementally improving local constraint satisfaction properties
as experience is gained through interaction with the environment. Examples of
IDP algorithms are Watkins’ Q-learning [92], Jalali and Ferguson’s Asynchronous
Transient Programming [39], Sutton’s DYNA family of architectures [83, 84], and
Werbos’ Heuristic Dynamic Programming [94,95,97]. One of the most widely known
of the IDP algorithms is Sutton’s Temporal Differences (TD) algorithm [5, 81, 82].
This class of algorithms is not new, going back at least as far as Samuel’s (68, 69]
adaptive checkers-playing programs, but the links to DP have only been noted and
understood very recently. See, for example, the work of Watkins [92], Sutton, Barto,
and Williams [88], Sutton [85-87], Barto, Bradtke, and Singh [4], Singh [77], and
Werbos [94, 95, 97], among many others. This dissertation presents research that
addresses a number of issues concerning the use of IDP algorithms for on-line adaptive
optimal control.

1.1 Several Challenges for Incremental Dynamic Programming

DP theory sets forth exact conditions that are required for the convergence of var-
ious basic algorithms. Most problems of interest and most practical implementations
of the basic algorithms will fail to meet one or more of the necessary convergence
conditions as they are known from the current understanding of the theory. The
limitations and weak spots of the theory are the places that require further research.
This section describes several theoretical and practical challenges for IDP that are
addressed by this dissertation, prompted by the desire to extend the theory and
practice of IDP algorithms to a larger and more generally useful class of problems.

1.1.1 On-line convergence

Many studies have applied IDP algorithms on-line, beginning with Samuel’s [68,
69] adaptive checkers-playing programs. This means that the training information
available to the algorithm arises as a result of following some trajectory through
the state space, and that the functions being approximated by the algorithm are

2

updated after every state transition. Until recently however, there was no theory to
give assurances that any such on-line IDP algorithms would converge, even for the
simplest case of a finite-state, finite-action Markov decision problem using a lookup-
table function approximator. The theory developed by Sutton [82], Dayan [22], and
Dayan and Sejnowski [23] came the closest, but their results only applied to learning
the value function for absorbing Markov chains, and updates were allowed only after
every sequence of state transitions from a start state to a goal state. The theory
developed by Jaakkola, Jordan, and Singh [36,37] and by Tsitsiklis [91], which derives
@-learning as a form of stochastic approximation, now gives assurances that some
forms of IDP will converge (under the appropriate conditions) when used on-line.

All of the algorithms developed in this thesis address the question of on-line
convergence. Chapter 3 develops several new algorithms as generalizations of Korf’s
LRTA"* [48], and proves that two of them converge to the optimal value function and
optimal policy when used on-line. Much of the work presented in Chapter 3 has been
previously reported by Barto, Bradtke, and Singh [4]. Chapter 4 describes several
new algorithms for learning the value function for a Markov chain, and proves that
they converge with probability 1 when used on-line. Chapter 5 develops an adaptive
policy iteration algorithm based on @)-learning, and proves that it will converge, under
the appropriate conditions, to the optimal policy when used on-line.

1.1.2 Continuous Problems

The current theory of IDP algorithms addresses only finite-state, finite-action
Markov decision problems. However, a great deal of heuristic research has been done
to adapt IDP algorithms to problems with continuous state and action spaces. In
fact, the original conception was for continuous spaces, at least, state spaces. Werbos
[57, 94, 95,97] proposed a number of algorithms designed to operate in continuous
domains. Perhaps the most closely related approach from the traditional DP literature
is the differential Dynamic Programming approach of Jacobson and Mayne [38].
Sofge and White [80] describe a system that learns to improve process control with
continuous state and action spaces. Some of the many other applications are described
by Anderson [1], Jordan and Jacobs [41], and Lin [51,53]. Some of the algorithms used
in this work build system models, while others do not. None of these applications, nor
many similar applications that have been described, have a firm theoretical grounding.

We address the issue of adapting an IDP algorithm to a continuous domain in
Chapter 5. We present an adaptive policy iteration algorithm based on one version
of @-learning, and prove that it converges to the optimal controller under certain
conditions. This is the first work of which we are aware that proves convergence for an
IDP algorithm when applied to a continuous domain. We also present algorithms de-
rived through a direct translation of a more popular form of the Q-learningalgorithm
(which we call optimizing Q-learning) from the discrete domain to a continuous
domain, and we show analytically that they can converge to destabilizing controllers,
i.e., controllers that drive the system state to infinity. This demonstrates that the
application of an IDP algorithm to a situation not covered by theory can fail.

1.1.3 Issues of Representation and Function Approximation

The current theory of IDP algorithms requires the function being approximated
(the value function or the Q-function) to be stored either in a lookup-table or by a
linear function approximator. In either case, there are as many parameters as there
are values to represent (|state space| parameters for the value function, [state space| X
|action space| parameters for the @Q-function). This means that for many problems
of interest it will be impossible to store the function. It is highly desirable to
be able to use a more compact function approximation techmique in conjunction
with an IDP algorithm. By a compact function approximator, we mean that the
function approximator has fewer independent parameters than there are function
input-output mappings to store. The function approximator must perform some sort
of generalization in order to store all of the function. As indicated by much heuristic
work (Tesauro’s TD-Gammon system (89, 90], for example), it is possible to achieve
good results using a compact function approximator, but a theoretical understanding
is still lacking.

There has been some theoretical work that touches on this problem. Singh and
Yee [78], Williams and Baird [102], and Bertsekas [6] all consider the problem of using
a noisy approximation to a value function as part of a DP algorithm. They bound the
error that will result as a function of the magnitude of the approximation noise. But
this addresses only part of the problem of using a compact function approximation
technique in conjunction with an IDP algorithm. In their studies it has been assumed
that the algorithm was able to converge to the approximation in the first place. They
do not show that any algorithm will be able to converge to an approximation of the
value function when using a compact function approximator.

There have been many ezperimental demonstrations that compact function ap-
proximators may be used in conjunction with an IDP algorithm to achieve some level
of performance improvement. For example, Tesauro [89,90] describes a system that
learns to play championship level backgammon (which can be viewed as a Markovian
decision task) entirely through self-play. It uses a multilayer perceptron trained via
backpropagation as a function approximator.

Chapter 5 addresses the issue of convergence when using a compact function
approximator in conjunction with an IDP algorithm. As mentioned above, Chapter
5 develops an adaptive policy iteration algorithm based on @-learning, and applies
it to the problem of Linear Quadratic Regulation. Although the @-function for a
Linear Quadratic problem is linear in the @-function parameters, it is a non-linear
(quadratic) function of the input state and action vectors. This is the first instance of
which we are aware where it was possible to prove convergence for an IDP algorithm
using a compact function approximator that is non-linear in the inputs. Although
this does not solve the general problem, it is a first step in that direction.

1.1.4 Model-based vs. Model-free methods

Traditional DP methods are model-based methods. They require the state tran-
sition function of the system in order to determine the optimal control law. IDP
algorithms such as @-learning or TD(A), on the other hand, do not require such a

4

model. Under what conditions would it be advantageous to use a model-free method
instead of a model-based method? Gullapalli [31] discusses these questions in detail.
We will only present an overview here, under the assumption that no model is initially
available. If the model-based approach is chosen, then it will be necessary to build
first a model.

There are two primary arguments for taking a model-based approach. First,
building a system model and then using that model to solve the optimal control
problem is often much easier than trying to solve the optimal control problem directly.
Consider, for example, the problem of finding aminimum-time control rule for a linear
system. Building a model of a linear system is relatively simple, and derivation
of the optimal control law given that model is also a simple matter (see Whittle
[100]). However, solving even a very simple problem of this type using a direct or
model-free approach similar to that used by Jordan and Jacobs [41] proved extremely
difficult [8]. The solution to a minimum-time control problem for a linear system
is a bang-bang control rule. The control signal is discontinuous along a “switching
curve”, taking a maximum value in one direction on one side of the curve and a
maximum value in another direction on the other. This is a difficult function to learn
using gradient-based techniques.

The second reason to take the model-based approach is that, once the model is
formed, it may be used to solve a number of related control problems. For example,
the model used to solve one minimum-time control problem may be used to solve
many such problems, where the maximum allowed size of the control signal is varied.
It may also be used to solve a Linear Quadratic control problem.

The primary argument for taking the model-free approach is that it may be
less expensive to find the optimal (or least an acceptable) controller through direct
interaction with the system than by building a model and then deriving a controller
from the model. Gullapalli [31] describes experiments that support this argument.
A model of the state transition function may be relatively easy to build for some
dynamic systems, such as linear systems. However, an accurate model may be very
difficult to obtain for other systems, such as financial markets, home heating and air
conditioning, or flight control. A model for any of these very complex systems will
always be idealized, and hence inaccurate, to some degree. Furthermore, even if an
accurate model of the system s known, it will often be the case that the derivation
of an optimal controller directly from that model is analytically and computationally
intractable. Consider, for example, the game of backgammon. The state transition
function for backgammon is specified by the rules of the game. However, backgammon
is estimated to have at least 10%° states. Trying to find the optimal policy for the game
of backgammon using a traditional model-based approach is an intractable problem.

We address the question of whether or not it is advantageous to use a system
model in Chapters 3 and 5. Chapter 3 describes three IDP algorithms, Real-Time
Dynamic Programming, Adaptive Real-Time Dynamic Programming, and Real-Time
@-learning, and compares their performance on a benchmark problem. Real-Time Dy-
namic Programming starts with a model, Adaptive Real-Time Dynamic Programming
must build a model through interaction with the system, and Real-Time @-learning
searches for the optimal controller without building a system model. Chapter 3 also

5

describes Iterative Deepening Real-Time Dynamic Programming, and describes situ-
ations when it might be preferrable to use the algorithm in simulated interaction with
a model of the system. Chapter 5 describes an adaptive policy iteration algorithm
based on (-learning. As applied to the problem of Linear Quadratic Regulation,
this algorithm, which does not build a system model, has a computational advantage
over the traditional methods for finding the optimal controller for systems meeting a
simple constraint.

1.1.5 Hidden state information

The solution to optimal control problems requires the availability of the system
state information in some form. However, the system state may not be immediately
apparent from the information available at any one state transition. This problem of
hidden state information has been termed perceptual aliasing [98,99] by researchers
concerned with building autonomous agents that learn through interaction with their
environment. The environment for many interesting problems can be modelled as a
Markov decision problem.

Various approaches to solving the hidden state problem for Markov decision prob-
lems have been explored. The simplest of these uses a tapped delay line representation.
Let z; be the true state vector at time ¢, and let the vector y, be the observation vector
at time ¢. Then the tapped delay line representation for the true state at time ¢ is the
concatenation of the last k perceptions y; through y;_,4, and perhaps the last / control
actions u, through u,_;;,, where k and [/ are chosen to be long enough to capture the
state information. How long is “long enough” depends on the system. A second
approach is to build an observer that computes an estimate of the true state of the
system, Z; as a recursive function of Z,;_,, y;, and u;_;. The best known observer of this
type is the Kalman filter (42,43]. Lin and Mitchell [54] and Whitehead and Lin [99]
discuss the application of both tapped-delay line and observer algorithms to IDP
problems with hidden state information. Werbos [94] also discusses incorporating an
observer as part of an IDP architecture. Other approaches to the issue of hidden state
information in IDP are described by McCallum [59] and Chrisman [17,18]. Chapman
and Kaelbling [13,14] discuss the related problem of how to extract the relevant state
information from a perception y; that contains much irrelevant information.

We address the problem of hidden state in Chapter 5, where we show how we can
use a tapped delay line state representation as input to the adaptive policy iteration
algorithm.

1.2 Organization of the Dissertation

Chapter 2 formally defines Markov Decision Problems, and reviews basic DP
theory as it applies to the solution of Markov Decision Problems.

Chapter 3 uses the formalism of Markov Decision Problems and the theory of
asynchronous DP to develop algorithms that address several of the limitations that are
generally encountered in heuristic search algorithms. The newly developed algorithms
represent an advance in the theory of heuristic search algorithms by extending Korf’s

6

LRTA®* algorithm to stochastic domains, and also an advance in the theory of IDP
algorithms.

Chapter 4 reviews a popular IDP algorithm, the TD(A) learning rule, and con-
siders the use of linear function approximators instead of lookup-tables as part of
several alternative learning rules. The chapter describes three new algorithms and
proves convergence for their parameter estimates under appropriate conditions. These
new algorithms have a number of advantages over previous algorithms. The question
of on-line convergence is explicitly addressed.

Chapter 5 develops an adaptive policy iteration algorithm based on @-learningand
applies it to the problem of adaptive Linear Quadratic Regulation. The algorithm is
proven to converge to the optimal controller under certain conditions. We illustrate
the performance of the algorithm by applying it to a model of a flexible beam.
The convergence proof is the first for DP-based reinforcement learning algorithms
applied to problems with continuous state and action spaces. The convergence proof
is also one of the first theoretical results showing that the use of compact function
approximators in conjunction with an IDP algorithm can be guaranteed to converge to
the optimal. The theory developed in this chapter is a step toward a firm theoretical
grounding for problems with continuous state and action spaces.

Chapter 6 concludes and indicates directions for future research.

e

CHAPTER 2

MARKOV DECISION PROBLEMS AND
DYNAMIC PROGRAMMING

We begin this chapter with a formal definition of a Markov Decision Problem
(MDP). We give several examples of problems that can be formulated as MDPs in
order to promote a more intuitive understanding of this class of problems. The
discussion will cover the background necessary to give a basic understanding of
MDPs. Additional background needed for the remaining chapters will be provided
as necessary. We then review the basic theory of Dynamic Programming (DP) as it
applies to the solution of MDPs, limiting our discussion to the topics necessary for

the development of the dissertation. More comprehensive discussions can be found
in Bertsekas [6], Bertsekas and Tsitsiklis (7], and Ross [67].

2.1 Markov Decision Problems

A Markov Decision Problem (MDP) is a stochastic optimal control problem
consisting of three components: a discrete-time dynamic system, a one-step, or
immediate, cost function, R, and a long-term objective function, V. This review
focuses on a particular class of systems: finite-state, finite-action controlled Markov
chains. The solution to an MDP is the identification of a control rule, or policy,
that optimizes the long-term objective function, given the constraints imposed by the
system and the one-step cost function. The meaning of “optimize” will vary depending
on the definition of the MDP. Sometimes the optimizing control rule will minimize
costs, as in the grid world example (Section 2.1.1). Other times, the optimizing
control rule will maximize rewards, as in the backgammon example (Section 2.1.2).
In situations when it is desirable to maximize, the one-step cost function is often
referred to as the reward, or payoff function. Except for the backgammon example,
all of the problems considered in this dissertation will require cost minimization.

A controlled Markov chain is a discrete-time, stochastic dynamic system with
state set, X', action set, A, and a state transition probability function, P. Executing
action a from state z causes a transition to state y with probability P(z,y,a). The
transition probabilities satisfy the Markov property,

P(z,y,a) = Prob{z¢+1 =y | Zo, @0, 21,01,...,2¢ = z,a; = a}
= Prob{z:1; =y | 2t = z,a; = a}.
For each state ¢ € X there is a subset, A(z) C A, of admissible actions from which

a must be chosen. Though we assume that the state and action sets are finite,
this restriction is not necessary in general. Figure 2.1 illustrates the interaction

8

between the controller and the system. At each time step, ¢, the controller selects
an action, a:, based on observation of the current state, ;. The system executes a;,
which results in a state transition to z:;;. The controller also incurs a one-step cost,
r¢ = R(@¢,141,0:). In order to simplify the descriptions of DP techniques that will
be given below, let us impose an arbitrary, but fixed, ordering on the set X. Then

the expression # < y means that the state z comes before the state y in the ordering.
Figure 2.1 implies that the controller directly observes the states of the system.

But “state” is an abstract concept. The controller actually observes a representation
of a state. There may be many ways to represent the states of a given system. For
example, a state need not be represented as an indivisible token. The observation
&, is a valid representation of the state x; iff it satisfies the Markov property. That
is, knowledge of P, of &,, and of a, is sufficient to make the best possible prediction
of &;,;, the representation of state z;. There is no additional knowledge, including
knowledge of previous observations {z; | 7 < t}, that could be used to make improved
predictions. We assume throughout this thesis that the controller observes a valid
state representation. Therefore, we will use z, to represent both the abstract internal
state of the system and the observation the controller makes of that state.

t Delay Xes1

Figure 2.1 The basic control cycle. At each time step, ¢, the controller selects an
action, a;, based on observation of the current state, z;. The system executes a,,
which results in a state transition to 2:,;. The controller also incurs a one-step cost,
Te.

A control rule, or policy, is a function U: X x N — A. U takes a state and a
time as its input, and produces the action to be executed at that time as its output:
if 2, = z, then a;, = U(x,t). A stationary policy is one that does not depend on
time: U(z,t,) = U(z,t,) for all ¢; and ;. Overloading the notation slightly, we use
a; = U(z:) to indicate that a; was selected by the stationary policy U. A policy
that depends on state (and possibly time) is referred to as a closed-loop policy. An
open-loop policy is one that depends on time, but not state. An open-loop policy is
merely a sequence of actions to be performed one after the other, without reference
to the state of the system. The planned state transformation sequences generated

9

by many heuristic search algorithms are open-loop policies. This will be discussed
in Section 3.1. A proper policy is defined for the special class of MDPs for which
there is a designated goal state. A policy U is proper iff for every state ¢ € X,
taking action U(z) will eventually lead to the goal state with probability one. Unless
otherwise noted, we will use the word policy to mean closed-loop policy.

As stated above, the solution of an MDP is the identification of a policy that
optimizes the long-term objective function, V. The long-term objective function is
also referred to as the value function, the long-term cost function, or merely the cost
function. V is a function of state and policy. There are many possible definitions for
V (see, for example, Larson and Casti [50]). We will confine our attention to one of
the most common, the infinite-horizon discounted sum of costs This is defined for
the policy U and state z; as

Vo(ze) = & {Z20 v'reai}- (2.1)

This is the expected value of the discounted infinite sum of all costs that will be
incurred from the present time onwards, under the assumption that the policy U will
be used to choose actions at all times. « is the discount factor'; 0 < v < 1. 4 can
be thought of as an indication of the importance of future events on the value of
the present state. If 4 is near zero, then future events are not very important for
determining the value of the current state. The immediate costs of actions become
relatively more important. If 4 is near one, then events that may occur in the far
future have a relatively greater impact on the value of the current state. If ¥ < 1, the
discounted case, Vy(z) is finite as long as R is finite. If y = 1, the undiscounted case,
then all events, no matter how far into the future, have equal weight. V;(z) may not
be finite in the undiscounted case, depending on the definitions of P and R.

U is an optimal policy if Vg(z) < Vg,(z) for all z € X and for all policies U;.
There may be more than one optimal policy, but all optimal policies define the same
value function, V*. To give a trivial example, if the one-step cost function, R, is
identically zero, then every policy defines the same value function (also identically
zero), and every policy is optimal. Every finite-state, finite-action MDP has an
optimal stationary policy under the value function definition given in Equation (2.1),
therefore we will be concerned henceforth only with stationary policies.

The following subsections give examples of MDPs that have been used in the
study of reinforcement learning algorithms.

2.1.1 The grid world

Figure 2.2 illustrates an example of a simple type of MDP known as a grid world.
Each blank cell on the grid is a state of the controlled Markov chain. The shaded cells
represent barriers; these are not system states. The cell marked with G is the goal

1The value function as defined in Equation (2.1) clearly depends not only on U and =, but also
on the value of y. We omit reference to v in the notation Vy(z) because v is usually taken as a
parameter that is set as part of the definition of the MDP. The value function cannot be optimized

by changing v.

10

Figure 2.2 An example of a grid world. Each blank cell on the grid represents a
state of the controlled Markov chain. The shaded cells represent barriers; these are
not system states. The cell marked with G is the goal state.

state. There are four actions: A = {N, S,E, W}. State transitions are deterministic.
Suppose that the system is in state &, and action “N” is chosen. Then the resulting
next state, y, is the state directly to the north of z, if there is such a state. Otherwise,
y = z. Similar rules apply for the other three actions. The goal state is a special
case. Every action taken from the goal state results in a transition back to the goal
state. The cost function is defined by

Rlevsunia) ={ | eert =S
In effect, the controller is penalized for every time step spent not at the goal. An
optimal policy, then, chooses actions so as to minimize the infinite discounted sum of
costs, t.e., it chooses actions so as to move into the goal state as quickly as possible.
Grid worlds have been used extensively in the study of reinforcement learning
algorithms, for example, by Sutton [85], Moore and Atkeson [62], and Singh [76].
A grid world problem is most easily thought of as an abstraction of a navigation
problem. However, a grid world captures many of the essential problems involved in
solving more general MDPs, and the intuitive ease of its visual representation has
been an important aid in algorithm design and analysis.

11

2.1.2 Backgammon

Two-person games, such as chess or backgammon, can also be modelled as MDPs.
Consider a game of backgammon between players Black and White?. We will look
at the game from Black’s perspective, assuming that White will be following a fixed
policy. The first step in modelling backgammon as an MDP is to determine the nature
of the controlled Markov chain with which we will be working. What are the state
set, the action set, and the state transition rules?

A state consists of a (board pattern, dice roll) pair. It does not consist of the
board pattern alone. Both the board pattern and the dice roll are needed in order
for Black to determine the set of admissible actions. Each action consists of a set of
marker movements. Executing an action results in a stochastic state transition, from
Black’s viewpoint, as follows:

e Black moves his markers in accordance with the chosen action. This step is
deterministic, and results in a new board pattern.

e White rolls the dice. This step is stochastic.

e White moves his markers as he chooses, in keeping with his dice roll. This step
is deterministic, and results in a new board pattern.

¢ Black rolls the dice. This step is stochastic.

The game is now in a new state, and Black must again choose an action. The state
transition probabilities are determined by the probabilities of the various rolls of the
dice and by the policy that White is using to choose his actions. Backgammon has
many goal states, i.e., states in which Black wins the game. However, it also has
many trap states, i.e., states in which White wins the game. If R gives a value of
one for all transitions from a non-goal state into a goal state, and a value of zero for
all other tranmsitions, and if ¥ = 1, then for any given policy U, Vy(z) will be the
probability of eventually reaching a goal state from z while following U. An optimal
policy is one with the highest probability of leading to a goal state.

This example shows that MDPs are useful mathematical abstractions that can be
used to hide some of the apparent complexity of a problem. States may be complex
objects, actions may actually be procedures containing different levels of primitive
actions, and state transitions may be accomplished through complex procedures.

2.2 Dynamic Programming

Dynamic programming (DP) as developed to solve MDPs is a set of techniques
that can be used to find the value function induced by a given policy, or to find the

3We simplify the game to ignore the issues of betting and doubling. The players are only concerned
with the fact of winning (or losing) a game. They are not concerned with degrees of winning.

12

optimal policy and the corresponding optimal value function. DP for MDPs is based
on the fact that Equation (2.1) can be rewritten as the recurrence relation

Vo(z) = Z.:Jc’ P(z,3,U(2)) [R(z,,U@)+71%() |. (22)
y€

This means that the value of state z under policy U is the expected value over all
possible next states y of the sum of the immediate return received for executing action
U(z) plus the discounted value of y under policy U. Equation (2.2) is true for all
policies, including optimal policies. Letting U* denote an optimal policy, we can
rewrite Equation (2.2) for U* as

Vie (z) = Zx P(z,y,U*(2)) [R(z,3,U*(2)) + 7V (3)]

But all optimal policies, by definition, induce the same value function, V*. And
V*(z) < Vu(z) for all policies U. Therefore the action a = U*(z) chosen by an
optimal policy must minimize the expression

> P(z,y,0) [R(z,y,0) +7V*(3) .
yeX

Putting all this together, we arrive at Bellman’s Optimality Equation

V'(z) =): P(z,y,a) [R(z,y,0) +1V*(v)]| - (23)
aEA(z)
Once V* is known, an optimal policy is determined through the equation
U*(z) = argmin | 3 P(z,y,0) [R(z,y,0) +7V*(y) || (2.4)
acA@) |yeX

Evaluating the expressions in Equations (2.2) through (2.4) has several drawbacks.
First, it requires access to a system model, which may not be available. Second, it
requires extensive recomputation if, for some reason, we would want to re-evaluate
the expression. @-functions provide a way around these difficulties. Denardo [26] and
Watkins [92] define Qy, the @-function corresponding to the policy U, as

Qu(z,a) = Y P(z,9,0)[R(z,y,0) +1Ve(v) |
= ¥ [P(z.9.0)R(@.9,0) | +7 X [Py, Vo) | (25)
veX yE

Notice that a can be any action in A(z). It is not necesarily the action U(z) that
would be chosen by policy U. The function @* = Qy- corresponds to the optimal

13

policy. Qu(z,u) represents the total discounted return that can be expected if any
action is taken from state z, and policy U is followed strictly thereafter. We can
now rewrite Equations (2.3) and (2.4) using Q-functions. The Bellman Optimality
Equation, Equation (2.3), becomes

V(z) = glq(n) [@(=.0)], (2.6)

and Equation (2.4) becomes
U*(z) = argmin | @*(z,a) |. 2.7
cegfl(:)l[(2,a) | (2.7)

Assuming that the function @* is stored, then the expressions in Equations (2.6)
and (2.7) can be evaluated with much less computation than those in the original
Equations (2.3) and (2.4). They can also be evaluated without reference to a system
model. The question as to how to acquire knowledge of the function Q* without first
having a system model will be addressed in Section 2.2.4.

2.2.1 Greedy Policies

Any function f that assigns a value to the states of an MDP can be used to define
a policy, whether or not f = V4 for any policy U. This policy is called the greedy
policy with respect to f, and is defined as

U’ (z) = argmin ZP(z,y,a)[R(z,y,qH'vf(y)] - (2.8)
a€A(z) yex

The policy U’ is also called the certainty equivalence optimal policy, since, under
the certainty equivalence assumption that f is an accurate model of the optimal
evaluation function, U = U*.

Any given policy U is the greedy policy defined by an infinite number of functions.
This is easy to see. Let f(z) = Vu(z) + €(z), where U is some policy, and €(z) is a
small perturbation. Then ¢(z) can vary about a small neighborhood of zero without
changing the value U?(z) returned by Equation (2.8). In particular, an optimal
policy is the greedy policy for many different functions. It is not necessary to know
the optimal value function exactly before the optimal policy can be defined.

2.2.2 Synchronous DP

The techniques described in this section build estimates for value functions and
optimal policies synchronously, in the sense that the estimates are built in stages.
The estimate for each state is updated once, and only once, per stage.

14

2.2.2.1 Evaluating a policy

There are two principle ways to evaluate a given policy, U, i.e., to find V.
The first is a method of successive approximations that converges over a number
of iterations to a function that satisfies Equation (2.2). The second method uses
matrix algebra to solve for Vy. (There are other methods too, of course, such as
Monte Carlo approximation.)

The method of successive approximations has itself two main variations. The
Jacobi method updates the values for all states simultaneously. If we let V;, denote the
kt® approximation to V4, then the Jacobi method uses the following update formula:

Visa(2) = Zx P(2,4,U(2)) [R(=,9,U(2)) +1V(y) |. (2.9)

The process of updating the value for state = is known as a backup. The Gauss-Seidel
method updates the values for the states in a series of sweeps. If we define

- _J Ven(y) fy<e
Vi(z,y) —{ Vi(y) otherwise ’ (2.10)

then the Gauss-Seidel method sweeps along the state ordering from the “smallest” to
the “largest” using the update formula:

Vers(e) = 3 Plewy UE) [Rle,u,U(=) +1W(ey) . (211)

The Gauss-Seidel method could use a different ordering for every sweep. It is only
important that every state be updated once per sweep.

Both the Jacobi and the Gauss-Seidel methods are guaranteed to converge to
Vs, assuming that Vg is finite. If there are states for which Vi (z) is not finite, the
estimates for those states will grow without bound. The estimates for the remaining,
finite valued states will converge. V; will always be finite in the discounted case.
However, in the undiscounted case it is possible that V;; takes on infinite values for
at least some states. The Gauss-Seidel method typically converges faster because it
always uses the latest estimates available when doing an update.

The other method of evaluating the policy U is to simply calculate V; using
matrix algebra. Since there are only a finite number of states, we can represent the
function V; as a vector. Now, define the vector Ry so that

[Ru]z = z P(‘”’y: U(z))R(:c,y, U(.’B))
veX

Next, define the matrix Py so that [Pyley = P(z,y,U(z)). These definitions allow
us to rewrite Equation (2.2) using matrix notation as V; = Ry + 7P, V. Simple

matrix algebra then yields V; = [I—~Py]_1 Ry. Vy is finite as long as [I—4P,]

is non-singular.

& €

%‘”———1

15

2.2.2.2 Value Iteration

Value iteration is a procedure for finding the optimal value function without
requiring knowledge of an optimal policy beforehand. Value iteration is a method of
successive approximations that converges over a number of iterations to a function
that satisfies Equation (2.3), just as the policy evaluation procedure converges to a
function that satisfies Equation (2.2). As with policy evaluation, both Jacobi and
Gauss-Seidel versions of the algorithm are possible. The Jacobi version uses the
update rule

‘/l¢+1 —a?Al(l E P yya [(z,Y, a) +7V;=(y)]) (212)

to update the value estimates for all states simultaneously. The Gauss-Seidel version
uses the update rule

Viera(z) = aeA(z) aP(z,y,a) [R(z,y,a) +7Vk(z,y)] , (2.13)

where Vi (z,y) is as defined in Equation (2.10), to update the value estimates sequen-
tially, always using the most recent available information.

Value iteration is guaranteed to converge to V* whenever V* is finite. This will
always be true in the discounted case. Restrictions on the cost function or on the
form of the controlled Markov chain are necessary in order for V* to be finite in the
undiscounted case. We will discuss this issue in Chapter 3.

2.2.2.3 Policy Iteration

Howard [33] first described the process of policy iteration. Policy iteration explic-
itly searches for the optimal policy using the algorithm outlined in Figure 2.3. The
heart of the algorithm lies in the equation

Uks1(z) = argmin | 3 P(z,9,0) [R(z,9,0) + V5, () || - (2.14)
acAl@) | eX

Howard showed that by using the value function for Uy in this way to define Uy, we
are assured that U, will be at least at good as Uj. If we then note that there are
only a finite number of stationary policies for a finite MDP, we see that the policy
iteration algorithm must terminate with an optimal policy.

Policy iteration requires a number of (policy evaluation, policy improvement)
cycles. Each policy evaluation step can be as expensive as the entire value iteration
algorithm. This means that policy iteration, though it may converge very rapidly to
the optimal policy in terms of the number of these cycles, typically takes more total
computation than value iteration.

16

k=0
Choose an initial policy, U;.
repeat {
Increment k.
Evaluate policy Uy, finding function Vy,.
Define an improved policy U4 using Equation (2.14).
} until (Uk = Uk+1)

NG AW

Figure 2.3 The policy iteration algorithm.

2.2.3 Asynchronous DP

Synchronous DP, as described in Section 2.2.2, takes place in a series of well-
defined stages. In asynchronous DP, on the other hand, this concept of stages
is eliminated. Figure 2.4 illustrates the computational model we will be using for
asynchronous DP? [7]. Each state z; is identified with a processor, also labelled
z;. The processors do not have access to a central clock, and they may operate at
very different speeds. The processors exchange information via communication links,
which can suffer arbitrary (but not infinite) transmission delays. Each processor
holds a partial model of the MDP; it “knows” the information relevant to its state.
Processor z knows A(z), P(z,y,a) and R(z,y,a) for all possible successor* states y
and for all a € A(z).

Vi(z) represents the value function estimate for state z at time ¢, where ¢ is
a real number measured externally to any of the processors. We introduce the
functions #(-,-) and 7(-,-,-) as notational aids in description of asynchronous DP.
These functions would not actually be used as part of an implementation. The value
of t(z, k) is the time at which processor ¢ updates the value estimate for state z for
the k** time. The value function estimate changes only at these times, so that

Vi(z) = V;(z,k)(w) forall t(z,k) <t<t(z,k+1).

The value 7(z,y,t) is the time #(y, j) < ¢ of the latest value estimate from processor
(and state) y that is available to processor z at time ¢. The interval ¢ — 7(z,y,t) is
the transmission delay. The asynchronous value iteration backup of state ¢ at time
t = t(z,k + 1) can be represented in this notation as

We)= min [S,ex Peva)[Bevd+Viey)@]] @19)

This equation is a generalization of the synchronous value iteration equations (Equa-
tion (2.12) and Equation (2.13)). The notion of stages has been eliminated. Backups

3We will actually be considering the situation that Bertsekas and Tsitsiklis [7] call totally
asynchronous DP.

“The state z is a successor of state y iff there exists an a € A(y) such that P(y,z,a) # 0. The
state z is a predecessor of state y iff there exists an a € A(z) such that P(z,y,a) # 0.

17

Links to predecessor states

Links from successor states

Figure 2.4 The computational model for asynchronous dynamic programming.
The labelled circles represent the nodes of the computation network. Each node
is identified with a state of the controlled Markov chain. The communication links
transfer value function estimates from each state back to the predecessor states.

can occur in an arbitrary order, and at arbitrary rates. It is possible for the value
estimate for one state to be backed up many times before the estimate for another
state is backed up even once. This is a potential waste of computational resources, but
it is a result of the very limited requirements placed on the communication between
the processors. The analogous asynchronous generalization of the synchronous policy
evaluation equations (Equation (2.9) and Equation (2.11)) is

Vi(e) = Y P(2,y,U(2)) | R(=,0:U(=) + 1V, (5 4 1y(®)]. (2.16)
yeX
An asynchronous policy update is given by the equation
Us(z) = a.rgjﬂ.i? [Zyex P=.9,0) [REv:0) + 1V oy @) |] (217)
aCA(z

Theorem 2.1, which is a summarization of several theorems due to Bertsekas
and Tsitsiklis 7], describes conditions under which asynchronous value iteration and
policy evaluation are guaranteed to converge to V* or V; respectively. Theorem 2.1
applies to the discounted case, that is, whenever 4 < 1. The convergence conditions
are more complicated in the undiscounted case, and will be discussed in chapter 3.
Theorem 2.1 Asynchronous value iteration and policy evaluation are guaranteed to
converge to V* or Vy respectively, when applied to a discounted MDP, whenever the
following conditions are satisfied: 1) the value estimates for all states are updated
infinitely often; 2) limg_,o t(2,k) = o0, for all ¢ € X; and 3) transmission delays,
while unbounded, are not infinite.

Asynchronous policy iteration requires that value function updates (Equation
(2.15) and Equation (2.16)) be interspersed somehow with the policy updates de-
scribed in Equation (2.17). Using policy updates alone will only achieve one policy
improvement step as described in Section 2.2.2.3. Williams and Baird [101]) discuss
asynchronous policy iteration in detail, and give a number of conditions guaranteeing
convergence.

18

2.2.4 Temporal Difference Methods

The DP algorithms described in Sections 2.2.2 and 2.2.3 are all model-based
algorithms. They require a model of the controlled Markov chain: the transition
probability function P and of the one-step cost function R. But a system model is
not always available. Temporal difference (TD) methods [82] are model-free methods
designed to solve MDPs. TD methods grew out of a study of reinforcement learning
algorithms and the problem of temporal credit assignment [1,5,81]. It was only some
time after development that the relationship between TD methods and asynchronous
dynamic programming was realized [4,85,92]. It is now commonly understood [37,
77,91] that TD methods use a form of asynchronous stochastic approximation to find
a solution to recurrence relations like those descibed in Equation (2.2) and Equation
(2.3). The two most important TD methods are the TD(A) and the @Q-learning
algorithms. We will only discuss the Q-learning algorithm in this chapter, deferring
discussion of TD(A) to Chapter 4.

Q-learning, first described by Watkins [92], uses stochastic approximation to build
an estimate for the function @*. Lukes, Thompson, and Werbos [57] also describe a
version of the algorithm. The @-learning algorithm can be derived by starting with
the observation that the combination of Equation (2.2) and Equation (2.5) yields

Qu(z,U(z)) = z):(P(z,9,U(z)) [R(z,3,U(2)) +1Va(y) |
Y€
= Vu(z). (2.18)

Now, Equation (2.18) can be combined once again with Equation (2.5) to give

Qu(z,a) = E [P(z,y,a)R(z,y,a)] + 9 Z [P(z,y,a)Qu(y,U(y))] . (2.19)

ye ye

The function @y has been described as a recurrence relation, without reference to V.
A Bellman-style optimality equation for @Q)-functions is similarly derived,

Q*(w,a)=%[P(w,y,a z,y,a]+7Z[(2,9,0)Q* (v, U*(v)) |

= ng [P(z,y,a)R(z,y,a)] +7y§([P(a:,y,a) b:f(:) Q*(y, b)] (2.20)

Equations (2.19) and (2.20) lead directly to the two forms of the Q-learning
algorithm. Policy-based Q-learning builds an estimate of the function Qy for a fixed
policy U. Optimizing Q-learning builds an estimate of the optimal @-function, @*.
Like TD()), Q-learning builds its function estimates based on information sampled
" from the envmonment during actual state transitions. The policy-based @-learning

rule is

Qr+1(zk, ak) = Qr(zk, ar)+

-

19

an(y ak) [R(zay ik, ak) + YQu(wh, U(wn)) — Qulzmra) |, (221)

where @ represents the estimate of @y at time k, and ax(z, i) is the learning rate
at time k for the (state, action) pair (2, ax). The optimizing @Q-learning rule is

Qr+1(zr, ar) = Qu(zk, ar)+

S [R(wk,yk,ak) +7,min [Qulun 5] - Qulon ak)] . (222)

where @), now represents the estimate of @* at time k. Figure 2.5 summarizes the
@-learning algorithm.

1 fork=1tooo {

2 Choose a state z; from X.

3 Choose an action aj from A(zg).

4 Execute action a; from state z;. This results in a
stochastic transition to state yx, and incurs the cost
ke = R(Zk, Yk, ak)-

5 Update the estimate Q) using the update rule given in
Equation (2.21) in order to learn Qy, or using the update
rule given in Equation (2.22) in order to learn Q*.

6 }

Figure 2.5 The @Q-learning algorithm.

Convergence of the optimizing @Q-learning algorithm has been shown using a
number of techniques [37,91-93]. Each of these proofs shows that @ is guaranteed
to converge asymptotically to @* under the assumption that every admissible action
is chosen from every state an infinite number of times, and that the learning rates,
ak(zk, ax), are asymptotically reduced to zero in an appropriate way, as k& — oo.
Perhaps the most general convergence proof is that of Tsitsiklis [91], which we restate
as follows:

Theorem 2.2 (Tsitsiklis) If the learning rates ai(z,a) are random numbers such
that (1) ¥, ax(z,a) = oo, with probability one, and (2) Y52, ar(z,a)? < oo, with
probability one, then Qi(z, a) updated using the optimizing Q-learning rule converges
to Q*(z,a), with probability one, for every state ¢ and action a, in each of the
following cases: (a) if v < 1; (b) if y =1, Qo(x,a) = 0 for every absorbing state z,
and all policies are proper; or (c) if y = 1, there ezists at least one stationary proper
policy, every improper stationary policy yields infinite expected cost for at least one
state, Qo(z,a) = 0 for every absorbing state z, and Q) is guaranteed to be bounded,
with probability one.

CHAPTER 3
REAL-TIME DYNAMIC PROGRAMMING

State space search lies at the heart of many of the systems produced by Artificial
Intelligence. However, most of the algorithms designed to perform this search suffer
from several limitations:

1. they do not take advantage of problem solving experience to improve perfor-
mance on subsequent problems;

2. they are limited to deterministic environments;
3. they require an exact model of the problem; and
4. they do not act in real time.

It is the goal of a great deal of current research to relax these limitations, or to
eliminate them altogether. See, for example, (19, 35,48, 63, 71-73]. In this chapter
we use the formalism of Markov decision problems and the theory of asynchronous
DP to address each of these limitations. Much of the work presented here has been
previously reported by Barto, Bradtke, and Singh [4].

This chapter is organized as follows. Section 3.1 discusses heuristic search and
the recent work that has been done to address the limitations listed above. Section
3.3 describes the class of stochastic shortest path problems, which can be viewed as an
MDP formalization of the sorts of problems encounted by heuristic search. Section
3.4 presents the Real-Time Dynamic Programming (RTDP) algorithm, and Section
3.5 describes an adaptive version, Adaptive RTDP. Section 3.6 goes on to describe an
on-line version of @)-learning, which will be used for comparison purposes in a series
of experiments. The experiments are described in Section 3.8. Section 3.9 proposes
a generalization of RTDP that is applicable to a wider class of problems. Finally,
Section 3.10 gives concluding remarks.

3.1 State—Space Search

A state-space search problem is defined by a set of problem states, a set of
operators that map states to states, a set of initial state, and a set of goal states.
The objective is to find a sequence of operators, a plan, that maps the initial state
to one of the goal states and (possibly) optimizes some measure of cost, or merit, of
the solution path. Problems of this type can be considered as shortest path problems.
The search algorithm is trying to find the shortest (least costly, or optimal) path from
the selected start state to the set of goal states. Shortest path problems are a form

21

of MDP. The plan generated by the search algorithm corresponds to an open-loop
policy as described in Chapter 2.

State-space search algorithms typically do not learn from one problem solving
episode to the next, even though each of the problems may have common components.
The algorithm must start from scratch for each new problem. We are aware of only
a few exceptions to this generalization. Mérd [60], Gelperin [28], and Korf [48] each
propose and prove the convergence of heuristic state-space search algorithms that
modify the heuristic evaluation function (k) from one problem solving trial to the next
based on experience!. The adaptive heuristic game-tree search algorithms Samuel
developed for his checkers-playing programs [68,69] are similar, but no convergence
proofs are available. Although these algorithms use DP-like backups to update
the heuristic evaluation functions, they were developed independently of DP. Korf’s
Learning-Real-Time-A* (LRTA®) algorithm is the most relevant to the work described
in this chapter.

In many applications of state-space search algorithms, the generation of a problem-
solving plan is not the final objective. The intent may be to execute the plan (operator
sequence) to generate a time sequence of actual inputs to a physical system. A plan
executed in this manner, without reference to the state transitions actually induced,
will only produce satisfactory results when the state transitions are deterministic and
when the problem model used by the search algorithm is accurate and complete.
Recent work on the development of “universal plans” [72] seeks to address this
limitation. See, for example, Chapman [12], Ginsberg [29], and Schoppers [73]. The
idea of a universal plan corresponds to the idea of a closed-loop policy as described
in Chapter 2.

Real-time heuristic search algorithms, as discussed by Korf [48], are required to
perform interactively with the problem environment. Instead of separate planning
and execution phases, planning (through state-space search) and execution must be
interleaved as described in Figure 3.1. There are a number of reasons that would
prompt this interleaving. First of all, the existance of hard time constraints in the
problem environment, in conjuction with the size of the problem state space, may
preclude the ability to run a search to completion before time limits are reached.
Obviously, this reason becomes less important when the state space is small, but for
many problems, such as chess or natural language understanding, the size of the state
space implies that no search could be completed before any reasonable time limits
were reached. Second, unanticipated state transitions may invalidate any plan. As
described above, open-loop plans can fail when faced with a stochastic or incompletely
modelled environment. In contrast to traditional heuristic search algorithms, since
real-time heuristic search selects an action at every time step based on the current
state of the system, it can be viewed as a (possibly nonstationary) closed-loop control
policy. This method of generating a closed-loop policy as the result of the iterative
redesign and execution of open-loop policies (plans) is known as receding horizon

1Heuristic search algorithms attempt to improve performance by guiding the search process in
some manner through the use of domain knowledge. See, for example, Nilsson [64], Charniak and
McDermott [15], Winston [103], and Barr and Feigenbaum (3].

22

control by control engineers [49,58]. Figure 3.2 describes receding horizon control. It
is readily seen through a comparison of Figures 3.1 and 3.2 that real-time heuristic
search is a form of receding horizon control.

1 repeat until stopping conditions satisfied {

2 Design a plan based on the current state. The design/search process
continues until time constraints force termination, or until the best possible
answer is found.

3 Execute the action selected. This causes a transition to a new state, one
possibly unanticipated by the planning step.

4 }

Figure 3.1 Real-Time Heuristic Search. The basic execution cycle for real-time
heuristic search as discussed by Korf [48].

1 repeat until stopping conditions satisfied {

2 Design a controller based on current knowledge of the system.
3 Execute the policy defined by the controller.
4

}

Figure 3.2 Receding Horizon Control. A receding horizon control procedure
cycles between design and execution phases. The design phase continues until time
constraints force termination, or until a suitable answer is derived. The execution
phase may continue for an arbitrary length of time, but will terminate when conditions
indicate that redesign of the controller is necessary.

3.2 Learning Real-Time A*

Korf’s LRTA* [48] is a learning real-time heuristic search algorithm. Figure 3.3
gives an outline of the algorithm. The quantity ¢(ny,n,) is the transition cost to go

from node (problem state) m, to its neighbor n,. The function h is the modifiable

heuristic evalation function. If node n has not been visited before, then A(n) is h(n),
the initial heuristic value, possibly augmented by a look-ahead search. If node n has
been visited previously, then A(n) is the value stored for node = at that last visit. Line
4 of Figure 3.3 changes the heuristic value of the current state to be the minimum
over all neighbors of the cost to move to that neighbor, plus the estimated cost to go
from that neighbor to the goal. Line 5 chooses the next state to be one of those that
minimizes the total estimated cost to go. Ties are broken randomly. Korf [48] proves
the following convergence theorem:

23

Theorem 3.1 (Korf) In a finite problem space with positive edge costs, and non-
overestimating initial heuristic values, in which a goal state is reachable from every
state, over repeated trials of LRTA®, the heuristic values will eventually converge to
their ezact values along every optimal path.

Set k= 0.
Select the start state, sq.
while not Goal(s) {
h(sk) = min,eNeighbors(s) | o8k m) + A(n) |

Sk+1 = al'gminneNeighbors(a.) [¢(sk, n) + 7‘('”)]
k=k+1

N OV bR W

Figure 3.3 Learning Real-Time A*.

LRTA®* can be implemented as a real-time system because each step can be
performed in at most time O(N), where N is the total number of nodes, or states,
in the problem. It could be much better than this, as the cost actually depends on
the maximum branching factor. Comparing line 4 to Equation (2.15), and line 5
to Equation (2.17), we see that LRTA* implements an asynchronous policy iteration
algorithm on undiscounted, deterministic shortest path problems. LRTA* implements
policy iteration because it changes its policy, the choice of action to take, as it updates
the value estimates of the available estimates. It is asynchronous policy iteration since
the policy change is made only at the current state. Although not explicitly designed
as such originally, LRTA* is the result of interleaving the steps of DP with the actual
process of control so that control policy design occurs concurrently with control.

3.3 Stochastic Shortest Path Problems

A stochastic shortest path problem (also known as a first passage problem [7]) is
a generalization of the shortest path problem. A stochastic shortest path problem is
an MDP with a set of start states, S C X, and a set of goal states, G C X. The goal
states are absorbing, so that any action taken from a goal state results in a transition
to another goal state. The cost R(g1, g2,a) = 0 for any two goal states g; and g,, and
for any admissible action a. Therefore, no further costs are incurred once the system
has entered the goal set. This means that the value function V; is finite for any
policy U that takes the system into the goal set, even in the undiscounted case (when
4 = 1). This is true because only a finite number of the immediate costs incurred by
following U to the goal set may be non-zero. U is a proper policy if following U from
any z € X will eventually lead, with probability 1, to the goal set. U is an improper
policy if following U generates an ergodic set of states that does not intersect the goal
set. It is impossible to get from this ergodic set to the goal set while following U.

24

The solution to a deterministic shortest path problem is a policy that produces the
shortest paths from the start states to the goal states. The solution to a stochastic
shortest path problem is a policy that chooses actions that minimize the ezpected cost
to reach the goal states.

The value iteration and policy evaluation algorithms discussed in Chapter 2 are
guaranteed to converge for any discounted MDP. This holds for both the synchronous
and asynchronous algorithms. Convergence requires further assumptions in the undis-
counted case. Theorem 3.2 describes the conditions under which asynchronous value
iteration will converge when applied to undiscounted stochastic shortest path prob-
lems.

Theorem 3.2 (Bertsekas and Tsitsiklis) Asynchronous value iteration will con-
verge to V* when applied to an undiscounted stochastic shortest path problem when: 1)
there ezists at least one proper stationary policy; 2) every improper stationary policy
yields infinite cost for at least one state; and 3) the conditions of Theorem 2.1 are
satisfied.

The second assumption means that if the non-goal state z is in an ergodic set
generated by the improper policy U, then

Vo(z) = & {X30 7 R(2i, 2441, U(2:)) | 20 = 2}
=& {Ezo R(:B;, Tit1,y U(Z,)) I To = :B}

= 00.

Some of the immediate costs may be positive, some negative, and some zero, but the
total expected value must be infinite.

3.4 Real-time Dynamic Programming

Trial-based Real-Time Dynamic Programming (RTDP) is the generalization of
Korf’s LRTA* to handle stochastic shortest path problems?. As such, it is a learning
receding horizon control procedure. Figure 3.4 gives a pseudocode specification for
RTDP. We use the subscript k to count the total number of design/execution phases.
During the k** design phase, trial-based RTDP will backup the value of all states z
in some set B, C X (line 5). The current state, z, is always a member of By. It is
possible that the value estimates for some states in B will be updated many times
during a given step. After updating the value function, RTDP chooses the action to
take from the current state in a best-first, or greedy fashion (line 6).

We need the notion of a relevant state before we talk about the convergence of
RTDP. A state is relevant to the solution of a stochastic shortest path problem if it
is a start state, or can be reached from the start states when following an optimal
policy. It is possible that all of the states are relevant. In a deterministic problem,
the relevant states are only those lying on the shortest paths from the start set to the

3Ishida and Korf [35) and Ishida [34] have previously designed a generalization of LRTA®, called
Moving Target Search, for a special class of stochastic shortest path problems.

25

1 Set k=0.
2 repeat forever {
3 Set z; to a randomly selected start state.
4 while (zj is not a goal state) {
5 Perform the backup operation.

Vk+1(=) — { minaeA(c) Eye,'\:’ P(z,y, a) [R(z,y,a) +7Vk(y)] if z € B

k(2 otherwise

6 Select the best action, given the current estimate of the optimal value

function.

a = argmin Z P(zkv Y, a) [R(zkays a) +7Vk+1(y)]

7 Perform the action and get the next state, zj.;.
8 k=k+1.
9 }
10 }

Figure 3.4 Trial-based Real-Time Dynamic Programming. k counts the total number
of design/execution phases since the algorithm was started.

goal set. For example, if we choose a particular cell of the grid world (Section 2.1.1)
as the start state, then nearly all of the system states are irrelevant.

Asynchronous policy iteration (lines 5 and 6) is RTDP’s heart. Using the theory of
asynchronous DP as descibed by Bertsekas and Tsitsiklis [7] we present the following
convergence theorem for RTDP. The proof is given in Appendix A.l. In order to
use the theory developed by Bertsekas and Tsitsiklis, we assume that the immediate
costs depend only on the current state and action, i.e., they are of the form R(z,a).
It is possible to extend the basic theory to cover the more general form R(z,y,a),
but that is not necessary for the purposes of this discussion. RTDP will converge
to a stationary optimal policy if ties in line 6 are resolved deterministically, or when
there are no ties to be broken. RTDP will converge to a nonstationary optimal policy
otherwise.

Theorem 3.3 (Trial-based RTDP) In undiscounted stochastic shortest path prob-
lems, Trial-Based RTDP, with the initial state of each irial restricted to a set of
start states, converges (with probability one) to V* on the set of relevant states, and
the controller’s policy converges to an optimal policy (possibly nonstationary) on the
set of relevant states, under the following conditions: 1) there is at least one proper
stationary policy; 2) all immediate costs incurred by transitions from non-goal states
are positive, i.e., R(z,a) > 0 for all non-goal states ¢ and for all a € A(z); and 3)
the initial value estimates of all states are non-overestimating, i.c., Vo(z) < V*(z)
for all statesz € X.

26

The requirement in Theorem 3.3 that R(z,a) > 0 for all non-goal states z
is somewhat stronger than the requirement in Theorem 3.2 that every improper
stationary policy yields infinite cost for at least one state. This stronger condition is
necessary because of the on-line nature of trial-based RTDP. The value estimates of
all of the states must be updated infinitely often in order to ensure convergence of the
asynchronous DP algorithms. However, the manner in which states are updated by
RTDP is determined by the state trajectory encountered during interaction with the
system. Even though the value estimates for more than one state may be updated
at each time step, the trajectory may be such that some states are never updated, or
are only updated a finite number of times. However, the only states we really care
about are the relevant states, and Theorem 3.3 assures us that value estimates and
the policy for these states will converge to the optimal.

The on-line nature of RTDP can actually confer a great advantage in terms of
total computation required. As the algorithm progresses, it focusses its computational
resources more and more narrowly upon the relevant states. It learns to ignore those
states that can not be reached by an optimal policy. This effect will be demonstrated
experimentally in Section 3.8.

3.5 Adaptive Real-time Dynamic Programming

RTDP requires a model of the system. It needs to know P(z,y,a) and R(z,y,a)
for all z, y, and a. This information may not always be available. One way around
this problem, of course, would be to build a model of the system first, and then to
apply RTDP. Another approach would be to merge the model building process with
RTDP. The Adaptive RTDP (ARTDP) algorithm described in Figure 3.5 takes the
latter approach. It uses counters to build a maximum likelihood model of the state
transition probabilities based on the transitions experienced as it interacts with the
system. The value (z,y, a) is the number of experienced state transitions from state
z to state y upon application of the action a. The value n(z,y) is the number of
experienced state transitions from state z to state y upon application of any action,
ie,n(z,y) =X, Ate) 7(z,, a). The maximum likelihood estimate for the transition

probability P(z,y,a) is ﬁ(m,y,a) = n(z,y,a)/n(z,y). As described here, ARTDP
must build a model of the state transition probabilities, but it already knows the
immediate cost function, R. This is not an unrealistic assumption for many problems,
where the immediate costs are all equal to some constant value, or are easily computed
using some auxiliary model. However, there is no reason that ARTDP could not be
extended to build a model of the immediate cost function as well.

Notice that the action selection procedure (line 7) is left unspecified. Unlike
RTDP, ARTDP can not always choose what appears to be the best, or greedy action.
This is because it only has a model of the state transition probabilities on which to
base its decisions, and the model could be quite inaccurate initially. An inaccurate
model could cause ARTDP to overestimate the values (long term costs) of some states.
This in turn could cause actions that lead to those states to be ignored, even though
they would be seen to be the optimal actions if P were known accurately. ARTDP
needs to explore, to choose actions that do not currently appear to be optimal, in

£

27

1 Set k=0.)
2 Initialize counts and P.
3 repeat forever {
4 Set z; to be a randomly selected start state.
5 while (z; is not a goal state) {
6 Perform the backup operation.

Vi (2) = min,. A,y Lye¥ P(2,9,0) [R(z,y,a) +vVi(y)] ifz € By

k(z) otherwise
7 Select an action, ag.
8 Perform action and get next state, Zp4;.
9 1(Tky Th+1, 8k) = N(Tky Tht1, 6k) + 1
10 Nk, Th+1) = 9(Tky Th1) +1
11 Renormalize the transition probability estimates for all actions a € A(zx)
P(zln Th+1, G) = ﬂ(zk, Trt1, a)/ﬂ(zki zk-{—l)-

12 k=k+1
13 }
14 }

Figure 3.5 Trial-based Adaptive Real-Time Dynamic Programming. Line 4 is the
beginning of a trial. k counts the total number design/execution phases since the
algorithm was started. The action selection procedure (line 7) should not always
choose the best action, as RTDP does. Some exploration must be performed to

ensure that P — P over time.

order to ensure that P — P over time. Gullapalli and Barto [32] prove that ARTDP
will converge asymptotically to the optimal value function (and the optimal policy)
with probability 1, provided that every admissible action is taken from every state
an infinite number of times. Section 3.7 will discuss exploration in more depth.

Adaptive RTDP is related to a number of algorithms that have been investigated
by others. Although Sutton’s Dyna architecture [85] focuses on Q-learning and
methods based on policy iteration (Section 2.2.2.3), it also encompasses algorithms
such as ARTDP, as discussed in Sutton [87]. Lin [51,52] also discusses methods closely
related to ARTDP. In the engineering literature, Jalali and Ferguson [39,40] describe
an algorithm that is similar to ARTDP, although they focus on Markovian decision
problems in which performance is measured by the average cost per-time-step instead
of the discounted cost we have discussed. See also Schwartz [74, 75] for a further
discussion of IDP algorithms for the average cost objective function.

28

3.6 Real-Time Q-learning

Q-learning does not use a model of the MDP to form its estimates of the optimal
value function or the optimal policy. Therefore, a comparison of the performance of
Q@-learning with the performances of RTDP and ARTDP will provide some under-
standing of the advantages to be gained from using a model. Figure 3.6 describes
Trial-based Real-Time Q-learning (RTQ) algorithm. Unlike the description of the
basic @-learning algorithm given in Figure 2.5, which allows arbitrary selection of the
state z (line 2), this algorithm is like RTDP and ARTDP in following a sample
trajectory through the state space. Also like ARTDP, RTQ must include some
element of exploration in its action selection procedure (line 5). Following from the
general convergence results for Q-learning (Section 2.2.4), RTQ will converge to the
optimal @-function and the optimal policy for all states when applied to undiscounted
stochastic shortest path problems under the following conditions: 1) there exists a
proper stationary policy; 2) the exploration procedure is properly designed so that all
admissible actions are performed for all states infinitely often in an infinite sequence
of trials; and 3) the learning rate is reduced appropriately. The first condition merely
ensures that V*(z) is finite for all states, or equivalently, that there is a path from
every state to the goal set.

RTDP and ARTDP can use their model of the MDP to take advantage of any
looseness in the real-time constraints. If there is time, they can update the value
estimates for some set of states By, of which the current state, z;, is only one element.
The states in By could be chosen by some method such as prioritized sweeping [61,62],
which is designed to accelerate convergence of the value function. Since RTQ does
not have a model of the MDP, it is unable to take advantage of any such scheme.
RTQ can only update the value of a single (state, action) pair at each time step.

3.7 Exploration

Any exploration strategy for an on-line algorithm must try to balance two com-
peting goals: exploration and exploitation. Efficient exploration requires that actions
should always be chosen so that the average useful information gain per time step
is maximized. However, since this is an on-line algorithm, it is also desirable to
exploit what is currently known about the problem in order to find a solution. One
popular exploration method that attempts to make this tradeoff is based on the
Boltzmann distribution, and has been used, for example, by Watkins [92], Lin [52],
and Sutton [85). We use this exploration strategy in conjunction with ARTDP and
RTQ in the experiments described in Section 3.8.

This method assigns an execution probability to each admissible action for the
current state, where this probability is determined by a rating of each action’s utility.
We compute a rating, 7(a), of each action a € A(z) as follows, depending on
whether a model of the MDP is available. For @Q-learning, which has no model,
r(a) is computed as

r(a) = Qx(zx, a), (3.1)

29

1 Set k=0.
2 repeat forever {
3 Set z; to be a randomly selected start state.
4 while (z;, is not a goal state) {
5 Choose an action aj from A(zz).
6 Execute action a;, from state z;. This results in a stochastic transition
to state zx1, and incurs the cost r; = R(zk, Tk+1, ak)-

7 Update the estimate Q using the update rule given in Equation (2.22)

Qr+1(Zks ar) = Qr(Tr, ar)+

o |P(Tky Zkt1,06) +7 min [Q(Tr41,5)] — Qr (s, ak)]
bEA Tht1)

8 k=k+1
9 }
10 }

Figure 3.6 Trial-based Real-Time @-learning. Line 3 is the beginning of a trial.
k counts the total number design/execution phases since the algorithm was started.
Unlike the description of the basic @-learning algorithm given in Figure 2.5, which
allows arbitrary selection of the state z; (line 2), this algorithm follows a sample
trajectory through the state space. The action selection procedure (line 5) should not
always choose the best action, as RTDP does. Some exploration must be performed
to ensure that the convergence assumption, that all admissible actions are performed
for all states infinitely often, is satisfied.

where the function @ is the current estimate of the optimal @-function, Q*. For

ARTDP, which builds a model of the MDP, r(a) is computed as

ra)=) [ﬁ(z,y,a)R(z,y,a)] +9 ZX [P(a:,y, a)Vk(y)] , (3.2)
(S ye

where V; is the current estimate for the optimal value function, V*. The latter defini-
tion for 7(a) is based on Equation (2.5), which defines the @-function in terms of the
value function. These ratings define a probability mass function over the admissible
actions using the Boltzmann distribution: the probability that the controller executes
action a € A(zz) is

e_"(“)/ T

PrOb(a) = Ebe.A(a;,) e—r(®)/T’

(3.3)

where T is a positive parameter controlling how sharply these probabilities peak at the
certainty equivalence optimal action. As T increases, these probabilities become more
uniform, and as T decreases, the probability of executing the certainty equivalence
optimal action approaches one, while the probabilities of the other actions approach

30

zero. T acts as a kind of “computational temperature” as used in simulated annealing
[45] in which T' decreases over time. Here it controls the necessary tradeoff between
exploration and exploitation. At “zero temperature” there is no exploration, and
the randomized policy equals the certainty equivalence optimal policy, whereas at
“infinite temperature” there is no attempt at exploitation, and actions are chosen
from a uniform distribution.

3.8 Experiments

3.8.1 The Race Track Problem

We use a version of a game called Race Track, described by Martin Gardner [27],
to test and compare the performance of conventional DP and the on-line algorithms
RTDP, ARTDP, and RTQ. Race Track is a discrete-time, discrete-state simulation
of automobile racing. We modify the game by allowing only a single player, and by
making it probabilistic. It would be possible to allow multiple players, but that is
unnecessary for demonstration purposes.

A race track of any shape is drawn on graph paper, with a starting line at one end
and a finish line at the other consisting of designated squares. Each square within
the boundary of the track is a possible location of the car. Figure 3.7 shows two
example tracks. At the start of each trial, the car is placed at a random position on
the starting line, and actions are selected in an attempt to move the car down the
track toward the finish line. Acceleration and deceleration are simulated as follows.
If in the previous move the car moved h squares horizontally and v squares vertically,
then the present move can be k' squares vertically and v' squares horizontally, where
the difference between A’ and h is —1, 0, or 1, and the difference between ' and »
is —1, 0, or 1. This means that the car can maintain its speed in either dimension,
or it can slow down or speed up in either dimension by one square per move. If the
car hits the track boundary,® we move it back to a random position on the starting
line, reduce its velocity to zero (i.e., A’ — h and v’ — v are considered to be zero), and
continue the trial. The objective is to learn to control the car so that it crosses the
finish line in as few moves as possible. Figures 3.8 and 3.10 show examples of optimal
and near-optimal paths for the race tracks shown in Figure 3.7.

We now introduce a random element into the problem. With a probability p, the

actual accelerations or decelerations at a move are zero independently of the intended
accelerations or decelerations. Thus, 1 — p is the probability that the controller’s
intended actions are executed. One might think of this as simulating driving on a
track that is unpredictably slippery so that sometimes braking and throttling up have

no effect on the car’s velocity.
In order to describe the Race Track problem as a stochastic shortest path problem,

we must formalize the description of the states, the actions, the transition probabil-
ities, the immediate cost function, the start states, and the goal states. The state
of the system at time k is the vector (zi, Yk, &k, ¥). This is the position on the

3For the computational experiments described in Section 3.8.2, this means that the projected
path of the car for a move intersects the track boundary at any place not on the finish line.

€

Sl

31

Starting line Finish line

HEFEBRG ERE B

Starting line Finish ine

Figure 3.7 Example Race Tracks. Panel A: Small race track. Panel B: Larger race
track. See Table 3.1 for details.

track at time k (zx and yi), and the velocity at time k (2 and g;). The velocity at
time k is the difference between the current position and the previous position, so
& = Tp — Th-1, and Yr = Yr — Yr—1. The velocity at the start of a trial is a special
case, and is defined to be zero in both the z and y directions. The admissible actions
are pairs (a®,a¥), where a® € {-1,0,1} is a velocity increment in the z direction,
and where a? € {-1,0,1} is a velocity increment in the y direction. All actions are
admissible in all states.

The following equations define the state transitions of this system. With proba-
bility 1 — p, the controller’s action is reliably executed so that the state at time step
k+1is

Te1 = Tk + Tk + af, (3.4a)
Ykt1 = Yk + Uk + af (3.4b)
Tpp1 = Tk + af (3.4¢)
Uk+1 = Uk + af, (3.4d)

and with probability p, the system ignores the controller’s action, so that the state
at time step k+ 1 is

Thy1 = Th + Tp (3.53)
Ye+1 = Yk + Yk (3.5b)
(i:k.*.]_ = 2.3],_ (350)

32
gk.}.l = gk- (3~5d)

This assumes that the straight line joining the point (zx,yx) to the point (zg+1, yr+1)
lies entirely within the track, or intersects only the finish line. If this is not the case,
then the car has collided with the track’s boundary, and the state at time £+ 1 is
(=,¥,0,0), where (z,y) is a randomly chosen position on the starting line. A move
that takes the car across the finish line is treated as a valid move, but we assume
that the car subsequently stays in the resulting state until a new trial begins. This
method for keeping the car on the track, together with Equations (3.4) and (3.5),
define the state-transition probabilities for all states and admissible actions.

The total number of states for any racetrack problem is potentially infinite since
we have not imposed a limit on the car’s speed. However, in practice, the speed is
limited by the size of the track. Therefore, the set of states that can be reached from
the set of start states via any policy is finite and can be considered to be the state
set of the stochastic shortest path problem.

To complete the formulation of the stochastic shortest path problem, we need to
define the set of start states, the set of goal states, and the immediate costs associated
with each action in each state. The set of start states consists of all the zero-velocity
states on the starting line, i.e., all the states (z,y,0,0) where (z,y) are coordinates
of the squares making up the starting line. The set of goal states consists of all states
that can be reached in one time step by crossing the finish line from inside the track.
According to the state-transition function defined above, this set is absorbing. The
immediate cost for all non-goal states is one independently of the action taken, i.e.,
R(z,a) = 1 for all non-goal states z and all admissible actions a. The immediate
cost associated with a transition from any goal state is zero. With R(z,a) =1, an
optimal policy is one that minimizes both the expected time (number of steps) and
the expected number of states visited from start to goal. The function R could, in
general, be defined arbitrarily.

3.8.2 Results

We used the race track problem described in Section 3.8.1 to illustrate and
compare conventional DP, RTDP, ARTDP, and RTQ using the two race tracks shown
in Figure 3.7. The small race track shown in Panel A has 4 start states, 87 goal states,
and 9,115 states reachable from the start states by any policy. We have not shown
the squares on which the car might land after crossing the finish line. The larger race
track shown in Panel B has 6 start states, 530 goal states, and 22, 576 states reachable
from the start states. We set p = 0.1 so that the controller’s intended actions were
executed with probability 0.9.

We applied conventional Gauss-Seidel DP to each race track problem, by which
we mean Gauss-Seidel value iteration as defined in Section 2.2.2.2, with v = 1 and
with the initial evaluation function assigning zero cost to each state. Gauss-Seidel
DP converges under these conditions because it is a special case of asnychronous
DP, which converges here because the conditions given in Section 2.2.3 are satisfied.
Specifically, it is clear that there is at least one proper policy for either track (it is
possible for the car to reach the finish line from any reachable state, although it may

33

have to hit the wall and restart to do so) and every improper policy incurs infinite cost
for at least one state because the immediate costs of all non-goal states are positive.
We selected a state ordering for applying Gauss-Seidel DP without concern for any
influence it might have on convergence rate (although we found that with the selected
ordering, Gauss-Seidel DP converged in approximately half the number of sweeps as
did Jacobi DP).

Table 3.1 summarizes the small and larger race track problems and the compu-
tational effort required to solve them using Gauss-Seidel DP. Gauss-Seidel DP was
considered to have converged to the optimal evaluation function when the maximum
cost change over all states between two successive sweeps was less than 10~%. We
estimated the number of relevant states for each race track, i.e., the number of states
reachable from the start states under any optimal policy, by counting the states visited
while executing optimal actions for 107 trials.

We also estimated the earliest point in the DP computation at which the optimal
evaluation function approximation was good enough so that the corresponding greedy
policy was an optimal policy. (Recall from Section 2.2.1 that an optimal policy
can be a greedy policy with respect to many evaluation functions.) We did this
by running 107 test trials after each sweep using a policy that was greedy with
respect to the evaluation function produced by that sweep. For each sweep, we
recorded the average path length produced over these test trials. After convergence
of Gauss-Seidel DP, we compared these averages with the optimal expected path
length obtained by the DP algorithm, noting the sweep after which the average path
length was first within 1072 of the optimal. The resulting numbers of sweeps and
backups are listed in Table 3.1 in the columns labeled “Number of GSDP sweeps to
optimal policy” and “Number of GSDP backups to optimal policy.” Although optimal
policies emerged considerably earlier in these computations than did the optimal
evaluation functions, it is important to note that this estimation process is not a part
of conventional off-line value iteration algorithms and requires a considerable amount
of additional computation.? Nevertheless, the resulting numbers of backups are useful
in assessing the computational requirements of the real-time algorithms, which should
allow controllers to follow optimal policies after comparable numbers of backups.

We applied RTDP, ARTDP, and RTQ to both race track problems. Because
all the immediate costs are positive, we know that V*(z) must be non-negative for
all states . Thus, setting the initial costs of all the states to zero produces a non-
overestimating initial evaluation function as required by Theorem 3.3. We applied the
real-time algorithms in a trial-based manner, starting each trial with the car placed
on the starting line with zero velocity, where each square on the starting line was
selected with equal probability. A trial ended when the car reached a goal state.
Thus, according to Theorem 3.3, with v = 1, RTDP will converge to the optimal
evaluation function with repeated trials. Although RTDP and ARTDP can back up
the costs of many states at each control step, we restricted attention to the simplest

4Policy iteration algorithms address this problem by explicitly generating a sequence of improving
policies, but updating a policy requires computing its corresponding evaluation function, which is
generally a time-consuming computation.

34

Table 3.1 Example Race Track Problems. The results were obtained by executing
Gauss-Seidel DP (GSDP).

| | Small track | Larger track |

Number of reachable states 9,115 22,576
Number of goal states 87 590
Est. number of relevant 599 2,618
states

Optimum exp. path length 14.67 24.10
Number of GSDP sweeps to 28 38

convergence

Number of GSDP backups
to convergence

Number of GSDP sweeps to
optimal policy

Number of GSDP backups
to optimal policy

252,784 835,468

15 24

136, 725 541, 824

case in which they only back up the cost of the current state at each time step. This
is the case in which By = {s;} for all k.

We executed 25 runs of each algorithm using different random number seeds,
where a run is a sequence of trials beginning with the evaluation function initialized
to zero. To monitor the performance of each algorithm, we kept track of path lengths,
that is, how many moves the car took in going from the starting line to the finish
line, in each trial of each run. To record these data, we divided each run into a
sequence of disjoint epochs, where an epoch is a sequence of 20 consecutive trials.
By an epoch path length we mean the average of the path lengths generated during
an epoch using a given algorithm. ARTDP and RTQ were applied under conditions
of incomplete information, and for these algorithms we induced exploratory behavior
by using randomized policies based on the Boltzmann distribution as described in
Section 3.7. To control the tradeoff between identification and control, we decreased
the parameter T in Equation (3.3) after each move until it reached a pre-selected
minimum value; T' was initialized at the beginning of each run. Parameter values and
additional simulation details are provided in Appendix B.

Figure 3.8 shows results for RTDP (Panel A), ARTDP (Panel B), and RTQ (Panel
C). The central line in each graph shows the epoch path length averaged over the 25
runs of the corresponding algorithm. The upper and lower lines show +1 standard
deviation about this average for the sample of 25 runs. Although the average epoch
path lengths for the initial several epochs of each algorithm are too large to show on
the graphs, it is useful to note that the average epoch path lengths for the first epoch
of RTDP, ARTDP, and RTQ are respectively 455, 866, and 13,403 moves. That these

e

35

initial average path lengths are so large, especially for RTQ, reflects the primitive
nature of our exploration strategy.

It is clear from the graphs that in this problem RTDP learned faster (and with
less variance) than ARTDP and RTQ, when learning rate is measured in terms of
the number of epochs (numbers of moves are given in Table 3.2 discussed below).
This is not surprising given the differences between the versions of the problem with
complete information (Panel A) and with incomplete information (Panels B and C).
That the performances of RTDP and ARTDP were so similar despite these differences
reflects the fact that the maximum likelihood system identification procedure used
by the latter algorithm converged rapidly on relevant states due to the low level of
stochasticity in the problem (p = 0.1). These graphs also show that RTQ takes very
many more epochs than do RTDP and ARTDP to reach a similar level of performance.
This reflects the fact that each backup in RTQ takes into account less information
than do the backups in RTDP or ARTDP, a disadvantage somewhat offset by the
relative computational simplicity of each @-learning backup. Figure 3.9 shows the
RTQ results out to 5,000 epochs.

A convenient way to show the policies that result from these algorithms is to show
the paths the car would follow from each start state if all sources of randomness were
turned off; that is, if both random exploration and the randomness in the problem’s
state transition function were turned off. At the right in each panel of Figure 3.8
are paths generated in this way by the policies produced after each algorithm was
judged to have “effectively converged.” We inspected the graphs to find the smallest
epoch numbers at which the average epoch path lengths essentially reached their
asymptotic levels: 200 epochs for RTDP (Panel A), 300 epochs for ARTDP (Panel
B), and 2,000 epochs for RTQ (Panel C). Treated with appropriate caution, these
effective convergence times are useful in comparing algorithms.

The path shown in Panel A of Figure 3.8 is optimal in the sense that it was
produced in noiseless conditions by a policy that is optimal for the stochastic problem.
The paths in Panels B and C, on the other hand, were not generated by an optimal
policy despite the fact that each is one move shorter than the path of Panel A.
The control decisions made toward the end of the track by these suboptimal policies
produce higher probability that the car will collide with the track boundary under
stochastic conditions. Although we do not illustrate it here, as the amount of
uncertainty in the problem increases (increasing p), optimal policies generate paths
that are more “conservative” in the sense of keeping safer distances from the track
boundary and maintaining lower velocities.

Table 3.2 provides additional information about the performance of the real-time
algorithms on the small track. For comparative purposes, the table includes a column
for Gauss-Seidel DP. We estimated the path length after the effective convergence of
RTDP, ARTDP, and RTQ by executing 500 test trials with learning turned off using
the policy produced at effective convergence of each algorithm. We also turned off
the random exploration used by the latter two algorithms. The row of Table 3.2
labeled “Est. path length at effective convergence” gives the average path length

36

A
ﬁ:zoo
8
g | Starting line Finish line C1E]
-]
glw T n
% s
2
z EER AR,
1) o TPUSN PN . d tadens -
100 200 300 400 500
Epoch number
B
B0
2
E-d Starting line Finish line
a
L] m
§, TTTTI TTT
&' 100 7 11 1
s PEFFERE A
0 L & e ‘ sttt e -l
100 200 300 400 500
Epoch number
C
g
a
(-]
‘g Starting line Finish line ——FT
o'100f
@
4 0 0 O OO 1111]
5 0 : % s
<
| . 11 11
1] e e e o, el ks ket -t] Py lld 11
100 200 300 400 500
Epoch number

Figure 3.8 Performance of Three Real-Time Learning Algorithms on the Small
Track. Panel A: RTDP. Panel B: ARTDP. Panel C: RTQ. The central line in each
graph shows the epoch path length averaged over the 25 runs of the corresponding
algorithm. The upper and lower lines show +1 standard deviation of the epoch path
length for the sample of 25 runs. Exploration was controlled for ARTDP and RTQ
by decreasing T after each move until it reached a pre-selected minimum value. The
right side of each panel shows the paths the car would follow in noiseless conditions
from each start state after effective convergence of the corresponding algorithm.

) E 44, E_(“ —_— E__—‘ Em A‘

i

—

37

Table 3.2 Summary of Learning Performance on the Small Track for RTDP, ARTDP,
and RTQ. The amount of computation required by Gauss-Seidel DP (GSDP) is
included for comparative purposes. -

(GSDP RTDP ARTDP RTQ
Ave. time to effective 28 sweeps | 200 epochs | 300 epochs | 2,000 epochs
convergence
Est. path length at effective 14.56 14.83 15.10 15.44
convergence
Ave. number of backups 252, 784 127,538 218,554 2,961,790
Ave. number of backups per) 638 798 1,481
epoch
% of states backed up <100 | 98.45 96.47 53.34
times
‘7.0 of states backed up < 10 . 80.51 65.41 6.68
times
‘7? of states backed up 0 _ 3.18 1.74 156
times

over these test trials.® RTDP is most directly comparable to Gauss-Seidel DP. After
about 200 epochs, or 4,000 trials, RTDP improved control performance to the point
where a trial took an average of 14.83 moves. RTDP performed an average of 127,538
backups in reaching this level of performance, about half the number required by
Gauss-Seidel DP to converge to the optimal evaluation function. This number of
backups is comparable to the 136,725 backups in the 15 sweeps of Gauss-Seidel DP

after which the resulting evaluation function defines an optimal policy (Table 3.1).
Another way to compare Gauss-Seidel DP and RTDP is to examine how the

backups they perform are distributed over the states. Whereas the cost of every state
was backed up in each sweep of Gauss-Seidel DP, RTDP focused backups on fewer
states. For example, in the first 200 epochs of an average run, RTDP backed up the
costs of 98.45% of the states no more than 100 times and 80.51% of the states no
more than 10 times; the costs of about 290 states were not backed up at all in an
average run. Although we did not collect these statistics for RTDP after 200 epochs,

it became even more focused on the states on optimal paths.
Not surprisingly, solving the problem under conditions of incomplete information

requires more backups. ARTDP took 300 epochs, or an average of 218,554 backups,
to achieve trials averaging 15.1 moves at effective convergence. RTQ took 2,000

5These path length estimates are somewhat smaller than the average epoch path lengths shown
at effective convergence in the graphs of Figure 3.8 because they were produced with exploration
turned off, whereas the graphs show path lengths produced with random exploration turned on.
For Gauss-Seidel DP, we averaged over the costs of the start states given by the computed optimal
evaluation function to obtain the estimated path length listed in Table 3.2.

38

epochs, or an average of 2,961,790 backups, to achieve a somewhat less skillful level
of performance (see Figure 3.9). Examining how these backups were distributed over
states shows that ARTDP was considerably more focused than was RTQ. In the first
300 epochs ARTDP backed up 96.47% of the states no more than 100 times and
65.41% of the states no more than 10 times. On the other hand, in 2,000 epochs
RTQ backed up @Q-values for 53.34% of the states no more than 100 times and only
6.68% of the states no more than 10 times.® Again, these results for RTQ reflect the
inadequacy of our primitive exploration strategy for this algorithm.

Figure 3.10 shows results for RTDP, ARTDP, and RTQ on the larger race track,
and Table 3.3 provides additional information. These results were obtained under
the same conditions described above for the small track. Figure 3.11 shows the RTQ
results for the larger track out to 7,500 epochs. We judged that RTDP, ARTDP,
and RTQ had effectively converged at 500, 400, and 3,000 epochs respectively. That
ARTDP effectively converged faster than RTDP in terms of the number of epochs is
partially due to the fact that its epochs tended to have more moves, and hence more
backups, than the epochs of RTDP. We can see that to achieve slightly suboptimal
performance, RTDP required about 62% of the computation of conventional Gauss-
Seidel DP. The average epoch path lengths for the initial epoch of each algorithm,
which are too large to show on the graphs, are 7,198, 8,749, and 180,358 moves,
respectively, for RTDP, ARTDP, and RTQ. Again, these large numbers of moves,
especially for RTQ, reflect the primitive nature of our exploration strategy. The
paths shown at the right in each panel of Figure 3.10 were generated in noiseless
conditions by the policies produced at effective convergence of the corresponding
algorithms. The path shown in Panel A of Figure 3.10 is optimal in the sense that
it was produced in noiseless conditions by a policy that is optimal for the stochastic
problem. The paths in Panels B and C, on the other hand, were generated by slightly
suboptimal policies.

Although these simulations are not definitive comparisons of the real-time al-
gorithms with conventional DP, they illustrate some of their features. Whereas
Gauss-Seidel DP continued to back up the costs of all the states, the real-time
algorithms strongly focused on subsets of the states that were relevant to the control
objectives. This focus became increasingly narrow as learning continued. Because
the convergence theorem for Trial-Based RTDP applies to the simulations of RTDP,
we know that this algorithm eventually would have focused only on relevant states,
i.e., on states making up optimal paths. RTDP achieved nearly optimal control
performance with about 50% of the computation of Gauss-Seidel DP on the small
track and about 62% of the computation of Gauss-Seidel DP on the larger track.
ARTDP and RTQ also focused on progressively fewer states, but less efficiently, as the
exploration strategy were required continued selection of actions that RTDP learned

to ignore.
The results described here for ARTDP and RTQ were produced by using an

exploration strategy that decreased the randomness in selecting actions by decreasing

6We considerated a Q-value for a state z to be backed up whenever Q(z, a) was updated for some

a € A(z).

£

e e T S

e

—

-

39

3
E
-3
i
&
g
e
<
e R T
Epoch number

Figure 3.9 Performance of RTQ on The Small Track for 5,000 Epochs. The initial
part of the graph shows the data plotted in Panel C of Figure 3.8 but at a different
horizontal scale.

Table 3.3 Summary of Learning Performance on the Larger Track for RTDP,
ARTDP, and RTQ. The amount of computation required by Gauss-Seidel DP (GSDP)
is included for comparative purposes.

| | GSDP |- RTDP | ARTDP | RTQ |
Ave. time to effective 38 sweeps | 500 epochs | 400 epochs | 3,000 epochs
convergence
Est. path length at effective |, | 24.62 24.72 25.04
convergence
Ave. number of backups 835, 468 517,356 653, 774 10, 330,994
Ave. number of backups per) 1,035 1,634 3,444
epoch
?.0 Of states backed up S 100 - 97.77 90.03 §2.43
times
7? of states backed up < 10 _ 70.46 59.90 8.28
times
‘73'; of states backed up 0 i 8.17 3.53 2.70
times .

40

A
Baoof
g -
= Emets =
[L
& - -
5 # : Ll
-] mar s
Sa00f i = i
%] 1
5
< X
Dttt kit
Epoch number Fikh e
B
B}
8 -4:
£ o A
& A -
5 R
2 a="22 N
£ 100} awiimn 1
D u L
b s i
] : EumCamE
% 100 200 300 400 500 otz tas
Epoch number Siartog kne Ftahne
C
=
o
g S
g HHHH HH s
: % AR
) H { :”F
E _# 1M
[=
< HEH A
Epoch number Frish tne

Figure 3.10 Performance of Three Real-Time Learning Algorithms on the Larger
Track. Panel A: RTDP. Panel B: ARTDP. Panel C: RTQ. The central line in each
graph shows the epoch path length averaged over the 25 runs of the corresponding
algorithm. The upper and lower lines show +1 standard deviation of the epoch path
length for the sample of 25 runs. Exploration was controlled for ARTDP and RTQ
by decreasing T after each move until it reached a pre-selected minimum value. The
right side of each panel shows the paths the car would follow in noiseless conditions
from each start state after effective convergence of the corresponding algorithm.

B B

—_—

41

250

[\
-8- v

—
[=3
(=}

Average epoch path length

...l. [
00 le+03

) I 1 2222l [1
3e+03 de+03 S5e+03 6e+03 7e+03
Epoch number

1
2e+03

Figure 3.11 Performance of RTQ on The Larger Track for 7,500 Epochs. The initial
part of the graph shows the same data as plotted in Panel C of Figure 3.10 but at a
different horizontal scale.

T after each move until it reached a pre-selected minimum value. Although not
described here, we also conducted experiments with different minimum values and
with decreasing T after trials instead of after moves. Performance of the algorithms
was much altered (for the worse) by these changes. Although we made no systematic
attempt to investigate the effects of various exploration strategies, it is clear that the

.performance of these algorithms is highly sensitive to how exploration is introduced

and controlled.

3.9 Iterative Deepening Real-time Dynamic Programming

The algorithms presented above (trial-based RTDP, ARTDP, and RTQ), when
applied to an undiscounted stochastic shortest path problem, are guaranteed to
converge to the optimal value function and optimal policy on the relevant states
provided that there is as least one proper policy. If there is no proper policy, then
it would be possible for these algorithms to enter a trap state (or ergodic set of trap
states), from which there is no path to the goal set. But there may be a partial proper
policy with respect to the start states. A policy U is a partial proper policy with
respect to some set of states S € & if following U from any state in S leads eventually,
with probability one, to the goal set”. Iterative-deepening RTDP (IDRTDP) is a
modification of trial-based RTDP which weakens the requirement for the existance of
a proper policy. IDRTDP only requires the existance of a partial proper policy with
respect to the start states. Figure 3.12 gives a pseudocode description of IDRTDP.
ARTDP and RTQ could be modified similarly. The term “iterative-deepening” is

TA policy U is a proper policy iff it is a partial proper policy with respect to every subset of X.

42

used through analogy to Korf’s [47] Iterative-Deepening A*, which uses a similarly
increasing depth bound.

IDRTDP uses the length of the current trial as a test to see if it might have fallen
into a trap set. If the length of the current trial exceeds the maximum allowed trial
length, then the current trial is terminated and the maximum allowed trial length
is incremented. A new trial begins from a randomly chosen start state. The length
bound is necessary. Without it, the algorithm could get stuck in one of the trap
sets before it learned to avoid them. It is important that the maximum allowed trial
length progressively increases when IDRTDP is applied to stochastic shortest path
problems. For one thing, the expected length of a trial cannot be known until the
MDP has been solved. The expected length of a trial can be much greater than
the total number of states when there are recurrent links, as demonstrated in Figure
3.13. There are only two states, the start state and the goal state, but the expected
length of a trial is 100. The disparity between the number of states and the expected
length of a trial can be made arbitrarily large by proper selection of the transition
probabilities. If the maximum allowed length of a trial is fixed, and too short, then
the goal set may be visited very rarely, if at all. A related reason for increasing the
maximum allowed trial length is that it is possible to start from the start set and
follow any partial proper policy for an unlimited number of steps before reaching the
goal set. Trials of great length become increasingly unlikely as the length increases,
but they are not ruled out. If we allow an infinite number of trials, we are guaranteed
that there will be trials that will take more than any fixed number of steps. We do
not want to stop a trial prematurely if we have not entered a trap set. The situation
is simpler for a deterministic shortest path problem. In this case we know that the
maximum distance from the start set to the goal set can be no more than N = |X|
when following a partial proper policy.

Theorem 3.4 describes the conditions required for the convergence of IDRTDP.
They are nearly the same as those given in Theorem 3.3 for RTDP. The only difference
is that IDRTDP requires only a partial proper policy with respect to the start states,
whereas RTDP requires a proper policy.

Theorem 3.4 In undiscounted stochastic shortest path problems, Iterative Deepening
RTDP, with the initial state of each trial restricted to a set of start states, converges
(with probability one) to V* on the set of relevant states, and the controller’s policy
converges to an optimal policy (possibly nonstationary) on the set of relevant states,
under the following conditions: 1) there is at least one partial proper stationary policy
with respect to the start states; 2) all immediate costs incurred by transitions from
non-goal states are positive, i.e., R(z,a) > 0 for all non-goal states ¢ and actions
a € A(z); and 3) the initial value estimates of all states are non-overestimating, i.e.,
Vo(z) < V*(z) for all states z € X.

The types of problems that IDRTDP is designed to solve can be solved using the
algorithms we discussed previously. However, some preprocessing (which IDRTDP
does not require) is necessary in order to trim the problem to fit the requirements
of those algorithms. Figure 3.14 describes one form of preprocessing that will adapt
stochastic shortest path problems to the requirements of the algorithms discussed

s

|

—

43

1 Setk=0.
2 Initialize /, the maximum allowed length of a trial.
3 repeat forever { :
4 Set z; to be a randomly selected start state.
5 Set TrialDone = false.
6 Sett=0.
7 while (TrialDone is false) {
8 Perform the backup operation.
Vk+1(z) = { minaeA(a) Zyex P(zay: a) [R(z: Y, a) +7Vk(y)] ifze ?k
x(z) otherwise
9 Select the best action, given the current estimate of the optimal value
function.
ap = a.rgmin E P(Zk,'y, a) [R(zkr Y, a’) + 7Vk+1(y)]
acA(z) veX
10 Perform action and get next state, zp4;.
11 if (zr41 is a goal state) {
12 TrialDone = true.
13 }
14 else if (t=1) {
15 TrialDone = true.
16 Increment .
17 }
18 Increment k and &.
19 }
20 }
Figure 3.12 Iterative Deepening RTDP. The Trial-based Iterative Deepening

Real-Time Dynamic Programming algorithm. k& counts the total number of de-
sign/execution phases since the algorithm was started. ¢ counts the number of steps
in the current trial. A trial is concluded when either a goal state is reached or when
the trial has taken too long. If a trial times out, then the allowed maximum length
of a trial is increased.

01

Figure 3.13 A recurrent stochastic shortest path problem. There is only one action
and two states, the start state and the goal state. The probability of transition from
S back to S is 0.99. The probability of transition from S to G is 0.01. The expected
length of a trial from S to G is 100 steps.

previously. First, we determine the state connectivity. State z is connected to state y
if there is a sequence of actions that leads from 2 to y with some probability greater
than zero. State connectivity can be computed very efficiently. Next, we remove all
states that are not connected to the goal set. This removes all trap states. Finally,
we remove from consideration all actions that had a non-zero probability of leading
to a trap state in one step. The result of these three steps is a stochastic shortest
path problem with at least one proper policy (assuming that the original problem
had at least one partial proper policy with respect to the start states). We can solve
this truncated problem with the algorithm of choice. IDRTDP will be superior to
this “truncate then solve” method when the interface between the non-trap and trap
states is small enough. When this is true, IDRTDP will quickly learn never to make
choices that lead into the trap states, and will focus its attention on the remaining
states.

1 Determine the state connectivity.

2 Remove all states not connected to the goal set.

3 repeat until no further deletions {

4 For each remaining state z, for each action a € A(z), remove a from A(z) if
P(z,y,a) # 0 for some state y that has been removed.

5

6 Solve the remaining stochastic shortest problem using the algorithm of choice.

Figure 3.14 Off-line solution to partial proper policy problems.

IDRTDP is not suitable for use in the on-line solution of a problem where the
trap states of the MDP correspond to catastrophic failure modes of some underlying
real-world process. IDRTDP can not guarantee that the trap states will never be
visited. See Musliner, Durfee, and Shin [63] or Schoppers [71] for other approaches to
robust real-time control, where such guarantees are required of the system. IDRTDP

iy

45

is best used in simulation mode, finding a solution through interaction with the system
model instead of through interaction directly with the real system.

3.10 Conclusions

In this chapter we developed several incremental DP algorithms (RTDP, ARTDP,
and IDRTDP) that are suitable for real-time application. The standard, synchronous
DP algorithms are too expensive to use as part of a real-time control scheme. Many
researchers have studied this approach from a theoretical viewpoint (see, for example,
Sato, Abe, and Takeda [70]). In test, however, these algorithms are too expensive
for all but the smallest of problems. For example, the cost of one sweep through
the state space for either Jacobi or Gauss-Seidel value iteration costs O(mn) for a
deterministic problem, and O(mn?) for a stochastic problem, where n = |X| and
m = |A|. This is a worst case analysis, because each state may have many fewer than
n possible successors, and many fewer than m admissible actions. For the large state
sets typical in Al and in many control problems, it is not desirable to try to complete
even one iteration, let alone repeat the process until it converges to V*. For example,
because backgammon has about 10%° states, a single value iteration sweep through

the state space would take more than 1,000 years using a 1,000 MIPS processor.
In general, none of RTDP, ARTDP, and IDRTDP are real time in the sense that

they are guaranteed to complete their computations within a predetermined time
limit. The reason for this is that in the general description of these algorithms, the
definition of the set By is left unspecified except to say that the current state must
be an element of B,. However, B could be determined by a lookahead search such
as employed by game-playing programs in an attempt to compute more accurate
values for states along the probable state-space trajectory. The size of By could
then be unknown before the search, and meaningful time bounds would be difficult
to guarantee®. RTDP, ARTDP, and IDRTDP are better described as “any-time”
algorithms as discussed by Dean and Boddy [25]. They each require some minimum
amount of computation in order to update the value of the current state. After that,
the process of updating the value function (and hence the policy) can be interrupted
at any time and an answer, the value function estimate, will be available. There will
be no disasterous consequences if the minimum time is not available during some
update cycles. The value function will remain as it was, and will just need-to be

updated at some later time.
One of the difficulties involved in applying the algorithms discussed in this chapter

to very large problems is caused by the amount of memory required to store the
system model and the value or Q-function. For many problems of interest, there is no
practical way to store the system model in an explicit, declarative form. Furthermore,
the theory underlying these algorithms requires the value function, or the @-function
in the case of RTQ, to be represented as a lookup table. This representation rapidly

8Since there are only a finite number of states and actions, one could set a computation bound
by the number of operations it would require for a complete sweep of the state set. Then, with a
sufficiently fast processor, one could guarantee any time limit one wished. This is not a realistic

method of guaranteeing real-time performance except for very small problems.

46

becomes impracticle. For an extreme example, again consider Backgammon, with its
approximately 10?° states. It would be impossible to store just the value function as
a lookup table. Explicit storage of the state transition probilities would require even
greater resources. Tesauro’s TD-Gammon system [89,90] shows how these problems
can be avoided. TD-Gammon avoids the problem of storing a very large model by
representing the transition probabilities procedurally. The transition probabilities for
each state and action are computed as needed, are used immediately, and are then
discarded. This is an obvious solution, but it can only be applied to well under-
stood problems where there are significant regularities to the pattern of transition
probabilities. It is difficult to see how this approach could be used as part of the
application of ARTDP to a large, unknown system. TD-Gammon avoids the problem
of storing a lookup table representing the value function for 10%° states by using
a neural network as a compact function approximation method. This reduces the
space requirements by many orders of magnitude, but it is also outside the theory of
incremental DP algorithms as it currently stands. Continued theoretical research is
necessary to build an understanding of the conditions under which compact function
approximation methods such as neural networks may be used as part of an incremental
DP algorithm, and what impact their use will have on performance. Chapters 4 and 5
will further discuss these issues in the context of discrete MDPs and LInear-Quadratic
Regulation, respectively.

e

CHAPTER 4

NEW ALGORITHMS FOR TEMPORAL
DIFFERENCE LEARNING

In chapters 2 and 3 we assumed that we could use a lookup table to store
the value function or Q-function that we wish to approximate. In this chapter we
consider the use of linear function approximators in conjunction with several Temporal
Difference (TD) learning rules. We start by reviewing the TD(A) learning rule and
the previously developed theory concerning its convergence. We describe three new
TD algorithms, and show probability one convergence for their parameter estimates
(under appropriate conditions). The first new algorithm, described in Section 4.4 is
a normalized version of TD(A). The second, described in Section 4.5, is developed
using Least Squares and Instrumental Variable techniques. The third, also described
in Section 4.5, is a recursive version of the second.

4.1 The TD()) learning rule

The TD(A) learning rule [82] was developed as one of the results of a study of
reinforcement learning algorithms and the problem of temporal credit assignment
[1,5,81]. TD(A) incrementally builds an estimate of the value function V4 for some
given MDP and a fixed policy U. The selection of a policy reduces an MDP to a
Markov chain since there is no longer any choice of the action to take at each state.
Therefore, we will designate the value function estimated by TD()) as V instead of
as V5. Although TD(A) can be used with lookup-table function representations, it is
most often described in terms of parameterized approximators. Using our notation,
summarized in Table 4.1, the TD(A) learning rule for a differentiable parameterized
function approximator (first described by Sutton [82]) is expressed as

k
Bhrr = Ok + Cnfey) | Ra+1Va(onrs) — Vilon) | AV Vi(z) (4.12)

i=1

= 0 + a,,(,,,‘)Aak, (4.1b)

where

k
A = [Bi+ V(i) — Vi(z) | 3 3 Vo, Va(=:) (4.1c)

i=1

48
= [Rie + vVi(2he1) — V()] X, (4.1d)

and)
D = Y AV, Vi (). (4.1e)

i=1
Notice that Af; depends only on estimates, Vi(x;), made using the latest parameter
values, ;. This is an attempt to separate the effects of changing the parameters

from the effects of moving through the state space. However, when V is not a linear
function of § and A # 0, the sum X cannot be formed in an efficient, recursive
manner. Instead, it is necessary to remember z; and to compute Vg, Vi(z;) for all
1 < k. This is because, if V is nonlinear in 0, then Va,‘f/;,(:c,-) will depend on 6. This
implies that ¥; cannot be defined recursively in terms of ¥;_,. Recomputing ¥ in
this manner at every time step could be extremely expensive, so an approximation is
usually used. Assuming that the learning rates are small, the difference between 6
and 6j_; will be small. Then an approximation to X can be defined recursively as

Yr=Ap1 + Va,,i};e(zk). (4.1f)

If V is linear in 6, then Equation (4.1f) can be used to compute X, exactly. No

assumptions about the learning rates are required, and no approximations are made.
We will be concerned in the remainder of this chapter with linear function ap-

proximators, where T;;,(:c.-) = ¢:0k. In this case Equation (4.1f) becomes

e = ALp_1 + Or. (4.1g)

4.2 Previous convergence results for TD())

Convergence of the TD(A) learning rule depends on the state representations and
on the form of the function approximator. Although TD(A) has been used success-
fully with nonlinear function approximators, most notably in Tesauro’s self-teaching
backgammon programs [89,90], convergence has only been proven for lookup-table

and linear function approximators.
The first proofs concerning the convergence of a version of TD(A) were developed

by Sutton [82] and Dayan [22], who showed parameter convergence in the mean, and
by Dayan and Sejnowski [23], who showed parameter convergence with probability
one. The learning algorithm they consider applies only to absorbing Markov chains.
It is ¢rial-based, with parameter updates only at the end of every trial. A trial is
a sequence of states that starts at some start state, follows the Markov chain as it
makes transitions, and ends at an absorbing state. The start state for each trial is
chosen according to the probability distribution given by S. Figure 4.1 describes the
algorithm. Since parameter updates take place only at the end of a trial, Afy is
defined somewhat differently from above:

k
Ay = [Re+10,us — 8age | N4, (42)

i=1
where n is the trial number and k is the step number. The parameter vector 6, is
held constant throughout trial n, and is updated only at the end of a trial.

g

E

7

49

Table 4.1 Notation used in the discussion of the TD(A) learning rule.

z,Y,2 || states of the Markov chain
el the state visited at time i
the reward associated with the experienced transition from staie
R z; to state 3,1, Ri = R(z;, zi11).
B t_he vector of expected tranmtlon rewards.
R; = Erea’ P(z1 y)R(zly)' R; = EYGX P(:B.‘, y)R(ﬂi’!I)-
S the vector of starting probabilities
|4 the true value function
oz the feature vector representation for state z
i the feature vector for state z;. ¢; = ¢5,.
P the matrix of state representations. Row z of ® is ¢,.
T the proportion of time that the Markov chain i1s expected to spend
in state »
I the diagonal matrix diag(r)
o° the true value function parameter vector
6 the estimate of §* at time i
Vi(z) || the estimated value of state z using parameter vector 6;
Qp(z;) || the learning rate used to update the value of 6;
n(z;) | the number of transitions from state z;.

The theorem of Dayan and Sejnowski [23] showing convergence with probability
one can be restated using our notation as follows:

Theorem 4.1 (Dayan and Sejnowski) For an absorbing Markov chain with state
set X consisting of the start states, S, the terminal (or absorbing) states, T, and the
non-terminal states, N, if (1) parameter updates are performed at the end of each
trial; (2) S is such that there are no inaccessible states; (3) R(z,y) = 0 whenever
both z,y € N; (4) R(z,y) = 0 whenever both z,y € T; (5) R(z,y) is finite whenever
z € N andy € T; (6) the set of state representations {¢, | = € N} is linearly
independent; (7) ¢ =0 for ally € T; (8) m = |N| features are used to consiruct the
state representations; (9) v =1; (10) T2, ax = 00; and (11) ¥32, a? < oo, then for
any initial parameter vector, Oy, the estimated value function, f/;,(:c) , converges with
probability one to the true value function, V(z), as the number of trials, n, approaches
infinity.

This theorem obviously has very restricted applicability. Less restricted conver-
gence theorems have been obtained for the TD(0) learning rule by considering it as a
special case of the @-learning algorithm. If either the policy-based or the optimizing
Q-learning rules given in Equations (2.21) and (2.22) are applied to an MDP with a
fixed policy U, the learning rule that results is

Qr+1(2k, U(zr)) = Qulzk, U(zx))+

50

1 Select §5.
2 Setk=0.
3 forn=0tooo{
4 Choose a start state z;, according to the start-state probabil-
ities given by S.
5 Set A, = 0.
6 while z;, is not an absorbing state {
7 Take a random step from z; to zp4; according to the
state transition probabilities.
8 Set A, = Ap + Ab, where Ay is given by Equation
(4.2).
9 k=Fk+1.
10 }
11 Update the parameters at the end of trial number n: 8, =
Op + anln.
12 }

Figure 4.1 Trial-based TD() for absorbing Markov chains. A trial is a sequence of
states that starts at some start state, follows the Markov chain as it makes transitions,
and ends at an absorbing state. The variable n counts the number of trials. The
variable k counts the number of steps within a trial. The parameter vector 4 is
updated only at the end of a trial.

ar(zk, U(zr)) [R(zk, ke, U(2h)) + 7Q1(Tkt1, U(Tht1)) — Qulk, U(zr))] »(4.3)

where Q41 is the estimate at time k + 1 of Qy. But since Qu(z,U(z)) = Vi (),
Equation (4.3) can be rewritten more clearly as

Vit1(2r) = Vi(zk) + ar(zk) [R(zk, 2rs1) + YVa(2rt1) — Vi(ze)]) (4.4)

where ag(z;) is the learning-rate parameter at time k for state z;. We use R(zk, Trs1)
instead of R(zk, Zr+1, U(2r)) because there is no choice of action. The action is always
determined by the fixed policy, U.

Watkins and Dayan [93] and Tsitsiklis [91] note that since the TD(0) learning rule
is a special case of @-learning, their probability one convergence proofs for Q-learning
can be used to show that on-line use of the TD(0) learning rule with a lookup-table
function approximator will converge with probability one. See Theorem 2.2.

4.3 Probability 1 convergence of on-line TD(0)

Here we show, as a corollary to Theorem 2.2, that the on-line use of the TD(0)
learning rule with a linear function approximator and linearly independent state
representations will also converge with probability one.

Eo

51

Theorem 4.2 (Convergence of linear TD(0)) If the learning rates ax(z) are ran-
dom numbers such that (1) Y32, ar(z) = oo, with probability one; (2) Y52, ar(z)? <
oo, with probability one; (3) the set of state representations {¢, | z € N'} is linearly
independent; (4) ¢ = 0 for ally € T; and (5) m = |N| features are used to construct
the state representations; then Vi(z) updated using the parameterized TD(0) learning
rule converges to V(z), with probability one, for every state z, in each of the following
cases: (a) if v < 1; or (b) if v = 1 and the chosen policy U is proper.

Proof: The lookup-table version of the TD(0) learning rule can be represented in
vector form as

Virr = Vi + i | Re +18iuss — Bide | e, (4.5)

where e, = 0 if z; is an absorbing state, otherwise e; is the standard basis vector
corresponding to state z;. Now, if row of the matrix ® consists of the representation
for state z for all non-terminal states z, then the update rule can be rewritten for a
linear approximator as

POry1 = POk + o [Ry + 76,41 — 61 dn] €k, (4.6)
where V;, = ®6),. Multiplying both sides of the equation by (#'®)'®’, we get
Os1 = O + ox [Ri+718idiss — Bidic | (8'8) &'er. (4.7)
But by the definitions of e; and ®, $'e; = ¢p. Therefore the update now looks like
Oi1 = O + ok [Re+ 18idisr — Bidu | (2'3) . (4.8)

We can scale the update direction by some positive definite matrix without disturbing
convergence, so, scaling by the positive definite matrix ($'®), the update rule finally
becomes

Oks1 = Ok + i [Ry + 18341 — O | (2'9)(2'2) " (4.9)
= 04 + ok | Ri+ 1638041 — it | (4.10)

which is the TD(0) learning rule for linear approximators.
Q.E.D.

4.4 The Normalized TD()) learning rule

As with other stochastic approximation algorithms, the size of the input vectors
can cause instabilities in the TD(A) learning rule until the size of the learning rate,
a, is reduced to a small enough value. By that time, however, the convergence rate
may be unacceptably slow. This section describes the Normalized TD(A) (NTD()))
learning rule, and proves probability one convergence of NTD(0) with a linear function
approximator when applied on-line.

52

The NTD(A) learning rule for linear function approximators is

E .
Oir = O + an(ze) | R+ 1048001 — Oide | D i _H__ (4.11)

=1 €+ ¢:’¢t ’

where € is some small, positive number. If we know that all of the state representations
are non-zero, then e could be set to zero. The normalization does not change the
direction of the updates, it merely bounds the size of the updates, reducing the
chance for unstable behavior.

Theorem 4.3 (Convergence of linear NTD(0)) If the learning rates ax(z) are

random numbers such that (1) 52, ax(z) = oo, with probability one; (2) Y52, on(z)? <

oo, with probability one; (3) the set of state representations {¢. | ¢ € N'} is linearly
independent; (4) ¢. =0 for ally € T; (5) m = |N| features are used to construct the
state representations; then Vi(z) updated using the NTD(0) learning rule for linear
function approzimators (Equation (4.11)) converges to V (z), with probability one, for
every state z, in each of the following cases: (a) if y < 1; or (b) if y = 1, and the
chosen policy U 1is proper.

Proof: This theorem follows directly from Theorem 4.2. The scaling by 1/(e + ¢} @)

serves, in effect, to replace the learning rates ax(z) by the scaled learning rates

_ ag(z)
ﬁk(:ﬂ) = W ;

It is readily verified that the learning rates Si(z) satisfy conditions (1) and (2) as
long as the ax(z) satisfy conditions (1) and (2).
Q.ED.

4.5 A Least Squares approach to TD learning

Stochastic approximation is a rather inefficient method of parameter estimation,
since it uses each piece of information only once. The least squares approach is more
efficient since it uses all of the information it has seen to form the latest estimate. This
section describes a derivation of a TD learning rule based on least squares techniques.

4.5.1 Linear Least Squares function approximation

This section reviews the basics of linear least squares function approximation,
including instrumental variable methods. This background material leads in the next
section to an improved TD learning algorithm. Table 4.2 summarizes the notation
we will use to describe the algorithms we discuss. The goal of linear least squares
function approximation is to approximate some function ¥ : R®™ — R with a linear
approximation, given samples of observed inputs wp € R™ and the corresponding

o

b

53

observed outputs 95 € R. We will assume throughout this chapter that ¥ is linear. If
the input observations are not corrupted by noise, then we have the situation where

Ve = U(we) + 7%
= wif" + 1. (4.12)

6* is the vector of true (but unknown) function parameters, and 7 is the output
observation noise.

Table 4.2 Notation used in the discussion of Least Squares algorithms.

¥ I] ¥ : R® — R, the linear function to be approximated.

Wk wi € I_!", the observed input at time k

Pi ¥y € R, the observed output at time &

Nk 7k € R, the observed output noise at time &

Ok @x = wg + (x, the noisy input observed at time &

Cx {x € R™, the input noise at time k

Cor(z, 7) :2:;(:, y) = £ {2y }, the correlation matrix for random vanables z
Pk px € R™, the instrumental variable observed at time k

Given Equation (4.12), the least squares approximation to 6* at time k is the
vector), that minimizes the quadratic objective function

k
Tk = %Z [9: — wi6i]® . (4.13)

i=1

Taking the partial derivative of Jj with respect to 6, setting this equal to zero and
solving for the minimizing 8, gives us the k** estimate for 6°,

i=1

Lemma (4.1) gives a set of conditions under which we can expect 8 as defined by
Equation (4.14) to converge in probability to 8*. Appendix C.1 gives a proof based
on one provided by Young [104].

Lemma 4.1 If the correlation matriz Cor(w,w) is nonsingular and finite, and the
output observation noise 7; is uncorrelated with the input observations w;, then 6 as
defined by Equation (4.14) converges in probability to 6*.

Equation (4.12) models the situation where observation errors occur only on the
output. In the more general case, however, the input observations are also noisy.
Instead of being able to observe w; directly, we can only observe @ = wi+(i, where {;

54

is the input observation noise vector at time k. This is known as an errors-in-variables
situation [104]. Equation (4.15) models the errors-in-variables situation.

Y = U(wr) +
= U(@r — C) + 7
= 0% — (8° + M- (4.15)

The problem with errors-in-variables is that we cannot use &y instead of wj in
Equation (4.14) without violating the conditions of Lemma (4.1). Substituting &
directly for w; in Equation (4.14) has the effect of introducing noise that is dependent
upon the current state. This introduces a bias, and 6, no longer converges to 6*.
One way around this problem is to introduce instrumental variables [55,79,104]. An
instrumental variable, py, is a vector that is correlated with the true input variables,
wy, but which is uncorrelated with the observation noise, {;. (Instrumental variables
are difficult to obtain in most cases, but we will see that they are very easily obtained
for the application of Least Squares techniques to Temporal Difference estimation.)
Equation (4.16) is a modification of Equation (4.14) that uses the instrumental
variables and the noisy inputs.

1E 1 -

O = [; > p.'&,-] |_; > Pi¢i] : (4.16)
=1 =1

Lemma (4.2) gives a set of conditions under which the introduction of instrumental

variables solves the errors-in-variables problem. Appendix C.1 gives a proof based on
one provided by Young [104].

Lemma 4.2 If the correlation matriz Cor(p,w) is nonsingular and finite, the cor-
relation matriz Cor(p,{) = 0, and the output observation noise n;, is uncorrelated
with the instrumental variables pi, then 0y as defined by Equation (4.16) converges
in probability to 6*.

4.5.2 Algorithm LS TD

This section shows how to use the instrumental variables method to derive algo-
rithm Least Squares TD (LS TD), a least squares version of the TD learning rule.
The linear TD learning rule addresses the problem of finding a parameter vector, 6*,
that allows us to compute the value of a state z as V(z) = ¢,6*. Remember that the
value function satisfies the following recursion

V(z) = ZX P(z,y)[R(z,y) + 1V (y)] (4.17)

= E P(z,y)R(z,y) +7 2 P(w,y)V(y)
yelX veX

55 -
=R.+7 3 P(z,y)V(y) (4.18)
yeX
We can rewrite this in the form of Section 4.5.1 as
R, =V(z)—v) P(=,9)V(y)
yeX
=40 =7 T, Ple.yyp"
yeiX
= (=7 X P(z,9)¢)'0", (4.19)
yeX

for every state z € X. Now we have the same kind of problem that we considered
in Section 4.5.1. The scalar output, R., is the inner product of the input vector,
(e —1X,cx P(z,y)¢,), and the vector of true function parameters, §°.

Looking at the problem in this way allows us to solve a relatively simple problem.
Suppose that we know everything about the Markov chain except R, the matrix of
transition costs. We know P, the matrix of state transition probabilities; we know
¢=, the state representation for every state z; and we know at every time step the
state of the Markov chain. At every time step k we observe the current state, zy,
and the reward received on transition to state zx,;, R;. We then have an equation
similar to Equation (4.12)

Ri=(¢x—7 Y. P(zr,y)d,)'0" + (Re — Ri). (4.20)
yeX

(Rx — Ri) corresponds to the noise term 7, in Equation (4.12). Lemma (4.3) es-
tablishes that the noise term 7 = R; — R}, is zero-mean and uncorrelated with the
input vector wp = ¢ — 7L, ¥ P(z4,y)d,. Appendix C.3 gives a proof. Therefore,
if Cor(w,w) is nonsingular and finite, then by Lemma (4.1) we can use the algorithm
given by Equation (4.14) to find 6°.

Lemma 4.3 For any Markov chain, if z and y are states such that P(z,y) > 0,
with 1oy = R(2,y) — Rs and wz = (¢a — 7, c x P(2,y)y), then E{n} = 0, and
Cor(w,n) = 0.

In the general case, however, we know neither the state transition probabilities nor
the state representations, nor can we directly measure the state of the Markov chain.
All that is known at each time step are ¢ and ¢,;, the representations of states
at either end of a state transition, and R, the corresponding reward. Instrumental
variable methods allow us to solve this problem, too. Take &, = ¢ — Y¢i+1, and
G =71Z,cx P(k,y)dy — YPr+1. Now we are in an errors-in-variables situation, as
demonstrated in the following equation.

Wk = Pk — YPrt1

56

= (¢’= -7 2 P(“’k:y)‘oby) + ('7 2 P(‘Bkz y)¢y - 7¢k+1)
yeX yex

= wg + Ck,

where wi = ¢ — Y X, x P(2k,y)dy, and G = 7L ¥ P(k,¥)by — Yor11-

Section 4.5.1 shows how to use instrumental variables to avoid the asymptotic bias
introduced by errors-in-variables problems. Lemma (4.4) shows that the instrumental
variable pp = ¢ is uncorrelated with the input observation noise, (i, as defined above.
Appendix C.3 gives a proof. Lemma (4.4) establishes that this choice of instrumental
variables allows us to discount the effect of the input noise on the parameter estimates.
It still remains to show in Section 4.5.3 under what conditions we can expect to
Cor(p,w) to be finite and nonsingular, which completes the proof that algorithm LS
TD converges to 6*. :

Lemma 4.4 For any Markov chain, if (1) z and y are states such that P(z,y) > 0;
(2) Coy = VX, x P(2,2)0: — 19y, (3) Ney = R(2,y) — Ra; and (4) pz = ¢, then (1)
Cor(p,n) = 0; and (2) Cor(p,() = 0.

Using ¢, as our candidate instrumental variable, we rewrite Equation (4.16) to
explicitly give the LS TD algorithm.

b= [15, bildi — voir1)]_1 [izh,eR:i]. (4.21)

Figure 4.2 shows how Equation (4.16) can be used as part of a trial-based algorithm
to find the value function for an absorbing Markov chain. Figure 4.3 shows how
Equation (4.16) can be used as part of an algorithm to find the value function for
an ergodic Markov chain. Learning takes place on-line in both algorithms, with
parameter updates after every state transition. The parameter vector 6 will not

be well defined while k is small, since the matrix [%Z{-;l @i(di — YPiv1)’] will not

be invertible. The next section discusses the convergence of LS TD as applied to
absorbing and ergodic Markov chains.

4.5.3 Convergence of algorithm LS TD

In this section we consider the asymptotic performance of algorithm LS TD when
used on-line to approximate the value functions of absorbing and ergodic Markov
chains. Lemma (4.5) starts the analysis by expressing 6ysrp & limgy 0 Ok, the limiting
estimate found by algorithm LS TD for 6*, in a convenient form. Appendix C.3 gives
a proof.

Lemma 4.5 For any Markov chain, when (1) 6; is found using algorithm LS TD;
(2) each state = € X is visited infinitely often; (3) each state = € X is visiled in the
long Tun with probability 1 in proportion nz; and (4) [®'II(I — yP)®] is invertible,
then Bzp = [@'TI(I — YP)&|™ [#'IIR| with probability 1.

57
1 Set k=0.
2 repeat forever {
3 Set zj, to be a start state selected according to the prob-
abilities given by S.
4 while z;, is not an absorbing state {
5 Take a random step from z; to zp4+; according to the
state transition probabilities.
6 Use Equation (4.21) to define 6.
7 E=k+1.
8 }
8 }

Figure 4.2 Trial-based LS TD for absorbing Markov chains. A trial is a sequence of
states that starts at some start state, follows the Markov chain as it makes transitions,
and ends at an absorbing state.

1 Setk=0.

2 Select an arbitrary initial state, zg.

3 repeat forever {

4 Take a random step from zj to zp4; according to the
state transition probabilities.

5 Use Equation (4.21) to define 6.

6 k=k+1.

7}

Figure 4.3 LS TD for ergodic Markov chains.

The key to using Lemma (4.5) lies in the definition of #. As defined in Table
4.1, m, is the proportion of time that the Markov chain is expected to spend over the
long term in state z. Equivalently, w, is the expected proportion of state transitions
that take the Markov chain out of state z. For an ergodic Markov chain, 7, is the
invariant or steady-state distribution associated with the stochastic matrix P [44].
For an absorbing Markov chain, 7 is the expected number of visits to state z during
one transition sequence from a start state to a goal state [44]. Since there are no state
transitions out of goal states, 7, = 0 for all goal states. These definitions prepare the
way for the following two theorems. Theorem 4.4 gives conditions under which LS
TD as used in Figure 4.2 will cause 0,51 to converge with probability 1 to §* when
applied to an absorbing Markov chain. Theorem 4.5 gives conditions under which
LS TD as used in Figure 4.3 will cause 0y 57 to converge with probability 1 to §*
when applied to an ergodic Markov chain. Section 4.5.4 gives a proof for Theorem
4.4, while Section 4.5.5 gives a proof for Theorem 4.5.

58

Theorem 4.4 (Convergence of LS TD for absorbing Markov chains) When
using LS TD as described in Figure 4.2 to estimate the value function for an absorbing
Markov chain, if (1) S is such that there are no inaccessible states; (2) R(z,y) is finite
whenever both z,y € N'; (3) R(z,y) = 0 whenever both z,y € T; (4) R(z,y) is finite
whenever ¢ € N and y € T; (5) the set of state representations {¢. | z € N}
is linearly independent; (6) ¢, = 0 for all y € T; (7) m = |N| features are used
to construct the state representations; and (8) 0 < v < 1, then 8* is finite and
the asymptotic parameter estimate found by algorithm LS TD, 051, converges with
probability 1 to 6* as the number of trials (and state transitions) approaches infinity.

Different conditions are required in the absorbing and ergodic chain cases in
order to meet the conditions of Lemma (4.5). The conditions required in Theorem
4.4 are generalizations of the conditions required in Theorem 4.1. The conditions for
Theorem 4.5 are much less restrictive, though the discount factor 4 must be less than
1 to ensure that the value function is finite.

Theorem 4.5 (Convergence of LS TD for ergodic Markov chains) When
using LS TD as described in Figure 4.3 to estimate the value function for an er-
godic Markov chain, if (1) the set of state representations {¢, | = € X} is linearly
independent; (2) N = |X| features are used to construct the state representations;
(8) 0 < v < 1; and (4) R(z,y) is finite for all z,y € X, then 6* is finite and
the asymptotic parameter estimate found by algorithm LS TD, O,5rp, converges with
probability 1 to §* as the number of state transitions approaches infinity.

Theorems 4.4 and 4.5 provide convergence assurances for LS TD similar to those
provided by Tsitsiklis [91] or Watkins and Dayan [93] for the convergence of TD(0)
using a lookup-table function approximator.

4.5.4 Proof of Theorem 4.4

Proof: Condition (1) implies that, with probability one, as the total number of state
transitions approaches infinity, the number of times each state # € X is visited
approaches infinity. Since this is an absorbing chain, we have with probability 1 that
the proportion of time the states are visited approaches 7 as the number of trials
approaches infinity. Therefore, by Lemma (4.5), we know that with probability 1

busxn = [S'TI(I — vP)3| ™" [#'IIR],

assuming that the inverse exists.

Conditions (5), (6), and (7) imply that ® has rank m, with row z of ® consisting
of all zeros for all z € 7. Condition (1) implies that II has rank m. Row z of II
consists of all zeros, for all z € 7. The state representation matrix ® has the property
that if all rows corresponding to goal states are removed, the resulting submatrix is
of dimensions (m X m), and has rank m. Call this submatrix A. Matrix II has the
property that if all rows and columns corresponding to goal states are removed, the
resulting submatrix is of dimensions (m X m), and has rank m. Call this submatrix

59

B. The matrix (I —«P) has the property that if all rows and columns corresponding
to goal states are removed, the resulting submatrix is of dimensions (m X m), and
has rank m [44]. Call this submatrix C. It can be verified directly by performing
the multiplicatons that [#'II(] — yP)®] = [A’BC A]. Therefore, [#'II(] — vP)%] is of
dimensions (m x m), and has rank m. Thus, it is invertible.

Now, Equation (4.19) can be rewritten using matrix notation as

R =(I-~P)%6" (4.22)

This, together with conditions (2), (3), (4), and (8) implies that 6* is finite. Finally,
substitutiong Equation (4.22) into the expression for frsxp gives us

buseo = ['TI(I — yP)E] ™ [$'TI(I — vP)&] 6"
= 0.

Thus, fpsrp converges to 6* with probability 1.
Q.E.D.

4.5.5 Proof of Theorem 4.5

Proof: Since this is an ergodic chain, as k approaches infinity we have with probability
1 that the number of times each of the states ¢ € X is visited approaches infinity. We
also have with probability 1 that the states are visited in the long run in proportion .
Ergodicity implies that 7, > 0 for all z € X. Therefore, I is invertible. Condition (3)
implies that (I — v P) is invertible. Conditions (1) and (2) imply that & is invertible.
Therefore, by Lemma (4.5), we know that with probability 1

busen = [S'TI(I — 7P)&] ™" [#'TIR].

Conditions (3) and (4), together with Equation (4.22) imply that 8* is finite. And,
as above, substituting Equation (4.22) into the expression for 6.5y gives us

Orso = [Q'H(I - 7P)¢]-1 [Q’H(I - vP)2]6"
= 0.

Thus, 6y.s1p converges to §* with probability 1.
Q.E.D.

4.5.6 Algorithm RLS TD

Algorithm LS TD requires the computation of a matrix inverse at each time step.
This means that LS TD has a computational complexity of O(m?), assuming that
the state representations are of length m. We can use Recursive Least Squares (RLS)
techniques [30, 55,104] to derive a modified algorithm, Recursive Least Squares TD
(RLS TD), with computational complexity of order O(m?). Equations (4.23) specify
algorithm RLS TD. Notice that Equation (4.23c) is the TD(0) learning rule for linear

60

function approximators, except that the scalar learning rate has been replaced by a
gain matrix.

er = Rt — (I — Th41) 01 - (4.23a)
Ck-1¢k(¢k - ’7¢k+1)'0k-1
Cr =Ch1 — 4.23b
BT T T4 (B — 10841) Chor (4.230)
Cr-1
O =0y + 4.23
T T T (O — 16011) Crr ek (4.23¢)

The user of a RLS algorithm must specify 6y and Cy. C}, is the k** sample estimate of
LCor(p,&)™", where p and & are defined as in Section 4.5.2. Cg! is typically chosen
to be a diagonal matrix of the form B1I, where 3 is some large positive constant. This
ensures that Cp, the initial guess at the correlation matrix, is approximately 0, but is

invertible and symmetric positive definite.
The convergence of algorithm RLS TD requires the same conditions as algorithm

LS TD, plus one more. This is condition A.l, or equivalently, condition A.2, below:
Condition A.1: [Co“ lysk, p.-&,f] is non-singular for all k.

Condition A.2: [1 + &},Cr-1px] # 0 for all times k.

Assumiing that the conditions A.1 and A.2 are maintained, C}, = [C{,’ lysk, p;&f] -
and

k -1 k
O, = [Co— 1+ Pi‘:’,{] [06' 0+) P:'"/"i]
=1 =1
1., 1& 17, 1&
= ECO + E ; p;w,- zCo 00 + ;‘ z; P{T/J{ . (424)

If the conditions A.1 and A.2 are not met at some time ko, then all computations
made thereafter will be polluted by the indeterminate or infinite values produced at
time k9. The non-recursive algorithm LS TD does not have this problem, because
the computations made at any time step do not depend directly on the results of
computations made at earlier time steps.

4.5.7 Dependent or extraneous features

The value function for a Markov chain satisfies the equation
v=[I1-yP|" R

When using a linear function approximator, this means that § must satisfy the linear
equation

#=[I-7P] R (4.25)

In this section, the rows of ® will consist only of the representations for the non-
terminal states, and V will only contain the values for the non-terminal states. This

61

is not essential, but it makes the discussion much simpler. Let n = || be the number
of non-terminal states in the Markov chain. Matrix ® is of dimensions n X m, where
m is the length of the state representations.

Now, suppose that rank(®) = m < n. Dayan [22] shows that the trial-based
TD(A) given in Figure 4.1 converges in this case to [®TI(J —~4P)3]™ [‘ID’HR] for
A = 0. This is same result we achieved in Lemma (4.5), since m = rank(®) if
and only if [®'II(] — yP)®) is invertible! The proofs of Theorems 4.4 and 4.5 show

convergence of fyerp to [TI(I —yP)®]™} [Q’IIR] as a preliminary result. Thus,

Orsrp will converge for both absorbing and ergodic chains as long as the assumptions

of Lemma (4.5) are satisfied.
Suppose, on the other hand, that rank(®) = n < m. This means that the state

representations are linearly independent, but contain extraneous features. Therefore,
we are in the situation where we have more adjustable parameters in Equation (4.25)
than we have constraints. In this case there are an infinite number of parameter
vectors # that satisfy Equation (4.25). The stochastic approximation algorithms
TD()) and NTD(A) will converge to some 0 that satisfies Equation (4.25). Which
one they find depends on the order in which the states are visited. LS TD will not
converge, since [Lyt 6i(@i — vdin1)] will never be invertible. However, RLS TD

will converge to some 6 that satisfies Equation (4.25). In this case, too, the 8 to which
the algorithm converges depends on the order in which the states are visited.

4.6 A related algorithm of Werbos

Werbos [96] proposed the following algorithm as a linear version of his Heuristic
Dynamic Programming (HDP) algorithm (57, 94,95, 97].

1 k -1 1 k 1 k
O = [; 2 ¢i¢£] [; DGR+ 77 Y bidisabn |- (4-26)
i=1 i=1 i=1
Werbos’ derivation is heuristic, and will not be repeated here. However, this linear
HDP has obvious similarities to LS TD. Linear HDP is not as amenable to a recursive
formulation as LS TD due to the presence of fi_; on the right-hand side of Equation
(4.26). However, it can be written recursively as follows:

Cr-101¢),Cl-1

Cr = C1 — 7 T 4Gt (4.27a)
Uk = Ug-1 + ¢ Re (4.27b)
Wi = W1 + Y004y (4.27¢)
Ok = C [U + Wibe—]. (4.27d)

The asymptotic convergence of algorithm HDP is not as easy to analyze as it
was for algorithm LS TD, again due to the presence of 6;_; on the right-hand side

!m cannot be less than rank(®). If m > rank(®), then [&'II(— vP)®] is an (m x m) matrix
with rank less than m. It is therefore not invertible.

62

of Equation (4.26). But, if we assume that it has converged to some value we can
determine what that value would be. After the parameter estimate formed by HDP
has converged to fupp, Equation (4.26) becomes

1&E 171 L
Oupp = E ; ¢i¢.’] I:E 21 ¢,R, + ‘7; g ¢i¢2+191mpl .
Taking the limit as k goes to oo gives us

I F RN el S 1&
Ospp =k]£2° lzg‘ﬁs(b.] EE‘#:R' +’Yz2¢i ;.*.101;0?]

i=1 =1

= [Z.: 1rz¢=¢;] B [Zz: TobaRa +7 2; Tofe Ey: P(z, y)¢;0m]
= [#'T18] ™" [#'IIR + Y¥'TIP#0ams | .
Moving all instances of Ogpp to the left-hand side, we get
Oeme — 7 ['TI8] ™ ['TLPS) b = [9'TIS] ™" [$'TIR],

or

[—~[9'T8]™ [#'TIPS)| by = [#'TIS] " [$'TIR] .

Assuming that all of the matrix inverses we need actually exist, we then get

bume = [I —7[@'TI8] ™ (2'TIPS]| [@'TI8] ™" [¢'TIR]
= [[@'m8) ™ (@8] - [#'TIPE]]] " (2TI8] " [#'IIE]
= [[@'ma] ™ (#'(I - yP)]|” (#'TI2)™" [¢'TIR]
= [@'II(I — vP)&| ™" [#'TI&) [$'TI3] " [#'TIR]
= [@'TI(I — vP)%] ™" [#'IR].

All of the necessary inverses will exist, as discussed above, under the conditions of
either Theorem 4.4 or Theorem 4.5. Thus, if linear HDP converges, it converges to
the same parameter vector as LS TD. Experimentally, however, linear HDP appears
to be only locally convergent, even when the conditions of Theorems 4.4 or 4.5 are
satisfied. The presence of 8, on the right-hand side of Equation (4.26) means that
the algorithm is sensitive to the initial parameter estimate, 6. If 8, is close enough to
6*, then linear HDP converges, but otherwise it will not. Even when it does converge,
convergence is slowed by the presence of f;_, on the right-hand side of Equation
(4.26).

63

4.7 Choosing an algorithm
The linear TD(A) and NTD(A) algorithms involve costs of order O(m) at each

time step when measured either in terms of the number of basic computer operations,
or in terms of memory requirements, where m is the length of the state representation
vectors. Algorithm LS TD’s costs are of order O(m?) in time and O(m?) in space at
each time step, while RLS TD’s are of order O(m?) in both time and space. TD())
and NTD()) are clearly superior in terms of cost per time step. However, LS TD
and RLS TD are more efficient estimators in the statistical sense. They extract more
of the available information from each additional piece of data. Therefore, we would
expect LS TD and RLS TD to converge more rapidly than TD(A) and NTD(A). The
use of LS TD and RLS TD is justified then, if the increased costs per time step are
offset by increased convergence speed.

The performance of TD(A) is sensitive to a number of interrelated factors that
do not affect the performance of either LS TD or RLS TD. Convergence of TD(A)
can be dramatically slowed by a poor choice of the learning rate (a) and trace (A)
parameters. The algorithm can become unstable if a is too large, causing 6 to
diverge. TD()) is sensitive to the size of the state representation vectors. If vector
¢ has some large component, then the update along that dimension will also tend to
be large, perhaps too large for stability. Judicious choice of a and A can damp down
the instability. Unfortunately, the price for stability may be slow convergence. The
performance of TD(]) is also sensitive to |fp — 6*|, the distance between 6* and the
initial estimate for §*. NTD()) is sensitive to these same factors, but normalization
reduces the sensitivity. A second way that algorithms LS TD and RLS TD can be
justified is by the fact that they are insensitive to all of these factors. Use of LS TD
and RLS TD eliminates the possibility of poor performance due to unlucky choice of
parameters.

The transient performance of the learning algorithm may be important. TD(A)
and NTD(A) will remain stable (assuming that the learning rate is small enough) no
matter what sequence of states is visited. This is not true for LS TD and RLS TD.
If C;! = [Co' 1yyk, p,-da,f] is ill-conditioned or singular for some time k, then the
estimate 0 can far from 6*. LS TD will recover from this transient event, and is
assured of converging eventually to 8*. The version of RLS TD described in Section
4.5.6 will not recover if C! is singular. It may or may not recover from an ill-
conditioned C;', depending on the machine arithmetic. However, there are well-
known techniques for protecting RLS algorithms from transient instability [30].

TD()), NTD(A), and RLS TD have an advantage over LS TD in the case of
extraneous features, as discussed in Section 4.5.7. TD(A), NTD(A), and RLS TD will
converge to the correct value function in this situation, while LS TD will not.

None of the factors discussed in this section makes a definitive case for one

algorithm or another. The choice depends finally on the computational cost structure
imposed on the user of these algorithms.

64

4.8 The TD error variance

One of the interesting characteristics of the TD error term,
3'1'1)(01:-1) = R + 7¢;,+10k-1 - ¢;eok-1,

is that it does not go to zero as) converges to 8*, except in the trivial case that
the Markov chain is deterministic. This is readily verified by inspection of Equation
(4.20). We define the TD error variance, orp, of a Markov chain as

o = € {exp(6*)?}
= £{[Ru + 1846 - 410}

= ¥ 7 Y Plz,y) [Riz,y) +14,6° - 4.6°] .
SGX yex

oo is the variance of the TD error term under the assumptions that) has converged
to 6*, and that the states (and the corresponding TD errors) are sampled on-line by
following a sample path through the Markov chain. op is a measure of the noise
that cannot be removed from any of the TD learning rules (TD(A), NTD(A), LS TD,
or RLS TD), even after parameter convergence. It seems reasonable to expect that
experimental convergence rates depend on oqp,.

Singh [77] considers a similar concept when discussing the tradeoffs between
algorithms such as TD(A) and RTDP. TD())and the other algorithms discussed in this
chapter perform a sample backup. They update the value function estimate using the
information from sampled state transitions. RTDP performs a full backup. It uses
a model to update the value function estimate using information from all possible
state transitions. Singh concludes that algorithms performing sample backups will
have a computational advantage over those performing full backups when the state
transition probabilities for any state are concentrated in only a few next states. That
is, for all states z, P(z,y) = 0 for nearly all states y. But orp, the inherent noise
in a sample backup, could still be relatively large under these conditions, depending
on the form of the cost and value functions. Therefore we believe that o could be
used to form a clearer measure of when sample backups will have an advantage over

full backups.

4.9 Experiments

This section describes an experiment designed to demonstrate the advantage in
convergence speed that can be gained through using least squares techniques. The
experiment compares the performance of NTD()) with that of RLS TD in the on-
line estimation of the value function for a randomly generated Markov chain. In a
preliminary series of experiments, not reported here, NTD(A) always performed at
least as well as TD()), while showing less sensitivity to the choice of parameters, such
as initial learning rate. Section 4.9.1 describes the algorithm used to set the learning
rates for NTD()A). Figure 4.4 shows the experimental results.

65

164‘065_ Ty |-.§

1e+05i:- E

o f
E [

§ 1e+04g:- -_a

g ' :
oy I

g les3p C: 1

= . J

Q :]

100[5- q

- |

1 PEIPEFS BYoT | L.Lluul PP PYTY | FEEPEPR PPeY IS PYTY| R PP TV |

8.01 0.1 1 10 100 le+03 le+04

TD error variance

Figure 4.4 Comparison of RLS TD and NTD(\) on a 5 state ergodic Markov chain.
The z-axis measures the TD error variance of the test Markov chain, which was varied
over five distinct values from oqp = 107! through o.p = 10% by scaling the cost
matrix, R. The y-axis measures the average convergence time over 100 training runs
of on-line learning. The parameter vector is considered to have converged when the
average of the error |0 — 6*||_, falls below 102 and stays below 10~2 thereafter. Line
A shows the performance of RLS TD. Line B shows the performance of NTD(A) where
|6 — 6*||, = 1. Line C shows the performance of NTD()) where ||6o — 6*||, = 2.

66

The z-axis of Figure 4.4 measures the TD error variance of the test Markov
chain, which was varied over five distinct values from oqp, = 10~! through opp = 103
by scaling the cost matrix, R. The state transition probability matrix P and the
state representations ® were left unchanged. The y-axis of Figure 4.4 measures the
average convergence time over 100 training runs of on-line learning. This is computed
as follows. For each of the 100 training runs, the distance ||6; — 6*||_ is recorded at
each time step. These 100 error curves are averaged together to produce the mean
error curve. Finally, the mean error curve is inspected to find the time k at which
the average error falls below 102 and stays below 10~2 for all times thereafter.

Line A shows the performance of RLS TD. The other two lines show the perfor-
mance of NTD(A) given different initial values for 8,. Line B shows the performance
of NTD(A) where 6, is chosen so that ||§o — *||, = 1. Line C shows the performance
of NTD(A) where 6, is chosen so that ||§o — 6*||, = 2. The performance of NTD(A)
depends the initial distance from 6*. The conditions imposed on 6, are an attempt
to control for this effect. The performance of NTD(A) is also sensitive to the settings
of four control parameters: A, ao, ¢, and 7. The parameters ¢ and 7 govern the
evolution of the sequence of learning rates. The algorithm used to determine a;
is described in Section 4.9.1. A search for the best set of control parameters for
NTD()) was performed at each experiment in an attempt to present NTD()) in the
best light? The control parameter € (see Equation (4.11)) was held constant at 1.0 for
all experiments.

Figure 4.4 shows a number of things. First, RLS TD outperformed NTD(A) at
every level of orp. RLS TD always converged at least twice as fast as NTD(A), and
did much better than that at lower levels of oqp. Next, we see that, at least for
RLS TD, convergence time is a linear function of ¢yp. Increase orp by a factor of
10, and the convergence time can be expected to increase by a factor of 10. This
relationship is less clear for NTD(]), though the convergence curves seem to follow
the same rule for larger o4p. It appears that the effect of the initial distance from
8 to 6*, ||6o — 6*||,, dominates when oy, is small, but becomes less important and is
finally eliminated as o;p increases.

Judging by these results, the use of RLS TD instead of TD(A) or NTD(A) is easily
justified. RLS TD’s costs per time step are an order of » = |X'| more expensive in
both time and space than the costs for TD(A) or NTD(A). However, RLS TD always
converges significantly faster than TD(A) or NTD(A), and at least an order of n faster
for smaller opp. These results show TD(A) or NTD(A) at their best, that is, for optimal
settings for A, ay, ¢, and 7. It required a very extensive parameter search to get this
level of performance. It is easy to make TD(A) or NTD(A) look arbitrarily bad through
poor selection of the algorithm parameters, and the choice of good parameters is still
more a matter of luck and experience than of science. If one’s objective is to find the
parameters for the value function instead of comparing algorithm performance, then
RLS TD has the advantage, since it has no such parameters to choose.

3The search for the best settings for A, ag, ¢, and 7 was the limiting factor on the size of the
state space for this experiment. A larger state space requires, in general, a longer convergence time.

Cazf

67

4.9.1 Selecting learning rates

The convergence theorem for NTD(0) (Theorem 4.3) requires that there be a
separate learning rate, a(z), for each state, and that each learning rate satisfy the
Robbins and Monro [66] criteria

i ar(z) =oco and i ar(z)? < o0
k=1 k=1

with probability one, where ay(z) is the learning rate for the k** update of the value of
state z. Instead of a separate learning rate for each state, we used a single learning rate
ay, which is decreased at every state transition. For each state there is a corresponding
subsequence {ayx}. that is used to update the value function estimate for that state.
We conjecture that, if the original sequence {as} satisfies the Robbins and Monro
criteria, then these subsequences also satisfy the criteria, with probability one. The
overall convergence rate may be decreased by use of a single learning rate since each
subsequence will contain fewer large learning rates.

The learning rate sequence {ax} was generated using the “search then converge”
algorithm described by Darken, Chang, and Moody [20],

14 £k
an = oy T
I+ ortTe
The choice of parameters ay, ¢, and T determines the transition of the learning rate
from “search mode” to “converge mode”. Search mode describes the time during
which & « 7. Converge mode describes the time during which k >> 7. a4 is nearly
constant in search mode, while a; = § in converge mode. The ideal choice of learning
rate parameters moves 6 as quickly as possible into the vicinity of 6* during search
mode, and then settles into converge mode.

4.10 Conclusions

In this chapter we described three new TD learning algorithms: NTD(A) (in
Section 4.4), LS TD (in Section 4.5.2), and RLS TD (in Section 4.5.6). We also proved
probability one convergence for these algorithms under appropriate conditions. These
algorithms have a number of advantages over previously proposed TD learning algo-
rithms. NTD()) is a normalized version of linear TD(A). The normalization serves
to reduce the algorithm’s sensitivity to poorly chosen control parameters. LS TD is a
Least Squares algorithm for finding the value function of a Markov chain. Although
LS TD is more expensive per time step than the stochastic approximation algorithms
TD(A) and NTD(]), it converges more rapidly. It has the further advantage that
there are no control parameters to set, reducing the chances for poor performance.
RLS TD is a recursive version of LS TD. LS TD and RLS TD are similar to an
algorithm proposed by Werbos, a linear version of Heuristic Dynamic Programming.
However, the convergence of linear HDP is more difficult to analyze than it is for
LS TD and RLS TD, and it appears experimentally that linear HDP is only locally

68

convergent. That is, linear HDP will converge only if the initial parameter estimates,
6o is close enough to the true parameters, 6*.

We also defined the TD error variance of a Markov chain, orp. 07p is a measure
of the noise that is inherent in any TD learning rule, even after the parameters have
converged to 8*. We experimentally conclude that the convergence rate of a TD
algorithm depends linearly on onp(Figure 4.4). This relationship is very clear for
RLS TD, but also seems to hold for NTD(A) for larger op.

The theorems concerning convergence of LS TD (and RLS TD) can be generalized
in at least two ways. First, the transition costs can be random variables instead of
constants. R(z,y) would then designate the ezpected cost of a transition from state
z to state y. The second change involves the way the states (and state transitions)
are sampled. Throughout this chapter we have assumed that the states are visited
as the estimation algorithm walks through the Markov chain. This need not be the
case. All that is necessary is that there be some limiting distribution 7 of the states
selected for update, such that 7, > 0 for all states z.

One of the goals of using a parameterized function approximator (of which the
linear approximators considered in this chapter are the simplest examples) is to store
the value function more compactly than the lookup-table representation. Linear
function approximators do not achieve this goal, since they use the same amount
of memory as the lookup-table. However, the work presented in this chapter and
elsewhere on the performance of TD algorithms with linear function approximators
is only the first step toward understanding the performance of TD algorithms with
more compact representations. -

Low

CHAPTER 5

TEMPORAL DIFFERENCE METHODS FOR
LINEAR QUADRATIC SYSTEMS

In this chapter we apply a DP-based reinforcement learning algorithm to the
problem of adaptive Linear Quadratic Regulation (LQR). DP-based reinforcement
learning algorithms include Sutton’s Temporal Difference methods [82], Watkins’ Q-
learning [92], and Werbos’ Heuristic Dynamic Programming [57,94,95,97]. We develop
the Adaptive Policy Iteration algorithm based on @-learning and Policy Iteration,
and prove that the algorithm converges to the optimal controller provided that the
underlying system is controllable and that a particular signal vector is persistently
excited. We illustrate the performance of the algorithm by applying it to a model of
a flexible beam.

Our convergence proof is one of the first convergence result for DP-based reinforce-
ment learning algorithms applied to problems with continuous state and action spaces.
Previous results, as discussed in chapters 2, 3, and 4, are limited to systems with
both finite state and finite action sets. Qur convergence proof is also one of the first
theoretical results showing that it is possible to use compact function approximators
in conjunction with an IDP algorithm. The only previous convergence proof (of
which we are aware) for a DP-based reinforcement learning algorithm applied to a
problem with continuous state and action spaces is described by Werbos [96], where
he considers using the linear HDP algorithm (see Section 4.6) to evaluate a policy for
a linear dynamic system with a linear cost function. However, there is no optimal
policy in this situation, so this result is of limited practical utility. Our Adaptive
Policy Iteration algorithm is firmly tied to well-developed LQR theory.

There have been many previous ezperimental demonstrations that compact func-
tion approximators may be used in conjunction with IDP algorithms to achieve some
level of performance improvement. For example, Tesauro [89,90] describes a system
using TD(A) that learns to play championship level backgammon (which can be
viewed as a Markovian decision task) entirely through self-play. It uses a multilayer
perceptron trained using backpropagation as a function approximator. Sofge and
White [80] describe a system that learns to improve process control with continuous
state and action spaces. Other applications are described by Anderson [1], Jordan and
Jacobs [41], and Lin [51,53]. None of these applications, nor many similar applications
that have been described, have a firm theoretical grounding. The theory developed
in this chapter is a first step toward a firm theoretical grounding for IDP algorithms
applied to problems with continuous state and action spaces.

As a demonstration that IDP algorithms developed for finite systems and lookup-
table function representations can fail when applied to continuous systems, we de-
scribe several versions of Watkins’ optimizing Q-learning for the LQR problem. We

70

demonstrate that these algorithms may be unstable, or may converge to controllers
that are destabilizing. We then show how to extend the policy iteration algorithm
based on @-learning to the control of systems with hidden state information, and
derive a heuristic algorithm for the distributed adaptive control of a class of linear

systems.
This chapter extends and discusses more fully the work previously reported by

Bradtke [9] and Bradtke, Ydstie, and Barto [10,11].

5.1 Linear Quadratic Regulation
Consider the linear, discrete-time, multivariable, dynamic system [16, 56]
Tty = f(:ct, ‘ll.g) = Aa:t + B‘ug (5.1)

with feedback control
u = Uz, (5.2)
Here A, B, and U are matrices of dimensions n X n, n X m, and m X n respectively

and U is chosen so that the matrix A + BU has all of its eigenvalues strictly within

the unit circle.
Associated with this system we assign a one step cost:

re = R(z¢,ue) = zi Bz + uy Fuy (5.3)

where E is a symmetric positive semidefinite matrix of dimensions n X n and F is a
symmetric positive definite matrix of dimensions m x m. The total cost of a state =,
under the control policy U, Vy(2:), is defined as the discounted sum of all one step
costs that will be incurred by using U from time ¢ onward, i.e., Vg(z¢) = X320 17e4s,
where 0 < 4 < 1 is the discount factor. This definition implies the recurrence relation

Vo(ze) = R(ze, Uze) + 7Vo(ze41)- (5.4)

Vi is a quadratic function [6] and therefore can be expressed as
Vo(z:) = z Ky, (5.5)
where Ky is the n X n cost matriz for policy U. U* denotes the policy that is optimal
in the sense that the total dicounted cost of every state is minimized. K* = Ky.

represents the cost matrix associated with U*.
If the matrices A, B, E, F, and U are known, then Ky can be found [6] as the

unique positive definite solution to the linear equation

Ky =+(A+BU) Ky (A+BU)+E +U'FU. (5.6)
'K* can be found as the unique positive definite solution to the Ricatti equation
K*=A'[yK* -y'K*B(F +1B'K*B) " BK'| A+ E. (5.7)

The optimal policy is
U* = —y(F+vB'K*B)" B'K*A. (5.8)
It is a simple but computationally costly matter to derive U* if accurate models of

the system and cost function are available. The problem we address is how to define
an adaptive policy that converges to U* without access to such models.

Lo

71

5.2 Q@-functions and Policy improvement

The recurrence relation for @-functions given in Equation (2.19) can be rewritten
for LQR problems as

Qu(a’; u) = R(.’B, u) + Qu(f(z’ "')) U(.f(z"u'))
= R(z,u) + Qu(Az + Bu,U(Az + Bu). (5.9)

The Q-function for an LQR problem can be computed explicitly using Equations (5.5)
and (2.18). We have

Qu(z,u) = R(z,w) + 7Vu(f(z,2))
= z'Ez + u'Fu + 7(Az + Bu)' Ky(Az + Bu)
=z'(E + vA'KyA)z + v'(F + vB'KyB)u + v2'A'Ky Bu + yu'B'K Az

I 7| E+v9AKsA ~A'KyB []

=% vB'KscA F++4B'KyB |l %"

T 1 Hu(u) HU(u) /

=| z,u [Hopy Hogm [z,u] (5.10)
=[=u] Ho[2], (5.11)

where [z,u] is the column vector concatenation of ¢ and » and Hy is a symmetric
positive definite matrix of dimensions (n + m) x (n + m). The submatrix Hy,, is
symmetric positive definite.

Given the policy Uy, and the value function V5, we can we find an improved policy,
Uk41, by following Howard [33] in defining U4, as

Ur1z = argmin [r(z, u) +1Vo(f(z, u))],
but Equation (2.18) tells us that this can be rewritten as
Upprz = a.rg'r‘nin Qu(z, u).

We can find the minimizing u by taking the partial derivative of Qy(z,) with respect
to u, setting that to zero, and solving for u. Taking the derivative we get

Bng:, u) _ %F +vB'KyB)u + 27B'Ky Az.

Setting that to zero and solving for u yields
u=—(F +7B'Ky,B)”" B'Ky,Ax.

Usta

Since the new policy Ui+1 does not depend on &, it is the minimizing policy for all z.
Using Equation (5.10), Uk41 can be written as

Uksr = —Hy o Hoy - (5.12)

The feedback policy Uk, is by definition a stabilizing policy — it has no higher
cost than U. A new Q-function can then be assigned to this policy and the policy
improvement procedure can be repeated ad infinitum.

72

Earlier work by Kleinman [46] and Bertsekas [6] showed that policy iteration
converges for LQR problems. However, the algorithms described Kleinman and
Bertsekas required exact knowledge of the system model (Equation (5.1)) and the
one-step cost function (Equation (5.3)). The analysis presented here shows how
policy iteration can be performed without that knowledge. Knowledge of the sequence
of functions Qy, is sufficient.

5.3 Direct Estimation of @-functions

We now show how the function @y can be directly estimated using recursive least
squares (RLS). It is not necessary to identify either the system model or the one-step
cost function separately. First, define the “overbar” function for vectors so that Z is
the vector whose elements are all of the quadratic basis functions over the elements
of z, i.e.,

=_[2 2 2 2]/
T=|T],..) 818, Loy, 82Ty -« T 1y L1y Toy| -

Next, define the function © for square matrices. ©(K) is the vector whose
elements are the n diagonal entries of K and the n(n + 1)/2 — n distinct sums
(Ki; + Kj). The elements of T and ©(K) are ordered so that 'Kz = T'O(K).
The original matrix K can be retrieved from O(K) if K is symmetric. If K is not
symmetric, then we retrieve the symmetric matrix 3(K + K'), which defines the same
quadratic function as K. We can now write

Qu(z,u) = [z,u],HU [z,u] = [z,u] O(Hy).
Finally, we rearrange Equation (5.9) to yield

T = R(‘”t; ut)
= Qv(“’t,ut) —7Qu(“’t+1, Uﬂ?tq-,l)
! !
= [T, Ut] Hy [Te, Ut] -7 [Ter1, Uzer] Hy [Tey1, Uzeys]
———f ’
= [ey Ut] O(Hy) — [ze41, Uzera] O(Hy)
= ¢:0U)

where

¢ = {[“’t,ut] — [@e41, U$t+1]} v (5.13)

and au- = @(HU).
Recursive Least Squares (RLS) can now be used to estimate fy. The recurrence
relations for RLS are given by

Pe(i — 1)e(re — $6(i — 1))
"1+ @P(i— 1)y

Pi(i — 1)¢e ¢} Pe(i — 1)
1+ ¢£Pk(i - 1)¢t

be(3) = (i — 1) + (5.14a)

Pu(i) = P — 1) —

(5.14b)

il

L

73
Pi(0) = Po. (5.14c)

Py = B1I for some large positive constant 8. 8; = O(Hy,) is the true parameter vector
for the function Qu,. fi(i) is the i** estimate of 8;. The subscript ¢ and the index i
are both incremented at each time step. The reason for the distinction between ¢ and
1 will be made clear in the next section.

Goodwin and Sin [30] show that this algorithm converges asymptotically to the
true parameters if 0} is fixed and ¢; satisfies the persistent excitation condition

N
€l <]—t.-z Geid,_; <&l forall ¢t>Nyand N> Ny (5.15)
=1

where Ny and €y < & are positive numbers. However, asymptotic convergence implies
that there will always be some non-zero error in the parameter estimates at any finite
stopping time.

The RLS TD algorithm described in Chapter 4 may also be used. In this context
it would be represented as

Pe(i — 1)[ee, us)(re — 3003 — 1))

6u(3) = (s - 1) + T3 Pl — Do u] (5.16a)
N oo 1y Pl = 1)z, ul gy Pe(i — 1)

Pk(z) = Pk(z 1) 1 T ¢£Pk(i — l)m (5.16b)

P(0) = P,. . (5.16c)

Here, [z, u:] serves as the instrumental variable. The vector [z:, us] is correlated with
&, and since the state transitions are deterministic, it is uncorrelated with the noise in
the state transitions. Thus, RLS TD will also converge when applied to deterministic
LQR problems.

5.4 Adaptive Policy Iteration for LQR

The policy improvement process based on @-functions and the ability to estimate
Hy directly (Section 5.3) are the two key elements of the adaptive policy iteration
algorithm. Figure 5.1 gives an outline of the algorithm. '

Each policy iteration step consists of two phases: estimation of the @)-function
for the current controller, and policy improvement based on that estimate. Consider
the k** policy iteration step. Uy is the current controller. The true parameter vector
for the function Qy, is 8y = O(Hy,). The estimate of 6} at the end of the parameter
estimation interval is f; = fi(N). Each estimation interval is N time-steps long.
The RLS algorithm is initialized at the start of the k* estimation interval by setting
P(0) = P, and initializing the parameter estimates for the k* estimation interval to
the final parameter estimates from the previous interval, i.e., 6x(0) = 6,_,(N). The
index ¢ used in Equation (5.14) counts the number of time steps since the beginning
of the estimation interval. After identifying the parameters ©(Hy,) for N timesteps,

74
1 Initialize parameters §; (0).
2 t=0,k=1.
3 repeat forever {
4 Initialize P, (0) = Pp.
5 fori=1toN {
6 = Upa¢ + e, where ¢; is the “exploration” component of the control
signal.
7 Apply u; to the system, resulting in state z,4,.
8 Update the estimates of the @Q-function parameters, ék(i), using RLS
(Equation (5.14)).
9 t=t+41.
}
10 Find the symmetric matrix Hj, that corresponds to the parameter vector 6.
11 Perform policy improvement based on H: U1 = - ‘q,l,)I-:Tk(,,).
12 Initialize parameters ;41 (0) = .
13 k=k+1
14 }

Figure 5.1 The Q-function based policy iteration algorithm. It starts with the
system in some initial state 29 and with some stabilizing controller Uy. k keeps track
of the number of policy iteration steps. ¢ keeps track of the total number of time
steps. i counts the number of time steps since the last change of pohcy Wheni= N,
one policy improvement step is executed.

one policy improvement step is taken based on the estimate 6. This produces the
new controller Uy, and a new policy iteration step is begun.

Since the &** policy improvement step is based on an estimate of O(Hy,), it is
not clear a priori that the sequence Uy will converge to the optimal policy U*, or
even that each of the Uy’s is guaranteed to be stabilizing. The convergence proofs of
Kleinman [46] and Bertsekas [6] require exact knowledge of the system and take no
account of estimation error. Theorem 5.1 establishes that the adaptive policy iteration
algorithm presented above does indeed converge, under the appropriate conditions, to
the optimal controller. Puterman and Shin consider a similar situation involving value
function estimation errors when performing policy iteration for discrete MDPs [65].

Theorem 5.1 (Convergence of adaptive policy iteration) Suppose that {A, B}
is a controllable pair, that Uy is a stabilizing conirol, and that the vector ¢(t) is
persistently ezcited according to inequality (5.15). Then there ezists an estimation
interval N < oo so that the adaptive policy iteration mechanism described above
generates a sequence {Ux,k =1,2,3,...} of stabilizing controls, converging so that

lim ([0~ U*]| =0,

where U* 1s the optimal feedback control matriz.

75

Proof: In order to prove this we need a few intermediate results concerning the
policy iteration scheme and RLS estimation. The results are summarized below and
the proofs are given in Appendix D. First, define the function

o(Ui) = trace(Ky,). (5.17)

Lemma 5.1 If {A, B} is controllable, U, stabilizing with associated cost matriz K,
and U, 1is the result of one policy improvement step from Uy, i.e. Uy = —y(F +
yB'K,B)"'B'K, A, then

AUy = Ue|* < o(Uh) — o(U2) < 8||Ux = Uel?,
where
0 < A = g(F) < § = trace (F + 7B'K, B)|| £2,7¢/2(A + BU)¥|”,
and g(-) denotes the minimum singular value of a matriz.

Lemma 5.2 If ¢, is persistently ezcited as given by inequaky (5.15) and N > Ny,
then we have

R X 1
165 = Bl < (1 = Bl + 1030 = Bucal), where e = ——
and po is the minimum singular value of Py.
Define a scalar “Lyapunov” function candidate
sk = 0(Us-1) + 1632 — Bi-al (5.18)
and supposé that
3; < 3 < 00 foral0<2<k (5.19)

for some upper bound 3y. From this it follows that U,_; is stabilizing in the sense
that
O'(Uk_.]_) S So (5.20)

and that the parameter estimation error is bounded so that
1165-2 — x| < Zo. (5.21)

It also follows that that the control resulting from a policy update using accurate
parameters, U}, is stabilizing and that o(U*,) < 3,. From continuity of the optimal
policy update it then follows that for every § > 0 there exists €5 > 0 so that

o(U) - o(U3)| < OIUz ~ Ul forall U~V Ses. (5:22)

This implies that control laws in a sufficiently small neighborhood around the optimal
are stabilizing as well.

76

We will show that sg1 < si provided that the estimation interval N, is chosen
to be long enough.
Define

e = 65—y — G-,
and we get from Lemma 5.2 that for all &
0 < EN('U;_._l + ||9'k —1—-0*k - 2"), (5.23)

where limy_,o ey = 0. Now from the inductive hypothesis (assumption (5.19)) we
have
Ve-1 S 3o and ||0‘k —-2—-0°k - 3” S K, (524)

where &, is a constant. By application of Equation (5.23) we then get
v < en(30 + &1)- (5.25)

It follows that v, = ||6*k — 1 — f;_; || can be made arbitrarily small be choosing the
estimation interval N long enough.

U*. is defined to be the result from applying one step of policy iteration using
accurate parameter values, i.e.

U‘k = _H;ll(gz)Hk-l(Zl)) (5-26)

whereas U, is the feedback law which results from applying the estimated parameters,
i.e.

Uk = —ﬁ;:(ZQ) IA{k-l(?l) . (5.27)

The matrix inverse is guaranteed to exist when the estimation interval is long enough.
From Equations (5.26) and (5.27) we now have

U — Utk = —HZ} o Brany + Ho ks Hoaany -
Hence
Ui = U*s = He o (Husgany — Haan) + (B — Heny) Ban
= Hy o) (Huagany — H i) + (Beagny — H,‘_l(,,,)fl;}m) Hyay)-
From the definition of § we have
1 Besgn — Hanll S 10k —1=bia]l and Bl < sl
It follows that we have
1Tk = U*4ll < Ro(L + [1B-sll) - 16°k = 1 = s,

where %o is a positive constant, provided that N is sufficiently large. Since the
estimated parameters are bounded it follows that there exists another constant %o so
that .

"U]c - U‘k” S no||0"k -1- 91,-1" = KoVk. (528)

(s

It follows from Equation (5.25) that we have
Uk — U]l € enso(30 + 51). (5.29)
It then follows from Equation (5.22) that
lo(Uk) — o(U*s)| < 6||Ug — Ukl for all N such that exro(3o + 1) < €.

This implies that Uy is stabilizing if N is large enough and that there exists an integer
N; and an associated constant 4, so that

lo(Ur) = 0(Us-1)| < 8||Uk = Up || for all N > N;.

In other words, if the estimation interval is long enough, then the difference between
two consecutive costs is bounded by the difference between two consecutive controls.
We use the definition of the parameter estimation vector to write this as

[0°k =1 — 6°k — 2| < 8uf|Uk — Ua|® forall N > Ny, (5.30)
where §; is a constant. We now re-write Equation (5.30) as
16k — 1 — 8°k — 2|| < 28,(|U — Uea||® + |1UE = Uill®).
From inequality (5.28) and the definition of vk, we then get
16*k — 1 — 6°k — 2|| < 28y (w} + rove), (5.31)

where
wi = ||Ug — Uk-a |-

By combining Equations (5.23) and (5.31) we then get

v < en(vi-1 + 261 (w} + Kovr)),
which we re-write as
v < eNpN('vk..l + 2511012:), (5.32)
where
py = (1 — 281K0en) .

According to the assumption we can choose N large enough so that 0 < uy < oo.
This gives a recursion for v,. The critical point to notice is that v, has a strong
stability property when the estimation interval is long. The parameter eyp is then

small since ey converges uniformly to 0 and p towards 1.
We now develop the recursion for o(Us). First we have

o(Ui) — 0(Uk-1) = o(U*k) — 0(Uk-1) + o(Uk) — o(U*s). (5.33)

From Equation (5.33) and Lemma 5.1, using Equation (5.22) again, it follows that
we can choose the update interval so that we have a constant §, so that

o(Us) = 0(Ui-1) < =A||U; = Uns|I* + &\ U - Uil
Using Equation (5.28) we then get
o(Uk) = 0(Us-1) < —A||UZ = Ui ||* + 8250|6°k — 1 — b4 |

78
< —Aw} + 82k0v%.
By using Equation (5.32) and the recursion for v, we then have
o(Us) — 0(Uk-1) £ —Aw} + 6150enpn (ve-1 + 26,w3). (5.34)

Equation (5.32) and Equation (5.34) together define the system

[U _ [ENEN 0] [Vi1] + [2enpuNd; .
a(Us) Saxoenpny 1 || o(Uk-1) ~A + 2850enpn | ¢
In order to study this system we defined the function
8k = 0(Uk-1) + vr-1.
From the above we then have
k41 = Sk + (=1 + enpn(1 + d250))vk—1 + (—A + 2enpnda(1 + Ko))w.
It now suffices to choose N so that € is small enough to give

1—enpun(l+d250) =€ >0
A —2enpnda(l + ko) = €2 > 0.

We then get
2
Sk41 = Sk — €1Up—1 — E2W}, < 8.

From this we conclude that sp; < s and using induction we finally have

) 0o
ﬁlz‘vksgo andezzwig.?o.
k=1 k=1

The result now follows since Uy is stabilizing.
Q.E.D.

5.5 Demonstration of the adaptive policy iteration algorithm in simula-
tion

. Figure 5.2 illustrates the flexible beam used to demonstrate the performance
of the adaptive policy iteration algorithm. The beam system is a 20-dimensional
discrete-time approximation of an Euler-Bernoulli flexible beam supported at both
ends. The state of the system consists of the displacement from the horizontal of each
of the n = 10 nodes, and the velocity of each of the nodes. There is one control point.
The scalar control signal is the acceleration applied at that point. The regulation
task facing the controller is to drive the system state to zero, i.e., to damp out all
vibration from the system and to leave the beam perfectly flat.

Figures 5.3, 5.4, and 5.5 demonstrate the performance of the algorithm. The
initial policy Up is an arbitrarily selected stabilizing controller for the system. The

Lz

79

u

Figure 5.2 Illustration of the flexible beam. The beam system is a 20-dimensional
discrete-time approximation of an Euler-Bernoulli flexible beam supported at both
ends. The state of the system consists of the displacement from the horizontal and
the velocity of each of the n = 10 nodes. There is one control point. The scalar
control signal is the acceleration applied at that point.

starting point zo is a random point in a neighborhood around 0 € R?°. We used a
random exploration signal generated from a normal distribution in order to induce
persistent excitation of the vector ¢;. Although this method of inducing persistent
excitation does not match the requirements of Theorem 5.1, it is very simple to
implement, and has worked very well in practice. There are 231 parameters to be
estimated for this system, so we set N = 500, approximately twice that. Figure
5.3 shows the max norm of the difference between the current controller and the
optimal controller at each policy iteration step. Figure 5.4 shows the max norm
of the difference between the estimate of the @-function parameters for the current
controller and the @-function parameters for the optimal controller at each policy
iteration step. After only eight policy iteration steps the adaptive policy iteration-
algorithm has converged close enough to U* and H* that further improvements are
limited by the machine precision. Although this demonstration is for a single-input
system, the algorithm performs equally well on multi-input systems. Figure 5.5 shows
the max norm of the state vector z; as a function of time. A new controller is installed
every 500 time steps. Although each of the controllers in the sequence is stabilizing,
and the series converges to the optimal controller, the state is not driven to 0. This
is due to the necessity of maintaining persistent excitation. In practice, adaptation
could cease after some finite number of policy iteration steps, when the sequence of
controllers is judged to have converged.

Figures 5.6 and 5.7 show the results of experiments demonstrating that the
adaptive policy iteration algorithm can fail when the assumptions of Theorem 5.1
are violated. That is, when either persistent excitation is not maintained, or when
the estimation interval, N, is too short. The demonstration system is the same
discretized beam used above. Figure 5.6 shows the results of violating the persistent
excitation assumption. As in the experiment described above, policy improvement
steps were performed every 500 time steps. However, the exploratory signal was a
constant zero, so ¢ was not persistently excited. The graph shows the size of ||z
growing rapidly to infinity after the first policy “improvement” step at time 500. The
lack of persistent excitation prevented Hy, from being an adequate approximation
to Hy,, causing the “improved” controller, U,, to be destabilizing. Figure 5.7 shows
the results of a too short estimation interval. In this experiment, policy improvement
was performed every N = 100 time-steps instead of every 500 time-steps. Since

80

g

U_k - U_*l
s
? e
S&
T T TR T TR TN IR Y T T T T
ol ol e cad gl ot et el ol

. 1 2 [2 [1 1 s
le-l47 10 20 30 40 50

of policy iteration steps

Figure 5.3 Performance of the adaptive policy iteration algorithm: policy con-
vergence. Convergence was measured using the norm of the difference between the
optimal policy and the current estimate of the optimal: ||Uy — U*||,,. The demon-
stration system is a 20-dimensional discrete-time approximation of an Euler-Bernoulli
flexible beam supported at both ends. There is one control point. Uy is an arbitrarily
selected stabilizing controller for the system. z¢ is a random point in a neighborhood
around 0 € R?.

2

IIH_k - H_*II
p—
¢ Q S
S&K p
faa Ris Rkt s Bede s Ak s s s ey B By B e s R R |

P 2 1 9 1 g 1 3 | PP P
le-ldg 10 20 30 40 50

of policy iteration steps

Figure 5.4 Performance of the adaptive policy iteration algorithm: parameter
convergence. Convergence was measured using the norm of the difference between
the parameters of the optimal policy and the current estimate of the optimal param-
eters: ||I;IU,. — H*||,- The demonstration system is a 20-dimensional discrete-time
approximation of an Euler-Bernoulli flexible beam supported at both ends. There is
one control point. Up is an arbitrarily selected stabilizing controller for the system.
o is a random point in a neighborhood around 0 € R,

€

C

81

le+04
1e+03 3

100}

X

10

S —
of time steps

Figure 5.5 Performance of the adaptive policy iteration algorithm: regulation perfor-
mance. The demonstration system is a 20-dimensional discrete-time approximation of
an Euler-Bernoulli flexible beam supported at both ends. There is one control point.
Up is an arbitrarily selected stabilizing controller for the system. zq is a random point
in a neighborhood around 0 € R?°. The goal of regulation is to drive the system state
to 0, but the necessity for persistent excitation keeps the state away from the goal.

there are 231 parameters to be estimated the estimator could not have formed a good
approximation to all of them. The graph shows that the controller that resulted from
the first policy “improvement” step was destabilizing in this situation also.

5.6 Comparison with model-based adaptive optimal control

The standard method of adaptively finding the LQ optimal controller for an
unknown system is based on building a model of the system and then using that model
under the certainty equivalence assumption to determine the optimal controller [30].
Figure 5.8 gives a version of the algorithm that builds a state-space model as described
in Section 5.1. The A and B matrices of Equation (5.1) contain a total of n? + nm
independent parameters that must be estimated. On the other hand, the function
Qv for some policy U contains (n + m)(n + m + 1)/2 independent parameters. The
adaptive policy iteration algorithm estimates fewer parameters than the model-based
method whenever

(m+m)(n+m+1)
2

Solving, we see that the adaptive policy iteration algorithm requires estimating fewer
parameters whenever m < n — 1. Otherwise, the model-based method requires fewer
parameters.

This analysis does not take into account the substantial computational costs
undertaken by the model-based method to solve the Ricatti equation (Equation (5.7))

at every time step in order to find the certainty equivalent optimal controller U,

<n? + nm.

82

Xl
‘T Lo
2
——
- N
hias Rt ina Ring Rix hin s Rins hiia Bins Bin s hins Bin s Rinz i x Sina Bens b

bl ol ied oded bl il ol ol ad ol oad al o il ol ol

0 ' le+03
of time steps

Figure 5.6 The impact of insufficient excitation on the performance of the adaptive
policy iteration algorithm. The graph shows the size of ||z:|| growing rapidly to
infinity after the first policy “improvement” step at time 500. The lack of persistent

excitation prevented Hy, from being an adequate approximation to Hy, , causing the
“improved” controller, Ua, to be destabilizing.

le+20 T T
le+19
le+18
le+17
le+16
le+15
le+14
le+13
le+12
le+ll
le+10
le+09
1e+08
le+07
1e+06

aded ol aded

Xil
b it e s By s s s s et s s Bt s s M R §

el saded ol caded saded saded aadd caed cadel sl soded add bl

L . N 1
1000 100

of time steps

)
8

Figure 5.7 The impact of a short estimation interval on the performance of the
adaptive policy iteration algorithm. In this experiment, policy improvement was
performed every N = 100 time-steps instead of every 500 time-steps. Since there
are 231 parameters to be estimated, this interval is too short. The graph shows the
size of ||z:||, growing rapidly to infinity after the first policy “improvement” step
at time 100. The short estimation interval prevented IAI,,1 from being an adequate
approximation to Hy,, causing the “improved” controller, U,, to be destabilizing.

o)

L

—

83

The adaptive policy iteration algorithm has no such burden, so that it may have a
computational advantage over the model-based method even when m > n — 1.

Initialize the estimates Ag of A, By of B, and U, of U*.
for t =0 to oo {

3 Apply the control signal specified by U, to the system, resulting in a change
of state from z; to z4;.

N =

4 Use the experienced state transition to update A, to fit.,.l and Bt to Bt+1-

5 Use ./it.,.l and BH-I to determine fftﬂ as described in Equation (5.7) and
Equation (5.8).

6 }

Figure 5.8 State-space model based adaptive optimal control. As A, approaches A
and B, approaches B, U, approaches U*.

5.7 The Failure of Optimizing Q-learning for LQR

Policy iteration would seem to be an unnecessarily slow and complicated method
of finding the optimal controller, U*. Every controller U; in the sequence must be
evaluated before the next can be derived. Instead, why not do as Watkins’ optimizing
Q-learning rule does (Equation (2.22)), and try to learn @Q* (and thereby U*)
directly? Figures 5.9 and 5.10 give two versions of an optimizing Q-learning algorithm
designed to estimate the optimimal @-function for an LQR problem directly. Like
the adaptive policy iteration algorithm discussed above, these algorithms are designed
to be used on-line, under the assumption that the system model is unavailable. The
only difference between the two versions of the optimizing @-learning algorithm lies in
the choice of controller that is used during training. The first version, designated as
Algorithm A in Figure 5.9, always follows some prespecified stabilizing controller
Uo. The second version, designated as Algorithm B in Figure 5.10, follows the
certainty equivalent optimal policy at every time step. Under the assumption that the
parameters H,_; are a good estimate of H*, the certainty equivalent optimal policy
at step ¢ is the policy defined by

”

rr—1
Ut = _Hz-l(n)H‘-l(“)'

What are the convergence properties of these algorithms? If Algorithm A con-
verges to some fixed point, that fixed point must satisfy the equation

| Hu Hi _
[:z:,'u,] [H21 H,,] [:c,u]—

84

Initialize parameters 6(0).

Initialize P(0) = P,.

for t =0 to oo {
u; = Upz+ e, where e, is the “exploration” component of the control signal.
Apply u; to the system, resulting in state z¢4;.

Define a;y; = - .f,lz)H.(n)th-

N O O AW =

Update the Q-function parameters, H;, using the Recursive Least Squares
implementation of the optimizing Q-learning rule, Equation (2.22).

Figure 5.9 An optimizing @)-learning algorithm for LQR: Algorithm A. Algorithm A
starts with the system in some initial state zo and with some stabilizing controller Up.
t keeps track of the total number of time steps. Unlike the adaptive policy iteration
algorithm shown in Figure 5.1, U is followed throughout training.

z'Ez + ' Eu + v[Az + Bu,a|’ l g:i g::] [Az + Bu,a, (5.35)

where a = —Hz,' Hyy (Az + Bu). Equation (5.35) actually specifies (n + m)(n +m +
1)/2 polynomial equations in (n + m)(n + m + 1)/2 unknowns (remember that H is
symmetric). We know that there is at least one solution, that corresponding to the
optimal policy, but there may be other solutions as well.

As an example of the possibility of multiple solutions, consider the 1-dimensional
system with A = B = E = F = [1] and v = 0.9. Substituting these values into
Equation (5.35) and solving for the unknown parameters yields two solutions. They
are

2.4296 1.4296 d 0.3704 —0.6296
1.4206 2.4206 | *°° | —0.6206 0.3704 |

The first solution is H*. The second solution, if used to define an “improved”
policy as describe in Section 5.2, results in a destablizing controller. This is certainly
not a desirable result. Experiments show that the algorithm in Figure 5.9 will converge

to either of these solutions if the initial parameter estimates, 9(0), are close enough
to that solution. _

A fixed point of Algorithm B must satisfy the same equation as a fixed point of
Algorithm A. However the behavior of the two algorithms will differ markedly should
they converge to the solution that corresponds to an unstable controller. Algorithm
A always follows the original, stabilizing controller, so the behavior of the controlled
system always remains stable. However, Algorithm B always follows the certainty
equivalent optimal controller. Therefore, if it should converge to the unstable solution,
the controlled system will be destabilized.

85

1 Initialize parameters 4(0).

2 Initialize P(0) = Po.

3 fort=0tooo {

Define Uy = —H (5 Hosgan)-

u; = Upz¢+e;, where e; is the “exploration” component of the control signal.
Apply u; to the system, resulting in state z;4;.

Define a;11 = Uszs4-

Update the @Q-function parameters, g, using the Recursive Least Squares
implementation of the optimizing @-learning rule, Equation (2.22).

o =3 O Ot

Figure 5.10 An optimizing Q-learning algorithm for LQR: Algorithm B. Algorithm
B starts with the system in some initial state £o and with some stabilizing controller
Us. t keeps track of the total number of time steps. The algorithm follows the
certainty equivalent optimal policy at every time step.

This analysis of Algorithms A and B shows that a naive translation of using
Watkins’ Q-learning rule directly to the LQR domain will not necessarily converge
to the optimal @Q-function. Convergence is critically dependent upon the initial
parameter estimates, @(0) More generally, this demonstrates that there are pitfalls to
applying the theory of In¢cremental Dynamic Programming as developed for discrete,
finite MDPs and lookup-table function approximators directly to problems where
these assumptions are violated.

5.8 Adaptive Optimal Control of the Input-Output Behavior

In the systems we have considered up to this point (described in Equation (5.1)),
the state of the system is observable at every time step. A more general system
model allows the state to be hidden, only allowing some linear function of the state
to be directly observable. Equations (5.36a) and (5.36b) give such a model. This
is a deterministic multi-input/multi-output (MIMO) system with observable output
vectors ;.

Ty = A(Bt + B'U«g (5363)
Y = C:Bg + D‘U.g (5-36b)
uy = Uz, (5.36¢)

y: is the information available to an observer at time step ¢. If the matrix C is not of
full rank, then y, alone will not contain enough information to reconstruct the state
of the system. We show in this section how to apply the adaptive policy iteration
algorithm to deterministic MIMO systems with hidden state.

86

Let us assume that there is some sequence of controls being applied to the system.
Then we can build a difference equation model of the system based only on the
observable information: the input and output vectors.

k l
Aoy: + Z Ay = z Bu,_;. (5.37)

i=1 i=1

Equation (5.37) is a deterministic version of an ARMAX (autoregressive, moving
average, with exogenous inputs) process [65,104]. Assuming that A, is invertible,
Equation (5.37) can be rewritten as

: k !
ye = —Ag' D Awei + AgY) Baug,

i=1 i=1

or, by renaming Az'A; to be simply A; and A;'B; to be B;,

k l
Ye = — Z Ayei + Z Biwg_iq1. (5.38)

=1 =1

There is a unique minimum size ARMAX model that will model the output behavior
of the system described by Equations (5.36), that is, a model where & and [are as
small as possible. Non-minimum size models, in which k& and/or [are overestimated,
can also accurately track the output behavior of the underlying system. However, the
non-minimum size models are not unique.

We can transform the ARMAX model in Equation (5.38) into a state space model

like Equation (5.1) using the following definitions [2]. Define &, A, and B as

[Y1
= _ | Y-k
Ty = ug
Ut-1+1
-A; -4 —Apy, —Axr B, B, By B]
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
A= 0 0 I 0 0 0 0 0
- 0 0 0 0 0 O 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0

L

87

0
ces } k submatrices
0
B= |1
0
cee } ! — 1 submatrices
0

Then we have))
5!H.1 = Aa-!g + B’Ug. (5.39)

Therefore, assuming that A and B meet the requirements of Theorem 5.1, and that
some stabilizing Uy can be found such that

u = UoBe, (5.40)

then we can apply the @-learning policy iteration algorithm to the MIMO system in
order to find the optimal ,. Furthermore, as long as the system given by Equation
(5.39) remains stable, then the underlying system will remain stable. Of course, now
the cost at each time step will be a function of Z; and u,:

T = R(izt,ut) = iing + u:F‘ng. (5.41)

The only problem with this approach to the adaptive control of a MIMO system
is that the delay lengths k and ! from equation Equation (5.38) will, in general, be
unknown. We would like the algorithm to be robust in the case of overestimating k
and/or I. Theorem 5.1 tells us that the algorithm will be robust when overestimating
the order of the system as long as the pair {4, B} is controllable!. Figures 5.11,
5.12, and 5.13 show the results of a set of experiments to verify this empirically. The
underlying system is given by

1.0 0.1 0.005

The E and F matrices were chosen to be identity matrices of the appropriate sizes
for each of the experiments. Each of the three experiments starts the same initial

controller, u; = Upz:, where Uy = [-2.0 -3.0] . Although this initial controller
has access to the state of the system, the adaptive policy iteration algorithm does

not. The improved controllers that are generated by the adaptive policy iteration
algorithm are all of the form u; = U;#;. The experiment shown in Figure 5.11 sets

YThe pair {4, B} is controllable if the n x nm matrix [B,AB, A?B,...,A""'B] has linearly
independent rows.

88

k =1 =2, the minimum values for this system. The minimum size ARMAX model
for this system is

Y = 2-0yt—1 — Yi-2 + 00511«: + .005‘!&-1. (542)

The experiment shown in Figure 5.12 sets k = [= 3. There are infinitely many
ARMAX models of order 3, each of the form

¥ = (2.0 — a)ys—1 — Ye—2 + .005u, + .005u,_,

+a | ez — Ye-a + 0052y + .005u¢, | (5.43)
= (2.0 — a)ye—1 + (2a — 1)ye—2 — ay:—3
+005u¢ + 005(a + l)ut_l + .005&1&;-3, (544)

where a is some constant, and the quantity within the brackets equals y;_, by
application of Equation (5.42). The experiment shown in Figure 5.11 sets k = ! = 5.
There are also infinitely many ARMAX models of order 5, the form of which can be
similarly derived from Equation (5.42).

100 T T v T 1e+03

100§

nyn

10

X1

0.01 0.1

1oi03 ’ P 0 ! Tor03 ' 50403
of time steps # of time steps

Figure 5.11 SISO adaptive optimal control: delay 2. This is a demonstration of
@-learning based adaptive optimal control on the discretized double integrator with
hidden state. k = [= 2, the minimum values for this system. Panel A shows the norm
of the state, z;, at each time step. Panel B shows the norm of the delayed coordinate
representation, Z;, at each time step. Policy iteration was performed every 100 time
steps.

Panel A of each figure shows the norm of the state, z;, at each time step. Panel
B shows the norm of the delayed coordinate representation, %, at each time step.
Policy iteration was performed every 100 time steps. It is obvious that the controllers
remained stabilizing, even though k and ! were overestimated in the second and third
experiments. Comparison of panel-A in all three experiments shows that the state
trajectory was virtually identical in all three cases. We would expect the initial
portion of each trajectory to be identical in any case, since all three experiments
started with the same initial controller. However, the fact that the trajectories match

89
100 T T T le+03
A B
10 100
I E 10} .
0lF ! -KWW’WW
oot * Tes0 * 26403 01 * o * Ze+0
of time steps # of time steps

. Figure 5.12 SISO adaptive optimal control: delay 3. This is a demonstration of

Q-learning based adaptive optimal control on the discretized double integrator with
hidden state. £ = I = 3, higher than the true system order. Panel A shows the norm
of the state, z,, at each time step. Panel B shows the norm of the delayed coordinate
representation, &, at each time step. Policy iteration was performed every 100 time
steps. The overestimation does not inhibit the ability to learn an improved controller.

so closely thereafter argues for the conclusion that the controller sequence found by
the adaptive policy iteration algorithm for one experiment is nearly the same in effect
on the state as the controller sequence found in each of the other two experiments,
despite the fact that the delayed coordinate representations are so different for each
experiment.

Let us consider the ARMAX model of order 3 more fully. From Equation (5.44)

and the definitions of A and B, we have

[(20—-a) (2a—1) —a .005 .005(a+1) .005a] [0]
1 0 0 0 0 0 0
. 0 1 0 0 0 0 - 0
As = 0 0 0 0 0 o |»2md Bs=1,
0 0 0 1 0 0 0

0 0 0 0 1 0 [0 |

Testing to see whether the pair {As, B3} is controllable, we get that

.005 .015 .025 .035 .045]
0 .005 .015 .025 .035
0 .005 .015 .025
0 0 0 0o |’
0 0 0 0

1 0 0 0

0

0
[Bs, AsBs, A2Bs,..., A3Bs | = | |
0
0

0
0
1
0

which is singular. Therefore, the system {Aj3, Bs} is not controllable for any value of a.
This violates the controllability condition of Theorem 5.1. Despite this, the adaptive

90

100 T T ™ T le+03

X
yu

oot ' 1e+03) T o1 ' Tor03 ')
of time steps # of time steps

Figure 5.13 SISO adaptive optimal control: delay 5. This is a demonstration of
Q@-learning based adaptive optimal control on the discretized double integrator with
hidden state. k = ! = 5, higher than the true system order. Panel A shows the norm
of the state, ¢, at each time step. Panel B shows the norm of the delayed coordinate
representation, Z;, at each time step. Policy iteration was performed every 100 time
steps. The overestimation does not inhibit the ability to learn an improved controller.

policy iteration algorithm managed to converge to a stabilizing policy. Testing the
algorithm with different initial estimates for Hy, caused convergence to different final
estimates for H*. However, in each case the policy implied by these different Q-
functions (see Equation (5.12)) was the same, so it seems that there is still a unique
convergence point despite the violation of controllability. This has not been verified
theoretically.

5.9 Distributed Adaptive Control

Lightweight and flexible structures are becoming increasingly important under the
dictates of economics and improved materials technology. Examples include bridges,
tall buildings, large space structures, and extended links of robot arms. Many of these
structures can be modelled as high-dimensional, multi-input, multi-output linear
systems. Depending on the size of the system, the design of a Linear-Quadratic (LQ)
optimal controller can be prohibitively expensive. This is true for both traditional
off-line techniques as outlined in Section 5.1 and for the on-line reinforcement learning
techniques described previously in this chapter. In this section we describe a dis-
tributed version of the adaptive policy iteration algorithm, and experimentally verify
that it can be used to derive an approximation to the optimal controller under certain
circumstances. The savings in computational cost per time step can be substantial.

We make two assumptions in our derivation of the distributed adaptive policy
iteration algorithm. The first assumption is that, given a loosely coupled control
rule, the closed-loop state transition function of the linear system is loosely coupled.
This means that changes in component 2 of the state vector « from time ¢ to time £ 41
depend primarily on the values of components near . The second assumption is that
the one-step quadratic cost function is also loosely coupled. This implies that each

o

-

S T

£

91

component of z and u interacts primarily with nearby components in determining the
cost incurred at each time step.

Given these assumptions, we partition the state and action spaces, assigning an
adaptive @-learning controller to each partition. Each controller receives only partial
state information, and contributes only a portion of the global control signal. Each
controller also computes a local reinforcement signal using the relevant portion of the
global one-step quadratic cost function. Each controller uses the algorithm described
in Section 5.4 to find a controller that optimizes its local costs. Figure 5.14 gives a
pseudocode sketch of the distributed algorithm. There is no direct communication
between the controllers. The presence of other controllers is seen only through their
effect on the locally sensed state information. The interaction between controllers is
minimized by the diagonal nature of the system and cost function. The controllers
adapt in parallel, deriving “improved” control rules simultaneously. The algorithm is
distributed, but not asynchronous.

Flexible structures are good candidates for systems that match our two assump-
tions. If the control rule U is loosely coupled, then the closed-loop state transition
function will also be loosely coupled. The distributed control law implemented by
this algorithm is loosely coupled by design. Choosing a loosely coupled quadratic cost
function is simple, and does not depend on the system.

The distributed adaptive policy iteration algorithm is heuristic in that there is
as yet no theory that gives precise conditions under which it is guaranteed to remain
stable or to converge to a best approximation to the optimum centralized control rule.
Although this algorithm will not in general find a global optimum, its computational
advantages can be substantial, and these computational advantages can offset the
increased costs of using a suboptimal control rule.

As an example, consider a 20 dimensional system with 10 inputs that models
a flexible beam. The global cost matrices E and F are identity matrices of the
appropriate sizes. The Q-function for a global control rule is a symmetric 30 by
30 matrix, containing 465 independent parameters. Using RLS to learn the global
Q-function would require O(465%) operations at every time step. On the other hand,
suppose we are using 10 independent adaptive controllers. The partial state vector
sensed by the #*® controller consists of the displacement and velocity of the i** node.
The control signal emitted by the ** controller is the acceleration to be applied to
the #** node. It includes an exploratory component. The local cost matrices £ and
F are identity matrices of the appropriate sizes to match the locally sensed state
vector and the local control vector. Figure 5.15 illustrates this situation. Each local
Q-function is then a symmetric 3 by 3 matrix with 6 independent parameters. Using
RLS to learn the @-function would require O(6%) operations at every time step at
every node. Since there are 10 nodes, the total cost would be O(10 x 62) operations
at every time step. This is a reduction of 99.83% in the total computational cost per
time step! Table 5.1 shows further comparisons between the costs per time step of
the two algorithms for larger systems of the same type. As applied here, each of the
independent controllers is of the same size. As the state and action spaces grow, new
controllers of the same size are added. If we follow this scheme in general, the cost
for the distributed algorithm scales linearly in n, the length of the global state vector,

92

1 For each controller, initialize parameters 6, (0).

2 t=0k=1.

3 repeat forever {

4 For each controller, initialize P (0).

5 fori=1toN {

6 For each controller, determine the local control signal u; = Ugz; + e,
where U}, is the local controller, z; is the local state, and e, is the local
“exploration” component of the control signal.

7 Apply all of the local control signals to the system simultaneously,
resulting in a global state transition.

8 For each controller, update the estimates of the @Q-function parameters,
01 (), using RLS (Equations (5.14)).

9 t=t41.

}

10 for each controller {

11 Find the symmetric matrix H; that corresponds to the parameter vector
0.

12 Perform policy improvement based on Hy: U1 = —ﬂq},,ﬂk(,l,.

13 Initialize parameters ék+1 (0)= b

}
14 k=k+1
15 }

Figure 5.14 The distributed policy iteration algorithm based on @-learning. The
algorithm starts with some stabilizing controller Uy partitioned among the distributed
controllers. ¢ is the total number of time steps. k keeps track of the number of policy
iteration steps. i counts the number of time steps since the last change of policy.
When 7 = N, one policy improvement step is executed in parallel for all controllers.

The cost per time step of the centralized algorithm is O((n + m)*), where n is the

length of the global state vector, and m is the length of the global control vector?.
Figure 5.16 demonstrates the performance of the distributed adaptive policy

iteration algorithm on the system illustrated in Figure 5.15. The initial state of the
system is a random point in a neighborhood around 0 € R?°. Panel A of the figure
shows that the distributed control rule changes very slowly after the first few policy
iteration steps. Panel B shows that the distributed controller remains stationary with
respect to the centralized optimal controller after a few policy iteration steps. The
upper curve shows the Euclidean distance between the two control rules, and the lower
curve shows the max norm of the difference between the two rules. We performed an
experiment to assess the increase in control cost associated with using this suboptimal

2Following the change of variables (Section 5.3), the vector [z,u | has p = (n+m)(n+m+1)/2
elements. RLS then costs O(p?) in space and computation at each time step.

\azd

93

Figure 5.15 Application of the distributed adaptive policy iteration algorithm to a
flexible beam. The beam system is a 20-dimensional discrete-time approximation of
an Euler-Bernoulli flexible beam supported at both ends. The partial state vector
sensed by the #** controller consists of the displacement and velocity of the #*® node.
The control signal emitted by the #** controller is the acceleration to be applied to
the #** node.

controller. We chose 108 points from a spherical Gaussian distribution with variance
1.0 about the origin in state space. From each of these points we measured the
long-term cost of following the optimal policy, and the long-term cost of following
the final distributed policy. The average cost of the optimal policy was 56.26. The
average cost of the distributed policy was 60.72, a cost gain of 7.92%. Depending
on the system requirements, the decreased computational burden of deriving the
distributed controller may be enough to offset the gain in control cost with respect
to the optimal cost.

10 T 10
A B
83 [

: g \
& |)
= oo} ? 13
= 2
2 lenf =

le-04 9

le-0s .) 0. m

k, number of policy iteration steps k, number of policy iteration steps

Figure 5.16 Performance of the distributed adaptive policy iteration algorithm. The
demonstration system is a simulation of a flexible beam.

94

Table 5.1 Cost comparisons between the centralized and distributed adaptive policy
iteration algorithms. The systems used for the comparison are flexible beams like that
in Figure 5.15. The comparisons are between the cost per time step of of the adaptive
policy iteration algorithm (Figure 5.1) and the distributed adaptive policy iteration
algorithm (Figure 5.14).

Number of Cost
, Number of Number of parameters ;0a% per
Algorithm time step
dimensions inputs n (tm'n RLS)
Q-function 9
Centralised 100 50 11,325 | O(11,325) |
Distributed | 50xe8 O(50 x 62)
Centralized 200 100 54,150 0(54, 1502)
Distributed 100 x 6 0(100 x 6?)
Centralized 400 200 180, 300 0(180, 300%)
Distributed 200 x 6 0(200 x 62%)

5.10 Dealing with a Stochastic System

So far we have only considered deterministic systems. Consider now the applica-
tion of the adaptive policy iteration algorithm to a system of the form

Ty = Ay + Bug + 7, (5.45)

with feedback control given, as throughout this chapter, by Equation (5.2), and
where each 7 is generated independently from an n-dimensional, zero-mean, Gaussian
distribution. Instead of trying to solve this problem in general, we will work with a
simple 1-dimensional example:

T =T+ U+

U = ADs.
Using the definition of ¢; from Equation (5.13)
[2}] B
¢t S| BeUr | — | Te41Ut4

| '"'f i A '”'t2+1
[22] [(¢ + ue + 1)

= | zoue | —v | afze + ue +m¢)?
| uf | (e +u + 1)
[22] [(ze + we)? + 2me(ze + we) + 7

= | zeue | =7 | alz +u)® + 20m (2 + ue) + an?
| u?] | a?(2: + ue)? + 202 (2 + ue) + o¥n?

95

H (2¢ + ue)?
= [Tous] - [a(ze +we)? | — 29

o?(ze + ue)?

(:Bg + 'Uag) 1
oz +u) | —yn? [a] .(5.46)
a?(ze + ue) o?

Remembering the discussion of linear Least Squares function approximation from
Section 4.5.1, ¢, is the noisy input observation. The first two terms in Equation
(5.46) come from the deterministic part of the system, and are all that we would get
if the state transitions were deterministic. The first two terms are the true input.
The other two terms correspond to the input observation noise. The presence of
the input observation noise introduces a bias into the RLS estimation of the Q-
function parameters. In Section 4.5.2 the input observation noise was zero mean,
and we were able to find an instrumental variable with which it was uncorrelated.
This allowed the development of the LS TD and RLS TD algorithms for finite-state,
finite-action MDPs. But for this LQ problem, the input observation noise is not
zero-mean, nor is there readily apparent any instrumental variable with which it is
uncorrelated. The deleterious effects of this input observation noise will similarly
afflict stochastic approximation methods such as TD()). Therefore we are unable to

remove the estimation bias caused by the stochastic state transitions.
Based on this analysis, we can conclude that while the adaptive policy iteration

algorithm may be applied to a stochastic problem, and it may converge to a stabilizing
policy, this policy will always be bounded away from the optimal policy. Furthermore,
since the input observation noise depends on the variance of 7,3, if the variance is
large enough, then the bias it introduces may be large enough to cause the adaptive
policy iteration algorithm to diverge.

5.11 Conclusions

In this chapter we have taken a first step toward extending the theory of DP-based
reinforcement learning to domains with continuous state and action spaces, and to
algorithms that use non-linear function approximators. We have concentrated on the
problem of Linear Quadratic Regulation. We described a policy iteration algorithm
for LQR problems that is proven to converge to the optimal policy. In contrast to
standard methods of policy iteration, it does not require a system model; it only
requires a suitably accurate estimate of Hy,. This is the first result of which we are
aware that proves convergence of a DP-based reinforcement learning algorithm in a

domain with continuous states and actions.
The convergence proof for the adaptive policy iteration algorithm requires exact

matching between the form of the @Q-function for LQR problems and the form of
the function approximator used to learn that function, i.e., it requires the function
approximator to be quadratic in the input (the state and action vectors). We are
able to use linear RLS to train the function approximator through a change of
input representation (Section 5.3). Future work will explore the convergence of
DP-based reinforcement learning algorithms when applied to non-linear systems for

3For multidimensional systems, the input observation noise will depend on the covariance matrix
of 7.

96

which the form of the @Q-function is unknown. It will be necessary in such cases to
use more general function approximation techniques, such as multilayer perceptrons.
De Lamothe [24], prompted by the work described here, presents some preliminary
experimental work along these lines.

It is a common practice to apply DP-based reinforcement learning algorithms to
situations that are not covered by any theory. Although these applications have met
with some success, one wonders about the possibility of failure. We showed that it
is possible for a naive translation of the optimizing Q-learning algorithm to the LQR
domain to fail by converging to a destabilizing controller.

We show that the adaptive policy iteration algorithm can be adapted very readily
to control the input/output behavior of a system with hidden state. This is a useful
development, because it will seldom be the case that one will know the order of an
unknown system, or whether the observed output vectors from the system actually
contain all of the necessary state information. Overestimating the order of the under-
lying system does not interfere with convergence or stability as long as the conditions
of Theorem 5.1 are satisfied. However, as demonstrated by a simple example, the state
space system {A, B} corresponding to a non-minimum order ARMAX model of the
underlying system may not be controllable. Despite this, the adaptive policy iteration
algorithm seems to converge to a unique set point. A theoretical understanding of
the convergence of the adaptive policy iteration algorithm despite the violation of
controllability is a topic for future work.

The distributed form of the algorithm can yield significant computational savings
per time step. The distributed algorithm lacks a convergence theorem, however. It
may be possible to find ties between extensions of this work and robust control theory.

The problems that arise when applying the adaptive policy iteration algorithm
to a stochastic problem are disheartening. Very few systems of interest will be
deterministic. It may be that the only way around these problems is to build a system
model. However, once we have a system model, why not use it as is conventionally
domne, to solve directly for the optimal controller? This is a topic for future research.

-

£

CHAPTER 8
CONCLUSIONS

The work presented in this dissertation addresses a number of important issues
in the theory and practice of IDP algorithms. These issues, as described in the
introduction, are:

1. the question of on-line convergence;

2. whether model-based or model-free methods should be used;

3. the theoretical understanding of the application of an IDP method to a contin-
uous problem;

4. the problem of using a compact function approximator; and
5. the problem of hidden state information.

The results presented in this dissertation have a number of practical implications for
the use of IDP algorithms. First, we show in Chapter 3 that IDP algorithms can be
used in certain instances to solve MDPs more cheaply than traditional DP algorithms.
Next, in Chapter 4 we present new algorithms for TD learning that are more stable,
have fewer algorithm parameters to set, and which converge more rapidly in general.
Finally, in Chapter 5 we demonstrate one of the pitfalls that can arise when applying
IDP algorithms to continuous domains, and we develop a rapidly convergent algorithm
that avoids that pitfall. The contributions made in this dissertation are described in
more detail below.

Chapter 3 described several new on-line IDP algorithms, RTDP, ARTDP, and
IDRTDP, for solving stochastic shortest path problems. These algorithms can be
viewed as generalizations of Korf’s LRTA*. Using the theory of asynchronous DP,
we proved that RTDP and IDRTDP will converge with probability 1 to a proper
partial policy with respect to the start set. One of the interesting features of these
algorithms is that they tend to concentrate computational resources on the set of
relevant states. It is possible for them to converge without ever visiting some of the
irrelevant states. This is in contrast to the traditional DP methods like value iteration,
which operates by sweeping through the entire state space, updating (backing up) the
value of every state as it goes. Our experiments on two instances of the racetrack
problem demonstrated that this theoretical advantage of the IDP algorithms could be
realized in practice, with both RTDP and ARTDP requiring fewer backups to achieve
effective convergence than value iteration. RTDP and ARTDP are both model-based
methods, the difference being that RTDP is given a system model to start with, while
ARTDP must construct its system model on-line. This retarded the convergence of

98

ARTDP in our experiments, but it still outperformed the model-free RTQ algorithm
by a wide margin.

Chapter 4 described several new on-line IDP algorithms for finding the value
functions of both ergodic and absorbing Markov chains. The NTD(A) algorithm is
a normalized version of Sutton’s TD()). The normalization tends to stabilize the
algorithm’s performance, reducing its sensitivity to both the state representations
and the settings of the control parameters. Using recent results on the convergence
of Q-learning, we proved that TD(0) and NTD(0) converge with probability 1 when
using a linear function approximator and linearly independent state representations.
We then derived the algorithm LS TD using Least Squares and instrumental variables
techniques, and proved its probability 1 convergence when using a linear function
approximator and linearly independent state representations. RLS TD is a recursive
version of LS TD that requires somewhat more restrictive conditions to ensure con-
vergence. We defined the concept of the TD error variance, oxp, and showed in a
series of experiments that the convergence rates for NTD()A) and RLS TD depended
linearly on ozp. RLS TD requires O(n?) operations per state transition to update
the value function estimate. NTD()) requires O(n) operations per state transition.
Despite this increase in immediate cost, RLS TD should be preferred over TD(A) or
NTD(A) for problems of moderate size, since it converges faster and it has no control
parameters to adjust. The cost of storing an n x n matrix will become prohibitive for
large problems, and it would become necessary to use an O(n) algorithm.

Chapter 5 develops an on-line adaptive policy iteration algorithm based on Q-
learning, and applies it to the problem of Linear Quadratic Regulation. We prove
that this algorithm convergences under the appropriate conditions to the optimal
policy. This is the first work of which we are aware that proves convergence for
an IDP algorithm when applied to a continuous domain. This is also the first
instance of proven convergence for an IDP algorithm that uses a compact function
approximator, that is non-linear in the inputs. We also demonstrate that it is possible
for IDP algorithms to fail when applied to a continuous domain, even though they are
proven to converge for finite-state, finite-action domains and lookup-table function
approximators. In comparison to standard, model-based techniques for finding the
optimal LQ policy, we show that the model-free adaptive policy iteration algorithm
requires fewer parameters whenever the sizes of the state transition matrices A and
B satisfy a certain constraint. We then show how to apply the adaptive policy
iteration algorithm to problems in which there is hidden state information, and
demonstrate experimentally that overestimating the order of the hidden state does
not interfere with convergence. We also describe a heuristic, distributed version of the
adaptive policy iteration algorithm that is applicable to systems with loosely coupled
subsystems. The distributed algorithm reduces the computational load per time step,
but at the cost of reduced performance with respect to the centralized optimal policy.

L.

APPENDIX A
PROOF OF THEOREMS FROM CHAPTER 3

A.1 Proof of Theorem 3.3

Here we prove Theorem 3.3, which extends Korf’s [48] convergence theorem

for LRTA* to Trial-Based RTDP applied to undiscounted stochastic shortest path
problems.
Proof: We first prove the theorem for the special case in which only the cost of the
current state is backed up at each time interval, i.e., By, = {zx} for k = 0,1,... (see
Section 3.4). We then observe that the proof does not change when each By, is allowed
to be an arbitrary set containing z;. Let G denote the goal set and let zj, ax, and
Vi respectively denote the state, action, and evaluation function at time step k in an
arbitrary infinite sequence of states, actions, and evaluation functions generated by
Trial-Based RTDP starting from an arbitrary start state.

First observe that the evaluation functions remain non-overestimating, i.e., at any
time k, Vi(z) < V*(z) for all states . This is true by induction because Viy1(z) =
Vi(z) for all z # =z, and if Vi(z) < V*(z) for all z € §, then for all k

Vit1(ze) = R(zk,a)+ Y P(zky,a)Vi(y)

min
uEA(z.,) yeX

< R(zk,a) + Y P(zk,y,a)V*(y)

min
aGA(z.) i yeX
= V'(zk),

where the last equality restates the Bellman Optimality Equation, Equation (2.3).

Let T C & be the set of all states that appear infinitely often in this arbitrary
sequence; Z must be nonempty because the state set is finite. Let Ag(z) € A(z)
be the set of admissible actions for state that have zero probability of causing a
transition to a state not in Z, i.e., Ag(z) is the set of all actions a € A(z) such that
P(z,y,a) = 0 for all y € (X — I). Because states in X — Z appear a finite number
of times, there is a finite time T, after which all states visited are in Z. Then, with
probability one, any action chosen an infinite number of times for any state z that
occurs after T must be in A5(z) (or else with probability one a transition out of Z
would occur), and so with probability one there must exist a time T} > T such that
for all k > T}, we not only have that z; € Z but also that a; € Ag(zk).

100

We know that at each time step k, RTDP backs up the cost of z;, because z;, € B;.
We can write the back-up operation as follows:

Vi1 () =

min R(:B],, a) + Z P(mh y,a)Vk(y) + Z P(‘nk; Y, a)Vk(y) . (Al)
acA(as) vel ve(X-T)

But for all k > T;, we know that z; € Z and that P(zx,y,ar) =0forallye X — T
because ar € Ag(zk). Thus, for k > T the right-most summation in Equation A.1
is zero. This means that the costs of the states in X — Z have no influence on the
operation of RTDP after T). Thus, after T}, RTDP performs asynchronous DP on a
Markovian decision problem with state set Z.

If no goal states are contained in Z, then all the immediate costs in this Markovian
decision problem are positive. Because there is no discounting, it can be shown that
asynchronous DP must cause the costs of the states in Z to grow without bound. But
this contradicts the fact that the cost of a state can never overestimate its optimal
cost, which must be finite due to the existence of a proper policy. Thus Z contains a
goal state with probability one.

After T}, therefore, Trial-Based RTDP performs asynchronous DP on a stochastic
shortest path problem with state set Z that satisfies the conditions of the convergence
theorem for asynchronous DP applied to undiscounted stochastic shortest path prob-
lems (Bertsekas and Tsitsiklis [7], Proposition 3.3, p. 318). Consequently, Trial-Based
RTDP converges to the optimal evaluation function of this stochastic shortest path
problem. We also know that the optimal evaluation function for this problem is
identical to the optimal evaluation function for the original problem restricted to the
states in Z because the costs of the states in X — Z have no influence on the costs of
states in Z after time T3.

Furthermore, with probability one Z contains the set of all states reachable from
any start state via any optimal policy. Clearly, Z contains all the start states because
each start state begins an infinite number of trails. Trial-Based RTDP always executes
a greedy action with respect to the current evaluation function and breaks ties in such
a way that it continues to execute all the greedy actions. Because we know that the
number of policies is finite and that Trial-Based RTDP converges to the optimal
evaluation function restricted to Z, there is a time after which it continues to select
all the actions that are greedy with respect to the optimal evaluation function, i.e.,
all the optimal actions. Thus with probability one, Z contains all the states reachable
from any start state via any optimal policy, and there is a time after which a controller
using RTDP will only execute optimal actions.

Finally, with trivial revision the the above argument holds if RTDP backs up the
costs of states other than the current state at each time step, i.e., if each By is an

arbitrary subset of X.
Q.E.D.

101

A.2 Proof of Theorem 3.4

Here we prove Theorem 3.4, which states conditions under which IDRTDP will

converge when applied to undiscounted stochastic shortest path problems. The proof
is nearly the same as that for Trial-based RTDP.
Proof: We first prove the theorem for the special case in which only the cost of the
current state is backed up at each time interval, i.e., By = {zx} for k =0, 1,... (see
Section 3.9). We then observe that the proof does not change when each By, is allowed
to be an arbitrary set containing z;. Let G denote the goal set, S denote the start set,
and let z, ax, and V} respectively denote the state, action, and evaluation function
at time step k in an arbitrary infinite sequence of states, actions, and evaluation
functions generated by IDRTDP starting from an arbitrary start state.

First observe that the evaluation functions remain non-overestimating, i.e., at any
time k, Vi(z) < V*(z) for all states z. This is true by induction because Viy,1(2z) =
Vi(z) for all z # =z and if Vi(z) < V*(z) for all z € S, then for all &

We+1(3k) = eliién) R(zk)a) + Z‘Xp(zhy’a)‘,k(y)
as/no ye

< min [R(zk,0)+ Y, P(e,y,a)V*(y)
ac A=) veX

= V.(zk)7 -

where the last equality restates the Bellman Optimality Equation, Equation (2.3).
Remember that V*(z) = oo for any trap state z.

Let Z C X be the set of all states that appear infinitely often in this arbitrary
sequence; Z must be nonempty because the state set is finite. Let Ag(z) € A(z)
be the set of admissible actions for state # that have zero probability of causing a
transition to a state not in Z, i.e., Ag() is the set of all actions a € A(z) such that
P(z,y,a) = 0 for all y € (X — I). Because states in X — I appear a finite number
of times, there is a finite time Tj after which all states visited are in Z. Then, with
probability one, any action chosen an infinite number of times for any state z that
occurs after Tp must be in Aq(z) (or else with probability one a transition out of Z
would occur), and so with probability one there must exist a time T} > Ty such that
for all k£ > Ty, we not only have that) € Z but also that ax € Ag(zk).

We know that at each time step k, IDRTDP backs up the cost of z; because
z) € By. We can write the back-up operation as follows:

Vimitee) B(zk, a) + 3 P(er,y,0)Ve(y) + Y Plewy,a)Vi(y)|. (A2)
a€/lm) ve ve(X-I)

But for all £ > T, we know that z; € T and that P(zk,y,ax) =0forallye X —Z
because ar € Aq(zk). Thus, for k > T; the right-most summation in Equation A.2
is zero. This means that the costs of the states in X — Z have no influence on the

102

operation of IDRTDP after T;. Thus, after 7}, IDRTDP performs asynchronous DP
on a Markovian decision problem with state set Z.

Now, what state are in Z? The start states are in Z, S C Z, because of the
iterative-deepening time-out provision of IDRTDP. Now, let us suppose that at least
one trap state, z, is in Z. Because there is no discounting, and all costs not involving
goal states are positive, the value estimate for 2z grows without bound as it is updated
infinitely often. There causes no immediate problem, as V*(z) = oco. But the
unbounded growth of Vi(2) means that the value estimates of every state on a path
from S to z will also grow without bound, including the value estimates for the
start states. This is a contradiction to the fact that the cost of a state can never
overestimate its optimal cost, and the optimal cost of a start state must be finite due
to the existance of a partial proper policy with respect to the start states. Therefore,
with probability one, no trap states can be elements of Z. Next, suppose that no
goal state are contained in Z. This means that all of the immediate costs in this
Markovian decision problem are positive. Because there is no discounting, it can be
shown that asynchronous DP must cause the costs of the states in T to grow without
bound. But this is again a contradiction to the fact that the cost of a state can never
overestimate its optimal cost, and the optimal cost of a start state must be finite due
to the existance of a partial proper policy with respect to the start states. Thus 7
contains at least one goal state with probability one.

After T, therefore, IDRTDP performs asynchronous DP on a stochastic shortest
path problem with state set Z that satisfies the conditions of the convergence theorem
for asynchronous DP applied to undiscounted stochastic shortest path problems (Bert-
sekas and Tsitsiklis 7], Proposition 3.3, p. 318). Consequently, IDRTDP converges
to the optimal evaluation function of this stochastic shortest path problem. We also
know that the optimal evaluation function for this problem is identical to the optimal
evaluation function for the original problem restricted to the states in Z because the
costs of the states in X — Z have no influence on the costs of states in Z after time
T;. '

Furthermore, with probability one Z contains the set of all states reachable from
any start state via any optimal policy. Clearly, Z contains all the start states because
each start state begins an infinite number of trails. IDRTDP always executes a greedy
action with respect to the current evaluation function and breaks ties in such a way
that it continues to execute all the greedy actions. Because we know that the number
of policies is finite and that IDRTDP converges to the optimal evaluation function
restricted to Z, there is a time after which it continues to select all the actions that are
greedy with respect to the optimal evaluation function, i.e., all the optimal actions.
Thus with probability one, Z contains all the states reachable from any start state
via any optimal policy, and there is a time after which a controller using IDRTDP
will only execute optimal actions.

Finally, with trivial revision the the above argument holds if IDRTDP backs up
the costs of states other than the current state at each time step, i.e., if each By is
an arbitrary subset of &X'.

Q.E.D.

o

-

APPENDIX B
SIMULATION DETAILS FOR CHAPTER 3

Except for the discount factor v, which we set to one throughout the simulations,
and the sets By, which we set to {z;} for all &, RTDP does not involve any parameters.
Gauss-Seidel DP only requires specifying a state ordering for its sweeps. We selected
an ordering without concern for any influence it might have on convergence rate.
Both ARTDP and RTQ require exploration during the training trials, which we
implemented using Equation (3.3). To generate the data described in Section 3.8.2,
we decreased the parameter T' with successive moves as follows:

T(0) = Tosue (B.1a)
T(k+1) = T + B(T (k) — Tran), (B.1b)

where k is the move number (cumulative over trials), 8 = 0.992, Ty,, = 75, and
Tmn = 0.5.

RTQ additionally requires sequences of learning rate parameters ax(z,a) (Equa-
tion (2.22)) that satisfy the hypotheses of the @-learning convergence theorem [92,93].
We define these sequences as follows. Let ax(z, a) denote the learning rate parameter
used when the Q-value of the state-action pair (z, a) is backed up at time step k. Let
7k(z, a) be the number of backups performed on the @-value of (z,a) up to time step
k. The learning rate ax(z,a) is defined as follows:

agT

ok(=,a) = 7 + 1i(2, a)

(B.2)

where ay is the initial learning rate. We set ag = 0.5 and 7 = 300. This equation
implements a search-then-converge schedule for each ax(z, a) as suggested by Darken
and Moody [21] and Darken, Chang, and Moody [20]. They argue that such schedules
can achieve good performance in stochastic optimization tasks. It can be shown that
this schedule satisfies the hypotheses of the @}-learning convergence theorem.

APPENDIX C
PROOF OF THEOREMS FROM CHAPTER 4

C.1 Proofs for Section 4.5.1

Lemma 4.1: If the correlation matriz Cor(w,w) is nonsingular and finite, and the
output observation noise n; is uncorrelated with the input observations w;, then 6 as

defined by Equation (4.14) converges in probability to 6.
Proof: Replacing ; by (w}0* + ;) in Equation (4.14), and taking the limit as k goes

to infinity gives

p— ! t
k]:n;ﬂ k_m[Zw,] [§w,w0 Z;w,n,l .
Looking at all of the individual terms in this expression, we can see under our
assumptions that they tend in probabi].ity to finite values. + Lk ww! converges

in probability to Cor(w,w) and % Z=-1 w;n; converges in probability to 0. Therefore
we are justified in distributing the limit. This gives us

Jhnona O = [n - Zw,w] [k]i»m . ZW,w'G* + hm n Zw,'q,]

i=1 i=1

L_m Ew,w] [,H LS 'a'+o]

‘l-‘l i=1
= Cor(w, w) ™" Cor(w, w)é*

in probability. But according to our assumption, Cor(w,w) is invertible. Therefore,
limg._y00 0 = 0* in probability.

Q.E.D.

Lemma 4.2: If the correlation matriz Cor(p,w) is nonsingular and finite, the
correlation matriz Cor(p,() = 0, and the output observation noise 7; is uncorrelated
with the instrumental variables p;, then 0, as defined by Equation (4.16) converges in
probability to 0*.

Proof: Replacing 9; by (w!6* +7;) and @&; by (w; + ;) in Equation (4.16) and taking
the limit as k approaches infinity yields

lim 6, = m[Zp.(w,+c.)] [Zps(w’9‘+m)]

k—o0 =1

,,_m[Zpgw + - ZP:C l [Y pilf* + = Zp.n.].

3-1 i=1 :—1

Looking at all of the individual terms in this expression, we can see under our
assumptions that they tend in probability to finite values. £ Lk piw! converges

o

£

E

105

in probability to Cor(p,w), %25‘;1 pi¢{ converges in probability to Cor(p, (), and

%Eﬁ;l pini converges in probability to 0. Therefore we are justified in distributing
the limit. This gives us

Lm 6 = [Zpsw + < Zp:(’] [kZP-w'ﬂ‘ kZM-]

koo r"l i=1 i=1
-1

) 1 k k .
= [kliyn:o E;th + h XEPtC,] k Zpﬂw'a + hm o k Eptﬂs]

=1

wk
= [k E p‘w + Ol [z p‘wlgt + 0]
= Cor(p,w) ' Cor(p,w)8*
in probability. But according to our assumption, Cor(p,w) is invertible. Therefore,

limg_,o0 0 = 6* in probability.
Q.E.D.

C.2 Proofs for Section 4.5.2

First we'll examine 3 y P(z,y)(R(z,y) — R.) for an arbitrary state z.

Z P(z,y)(R(=z,y) — R-B) = Z P(z,y)R(z,y) — Z P(z’y)Ra

yeX yeX yeX
= E P(”:y)R(c)y) - Rz
yeX
~R.-R

Now we’re ready to prove the stated lemmas.
Lemma 4.3: For any Markov chain, if ¢ and y are states such that P(z,y) > 0,

with 72y = R(z,y) — R. and w, = (¢ — 1E,ex P(z,y)dy), then E{n} = 0, and

Cor(w,n) = 0.

Proof: The result in the preceeding paragraph leads directly to a proof that £ {n} = 0,
£ {n} = £{R(z,y) - R}

=) 7), P(z,y)(R(z,y) - R.)

zex yeX
= Z e -0
an
=0,

and to a proof that Cor(w,n) =0,
Cor(w,n) = € {wn}

106

= Z Tz Z P(z,y) [watey]
zeX yeX

=) 7), P(z,y)ws(R(z,y) - R)
zGX yGX

=) maws), P(z,y)(R(z,y) — Ra)
zeX yGX

= Z Ty - 0
zex

= 0.

Q.E.D.
Lemma 4.4: For any Markov chain, if (1) ¢ and y are states such that P(z,y) > 0;

(2) Coy =V Z,ex P(2,2)0: —1bu; (9) Moy = R(2,y) — Ra; and (4) pz = ¢o, then (1)

Cor{p,n) = 0; and (2) Cor(p,() =0.
Proof: First we will consider Cor(p,7).

Cor(p,n) = € {pn'}

=Y 7 Y P(2,9) [penly]
zeX yeX
=Y ™ Y, P(z,y)¢x(R(z,y) - R.)’
zeX yeX
=) 7abe 3 P(z,y)(R(z,y) — Rz)’
zeX vEX
= Z 7rz¢z -0
zex
= 0.
Now for Cor(p, ().
Cor(p,¢) = E{p('}
= E Te Z P(:v,y) [po;y]
zeX yeX
=3 m Y P(z,y)ba(7 Y Plz,2)¢: — 14y)
zex yEX zeX
= Z 1!',_.¢= Z P(z)y)(7 Z P(m)z)¢;) - Z 7rz¢z Z P(:c,y)'yqb;
zeX yeX e zeX yeX
= z TzzY Z P(:c:z)ﬁblz - E TPy Z P(“’:y)‘ﬁ;
zeX zeX zeX yeX
=0.

Q.E.D.

107

C.3 Proofs for Section 4.5.3

Lemma 4.5: For any Markov chain, when (1) 6 is found using algorithm LS TD;
(2) each state = € X is visited infinitely often; (3) each state © € X is visited in the
long Tun with probability 1 in proportion w,; and (4) [®'II(I — yP)®] is invertible,
then Bsro = [S'TI(I — yP)®) ™" [S'TIR| with probability 1.

Proof: Equation 4.21 (repeated here) gives us the k*estimate found by algorithm LS
TD for 6°,

0]: = z_; ¢i(¢t 7¢s+1)] Z ¢t l .

As k grows we have by condition (2) that the sampled transition probabilities between
each pair of states approaches the true transition probabilities, P, with probability
1. We also have by condition (3) that each state z € X is visited in the proportion
m, with probability 1. Therefore, given condition (4) we can express the limiting
estimate found by algorithm LS TD, 651, as

ans'm =]-im ak

[qu, el [%im,]

k—)oo P

= k_} szﬁt 'Y¢:+1)l Lli{’;lo i sR]

=1 i=1

1
k:

= ZnZP(z,y)qbz(% 7¢,,)’] l[vr=¢.,§:P(a=,y)R(z,y)]
:

= LX,,: Tz Ey: P(z,y)Pz (= — 74y)]

= ['TI(I — yP)®] ™" [<1>’mz] :

,,,R,¢,]

Q.E.D.

APPENDIX D
PROOFS OF LEMMAS FROM CHAPTER 5

D.1 Proof of Lemma 5.1

Proof: Lemma 5.1 follows directly from Lemmata D.2 and D.3.
Q.E.D.

Lemmata D.1 through D.3 are presented, along with some prelimiary definitions,
in Sections D.1.1 through D.1.4.

D.1.1 Preliminary Definitions

Let U; be a stabilizing controller for this system, and let K; be the associated
cost matrix. Let U, be the result of performing the policy improvement algorithm on
Ul, i.e., _]

U, = —y(F +vB'K,B)'B'K, A. (D.1)
Let K, be the cost matrix associated with U;. Define A; = A + BUj, and A4, =
A + BU,. ,

We know [6] that the cost matrix Ky for a given control matrix U satisfies
Equation (5.6), which is repeated here as

Ky =E+U'FU +v(A+ BU) Ky (A+ BU), (D.2)
and the equation
Ky =Y .~'(A+ BU)'(E + U'FU)(A + BUY'. (D.3)
=0

D.1.2 Lemma D.1

Lemma D.1 If {A, B} is controllable, U, is stabilizing, and
U, = —y(F + yB'K1B) ' B'K, A, then

Ky — K =) 7' 4 [(Uy — Ua)'(F +vB'K, B)(Ur — Us)] A3,

=0

where A, = A+ BU, and A, = A+ BU,.

109

Proof: First, rewrite K, as:

K = Ki + Y (Y AV K A)) - D (1" AY K1 A)
i=1 i=1

=Y (FAVK A)) — Y (Y AYK, AY)
=0 =1

=Y (Y AVK AL) — Y (v A [vA) K1 Ay AS)

1=0 1=0

= Z'YiAg’[Kl — 747 K1 Ag) A} (D.4)

i=0

Combining Equations (D.3) and Equation (D.4) we get

Ky — K, =Y v Ai [Ky — 7A' K1 A, — E — U,'FU,) A (D.5)

=0

Let us define D = [K; — 7A;’K1A; — E — U, FU,).
Substituting from Equation (D.2) into the definition of D, we get

D =E+U/FU, +vA/'K1A; —7A,’K 1Ay — E - U,'FU,
= UllFUl + ‘)’A1’K1A1 - ‘)’Az'KlAz - Uz'FUg.

Expanding A,'K; A, yields

D = U/FU, +7A'Ki A,
—yA'K, A —yA'K\BU, — vU;' B'K\ A — Uy’ B'K, BU,
_U,'FU,
= U,'FU; + vA'K1 A, — 1A'KL A
—yA'K,BU, —Uy'B'K, A
—Uy'(F +vB'K,B)U,.

Using the definition of U, from Equation (D.1) now gives
D= Ul’FUl +’7A1’K1A1 - ’YAIKlA
+Uz'(F + ‘YB'KlB)Uz + Uz'(F + ‘yB'KlB)Uz
—Uz'(F +’)’B'KlB)U2
= UllFUl + 7A1'K1A1 - ‘yA’K]_A + Uz'(F + ’YB'KlB)Uz.
Finally, expanding A,'K;A; and again using the definition of U, leads to

D =U,FU,
+‘YA’K1A + ‘YA,KlBUl + ‘7U1’B’K1A + ’yUllB’KlBUl
—‘YA’KIA

110

+U,'(F + vB'K, B)U,

= Ul'(F + ')’B'KlB)Ul
+yA'K\BU, +9U,'B'K, A
+U,'(F +vB'K,B)U;

=U,'(F +vB'K,B)U, — U,'(F + vB'K, B)U,
—U,'(F +vB'K,B)U, + U,'(F + vB'K, B)U,

= (U, — U,)'(F +vB'K,B)(U, — U,).

Substitute this final expression for D back into Equation (D.5) to get the desired
result -
Ky — K2 =) 4 AY[(Uy — Ua)/(F + vB'K, B)(Uy — U,)] Ai.

=0

Q.E.D.

D.1.3 Lemma D.2

Lemma D.2 If {A, B} is controllable, U, is stabilizing, and
U, = —y(F + yB'K,B) ' B'K, A, then

o(Uh) - a(Uz) 2 AUy — Ua|*.
where 0 < A = g(F).

Proof: By Lemma D.1, we know that

K, — K, =Y v'AY [(Uy - Ua)'(F + vB'K, B)(Us — Us)] A

=0

> (U — Up)' F(Uy - Ua),

since all of the summands are positive.
Taking the trace of both sides we get

trace(K;) — trace(K;) = trace(K; — K3)
Z trace((U1 - Uz)’(F + ‘7BIKlB)(U1 - Uz))
> o(F)||U: — Ua)*.

Noting that F is positive definite and substituting from the definitions of o(U;) and
o(Uz) gives us the final result

0< G'(Ul) - O'(Uz) > A"Ul - Uz"z.

Q.E.D.

111

D.1.4 Lemma D.3
Lemma D.3 If {A, B} is controllable, U, is stabilizing, and
U, = —y(F + yB'K\B) ' B'K1 A, then
o(Uh) - o(Us) < 8||Uy - Us||".

where 0 < & = trace (F +vB'K,B)|G||?>, G = (Eg_:_o .,(i/z)Ag), Ay = A+ BU,, and
A, = A+ BU,.
Proof: By Lemma D.1, we know that

Ky~ Ky =Y 743 [(Us - U2)'(F +vB'K1B)(U1 — Un)] 4

=0

< (27(:‘/2)_42:) (U1 = U2)'(F +vB'K,B)(Uy — U2) (Z ’YWZ)A'Q)

i=0 i=0
=G'(U, — U,)'(F +yB'K,B)(U, — Us)G.
Taking the trace of both sides we get
trace(K;) — trace(K;) = trace(K; — K»)
< trace(G'(Uy — Uz)'(F + vB'K, B)(U, — U2)G)
< trace (F + vB'K, B)||G||*||Uy — Us||.

Noting that (F + vB'K,B) is positive definite and substituting from the definitions
of o(U,) and o(U,) gives us the final result

0< G’(Ul) - O'(Uz) < JIIUl - Uz”z.

Q.ED.

D.2 Proof of Lemma 5.2

Proof: Let us consider the k** estimation interval. k; = ©(Hy,), the true vector

of parameters for the function Qu,. 6 = fi(N) is the estimate of k; at the end
of the k* estimation interval. The parameter estimates are initialized for the k**
estimation interval with the final values from the previous estimation interval, i.e.,

0:(0) = 6—;. The RLS algorithm is initialized at the start of the k' estimation
interval by setting the inverse covariance matrix P,(0) = P, and setting the initial

parameter estimates to the final values from the previous interval, i.e., ék(O) = h_y.
Define 0i(i) = 61(i) — kx. Then following Goodwin and Sin [30] we have
0(3) = Pu(3) Pe(s — 1) 20 (s — 1)
for all 2 > 0. Applying this relation recursively results in
8(2) = Pi(3) P(0)~81(0).
Taking the norms of both sides we have

18(3)1| = 11 Pu() Pe(0)*Bi(0))]

112
< PGl - 11Pe(0)]| - 116R(0)]]- (D.6)
Now, Pk(i)_l = Pk(O)—l + 2,N=1 ¢1¢(Z)¢k(z)' Therefore,
1Pe(3) 2| = || Pe(0)™* + L, (i) r Yl
> | =¥, de(i) e (i)l
> Neol (D.7)
We also know that)
1RO = . 03)

Substituting Equation (D.7) and Equation (D.8) into Equation (D.6) and using the
definition of ey yields

1% = () = 18w

< en||6:(0)]
= en||0:(0) — kel
= en|fk-1 — kel

= en||fr-1 — ki + Fi—1 — K |
< en(|lkr=1 = Or—1| + || ke — Fr-1]l),

and we have the desired result.

Q.ED.

-

BIBLIOGRAPHY

[1] Anderson, C. W. Strategy learning with multilayer connectionist representa-
tions. Technical Report 87-509.3, GTE Laboratories Incorporated, Com-
puter and Intelligent Systems Laboratory, 40 Sylvan Road, Waltham, MA
02254, May 1988.

[2] Aoki, M. Optimization of Stochastic Systems: Topics in discrete-time dynamics.
Academic Press, Inc., San Diego, 1989.

[3] Barr, A. and Feigenbaum, E. A. The Handbook of Artificial Intelligence.
William Kaufmann, Inc., Los Altos, CA, 1981.

[4] Barto, A. G., Bradtke, S. J., and Singh, S. P. Learning to act using real-time
dynamic programming. Artificial Intelligence. Accepted.

[5] Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike elements that can
solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, 13:835-846, 1983.

(6] Bertsekas, D. P. Dynamic Programming: Deterministic and Stochastic Models.
Prentice Hall, Englewood Cliffs, NJ, 1987.

(7] Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and Distributed Computation:
Numerical Methods. Prentice Hall, Englewood Cliffs, NJ, 1989.

[8] Bradtke, S. J. Incremental dynamic programming for sequential decision
problems: A dissertation proposal. unpublished, December 1990.

[9] Bradtke, S. J. Reinforcement learning applied to linear quadratic regulation.
In Advances in Neural Information Processing Systems 5, San Mateo, CA,
1993. Morgan Kaufmann.

[10] Bradtke, S. J., Ydstie, B. E., and Barto, A. G. Adaptive linear quadratic control
using policy iteration. In Proceedings of the American Control Conference,
1994.

[11] Bradtke, S. J., Ydstie, B. E., and Barto, A. G. Adaptive linear quadratic control
using policy iteration. JEEE TAC. Submitted.

[12] Chapman, D. Penquins can make cake. Al Magazine, 10:45-50, 1989.

[13] Chapman, D. and Kaelbling, L. P. Learning from delayed reinforcement
in a complex domain. Technical Report TR-90-11, Teleos Research, 576
Middlefield Road, Palo Alto, CA 94301, December 1990.

114

[14] Chapman, D. and Kaelbling, L. P. Input generalization in delayed reinforcement
learning: An algorithm and performance comparisons. In Proceedings of

IJCAI 1991.

(15] Charniak, E. and McDermott, D. Introduction to Artificial Intelligence.
Addison-Wesley Publishing Company, Reading, MA, 1985.

[16] Chen, C.-T. Linear system theory and design. Holt, Rinehart and Winston,
Inc., New York, 1984.

[17] Chrisman, L. Planning for closed-loop execution using partially observable
markovian decision processes. In AAAI Spring Symposium Series: Control
of Selective Sensing, 1992.

[18] Chrisman, L. Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In AAAI-92 Proceedings. Tenth National Conference
on Artificial Intelligence, 1992.

[19] Christensen, J. and Korf, R. E. A unified theory of heuristic evaluation
functions and its application to learning. In Proceedings of the Fifth National
Conference on Artificial Intelligence AAAI-86, pages 148-152, San Mateo,
CA, 1986. Morgan Kaufmann.

[20] Darken, C., Chang, J., and Moody, J. Learning rate schedules for faster
stochastic gradient search. In Neural Networks for Signal Processing 2 —
Proceedings of the 1992 IEEE Workshop. IEEE Press, 1992.

[21] Darken, C. and Moody, J. Note on learning rate schedule for stochastic opti-
mization. In Lippmann, R. P., Moody, J. E., and Touretzky, D. S, editors,
Advances in Neural Information Processing Systems 8, pages 832-838, San
Mateo, CA, 1991. Morgan Kaufmann.

[22] Dayan, P. The convergence of TD()) for general A. Machine Learning, 8:341-
362, 1992.

[23] Dayan, P. and Sejnowski, T. J. Td()): Convergence with probability 1.
Machine Learning. In press.

[24] De Lamothe, P. E. Policy improvement using basis function networks. Master’s
thesis, University of Massachusetts at Amherst, March 1993.

[25] Dean, T. and Boddy, M. An analysis of time-dependent planning. In Pro-
ceedings of the Seventh National Conference on Artificial Intelligence, pages
49-54, 1988.

[26] Denardo, E. V. Contraction mappings in the theory underlying dynamic
programming. SIAM Review, 9(2):165-177, April 1967.

[27] Gardner, M. Mathematical games. Scientific American, 228:108, January 1973.

£

115

(28] Gelperin, D. On the optimality of A*. Artificial Intelligence, 8:69-76, 1977.

[29] Ginsberg, M. L. Universal planning: An (almost) universally bad idea. AI
Magazine, 10:40-44, 1989.

[30] Goodwin, G. C. and Sin, K. S. Adaptive filtering prediction and control.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.

[31] Gullapalli, V. Reinforcement Learning and Its Application to Control. PhD
thesis, University of Massachusetts, Amherst, MA, 1992.

[32] Gullapalli, V. and Barto, A. G. Convergence of indirect adaptive asynchronous
value iteration algorithms. In Cowan, J. D., Tesauro, G., and Alspector, J,
editors, Advances tn Neural Information Processing Systems 6, San Fran-
cisco, CA, 1994. Morgan Kaufmann Publishers.

[33] Howard, R. A. Dynamic Programming and Markov Processes. John Wiley &
Sons, Inc., New York, 1960.

[34] Ishida, T. Moving target search with intelligence. In Proceedings of the Tenth
National Conference on Artificial Intelligence, Menlo Park, CA, 1992. AAAI
Press/MIT Press.

[35] Ishida, T. and Korf, R. E. Moving target search. In Proceedings of the 1991
International Joint Conference on Artificial Intelligence, 1991.

[36] Jaakkola, T., Jordan, M. I., and Singh, S. P. On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation. Submit-
ted.

[37] Jaakkola, T., Jordan, M. I, and Singh, S. P. Stochastic convergence of iterative
dp algorithms. In Proceedings of the Conference on Neural Information
Processing Systems — Natural and Synthetic, 1993. Accepted.

[38] Jacobson, D. H. and Mayne, D. Q. Differential Dynamic Programming, vol-
ume 24 of Modern Analytic and Computational Methods in Science and
Mathematics. American Elsevier Publishing Company, Inc., New York,
1970.

[39] Jalali, A. and Ferguson, M. Computationally efficient adaptive control algo-
rithms for Markov chains. In Proceedings of the 28th Conference on Decision
and Control, pages 1283-1288, Tampa, FL, December 1989.

[40] Jalali, A. and Ferguson, M. Adaptive control of Markov chains with local
updates. Systems and Conirol Letters, 14:209-218, 1990.

[41] Jordan, M. I. and Jacobs, R. A. Learning to control an unstable system with
forward modeling. In Advances in Neural Information Processing Systems
2. Morgan Kaufmann Publishers, San Mateo, CA, 1990.

116

[42] Kalman, R. E. A new approach to linear filtering and prediction prob-
lems. Journal of Basic Engineering, Transactions of the ASME, Series D,
82(1):35-45, 1960.

[43] Kalman, R. E. and Bucy, R. S. New results in linear filtering and prediction
theory. Journal of Basic Engineering, Transactions of the ASME, Series D,
83(3):95-108, 1961.

[44] Kemeny, J. G. and Snell, J. L. Finite Markov chains. Springer-Verlag, New
York, 1976.

[45] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated
annealing. Science, 220:671-680, 1983.

[46] Kleinman, D. L. On an iterative technique for Riccati equation computations.
IEEE Transactions on Automatic Control, pages 114-115, February 1968.

[47] Korf, R. E. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27:97-109, 1985.

[48] Korf, R. E. Real-time heuristic search. Artificial Intelligence, 42:189-211, 1990.

[49] Kwon, W. H. and Pearson, A. E. A modified quadratic cost problem and
feedback stabilization of a linear system. Machine Learning: Proceedings of
the Eighth International Workshop, 22:838-842, 1977.

[50] Larson, R. E. and Casti, J. L. Principles of Dynamic Programming. Part
I: Basic Analytic and Computational Methods, volume 7 of Control and
Systems Theory. Marcel Dekker, Inc., New York, 1978.

[61] Lin, L.-J. Self-improvement based on reinforcement learning, planning and
teaching. In Birnbaum, L. A. and Collins, G. C, editors, American Associa-
tion for Artificial Intelligence, pages 323-327, San Mateo, CA, 1991. Morgan
Kaufmann.

[62] Lin, L.-J. Self-improving reactive agents: Case studies of reinforcement learning
frameworks. In From Animals to Animats: Proceedings of the First Inter-
national Conference on Simulation of Adaptive Behavior, pages 297-305,
Cambridge, MA, 1991. MIT Press.

[53] Lin, L.-J. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8:293-321, 1992.

[54] Lin, L.-J. and Mitchell, T. M. Memory approaches to reinforcement learning
in non-markovian domains. Technical Report CMU-CS-92-138, Carnegie
Mellon University, 1992.

[55] Ljung, L. and Soderstrém, T. Theory and Practice of Recursive Identification.
MIT Press, Cambridge, MA, 1983.

[

117

[56] Luenberger, D. G. Introduction to dynamic systems: Theory, Models, and
Applications. John Wiley & Sons, New York, 1979.

[567] Lukes, G., Thompson, B., and Werbos, P. J. Expectation driven learning with
an associative memory. In Proceedings of the International Joint Conference
on Neural Networks, pages 1:521-524, 1990.

[58] Mayne, D. Q. and Michalska, H. Receding horizon control of nonlinear sys-
tems. Machine Learning: Proceedings of the Eighth International Workshop,
35:814-824, 1990.

[59] McCallum, R. A. Overcoming incomplete perception with utile distinction
memory. In Proceedings of the Tenth International Conference on Machine
Learning, 1993.

[60] Mérd, L. A heuristic search algorithm with modifiable estimate. Artificial
Intelligence, 23:13-27, 1984.

[61) Moore, A. W. and Atkeson, C. G. Memory-based reinforcement learning:
Efficient computation with prioritized sweeping. In Advances in Neural
Information Processing Systems 5, San Mateo, CA. Morgan Kaufmann.

[62] Moore, A. W. and Atkeson, C. G. Prioritized sweeping: Reinforcement learning
with less data and less real time. Machine Learning, 8, 1992. VERIFY
THIS!

[63] Musliner, D. J., Durfee, E. H., and Shin, K. G. World modeling for the dynamic

construction of real-time control plans. Artificial Intelligence. Submitted.

[64] Nilsson, N. J. Principles of Artificial Intelligence. Tioga Publishing Company,
Palo Alto, CA, 1980.

[65] Puterman, M. L. and Shin, M. C. Modified policy iteration algorithms for

discounted Markov decision problems. Management Science, 24:1127-1137,
1978.

[66] Robbins, H. and Monro, S. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400-407, 1951.

[67] Ross, S. M. Introduction to Stochastic Dynamic Programming. Academic Press,
New York, 1983.

[68] Samuel, A. L. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3:210-229, 1959.

[69] Samuel, A. L. Some studies in machine learning using the game of checkers. IT—
Recent progress. IBM Journal of Research and Development, pages 601-617,
November 1967.

118

[70] Sato, M., Abe, K., and Takeda, H. Learning control of finite Markov chains
with explicit trade-off between estimation and control. IEEE Transactions
on Systems, Man, and Cybernetics, 18:677-684, 1988.

[71] Schoppers, M. Building plans to monitor and exploit open-loop and closed-loop
dynamics. Artificial Intelligence. Submitted.

[72] Schoppers, M. J. Universal plans for reactive robots in unpredictable envi-
ronments. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, pages 1039-1046, Menlo Park, CA, 1987.

(73] Schoppers, M. J. In defense of reaction plans as caches. AI Magazine, 10:51-60,
1989.

[74] Schwartz, A. Doing away with temporal discounting. In Proceedings of the
Tenth International Conference on Machine Learning, Amherst, MA, June
1993.

[75] Schwartz, A. Thinking locally to act globally: A novel approach to reinforce-
ment learning. In Proceedings of the Fifteenth Annual Conference of the
Cognitive Science Society, 1993.

[76] Singh, S. P. Transfer of learning by composing solutions for elemental sequential
tasks. Machine Learning, 8(3/4):323-339, May 1992.

[77] Singh, S. P. Learning to Solve Markovian Decision Processes. PhD thesis,
University of Massachusetts, Amherst, MA, 1993.

[78] Singh, S. P. and Yee, R. C. An upper bound on the loss from approximate
optimal-value functions. Machine Learning. to appear.

[79] Séderstrom, T. and Stoica, P. G. Instrumental Variable Methods for System
Identification. Springer-Verlag, Berlin, 1983.

[80] Sofge, D. A. and White, D. A. Neural network based process optimization and
control. In Proceedings of the 29th Conference on Decision and Control,
Honolulu, Hawaii, December 1990.

[81] Sutton, R. S. Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, Department of Computer and Information Science, University of
Massachusetts at Amherst, Amherst, MA 01003, 1984.

[82] Sutton, R. S. Learning to predict by the method of temporal differences.
Machine Learning, 3:9-44, 1988.

[83] Sutton, R. S. First results with DYNA, an integrated architecture for learning,
planning and reacting. In Proceedings of the 1990 AAAI Spring Symposium
on Planning in Uncertain, Unpredictable, or Changing Environments, 1990.

Ef‘»,

119

[84] Sutton, R. S. Integrated architectures for learmng, planning, and reacting based
on approximating dynamic programming. In Sanderson, A. C., Desrochers,
A. A., and Valavanis, K, editors, Proceedings of the IEEE Intematzonal
Symposium on Intelligent Control, Albany, New York, 25-26 September
1990. IEEE.

[85] Sutton, R. S. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning, pages 216-224, San Mateo,
CA, 1990. Morgan Kaufmann.

[86] Sutton, R. S. Integrated modeling and control based on reinforcement learning
and dynamic programming. In Lippmann, R. P., Moody, J. E., and Touret-
zky, D. S, editors, Advances in Neural Information Processing Systems 3,
pages 471-478, San Mateo, CA, 1991. Morgan Kaufmann.

[87] Sutton, R. S. Planning by incremental dynamic programming. In Birnbaum,
L. A. and Collins, G. C, editors, American Association for Artificial Intelli-
gence, pages 353-357, San Mateo, CA, 1991. Morgan Kaufmann.

[88] Sutton, R. S., Barto, A. G., and Williams, R. J. Reinforcement learning is
direct adaptive optimal control. In Proceedings of the American Control
Conference, pages 2143-2146, Boston, MA, 1991.

[89] Tesauro, G. J. TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation. To appear.

[90] Tesauro, G. J. Practical issues in temporal difference learning. Machine
Learning, 8(3/4):257-277, May 1992.

[91] Tsitsiklis, J. N. Asynchronous stochastic approximation and Q-léarning.
Technical Report LIDS-P-2172, Laboratory for Information and Decision
Systems, MIT, Cambridge, MA, 1993.

[92] Watkins, C. J. C. H. Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, England, 1989.

[93] Watkins, C. J. C. H. and Dayan, P. Q-learning. Machine Learning, 8(3/4):257-
277, May 1992.

[94] Werbos, P. J. Building and understanding adaptive systems: A statisti-
cal/numerical approach to factory automation and brain research. IEEE
Transactions on Systems, Man, and Cybernetics, 17(1):7-20, 1987.

[95] Werbos, P. J. Generalization of backpropagation with application to a recurrent
gas market model. Neural Networks, 1(4):339-356, 1988.

[96] Werbos, P. J. Consistency of HDP applied to a simple reinforcement learning
problem. Neural Networks, 3(2):179-190, 1990.

120

[97] Werbos, P. J. Approximate dynamic programming for real-time control and
neural modeling. In White, D. A. and Sofge, D. A, editors, Handbook of
Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 493-525.
Van Nostrand Reinhold, New York, 1992.

(98] Whitehead, S. D. and Ballard, D. H. Active perception and reinforcement
learning. Neural Computation, 2:409-419, 1990.

[99] Whitehead, S. D. and Lin, L.-J. Reinforcement learning in non-markov envi-
ronments. Artificial Intelligence. Submitted.

[100] Whittle, P. Optimization over time: Dynamic programming and stochastic
control. Wiley, New York, 1982.

[101] Williams, R. J. and Baird, L. C. Analysis of some incremental variants of
policy iteration: First steps toward understanding Actor-Critic learning
systems. Technical Report NU-CCS-93-11, Northeastern University College
of Computer Science, 1993.

[102] Williams, R. J. and Baird, L. C. Tight performance bounds on greedy poli-
cies based on imperfect value functions. Technical Report NU-CCS-93-14,
Northeastern University College of Computer Science, 1993.

[103] Winston, P. H. Artificial Intelligence, second edition. Addison-Wesley Publish-
ing Company, Reading, MA, 1984.

[104] Young, P. Recursive estimation and time-series analysis. Springer—Verlag,
1984.

[

	TR 94-62-1.pdf
	TR 94-62-2
	TR 94-62-3
	TR 94-62-4
	TR 94-62-5
	TR 94-62-6

