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Abstract
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1 Introduction

We are about to witness a phenomenal growth in the introduction and usage of multimedia ap-
plications. Numerous teleconferencing applications that run over networks have recently been
introduced (e.g., vat [21] and NeVoT [34] for voice, nv [15] for video, and wb [22] and shdr [32] for
shared whiteboard). In addition, there are plans to deploy largescale multimedia servers in the not
too distant future, [33]. All of these applications have in common the need for a minimal quality
of service (QOS) guarantee in the form of either an end-to-end delay constraint or a maximum
tolerable fraction of loss. Providing QOS guarantees to these applications poses one of the most
challenging problems facing designers of multimedia systems and applications.

In this paper we focus on a single resource and develop a framework within which to obtain easily
computable upper and lower bounds on the tail of the distributions of quantities such as backlog,
delay, queue length, etc. at that resource. These bounds are exponential in nature when the
combined arrival and service processes (to be made precise) can be described by a Markov chain
and the system is stable. In addition to obtaining distributional bounds, we also obtain the effective
bandwidths of sessions for a rich and large class of traffic sources and service processes. Last, we
apply these results to the problem of call admission in a network and in a multimedia server setting.

More precisely, we consider the behavior of a single server as described by the recursion
Xn — [Xn—l + Un—l(Yn—l)]+ ’ VTI, 2 1 (11)

with [a]* := max(0, a), where (U,(Y,)),, is a Markov modulated process, with (Y,), being a finite-
state, irreducible, aperiodic, and homogeneous Markov chain on the set § := {1,2,..., K}, and
(Un(?))n, 1 <@ < K, being K mutually independent renewal sequences of (—oo, 00)-valued random
variables (r.v.’s), further independent of the Markov chain (Y,,),. In our context, one application is
where X, represents the waiting time of the n-th customer in a first-in-first-out G/G/1 single server
queue, U, (k) = S, (k) — T, (k) for every n > 0, k € S where (S,(k))» and (T,.(k)). are the service
requirement and interarrival time sequences in state k. We will assume that X, is a nonnegative

and almost surely (a.s.) finite r.v.

Our primary objective is to compute exponential upper and lower bounds for the tail distribution
of X,, both for every n > 0 and for the stationary regime X of X,, (when it exists), namely, to find
a>0,b>0,and @ > 0 such that

ael=9%) < P(X,>z),P(X >2)< bel=%2)

for all z > 0, n > 0. We also want the coefficients a, b and 8 to be easily computable so that on-line
computations may be carried out.

In the particular case where (S,), and (7,), are two mutually independent renewal sequences
(GI/GI/1 queue), Kingman [26, 27] showed that P(X > ) < exp(—nz) for alln > 0 and z > 0,
where 7 is the unique solution in (0, 00) of the equation E[exp(6U,(1))] = 1 under the stability



condition E[U,(1)] < 0. Our results can be considered as an extension of Kingman’s result to

stochastic recursions of the form (1.1) where (X,), is no longer a Markov chain.

As mentioned before, our work is motivated by the need to characterize the response time distri-
bution and/or backlog distributions in multimedia systems. Many multimedia applications have
real-time constraints (e.g., voice, video) for which it is important to characterize the response time
distribution at a single resource, whether it is a hop in a network or the I/O system at a server.
Although such applications have real-time constraints, they are able to tolerate a small fraction of
packets missing their deadlines (approx. 1% for voice). Bounds on the tail distribution of quantities
such as buffer occupancy and response times can be used by designers to size systems. Furthermore,
bounds can be used to develop policies for controlling the admission of new applications (sessions)

to the network.

Previous work in this area falls into three categories. First, a considerable amount of work has
focussed on the development of algorithms for computing the response time distribution of a statis-
tical multiplexer being fed by a Markovian Arrival Process (MAP) pioneered by Neuts [31] (see[14]
for a recent survey of this area). Unfortunately, these computations are typically very expensive.
Consequently, there has been considerable interest in the development of bounds on performance
for very general arrival processes. This is exemplified by the works of Cruz [6, 7], Kurose [28],
Duffield [9], Chang [3], and Yaron and Sidi [36]. The last two papers are of particular interest as
they deal with systems in which response times are finite but unbounded. Because these papers
make very few assumptions regarding the arrival processes, the resultant bounds are very loose.
We will observe that where there is an overlap between our model and those given in the references
above, our bounds are demonstrably tighter and easier to calculate.

The previous work most closely related to ours is that of Duffield [9] which uses a martingale
approach (similar to [26] for the G/G/1 queue) to obtain upper bounds similar to ours for the
case of a Markovian environment. This approach does not appear easily to yield lower bounds or
transient results, nor considers the problem of call admission.

Third, there has been developed a theory of effective bandwidths for the purpose of controlling the
admission of new sessions to a network. Briefly, it has been noted that it is possible to associate an
easily calculated quantity with each session, referred to as the effective bandwidth, that captures the
behavior of the tail of the response time distribution at a multiplexer. The call admission problem is
then solved by checking whether the effective bandwidth of the aggregate user population, including
the new user, exceeds the service capacity. The reader is referred to [16, 23, 17, 12, 5] for treatments
of this problem. As an application of our model we will obtain results for the source models
commonly encountered in the study of network and multimedia server performance.

We apply our results to several systems that have received considerable prior attention. These
include: ) a discrete-time queue with a fixed rate server, ii) a fixed rate server being fed by
a Markov modulated Poisson process (MMPP), and i) a fixed rate server being fed by a fluid
process. For the first of these models, we present a more easily computable upper bound on buffer

occupancy than previously reported in [3, 9]. These bounds can then be used to address the call



admission problem. For all of these cases, we also develop simple expressions for the effective
bandwidths of a population of sources feeding the server. In the case of the MMPP, our results

generalize those previously obtained in [12, 24].

The organization of the paper is as follows. Upper and lower bounds are derived in Section 2.
This section includes a derivation of the largest exponential decay rate and a treatment of both
transient and stationary regimes. It concludes with a demonstration of the tightness of the bounds.
Applications to the problem of call admission in a multimedia system is found in Section 3. A
generalization of the results to the case where the Markovian environment contains a countable
number of states is given in section 4.

2 Exponential Bounds

In this section, we derive exponential upper bounds (Section 2.2) and lower bounds (Section 2.4) for
the tail distribution of X,,. We establish these results by extending the approach of Kingman [27]
to multidimensional case using matrix analysis techniques. In Section 2.3, we provide simpler (but
looser) upper bounds based on the main result in Section 2.2. In Section 2.5, we provide upper and
lower bounds for the stationary regime. The tightness of the bounds is addressed in Section 2.6.
Last, a discussion of the implications of one of our technical assumptions required to determine the
largest exponential decay rate is found in Section 2.7. Prior to deriving the bounds, we introduce
some notation.

2.1 Notation

Let P = [p;;] be the transition matrix of the Markov chain (Y,), and let # = (w(1),...,7(K)) be
its invariant measure. Define 7, (¢) = Pr, (Y, =) fori € S, n > 1, and let my = (mo(1), ..., mo(K))
be the initial probability distribution. In the following, we will drop the subscript 7y in P, except

when my = 7 to emphasize the fact that the Markov chain (Y,,), is stationary.

In order to avoid triviality, we will assume that there exists at least one state ¢ € S for which U, (¢)
takes strictly positive value, since otherwise X,, decreases to 0 a.s. We also assume that E[U, ()]
exists for all ¢ € S and is finite. Let

p = min E[U,()]. (2.1)

€S

Define Fi(z) = P(Un(i) < ) and let ¢;(6) = Elexp(8U,(¢))] for ¢ € S, § € (—o0,0). Let
6, = inf{f > 0 : ¢;() = oo for some 7 € S} and §_ = sup{f < 0 : ¢;(f) = oo for some ¢ € S}.
We will assume that 6, > 0 and §_ < 0.

Introduce the sets
© = {0_<0<6, : ¢(f) <oo, VieS}
©, = {06 :60>0}.



Some of our results require either that © be open or that , ¢ ©. A discussion of the implications

of this assumption is deferred to Section 2.7.

2.2 Exponential Upper Bounds

Let (7])n,j, 77 : [0,00) — [0, 00), be a set of functions such that

z

> pmal®) | [ 92 - 0 dF) +1- o) € mai) 73 4(0) (22)

kes -
The following result holds:

Proposition 2.1 Let P,, denote the property that
PXpm>2|Yn=173)< 'y;-”(m) (2.3)
for all z > 0 and for all j € S such that m,,(j) # 0.

If P, is true, then P, is true for all m > 1.

Proof. We use an induction argument on m. Assume that P, is true for m = 0,1,...,n and let

us show that P, is true.
Assume that m,,,(j) # 0. We have

P(Xp11 22| Yoy =7)
= Y P(Xa+Un(k) > 2|Ye =k, Yoi1 = §)P(Ya = k| Yays = j)

kes

7, (k .
kecsS ﬂ-ﬂ-l-l(])

= ¥ o L P+ ) 2 2 Ya = )

= Y ma (k) [/_w P(X,>z—ulY,=k) dFk(u)—|—1—Fk(:c)]

kecsS ﬂ+1(])
ﬂ-ﬂ(k) ¢ n
< Y pm o | - wdR@ +1- R() (2.4)
kecsS Tn+1 (]) -0
< (=)
where (2.4) follows from the induction hypothesis. This concludes the proof. &

From Proposition 2.1 we deduce the following



Corollary 2.1 If P, is true then

P(X,>z) <) m()7}(z), Vz>0,n>0. (2.5)

jes
The next step consists in finding functions v} (z) satisfying (2.2). We first introduce some additional
notation and recall some basic results of matrix analysis.

Let M, be the set of all n-by-n matrices with real entries. Recall that a matrix/vector is nonnegative
(resp. positive ) if all its entries are real and nonnegative (resp. strictly positive). For any matrix
A € M, we will denote by A7 its transpose matrix and by r(A) its spectral radius. We shall
denote by 7#(A) the largest real eigenvalue of A, if any.

For any matrix A = [a;;] € M, the matrix A* = [ag-“)] € M,, will denote the k-th power of A, and
AT the transpose of A. For any vector v = (vy,...,vx), v© will denote the transpose of v, and |v|

will stand for 5 v;.

For 6 € ©, define the matrix ®(0) = diag(#1(9), #2(9), ..., ¢x (0)). Observe that all entries of ®(6)

are finite.

The following theorem is due to Perron and Frobenius [19, Theorem 8.4.4, Theorem 8.5.1]:
Theorem 2.1 (Perron-Frobenius) Let A € M,, be a nonnegative irreducible. Then,

(i) r(A) = #(A) > 0, r(A) is a simple eigenvalue of A, and there exists a positive right eigenvector

of the matriz A corresponding to the eigenvalue r(A);

(i1) there exists a constant matriz L € M, such that lim,,_,[A/r(A)]™ = L.

The nonnegative and irreducible matrix H(6) := PT®(#) will play an important role in the fol-
lowing. Let p() := r(H(6)) be its spectral radius and let z(6) = (21(8), ..., zx(0))T be its unique
right eigenvector corresponding to the eigenvalue p(6) such that |z(6)| = 1.

The following result holds:

Proposition 2.2 (Exponential upper bound)
Assume that 0 € ©,. If p(0) <1, and if

P(X, > ) < C(0) e %, Ve >0 (2.6)
then, for alln >0, z > 0,

P(X,>z) < C(8)e*® (2.7)



where

Pkes Prj Ta (k) (1 — Fi(z))

C(0) = su = < 0. 2.8
v iiﬁ‘; Lkes Prj z(0) [ €207 dFy(u) (28)
j€s
If Xo =0 a.s. then
P(X,>z)< inf C(8) e %, Vn >0, Ve > 0. (2.9)
{0€0, : p(6)<1}

It is worth observing that the upper bound in (2.9) is always smaller than or equal to 1 when the
Markov chain (Y,,), is stationary since C'(0) = 1 thanks to the identity z(0) = .

Proof of Proposition 2.2. Define

Vi) = { CO) 5O/ e if :8; #0 (2.10)

Let us show that these functions satisfy (2.2). First, observe from the identities Y, s px; Tn(k) =
Tnt1(3), 7 € S, that (2.2) trivially holds if 7,1 (j) = 0 since the left-hand side of (2.2) also vanishes

in this case.

Assume now that 7,1(j) # 0. We have

Z Pr; Tn (k) [/moo Ye(z — u) dFy(u) + 1 — Fk(m)]

_ * AC) T * 26(0) ptu_s
_ g;s Pa; 1o (k) V_w c(9) Wn(k)d )dFk(u)—/z c(9) Wn(k)d )dFk(u)—|—1—Fk(m)]
= e 00) Y Py (6) 2(6) = S by () [ / ” (C(e) ::E‘]’;)) Jo(u-z) _ 1) dFk(u)]

< e C(9) Z Prj Ok (0) 2z(6), from (2.8)

= e % C(0)p(0) z(0), since H(0)z(8) = p(0) z(6)
< e () 2 (0) = mai1(J) ’Y;'H_l(m)

from the assumption that p(6) < 1. The proof of (2.7) now follows from Corollary (2.1).

Since (2.6) is automatically satisfied when X, = 0 a.s., the inequality (2.7) is seen to hold for all
6 € ©, such that p() < 1, which yields (2.9). The finiteness of C'(6) is a consequence of (2.16) &

In Section 2.3 below, we shall derive various upper bounds of C(6) which have simpler forms than

the right-hand side of (2.8).

The next issue to be addressed is the existence of 6 in ©, such that p(8) < 1. We will need the

following lemma whose proof is forwarded to Appendix A.



Lemma 2.1 The spectral radius p(6) is log convex and is strictly convex for § € ©. Moreover, if

6, ¢ ©, then p(8) goes to co when 6 goes to 9, .

Proposition 2.3 Define 0* = sup{f € © : p(6) < 1}. Then,

0*>0 ifandonlyif Y w(k)E[Un(k)] <O0. (2.11)

kes

Moreover, if 3 ;s m(k) E[Un(k)] < 0 and if 0, ¢ © then p(6*) =1 and p(6) <1 for 0 < 6 < 6*.

Proof. Since the matrix H () is differentiable at § = 0 and since p(#) is a simple eigenvalue
of this matrix, Theorem 6.3.12 in [19, p. 372] implies that the derivative of p() at 0 is given by
p'(0) = > cs m(k) E[U,(k)]. Hence, (2.11) follows from the strict convexity of p(6) (see Lemma 2.1)
and from p(0) = 1.

The proof of the last statement is a direct consequence of the identities p(0) = 1 and p'(0) =
Y kes m(k) E[U,(k)], together with Lemma 2.1. &

We will show in Section 2.5 (see Lemma 2.2) that condition }_, s m(k) E[U,(k)] < 0 in Proposition
2.3 is the stability condition of this system. Therefore, Proposition 2.3 says that an exponential
upper bound exists for P(X, > #) when the system is stable. In that case, 6* is the largest
exponential decay among all positive 6 such that p(#) < 1. However, this leaves open the question

whether 8* the best possible exponential decay over all 8 > 0.

The following result whose proof is given in Appendix B readily implies that 8* is indeed the best
exponential decay.

Proposition 2.4 Assume that © is an open set, namely © = (6_,0,). If >, s ©(k) E[U,(k)] <0

then
>

z—00 T

= —0". (2.12)

2.3 Simpler Upper Bounds

Various upper bounds can be derived from Proposition 2.2. Let S(z) = {k | k € S, Fy(z) < 1},
and § = §(0).

It is simple to check from (2.8) that

=\ Pri Ta(k) (1 — Fi(z
0) = sup kb P mn (O UML)
230 Died(e) Pri 2 (0) J; 7 dFy(u)

JjES

(2.13)



< sup 2kede) (k) (1 - Fi(2)) (2.14)
T30 Yiesey 2 (0) [ ) dF(u) '

< sup max ™ (E) (2.15)
z>0 kcS(z) Zk(e)
n>0
k
= supmax a (k) (2.16)

n>0 kes 2k (0)
where (2.15) follows from the inequality 1 — Fy(z) < [ €°®~2) dF} (u).

In the case where X, = 0 a.s. all quantities in (2.13)—(2.16) yield, in combination with Proposi-
tion 2.2, upper bounds for the tail distribution of X,,. The next result provides an easily computable
upper bound.

Corollary 2.2 If p(0) <1, and if

P(Xo>2) < |y(0)]e®, Vz>0 (2.17)

then, for alln > 0,
P(X, > z) < |y(8)] e %, Ve >0 (2.18)

where y(8) = (y1(8), - .., yx(0))T is any right eigenvector of H(8) corresponding to the eigenvalue
p(0) such that
y;(6) > sup m,(7), vVjeS. (2.19)

n>0

If Xo =0 a.s. then for alln >0, z > 0,

P(X, >z) < inf 6)| e~%=. 2.20
( %) S fpeo Moy (9O e (2.20)

Proof. The proof is analogous to the proof of Proposition 2.2 except that C'(6) in (2.10) must now
be replaced by |y(9)]. &

Clearly, C(6) < |y(8)| under condition (2.19) (hint: replace z(0) by yx(0)/|y(8)| in (2.16) and use
(2.19)). We also observe that |y(6)| is actually equal to the right-hand side of (2.16) when the
equality in (2.19) takes place for the smallest component of y(6).

Condition (2.19) will hold, in particular, if y(6) is chosen to be the unique right eigenvector of H ()
corresponding to the eigenvalue p(6) such that min;cs y;(8) = 1 Also observe that conditions (2.19)
reduce to y;(0) > w(j) for all j € S when the Markov chain Y is stationary (i.e. when my = 7).

The bound in (2.18) reduces to Kingman’s exponential upper bound [27] when X, represents the
waiting time of the n-th customer in a first-in-first-out GI/GI/1 single server queue (i.e. when
S = {1} and U,(1) = S, — T,, where (S,.)» and (T,). are independent i.i.d. sequences of positive

r.v.’s.).



2.4 Exponential Lower Bound

In this section we address the problem of computing an exponential lower bound for the tail distri-
bution of X,,.

Proposition 2.5 (Exponential lower bound)

Assume that p(0*) = 1 and that Y, s w(k) E[U,(k)] < 0. If

P(Xo>z)> B(6*)e?®, Vz>0 (2.21)
then, for alln > 0,
P(X,>z)>B(6)e ",  Vz>0 (2.22)
where
: ks Prj (k) (1 = Fi(2))
B(#*) = inf —— . 2.23
) 220 Ykes Pri 2 (0%) [ €27 (47 dFy(u) (223)
jes
Proof. Let (67)n,;, 67 : [0,00) — [0, 00) be a set of functions such that
S o) | [ 8@ -0 dRw) +1- Fe)| > mapn() () (2.24)

kes —o0
for € §, n > 0. Let Q,, be the property that
P(X, >z |Y, =j) > &7 (=)

for all z > 0 and for all j € S such that m,(j) # 0. Mimicking the proof of Proposition 2.1 we
can prove that @, is true for all n > 0 if Q)¢ is true. In direct analogy with Corollary 2.1 we then
deduce that, if X, satisfies

P(X,>z)> > m(j)é(z), Vz>0 (2.25)

j
jes
for n = 0, then (2.25) holds for all n > 0.

Define the functions &7 (z) = B(6*) z;(6*) exp(—0*z)/m,(j) if 7o (j) # 0 and 67 (z) = 1 (for instance)
if m,(j) = 0. Using the same arguments as in the proof of Proposition 2.2 together with p(8*) =1
it is easily checked that the functions (d7), ; satisfy (2.24), from which the result follows.

&

The condition p(8*) = 1 holds if 8, ¢ © (cf. Proposition 2.3). It is simple to construct examples

when B(6*) = 0. However, we expect B(6*) > 0 in practice, especially when my = m. This can be



proved if the r.v.’s U, (k) are uniformly bounded from above by a constant, that is, if there exists
A > 0 such that P(U,(k) < A) =1 for all k € S. In that case, we have (with my = )

. : S res P (k) [ dFy(u)
B = S [P e o)
jés Ykes Prizk Jf, e dF(u)

A

> (@) inf Yokes Pri [, dFy(u)

- #max ;ég > kes Prj fEA e? (v=2) dF} (u)

= (Wmin) et >0 (2.26)
Zmax.

where Tyin = min;es 7(J), Zmax = Max;es 2;(6*).

Another situation where B(6*) > 0 is discussed in Section 2.6.

2.5 Exponential Upper and Lower Bounds for the Stationary Regime

In this section we will discuss the stationary version of the results we have obtained so far.

The first result addresses the condition of existence of a stationary regime for the process (X,)n.

Lemma 2.2 (Stationary regime) Let (Y,), be an irreducible, aperiodic, ergodic, homogeneous
Markov chain with invariant measure ™ (we do not assume that the state-space is finite). Let (X,)x

be a sequence of r.v.’s satisfying the recursion (1.1).

If >, (k) E[U(k)] < O then there exists an almost surely finite r.v. X such that for, all z > 0,
P(X, <z) =, P(X <z)

independently of the distributions of X, and Y.

If ¥, w(k) E[U,(k)] > 0 then X,, —, oo a.s.

Proof. We know (cf. [1, Theorem 1]) that there exists a stationary Markov chain (Y™),, defined
on the same probability space as (Y3, ), independent of Yy, and such that

lim P(Y, = Y*, Vk > n) = 1. (2.27)

n—r oo

Since the sequences (U,(%)), ¢ € S, are independent i.i.d. sequences, we may conclude from (2.27)

that there exists a stationary and ergodic sequence (&,),, independent of Y;, such that

lim P(& = Up(YF), V& > n) = 1. (2.28)

n—r oo

10



Let (V3.). be a sequence satisfying the recursion V,, ;; = max(0,V,,+&,) for n > 0, where 1, > 0is a
finite random variable. Since (&,), is stationary and ergodic, it is known (see [29]) that if E[£] < 0
then there exists a stationary sequence (V™),, with generic element denoted as X, such that X < oo

a.s. and such that lim,_,,, P(Vy, = V¥, k > n) = 1 for any (possibly random) initial value V.
Therefore, Theorem 5 in [1] applies to the sequence (X,),, which entails that if F[{] < 0 then

lim P(X, =V* VE>n)=1

n—r oo

for any (possibly random) initial values X, and Y,. This proves the first part of the lemma since

clearly E[¢] = 3, w(k) E[U.(k)].

Define M = min{n > 0:Y;, = Y*, Vk > n}. We have

n n

P(Xn>m)2P(Xn>m,n2M)2P(Z £i>m,n2M):P(Z £i>m)—P(n<M).

i=M i=M

(2.29)

Since M < oo a.s. from (2.27) and since lim, ,o, > 1 s & = 400 a.s. when (&), is ergodic and
E[¢] > 0, we get from (2.29) that lim, ., P(X, > z) =1for allz > 0if E[¢] > 0, which completes
the proof. &

Recall the definition of §* in Proposition 2.3. We have the following result:

Proposition 2.6 (Exponential bounds for the stationary tail distribution)

If p(6*) =1 and if 3.5 w(k) E[Un(k)] < 0, then X, the stationary variable of the process (X, )n,

satisfies

B'e*<P(X22)<Ce”%,  V2>0 (2.30)
where
(k) (1 - F
B* — inf > kes Prj 7 ( 20( - x(2)) (2.31)
28 Ykes Pri z(0*) [ €0 (v=2) dF (u)
(k) (1 - F
C* = sup Y kes Prj (k) ( x(z)) (2.5

jes Ykes Prj 26(0%) J; € (+=2) dFj(u)’
7

Proof. The existence of a stationary regime for (X,), under the condition }_, s 7(k) E[U.(k)] < 0

has been established in Lemma 2.2.

Set Xy = 0 and assume that the Markov chain (Y,), is stationary (i.e. my = 7). From Proposition
2.2 we have that P, (X, > z) < C* exp(—6*z) for all z > 0, n > 0. Letting n go to infinity in this
inequality, and using the result that P(X,, > z) —, P(X > z) independently of the distribution of
X, and Y, from Lemma 2.2, yields

P(X>z)<C*e™ =,  Vz>o0. (2.33)

11



This establishes the upper bound.

Let now X, be a r.v. satisfying (2.21). Hence, P,(X, > z) > B* exp(—0*z) forallz > 0, n > 0,
from (2.22). Letting n go to infinity, and applying again Lemma 2.2 gives the lower bound. &

Similarly, the following upper bounds can be obtained from Proposition 2.2 and Corollary 2.2.

Proposition 2.7 Assume that § € ©,. If p(6) < 1, then for allz > 0

P(X >z)<C(f) e °° (2.34)
where C(0) is defined in (2.8) with w,(k) substituted for w(k), and

P(X >z) < |y(9)| e®* (2.35)

where y(0) = (y1(9), - .., yx(0))T is any right eigenvector of H(8) corresponding to the eigenvalue
p(0) such that y;(6) > w(j) for all j € S. Also,

P(X >2) < inf
{60, :p(0)<1}

C() e <

< inf
{6€0. : p(6)<1}

(0)] e (2.36)

2.6 Tightness of the Upper and Lower Bounds

We now show that the upper and lower bounds in Proposition 2.6 are tight.

Consider the case U, (k) = S, (k) — T,(k), where S, (k) and T, (k) are nonnegative and independent
random variables. Assume that S, (k) is an exponential random variable with parameter 8. Then,

simple computations yield, forallz > 0,0 < 8 < 6, = g,

1-F(z) = e*E [e‘ﬂT"(k)] (2.37)

/ ) dF (u) = ﬂfee—ﬂmE[e—ﬂTn(k)]. (2.38)

Note that 8, = 8 ¢ ©. Introducing (2.37) and (2.38) in (2.31) and (2.32) yields the following

Corollary 2.3 Assume that U, (k) = S,(k) — T,(k), where S, (k) and T,(k) are nonnegative and
independent random variables. Assume further that S, (k) ts an exponential random variable with
parameter 8. If E.[U,(Y,)] < 0 (stability condition) then

%(5;9*)(“ SP(XZm)SC(ﬂ_ﬂO*)e“’*E (2.39)
with
maX; ges ij‘

min; xes Pjk

(=
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In particular, when { — 1, then

P(X >z)= (ﬂ - 9*) e e, (2.40)

It is interesting to note that (2.40) provides the exact solution for the tail distribution of the

customer waiting time in a GI/M/1 queue.

2.7 Discussion

Proposition 2.4 requires the assumption © = (6_,6,). This assumption is necessary in order to be
able to apply the Gartnér-Ellis theorem [10] which is the main ingredient in the proof that 6* is the
largest exponential decay rate. Also, Propositions 2.5 and 2.6 require the assumption p(8*) = 1.

Thanks to Proposition 2.3 this assumption holds, in particular, when 6, ¢ ©.

Fortunately, many interarrival time and service time distributions satisfy the assumption that
© = (6_,0,). These include distributions with rational Laplace transforms (e.g., phase type dis-
tributions). On the other hand, it is not difficult to construct an example where © is not an
open set. Consider the case where the interarrival times and service times are two independent
renewal sequences of nonnegative random variables. Let f;(t) = (C1/(1 + t?)) exp(—~1t)1(t > 0)
and f(t) = (Ca2/(1 + t?)) exp(—72t)1(t > 0) be the density functions of the service times and
interarrival times, respectively, with 4; > 0 and 7, > 0. Here, C; and C, are normalizing constants.

It is then easily seen that §_ = —7,, 6, = v; so that ©® = [—v3,71].

3 Applications to Call Admission in Multimedia Systems

In this section we will present various applications of our results to the problems of call admission
in a multimedia system such as a network or a server. A call admission algorithm aims at admitting
a new multimedia application (session) into a network or a server only if it can be guaranteed a
minimal quality of service (QOS) without violating the QOS of other applications already in the
system. In the case of a network, there is the additional constraint that the algorithm must be
simple enough so that the decision to accept or to reject a new session can be carried out on-line.

Consider the network setting. A call admission algorithm must typically be concerned with guar-
anteeing an end-to-end QOS over a path that may contain two or more hops. This is a difficult
problem and one approach taken is to divide the end-to-end QOS requirement among all of the
hops and perform call admission at each hop (e.g., [16, 13, 30]). Thus, if any one hop decides not to
admit the call, the call is not admitted end-to-end. Under this approach, it suffices to consider the
call admission problem for a single channel. Note that, in the case of call admission to a multimedia

server, the server can also be modeled as a single resource [8].
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Consider a communication channel equipped with a buffer of finite or infinite size, that can transmit
up to c¢ units of information (e.g., ¢ ATM cells) per unit of time. When the buffer is of infinite size
a typical performance criterion is P(X > b) < ¢ where X may represent either the buffer content
at arrival epochs in steady state or the packet delay in steady state. Observe that if X is the
steady-state content of a buffer of infinite size, then P(X > b) < ¢ implies that, for the case of a
buffer with finite capacity b, the cell loss probability does not exceed gq.

Of particular practical interest is the notion of associating an effective bandwidth to an application
such that the test of whether a set of applications can obtain their desired QOS consists of comparing
the sum of their individual effective bandwidths to the channel capacity. This can easily be applied
to the problem of call admission; accept a new application if its effective bandwidth is less than
the excess capacity available at the channel, i.e., the difference between the channel capacity and
the sum of the effective bandwidths of the active applications. This has been explored in a number
of papers (see [17, 23, 12, 16]) where the notion has been formalized and established rigorously for

several different QOS measures for a number of different application traffic models.

In the following, we will only consider a buffer of infinite size. The resource (communication channel
in a network, I/O system in a server) will be modeled as a single server queueing system with service
capacity ¢. The call admission problem will be addressed for the performance criterion P(X > b) <
exp(—6b) when b — oo. We will consider three different traffic models commonly encountered
in the literature: a discrete-time queueing model fed by independent Markov Modulated Arrival
Processes (MMAP’s; Section 3.1), a continuous-time queueing model fed by independent Markov
Modulated Poisson Processes (MMPP’s; Section 3.2) and a continuous-time queueing model fed by
independent Markov Modulated Fluid Processes (MMFP’s; Section 3.3). Last, applications to call

admission are given in Section 3.4.

3.1 Markov Modulated Arrivals

We first establish preliminary results in the case when the discrete-time queueing system is fed by
a single MMAP (Section 3.1.1). Then, we address the case the queue is fed by N independent
MMAP’s and derive the effective bandwidth of each source (Section 3.1.2).

3.1.1 Discrete-Time Queue Fed by a Single MMAP

Consider a discrete-time single server queue with one class of customers and an infinite waiting
room. For simplicity we will assume that the queue is empty at time 0. Let (Y,,), be an irreducible,
aperiodic, homogeneous Markov chain on the set finite § = {1,2,..., K} with transition matrix
P. Let (An(?))n, 2 =1,2,..., K, be K mutually independent sequences of i.i.d. random variables.
The process (A,(Yn))n is called a Markov Modulated Arrival Process (MMAP), and A, (7) gives

the number of customers that arrive in the interval of time [n,n + 1) given that Y, = 1.

Define U, (i) = A, (i) — ¢, where ¢ > 0 is the capacity of the server (number of customers served by
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unit of time). Hence, it is seen that the process (X,), in (1.1) represents the queue-length process

of this queueing system.

Let ¥(0) = diag (E[exp(f 4.(1))], ..., Elexp(8 A.(K))]) and define 7(8) = »(PT¥(6)). Notice that
7(60) = p(8) exp(fc) since r(aA) = ar(A) for any scalar number o.

By Proposition 2.2 and Corollary 2.2 we have
P(X,>z)<C@ e " <|y)|e ™ 2>0n>0, (3.1)

for all 6 such that 7(6) < exp(fc) or, equivalently, for all § such that a*(8) < ¢ with a*(8) =

(1/6) log(7(8)), where y(6) is any eigenvector of the matrix P ¥(6) corresponding to the eigenvalue
7(6) such that (2.19) holds.

In 3] a*(6) is referred to as the Minimum Envelope Rate (MER) of the arrival process with respect
to 8. Specializing Chang’s model to ours yields (cf. [3, Theorem 3.7])

P(X,>z)<pB(@)e? z>0n>0, (3.2)

provided that a*(8) < ¢, with
£06(0)

BO) > T mwmre (3.3)

where 6(0) = [sup7120 ((1/0) SUP,,>o log (E [exp(@ St Ai(Yi))]) —a*(6) n)]+

Note that both coefficients C(6) and |y(6)| in (3.1) remain bounded for all values of 8 such that
a*(0) < c (i.e. for 0 < 6 < 6* from Proposition 2.3) unlike the coefficient 8(f) in (3.2) that goes to
infinity when a*(6) — c¢. We also believe that y(8) should be easier to compute than §(6). Last,
observe that in (3.1) we allow a*(8) to be equal to ¢ (which occurs when § = 6* by Proposition

2.3), whereas in (3.2) the condition a*(6) < c is required.

3.1.2 Discrete-Time Queue Fed by N Independent MMAP’s

We consider the model in Section 3.1.1 but we now assume that the queue is fed by N independent
MMAP’s (A2(Y))n, 7 =1,2,...,N. Let S; be the (finite) state-space of the aperiodic, irreducible,
homogeneous Markov chain (Y;?),, and denote by P; = [;ps] its transition matrix and by =; its

invariant measure.

It is known (cf. [14] for instance) that the superposition of N such independent Markov modulated

processes is again a Markov modulated process (A4,(Y,))., where Y, is an aperiodic, irreducible,
homogeneous Markov chain on the states S = Hj-vzl S, with transition matrix P and invariant

measure 7 given by

P = P® --QPy (3.4)
T = Mm@y (3.5)
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where ® denotes the Kronecker product [2, 18].
Define U, (i) = Y/0; A%(4;) — ¢ withi= (i1,...,iy) € S, and let

®(0)=e (P9 ® -1 TY()) (3.6)
where U7 (0) = diag (E [exp(84%(2))], 7 € S;).

Thus, by using the identities (A ® B)T = AT @ BT and (A® B)(C ® D) = (AC) ® (BD) (cf. [2]),
the matrix H(8) = PT®(6) is given by

e (PL@ - ®@Py) (T(0)® - @T(0) = (P ¥(0)® & (PyE¥(0). (3.7

The process (X,), defined in (1.1) now corresponds to the queue-length process in this multiclass

queueing system.

The following lemma will have interesting consequences.

Lemma 3.1 Let A € M,, (resp. B € M, ) be a matriz with eigenvalues (o;)i%,; (resp. (B;)7-,) and
corresponding eigenvectors (v;)i2, (resp. (w;)7,). Then, the eigenvalues of the matrizr A® B ¢
Mpn are a; 3, 1 < i < m, 1 < j < n, with corresponding eigenvectors v; ® w;, 1 < i < m,

1 < j < n. Moreover, |v; ® w;| = |v;| X |w;| for L<i<m, 1< j<n.

Proof. The proof of all the statements, but the last one, can be found in [18, p. 27]. For the last

statement, let v; = (vi1, ..., Vim) and w; = (wjy, ..., w;jn). It is easy to see that

m n m n
v ® w;| = szikw]’l = (Zvik) X (Zwﬂ) = |vi| X [wy].
k=11=1 k=1 =1

From (3.7) and Lemma 3.1 we get that
p(0) = e T[ 7:(6) (3.8)

where 7;(6) :==1r (P]T\Ilj(e)) forj=1,2,...,N.

Therefore, if there exists § > 0 such that H;V:1 7;(0) < exp(fc), then by (3.8), Corollary 2.2 and

Lemma 3.1, we will have

P(anms|y1<e)®---®yN<e>|e-”=(H |yf'<e)|) e, Vn20,¥e>0  (3.9)
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when X, = 0 a.s., where y7(8) = (y/(), i € S;) is any eigenvector of the matrix Pl®(6) corre-
sponding to the eigenvalue 7;(#) such that vl (8) > SUp,, >0 PlYi=1t)forieS;,j=12,...,N
(here, we use the property that v w > a®b if v > a and w > b). Observe from Proposition 2.7
that the bound in (3.9) also holds for P(X > ).

Tighter bounds can be obtained by using directly Proposition 2.2 in the transient case and Propo-
sition 2.7 in the stationary case.

We now give an example where the coefficient in front of the exponential in (3.9) is bounded from

above by 1 for any number of sources.

Consider N independent high/low rate sources such that S; = {1,2} and 47 (1) = r;; and A7 (2) =
rja, with 0 < 7;; < rj, 5 = 1,2,...,N. The transition probabilities are ;p;, = ¢; and ;py; =
p;. Without loss of generality, we assume that the Markov chains (Y?),, j = 1,2,..., N are all
stationary and that the system is initially empty. Let §; =1 — ¢; and p; = 1 — p;. By a simple

algebraic computation we obtain for j =1,2,..., N,
. p; . q;
(1) = ——, m(2) = —— 3.10
@ P t+4; ®) Pj + 4 (8.10)
. T(e) _ ﬁ.ee'rj2 . q.ee"jl
Z2(0) = J I ) 23(6) = 2 3.11
1( ) T](e) + qjeerjl _ﬁjeerj2 2( ) T](e) + qjeerjl _ﬁjeerjg ( )
where
L ori | = or; om0 _ .
7(0) = 3 (q].ee Byt (G 4 pyeta) — A(p, - g)en ) ) (3.12)

is the spectral radius of

. _.697'.7'1 '691'.7'2
Pyl = ¢ Pi€ "
g;€ 7" pije’
and (2(0), Z5(6)) is the right eigenvector corresponding to 7;(8) such that 2J(8) + 25(6) = 1.

Therefore, Proposition 2.2 implies that if there exists § > 0 such that [[,. ;<5 7;(f) < exp(fc), then

P(X, >z) <C() e %, Vz >0, Vn >0 (3.13)

where C(0) is defined by (2.8) with = and z(f) being the Kronecker products of the vectors of
(w?)¥_, and (27(0))Y,, see Lemma 3.1 and (3.5). We now show that C(6) < 1 when p,; + ¢; < 1,

j=1 j=1

j=1,2,....N.

For j =1,2,...,N,let Y;, Z; € {r;1,7;2} be random variables such that P(Y; = r;;) = n/(1) and
P(Y; = rj3) = ©(2), P(Z; = rj;) = 2,(8) and P(Z; = rj;) = 2(0). If p; + ¢; < 1, then one
can verify from (3.10), (3.11) and (3.12) that 2}(8) > 77(2). Therefore, Y; <,, Z;,j =1,2,...,N,

where the symbol <,; stands for “stochastically larger”. A real r.v. Z is stochastically larger than
areal r.v. Y, if and only if P(Y > z) < P(Z > z) for all z € IR. Assume that Y7,...,Yy (resp.

17



Zy, ..., Zy) are mutually independent r.v.’s. Define Y = Z;-Vzl Y; and Z = Z;-Vzl Zj. It then follows
that Y <,, Zifp; +¢; <1,5=1,2,...,N.

Let V be the finite set of possible values that ¥ can take. By using the bound in (2.14) after
substituting , (k) for w(k), we obtain

I (ar.
E I I 7 (u;)
(w1,-upn)ef1,2iV, 1<j<N
"'1u.1+"'+"'NuN2"

cg) < 3.14
O = s~ T 2,(0) CComrirm)— (3.14)
(ugsmupn)e{L,2}V, 1<j<N
Tiug FF TNy 2V
> II ()
(ul,...,uN)E{1,2}>1v, 1<j<N
Py PN DY
< sup — i , 3.15
vEV Z H Z,i](e) ( )
(u1smupn)€{1,2}V, 1<j<N
Tiug FF TNy 2V
P(Y >v)
= —_— . 3.16
vev P(Z > ) (3.16)

Thus, if p; +¢; <1for j =1,2,...,N, then C(f) <1 in view of (3.16). Consequently,

Corollary 3.1 Consider a single server queue with service capacity c, fed by N independent high/low
rate sources with S; = {1,2}, A% (1) = r;1 and AL (2) = r;,, such that 0 < r;; <7r;5,j=1,2,...,N.

The transition probabilities are ;p12 = ¢; and ;py; = p;j. Assume that the Markov chains (Y7),,

J = 1,2,...,N, are stationary and that the system is initially empty. If p; + q; < 1 for all

1<j <N, and if [],¢;<n 7i(8) < exp(fc), then

P(X, >z) <e %, Vn > 0,Vz > 0. (3.17)
Remark. This result is consistent with observations made in [16, 4] that the constant in front of
the exponential is less than one for bursty sources.
We conclude this section by computing the effective bandwidth for each source in the case when

the performance criterion is P(X > b) < exp(—6b) for b — oo.

Proposition 3.1 Define

1
c;(6) = ElogTj(O), Vi=1,2,...,,N. (3.18)

If the system 1is stable and if 0, ¢ © then, for all € ©,,

N
) < -0 if and only if Zc]- (9) <e.

j=1

18



Proof. Assume that the system is stable, namely, E,[U,(Y,)] < 0, so that 6* > 0 by Proposition
2.3. Therefore, p(6) < 1 or, equivalently, Z;-Vzl ¢;j(0) < ¢ from (3.8), if and only if 0 < 8 < 6.
This result follows from the definition of 6*, the convexity of p(6) (see Lemma 2.1) and the identity

p(0) = 1.

On the other, since U,(¢) is of the form U, (i) = S,(¢) — ¢ with S,(¢) > 0 it is seen that §_ = —oo,
so that ® = (—o00,6,) owing to the assumption that §, ¢ ©. Therefore, © is an open set and
Proposition 2.4 applies to give lim,_, o, log P(X > b)/b < —6 for 6 € O, if and only if 0 < 8 < 6*.

Combining both results yields the proposition. &

This result has been derived by Kesidis et al. [24] through a heuristic argument. The same result
can also be derived in an even more general context (see Assumptions (C1)-(C3) in [3]) from the

work by Chang [3, Proposition 3.9] by using the same arguments as ours.

3.2 Markov Modulated Poisson Processes

We now apply our results to the case when the traffic is modeled as the superposition of N indepen-
dent MMPP’s. When N = 1, we will refer to this queueing system as the single class MMPP/G/1
queue and, when N > 2, as the multiclass MMPP/G/1 queue.

This section is organized as follows: single class and multiclass MMPP/G/1 queueing models are
introduced in Section 3.2.1. Exponential upper bounds for the tail stationary distribution of the
workload in a single class MMPP/G/1 queue are derived in Section (3.2.2). These bounds are
obtained by considering a discretized version of the model. The CAC problem is then addressed in
Section (3.2.3).

3.2.1 Bounding the Customer Waiting Time in a MMPP/G/1 Queue

Consider a single-server first-in-first-out queue with an infinite buffer where customers arrive ac-
cording to a Markov Modulated Poisson Process (see [14] and references therein) with arrival rate
Az at time ¢, where (Z(t), t > 0) is an irreducible Markov process on S = {1,2,..., K} with in-
finitesimal generator @ and invariant measure ¢ = (g(1), ¢(2),...,¢(K)). Let A = diag (A4, ..., Ak)
denote the rate matrix. We assume that the service times of customers generated in state ¢ € S
form a renewal sequence denoted by (S,(%)), and that all service times and interarrival times are
assumed to be mutually independent r.v.’s. Last, we assume that the Markov process (Z(t), ¢ > 0)

is stationary.
Define the matrix P = [p;;] € Mg as
P=(A-Q)'A (3.19)

where the existence of (A — Q)™ follows from [19, Corollary 6.2.27]. If we further assume that
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A; > 0 for 7 € S, then the matrix P is irreducible and aperiodic, and p;; gives the probability that

a customer arrives in state j given the previous customer arrived in state ¢ (see [14]).

Define ¢;(6) = E [exp(6(S(¢) — T(¢))], where S(2) and T'(¢) are generic r.v.’s for the service times
of customers generated in state ¢ and for the interarrival between two customers (say C; and C5)

given C; was generated in state ¢. It is easily seen (see [14]) that
$:(0) = B ["0)] ((0Ix + A — Q)7 ), (3.20)

where A = (Ay,...,Ax)T. Here (v); denotes the i-th component of any vector v and Ix stands
for the identity matrix in Mg. The process (X,), in (1.1) now corresponds to the waiting time

process in this queueing system. It is a simple exercise to show that the stability condition is

Yies 4(B) M E[S(4)] < 1.

The case when A; = 0 for some ¢ can be handled in the same way (in that case P and ®(6) are

n-by-n matrices where n is the number of nonzero arrival rates) and is left to the reader.

Consider now the case when the MMPP/G/1 queueing system is fed by N independent MMPP’s
(A’%k(t), t> 0), k=1,2,...,N. Let Q; and S; be the infinitesimal generator and the state-space,

respectively, of the irreducible Markov process Z; = (Zi(t),t > 0), and denote by A its rate
matrix. Let K; < oo be the cardinality of the state-space Si. It is known (e.g., see [14]) that the
superposition of these N independent MMPP’s is again a MMPP with Z(t) € [+, Sk, infinitesimal
generator Q' = Q1 @ - - - ® Qx and rate matrix A’ = A, B - - - @B Ay, where @ denotes the Kronecker
sum [2]. For k fixed in {1,2,..., K}, let (SX(%)). be K renewal sequences where S¥(¢) represents
the service times of the n-th customer of stream k generated when Z; is in state ¢ € S;. We further

assume that the 1.v.’s (S¥(¢)); & . are all mutually independent.

Thus, the computation of exponential bounds for the waiting time process in this multiclass
MMPP/G/1 queue reduces to the computation of exponential bounds for a single class MMPP/G/1
queue with infinitesimal generator @', rate matrix A’, and moment generating functions ¢;(8) =
Yo (M5 / (ML -+ AN)) Elexp(65% (i4))] ((01x + A’ — Q') 7' X)j foralli:= (i, ..., in) € [[5Zy S
with K :=Y0 K, V=A@ - @A and X' = Wk, i€ )T fork=1,2,...,N.

3.2.2 Bounding the Workload Process in a MMPP/G/1 queue

We now analyze the workload process of the MMPP/G/1 queue. We will assume that the queue is
empty at time 0 and that the server has capacity ¢ (note that the notion of server capacity is not
important in Section 3.2.1 as customer service times are specified in the model). We will further
assume that the Markov process Z = (Z(t), t > 0) is stationary. Introduce (B,(%)), to be the
sequence of amounts of work generated when Z is in state . Observe that (B,(%)), is an i.i.d.

sequence of r.v.’s and let B(%) be a generic element of this sequence. Define v;(6) = E[exp(8 B(7))]
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for i € S and let T(6) = diag (vi(f), ¢ € S). Let V(¢) be the amount of work generated in [0, )
and let G;(t,0) = Elexp(6V(¢)) | Z(0) = 4] for i € S. Also define G(t,0) = diag (G;(¢,6), i € S)T.

We will appeal to the following technical lemma whose proof is given in Appendix C.

Lemma 3.2 Forallt >0,0€0,,

G(t,8) = e(9FT(OA-M)t 4T (3.21)
with 17 == (1,1,...,1)7, and
1
Jlim S log E [eev(t)] =7(Q+ YA -A). (3.22)

We now discretize the MMPP model in the following way. Let § > 0 be an arbitrarily fixed real
number. For n > 1 the amount of work %4, ,, arrived during the time slot [nd, (n 4 1)d) is placed
into the buffer at time né for service. The random variable %A, is determined by the Markov chain

(Z(né)), whose transition matrix is given by
p=e?, (3.23)

Moreover,

E [¢?*|2(nd) = i] = Gi(6,0)

so that, by (3.21),
“(0) = diag (G(6,6)) = diag (e(@+7OA=Mi17) (3.24)

where diag (v) stands for diag (vy,vs ..., v,) for any vector v = (vy,vz...,v,).

Let °X, be the workload just before time né with ‘X, = 0. It is clear that

+

]

Kpyr = [Xp+ 4ppy —8c]”,  Vn2>0. (3.25)

Therefore, all the results obtained in Sections 2 and 3 apply to the process (°X,,),.

Let °X be the stationary regime of (°X,), under the stability condition } ;.5 ¢() A E[B;] < c.
Then, we know by Proposition 2.7 that an exponential upper bound with decay 6 > 0 exists for
P(°X > =) if

r(%(9) °P) < . (3.26)

Mimicking the argument used in the proof of Proposition 2.4 (see Appendix B), one can show that

1 n 1
logr(%¥(9)°P) = lim —logE [eeztl sA"] = lim —logFl [eev(na)] . (3.27)

n—oo 1N n—oo 1N
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Combining this result with (3.22) yields
log r(%¥ () °P) = 6 #(A(6)) (3.28)
with A(6) := Q + YT(H)A — A.
Thus, condition (3.26) simply becomes
7(A(6)) < fe. (3.29)

Let X be the stationary workload of the original MMPP/G/1 queue. The following result relates

X to °X and will be used in the next section.

Lemma 3.3 Forall § > 0,
PX>z)<P(X>2)<P(°X+°A>z) Vz>0, (3.30)

where °A is the stationary regime of the sequence (°A,),.

Proof. Fix § > 0. Let X () be the workload at time ¢ of the original MMPP/G/1 queue. We will
assume that the sample paths of (X (¢),t > 0) are all left-continuous and that X (0—) = 0. We

claim that, for every sample path,

Kp < X(mé) < Xy + %A, VYm>1. (3.31)
We use an induction argument to establish this result. ;From the obvious inequalities

X, = [%4; — 8]t < X(8) < A = X+ 4,

we see that (3.31) holds for m = 1. Assume that (3.31) holds for m = 1,2,...,n and let us show
that it still holds for m = n 4 1. Clearly,

[X (n8) + *Api1 — 6] < X((n+1)8) < [X(nd) — bc]™ + *An iy
so that,

6Xn+1 - [aXn ‘I’ 6An+1 - (SC]+ S X((”‘I’ 1)6) S [aXn—l ‘I’ JAn - (SC]+ ‘I’ 6An+1 — aXn ‘I’ 6An+1

(3.32)

by using the induction hypothesis and (3.25). Hence, for allz > 0,n > 1,
P(*Xp41>2) < P(X(né) > 2) < P(°X,+ A, >2), Vn>1. (3.33)
Letting n — oo in (3.33) yields (3.30). [ )

22



3.2.3 Call Admission Control and Effective Bandwidth for MMPP’s

Consider now the communication channel with bandwidth ¢. The traffic is generated by N in-
dependent MMPP sources (Qk = [qu], Sk, Ax = diag (A, k € Sk)) for ¥k = 1,2,..., N, When

the Markov process Z; = (Zi(t),t > 0) is in state ¢ € Sk, customers arrive in the queue ac-
cording to a Poisson process with parameter A;z. Let (B, (2, k)), be the sequence of amounts of
work generated by source k when Z,; is in state ¢, for 1 € S, £ = 1,2,..., N. We assume that

all these sequences constitute mutually independent sequences of i.i.d. random variables. Define

T+ (0) = diag (E[exp(6B. (i, k))], 7 € Sk)-

As noticed earlier the process resulting from the superposition of these N MMPP’s is itself a
MMPP. Let X be the workload of this MMPP/G/1 queue in the stationary regime under the
stability condition 33, _ivjex~ s, TTa—: (3%) Sa—y Mix E[Bn(i, k)] < ¢ where (g (i), € Sg) is
the invariant measure of the Markov process Z;.

We now compute the effective bandwidth for each source in the case when the performance criterion

is (log(P(X >b)))/b < —0 with b — oo.

Proposition 3.2 Define

£
—_
>
~—
Il
| =

f(Q]—I_T](e)A]_A])i V]:1727;N (334)

If the system is stable then, for all § > 0,

lim

b—o0

logP(X > b -
% < -0 if and only if Zd]-(é?) <e
j=1

Proof. Define the process (°X,), like in (3.25) with %4, = YV, ‘SA;, where ‘SA; is the workload
generated by source i in [(n — 1)d,nd), and let °X,, be its stationary regime. By repeating the

argument in (3.27) and by using the independence of the r.v.’s ‘SA; and ‘sAi for i # j, we see that
the condition (3.26) reduces to

» di(6)<ec. (3.35)

In the following, the notation %, %0, %©,, and °C(6) will stand for 8,, ©, ©,, and C(6), re-
spectively, in the case when ¢;(8) in Section 2 is given by ¢;(6) = exp(—6édc) G;(4,0) for all i € S,
4 >0.

Fix § > 0. Assume that lim,_, ., (log P(X > 5))/b < —6. Then, by Lemma 3.3 lim,_, ,, (log P(°X >
b))/b < —6.

23



By using the same arguments as in the proof of Proposition 3.1, we obtain that if %9, ¢ %0, then,
Vo € ‘0.,

N
< -0 if and only if Zd]-(é?) <e.

j=1
This shows that for all § € ‘@, E;-Vzl d;(0) < cif limy_, o (log P(X > b))/b < —6. Letting now

0 — 0 we get that for all § > 0, E;-Vzl d;(0) < cif limy_, o (log P(X > b))/b < —@ since it is easily
seen that the conditions %, ¢ %O and 6 € %0, reduce to § > 0 as § goes to 0.

Assume now that (3.35) is satisfied. For all § > 0, a € (0,5), 6 € %O, we have

P(X >b) < P(°X+°A>b) (3.36)
< P(°’X >b—a)+ P(°A> a)
< C(8) =) + P(°A > a) (3.37)

where (3.36) and (3.37) follow from Lemma 3.3 and from Proposition 2.7, respectively.

It is shown in Appendix D that
lim sup °C(6) < oo. (3.38)

§—0

On the other hand, we have lims_,o P(°A > a) = 0 for all @ > 0. Therefore, letting § — 0 in (3.37),
taking the logarithm, dividing by b, and letting b — oo implies that lim,_, . (log P(X > b))/b < -0
if Z;-Vzl d;(6) < ¢, which concludes the proof. &

The above result has been obtained by Mitra and Elwalid [12] for the case that all service times
are identically distributed exponential r.v.s, and also by Kesidis et al. [24] through an heuristic

argument for a simpler traffic pattern.

3.3 Markov Modulated Fluid Processes

Consider a single MMFP [12] with finite state-space S = {1,2, ..., K} and irreducible infinitesimal
generator ) = [g;;], serviced by a channel of constant capacity ¢ which is equipped with an infinite
buffer. We represent this source by (Q,S,A) with A = (Aq, ..., Ax), where J; is the rate at which
traffic is generated when the source is in state ¢ € S. It is a simple exercise to show that the
process (X, ), in (1.1) represents the buffer content at jump times of the Markov process when P =
D~'(D - Q) with D = diag (q11, - - -, gxx ) and ®(8) = diag (grx/(qrx + 0(Xx — ¢)), k =1,2,...,K)
(hint: set U, (7) = Tn(¢)(A; — ¢) where T,,(%) is the sojourn time of the Markov process in state ¢).

Assume now that there are N independent Markov modulated fluid sources (Qx = [qu], Si, AF =
(Ak, i€ S)), k= 1,2,...,N. It is known [12] that the aggregate source is itself a Markov-
modulated fluid source (Q,S,A) with @ = Q: ® - ®Qn, S = S X -+ X Sy, and (V)T =
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T T
(Al) OB (AN) . Therefore, the computation of exponential bounds for this model reduces to

considering a single Markov modulated fluid source.

Let V(t) be the amount of fluid generated by a single Markov modulated fluid source by time ¢. In
direct analogy with the derivation of (C.4) we can show that

1 "
Jim 7 log [eev(t)] =7(Q + 6A). (3.39)

By discretizing the model as in Section 3.2.2 and using the line of arguments in Section 3.2.3, we
obtain

Proposition 3.3 Define
1. .

If the system is stable then, for all § > 0,

N
) <—-6 ifandonlyif > f(6) <e

It is worth observing from the identity U, (¢) = T, (¢)(A; — ¢) that ® = (—o0, 0, ) so that unlike in
Propositions 3.1 and 3.2 the extra condition 6, ¢ © is automatically satisfied.

This result was first obtained by Gibbens and Hunt [17] in a special case, and later by Elwalid and
Mitra [12]. It was also derived by Kesidis, Walrand and Chang [24] through an heuristic argument.

3.4 Call Admission

We consider two applications of the above analysis to call admission in multimedia systems. The
first is to the admission of voice calls to a single T1 (1.536Mbs) channel. The second is to the

admission of viewers to a video server.

3.4.1 Call admission in a network

Consider a single T1 channel serving a population of voice sessions. For simplicity we discretize
time into 16ms. segments and model each voice source as an on-off source with transition matrix

P; =

J

975 .025
.045 .955

where the number of arrivals in a time unit is 0 when the source is in state 0 and 1 otherwise. The
mean on and off periods correspond to 352ms and 650 ms, respectively. The service rate of the
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Figure 1: Supportable number of voice sessions.

channel is taken to be ¢ = 48 which corresponds to each source generating data at a peak rate of
32Kbs. Observe that there is no contention if the number of sources N is less than 49 and that the
system is unstable whenever N > 134.

We ask ourselves the following question: what is the number of voice sessions that can be supported
by the channel such that P(X > b) < ¢7 Here X is the backlog (measured in ms. of data), b the
tolerable delay and ¢ a tolerance. Let N,,,, denote this number. The distribution bounds in
Proposition 2.6 can be used to obtain bounds on N,,,, - namely

max {N:—1In(¢/C*)/b}} < Npeoe < max {N:—In(q/B*)/b}}.

49<N<134 T 49<N<134

Figure 1 gives lower bounds on N,,, as a function of the tolerable delay, b, for tolerances of
0.1%, 1% and 5%. Also included are the nmber of sessions that can be supported based on the
effective bandwidth approach (cf., Proposition 3.1). We observe that there is a large gap between
the lower and upper bounds. In addition, the effective bandwidth approach is very conservative,
especially for very tight delay constraints. This has been observed elsewhere as well (see [16]) where

enhancements have been proposed.
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q ‘ l.b. ‘ u.b. ‘ eff. bw
.01 | 105 | 111 | 100
.05 | 107 | 113 | 100
.1 | 108 | 114 | 100

Table 1: Supportable numbers of video sessions.
3.4.2 Call admission in a video server

We consider requests to a video server for movies. Sources are homogeneous and behave as follows.
Each source cycles between playback of a movie during which it requires 1 resource unit and pause
during which it releases its resource. For simplicity, time is divided into 1/2 second segments. The

source is modeled as an on/off source with transition matrix

p_ 9996667 .0003333
7] .9999444 .0000556 |-

The playback period has an average length of 30 minutes and the pause period has average length
of 5 minutes. Last, we assume that the video server has 100 resource units. Hence it can handle a
minimum of 100 and a maximum of 116 viewers.

We again consider the question - how many viewers can this system handle such that the start
of playback is not delayed beyond b time units with probability that exceeds ¢. Using the same
approach as with the voice application, we have determined upper and lower bounds for N,,,, for
.bsec < b < 60sec for tolerances of 1, 5, and 10%. For the range given above, the bounds obtained
on N4, does not depend on b and is presented in Table 1. Also included are the number of sessions
that can be supported as predicted by the effective bandwidth approach. Observe that, the effective
bandwidth approach yields the same number of sessions as can be supported through a peak rate
allocation.

4 Extension to Countable Markov Chains

In this section we extend the results in Section 2 to the case where the state-space S of the Markov
chain (Y,), is countable. This extension may be used to establish exponential bounds in Markovian

feedforward queueing networks.

We assume that the Markov chain (Y,,), is aperiodic, irreducible and positive recurrent. As before,
we assume that E[U,(4)] is finite for all i € S.

The following condition will be needed (see condition (3.1) in [20]): there exists a probability

measure ) on § X IR, an integer my, and real numbers 0 < a < b < oo, such that

aQ(j,z) < (diag (Fp(z) ,k € S) P)ZD <bQ(j,2) (4.1)

27



forallz € IR, i,j € S. Let Q(8) := [, exp(fz) Q(S, dz) and define D := {8 : Q(f) < oo}.

Recall the definition of the matrix H(6) (cf. Section 2.2). Let 0D denote the boundary of the
set D. The following lemma can be seen as an extension of Perron-Frobenius theory to infinite
nonnegative and irreducible matrices.

Lemma 4.1 Assume that ({.1) holds and that the set D is open. For each § € D, the matriz H(9)

has a mazimal simple eigenvalue p(0) with associate right-eigenvector y(0) such that

(1) y(8) is positive;
(ii) there ezists a matriz L with finite elements such that (HT (8)/p(8))" — L as n — oo;
(tit) p(8) is analytic and strictly convex on D;

(iv) p(6) — oo as 0 — 6, € OD.

Proof. Define S,, = Sy + ZZ;; Ui(Yy:) for all n > 1. The process (Y, Sw). is a Markov-additive

process (see [20]) with kernel of the generating functions of the additive components (i.e., the matrix

denoted as P(-) in [20]) given by H7(-). Therefore, statements (i)-(ii) follow from [20, Lemma 3.1],
statement (iii) follows from [20, Lemma 3.4], and statement (iv) follows [20, Corollary 3.1]. &

Lemma 4.1 allows us to extend all the results in Theorem 2.1 and in Lemma 2.1 to countable
Markov chains, which in turn allows us to extend all the results in Section 2 to countable Markov
chains.

Appendices

A Proof of Lemma 2.1
We already know from Kingman [25] that log(p(8)) is convex in ©, so that p(6) is convex ©. We
show by contradiction that p(6) is actually strictly convex in 6.

Assume that p(6) is not strictly convex in ©. This means that there exist 6;, 6, € © with 6; # 6,,
such that

p (91 + 92) _ p(61) + p(6:)

Therefore,

log p (91 -|2- 92) ~ log (p(é’l) + P(ez)) S log p(6:) + log p(62) (A1)
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where the strict inequality comes from the fact that for ; > 0, z; > 0 such that z; # z, one has
z1 + &y > 2,/z,25. Since inequality (A.1) contradicts the fact that log(p(f)) is convex in ©, we

obtain that necessarily p(6) is strictly convex in ©.

We now turn to the proof of statement that p(6) goes to co when 8 goes to ;. We need first to

recall some results of matrix analysis. Let A = [a;;] € Mg with eigenvalues (A;)E ;. It is known

that (see [19, p. 43]) trace (4*) = 27, Ak for all k > 1, which yields
|trace (A%)| < K (r(A))* VE > 1. (A.2)
On the other hand, because the matrix P is irreducible and nonnegative, we know from Theorem

2.1 and from [19, p. 516] that there exists some integer m > 1 such that

0 < P™ :=[p{™]. (A.3)

J

Set A = H(6)T for § € ©, and observe that p(6) is also an eigenvalue of A. From (A.2) and the
definition of the matrix H () it is easily seen that

K@= (mp6,0) X 6@ 20 S 60D, 0c0  (A4)
i€S €S

where the last inequality follows from Jensen’s inequality together with the definition of u (see
(2.1)). Since P™ > 0 and since liminfy_,o, ¢;(0) > ¢;(6,) for all i € S by Fatou’s lemma, we see
that the right-hand side of (A.4) converges to +oco when 8 — 6, if ¢;(6,) = oo for some i € S or,
equivalently, if 6, ¢ ©. This implies from (A.4) that limy_,o, p(f) = co if 6, ¢ ©, which completes
the proof. &

B Proof of Proposition 2.4

The proof will follow the line of arguments in [3]. We assume that ® = (0_, 6, ) and that the system

is stable.

According to Proposition 2.6 we have

log P(X >
limsupu < -6 (B.1)
T —> 00
Let us show that
log P(X >
lim o8 PX 22) 4 (B.2)

which will complete the proof.
Let us assume for the time being that my = 7. Introduce

J(0) = ll)rglo(l/n) log E, [°7]

n
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for 8 € (—oc0,00), where Z, := 1" Ui(Y;). Let us determine J(4).

We have
Ep [7 | Yo =] = ¢:(0) Y Eq [” | Yo =] pyj
jes
which yields
E, [®%] == (®(6)P)" " ®(9) 17 (B.3)

with 1 = (1,1,...,1). Since ¢;(6) = oo for 6 ¢ © for some ¢ € S, and since () > 0 for all ¢ € S,
we see from (B.3) that E,[exp(6Z,)] = oo for all § ¢ © and for all n > 1. Hence, J(f) = oo for
6 ¢ 0.

Assume now that § € ©. By applying the Perron-Frobenius theorem (Theorem 2.1, statement (ii))
to (B.3) it is easily seen that
J(8) =log(p(9)), VO €O. (B.4)

Define D; = {6 : J() < oo} and observe from the above discussion that D; = ©.

When 7y = m the sequence (U,(Y,)). is stationary so that, for all ¢ > 0, (Pr(X, > 2)), is

stochastically increasing in n if X; = 0 a.s. (see [29, Lemma 1]). Hence,

P(X >2)= lim P(X, >2) > P (X, >2)> P(Z, > z), Vn>0,z>0 (B.5)

n—r oo

if Xy = 0 a.s., where the first equality follows from Lemma 2.2 and the last inequality comes from
the standard relation

§=0,1,..,n—1

X, = max (0, ( max "z—:l Ui(Yi))) ) Vn>1 (B.6)

which is easily derived from (1.1) if X, = 0.

Let 0 < a < B < 1. Setting z = awn with v > 0 together with (B.5)-(B.6), yields

log P(X > 1 1 I,
lim infu > — liminf — log P, (— > av)
T — 00 T Qv n—o0 11 n
1 1 i,
> — liminf — log P, (— > ﬂv) . (B.7)
av noo n n

The idea is now to use the lower bound of the Gartnér-Ellis theorem [10, Theorem II.2] to obtain

1 Z
liminf — log P, (—" > ﬂv) > —1(v) (B.8)
n

n—ooo T
with I(v) = sup, (fv — J(6)).

The lower bound in (B.8) will hold (see [10, Theorem II.2]) if (a) J(8) is differentiable in ®, (b)
0 € O, (c) J(0) is a closed convex function, and (d) J(6) is steep. Conditions (a) and (b) are
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satisfied here. Since © is an open set by assumption, condition (d) will automatically hold if (c)
holds (see [10, p. 2]). Let us show that the convex function J(#) is closed, namely that, (e)
limg_,, oco J(0) = +oo for y = 6_ when 6_ is finite (resp. for y = 6, when 0, is finite), see [11,
pp. 213-214].

Fix y € {6_,6,}. By Fatou’s lemma, we have
liminf ¢;(0) > ¢;(y), Vi€ S. (B.9)

0-3y,0€cO

By combining now (A.4), (B.4), and (B.9) we readily deduce that (e) holds.

Since v is arbitrary in (0, c0), we deduce from (B.7) and (B.8) that

log P(X > 1, .1
liminf 8PE 22) o 1 IOy c0,1), (B.10)

T—00 €T o v>0 v

Letting now oo — 1 in (B.10) yields

>
lim inf —log P(X > z)

T—00 €T v>0 v

> —inf M (B.11)

The proof is completed if the right-hand side of (B.11) is shown to be —8*.

This result can be obtained by noting that J(8) is strictly convex in D; [20, Lemma 3.4] (provided
that condition (R) in [20] holds), and then by mimicking the proof of Theorem 3.9 in [3]. For the
sake of completeness, we give below a simple proof that the right-hand side of (B.11) is equal to
—6*. Our proof neither requires the strict convexity of J() nor condition (R) in [20].

Recall that p(0) is strictly convex in © (cf. Appendix A) and that p(0) = p(8*) = 1 (cf. Proposition
2.3). Therefore, J(6) > 0 for § < 0or 8 > 6*, J(8) < 0for 0 < § < 6* and J(0) = J(6*) =0, so
that

£:=—inf J(6) = — inf J(6) > 0.

6>0 0<H<0*

It then follows from the definition of I(v) that for all v > 0

I(v) > sup (fv — J(6)) > — (i91>1£ J(0) =& > 0. (B.12)

>0
On the other hand, I(v) > supy (v — J(8)) > —J(0) = 0 for all v < 0 and I(0) = sup,(—J(0)) =
SUPgcgcgr (—J(6)) > 0. Therefore,
6*v—I(v) <0, Vo < 0. (B.13)
From J(0) = sup, (v8 — I(v)) (see [10, Theorem V.1]) and (B.13) we get
0 = J(6") =max (sup (v6* — I(v)),sup (v6* — I(v)))
v<0 v»>0

= sup (v0* — I(v))

>0

= sup(6*v — I(v))

v>€
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with € := £/(26*), where the last equality comes from the fact (cf. (B.12)) that v6* — I(v) < 0 for
all 0 < v < e. Thus,

0 = sup(6*v — I(v)) = sup (0* — M) =0 — infM =6 — infM

v>e v>e v v>e U v>0 ¢

where the last equality comes from the fact (cf. (B.12)) that I(v) > 6*v for all 0 < v < e.

Therefore,
I
6* = inf Iv) (B.14)
»>0
which along with (B.11) implies that (B.2) holds. This completes the proof. &

C Proof of Lemma 3.2

Since the Markov process Z is stationary, we have

Gi(t, 0) = Z ()\nt) e MR [ee lele(i)]

+/0t(—qu)e‘“"" (i ()\;s!)ne‘““E[ P m(l]) ( Y G-, e)) ds

n=0 jes—{iy T

R Z()\tvz _“+/ ola: —A)s( (Asvz‘ ))") ( ¥ qi].Gj(t_s,e)) ds

n=0 jes—{i}

_ lasH(®)- 1A )t+/ (st @-1M) 3™ GG 5) ds, (C.1)

jes—{i}

We obtain, by a change of variable (v = ¢ — s) in (C.1), that

jes—{i}

t
Gi(t,e) — last(wi()-1)A:)t (1 _I_/O e~ (@it (vi(8)-1)Xi)u Z QijGj(u; O)du) )

Taking the derivative with respect to t yields

%Gi(t,e) = (g + (0i(8) —1)XN)Gilt,0) + > 4G,(¢,0
jes—{i}
= (ui(8) - X Gi(t, 0) + Y ¢:;;G;(¢,0)

jES

or, in vector form,

d

7G(t:0)=(Q+T(OA - M)G(t,6)
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where G(t,8) = (Gi(t,0), i € S)T is a colomn vector. Thus, as G(0,8) = 17 := (1,1,...,1)T, we
obtain
G(t,0) = e(FtTOA-M)q T (C.2)

which establishes (3.21).

Let us now prove (3.22). Let A(f) = Q + T()A — A. Define () to be such that o(8) >
[max;es (—gis — (vi(8) — 1) A;)]*. Therefore, the matrix A(8)+o(8) I is nonnegative and irreducible
(since A(0) is irreducible) and the Perron-Frobenious theory applies. By noting that the eigenvalues

of A(8)+o(6) I are the eigenvalues of A(6) shifted by o(8), we get that r(A(0)+o(0)I) = 7(A(6))+
o(6). Recall here that #(A) denotes the largest real eigenvalue, if any, of a matrix A.

We have from (C.2)

tli)rg %logE [eev(t)] = lim ! log (71' 40 lT)

t—oo {

= logr (eA(9)+‘7(9)I) +log r (6—0(9)1)

1 eAO)ra@) 1P [ a1 1° i
+ tllglo 7 log | = r (eA@)+(0)]) r (e-o(0)1) 1
= logr (eA(e)""’(e)I) +log r (e_"(e)l) (C.3)
= #(A(0)) (C.4)

where (C.3) follows from Theorem 2.1 (statement (ii)) and (C.4) follows from r(exp(A)) = exp(r(4))
that holds for any nonnegative and irreducible matrix A and from r(exp(—0o(6)I)) = exp(—o(6)).

&

D Proof of (3.38)

We know from (2.16) that °C'() < maxzes(1/ %4 (0)). Here, %(6) is the unique right-eigenvector
of the matrix (°P)T ®¥(6) associated with the eigenvalue 7( %¥(6) °P) such that | %(0)| = 1, i.e.,

(P)"°®(6) %2(0) = r(°¥(9)°P))2(6)
(A0 g(9) (D.1)
where (D.1) follows from (3.28).

Assume first that lims_, %(6) exists and is equal to some (componentwise finite) vector z(4).

Rewriting (D.1) as

(JP)T 6\:[,(0) . s _ le(A(e)) -1 s
( - ) 2(0) = (f) 2(6) (D.2)
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and then letting § go to 0 yields (hint: P =1 +6Q + ---and W(0) =1 +6(T(O)A-A)+---)
AT (0)z(8) = #(A(6))z(8). (D.3)

Recall the definition of o(#) in Appendix C and the property that r(A7(6) + o(8)I) = #(A(8)) +
o(6)I. Together with (D.3) this gives

(AT (6) + o(8)1) 2(8) = r(A(8) + o(6)1) 2(8). (D.4)

Since the matrix A7 (6) + o()! is irreducible and nonnegative from the very definition of o(6),

Perron-Frobenius theory and (D.4) implies that the limit z(8) is positive.

Let us now show that %(6) has a finite limit as § goes to 0. Let (z%),, ¢ = 1,2, be two sequences

of nonnegative real numbers such that i — 0 as n — 0o, and such that

1 I : a::L . : g,
z'(0) = nh_)r{.lo z(0) = hgri)lonf z(0)
z*(0) := lim °~z(6) = limsup %z(6).

n—roo 50

Observe that z'(8), i = 1,2, are componentwise finite vectors since °z(f) lies in the compact set
[0,1]¥ for all § > 0. It remains to show that z'(6) = z*(6).

By repeating the above analysis with %(6) substituted for *»z(f), i = 1,2, we get that z!(6) and
z2(0) both satisfy the equation (D.4) or, equivalently, that both vectors are right-eigenvectors of the
matrix AT (0) + o(0) I associated with the eigenvalue r(A(8) 4+ o(6)I). Such right-eigenvectors being
all equal up to a multiplicative constant from Perron-Frobenius theory, we deduce that necessarily
z'(0) = z(0), since clearly |z*(6)| = 1 for ¢ = 1, 2. This concludes the proof. &

Acknowledgments: The authors would like to thank Alain Jean-Marie for useful discussions on
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