An Apply Compiler for the CAAPP:
Release 2

Glen Weaver and Michael Scudder
Computer and Information Science Department
University of Massachusetts *
Ambherst, MA 01003
Phone: (413)545-1519

EMail;: weaver@cs.umass.edu

September 23, 1994

Abstract

Apply is a partial language tailored for image processing. Apply defines image
operations as pure functions that operate on a window of pixels. Because Apply is not
a complete language, a host language is needed to actually control the execution of
Apply functions.

Originally defined for systolic machines, Apply has been ported to the SIMD array
(CAAPP) level of the IUA. This document describes the second release of Apply for
the IUA. Besides supporting the full Apply language definition, release 2 now translates
Apply code the into IUA C++ Class Library (ICL). ICL provides for debugging and
serves as a natural host language.

This document serves as the user’s guide for release 2. It discusses implementation
decisions made in release 2 as well as how to use it to translate and compile Apply
applications. This document also details the changes from release 1.

*This work was supported in part by the Advanced Research Projects Agency under contract DAALO02-
91-K-0047, monitored by the Harry Diamond Laboratories; by the Office of Naval Research, under contract
N00014-94-1-0742; and by the National Science Foundation, under grant number CDA-8922572.

Contents

1 What is Apply

1.1 The History of Apply e
1.2 Fundamental Concepts
1.3 The Language Specification oL
1.3.1 Syntax
1.3.2 Programming Model o oL
1.3.3 Semantics

2 The Apply Compiler

3 How to use and maintain Apply at UMass

3.1 Using Apply, release 2o
3.1.1 Setting up an account touseapply
3.1.2 Compiling an Apply Program
3.1.3 Customizing the .ccfile oL,
3.1.4 Interfacing with an Apply procedure
3.1.5 Debugging Apply Procedures

3.2 Maintaining the Apply system
3.2.1 The directory structure
3.2.2 Compiling the Apply Compiler

3.3 A complete example L Lo

4 New for Release 2

4.1 Location of Variables o

4.2 TUA Class Library Code Generation

4.3 Image Reduction and Image Buffering

4.4 TImage Magnification

4.5 Planes as Indiceso

4.6 Debugging Support

4.7 Unsigned Integer Planes L oL

4.8 Virtualization L

A An Example: Smoothing an Image
A1 The Apply Code o
A2 On the command lineo

A.3 The smooth.ccfile

Ol = = W W W

-J

00~~~

1 What is Apply

Apply is an application specific programming language for image processing. It is a functional
language that describes the operation to be applied to an image by describing the local

computation required to produce a single pixel.

1.1 The History of Apply

Apply was developed at Carnegie Mellon University (CMU) as a tool for writing image
processing programs in CMU’s C/UNIX based standard vision programming environment.
It now runs on UNIX systems, Warp systems, the Hughes HBA system, the TUA, and
others. Apply was developed by Leonard G. C. Hamey, Jon A. Webb, and I-Chen Wu with
contributions by Steve Shafer and others [2]. Extensions to Apply were considered as a result
of experience from the 2nd Darpa Image Understanding benchmark exercise [7], but instead
a new language, Adapt [8], was created. Though similar to Apply, Adapt exposes more of
the architectural details of the Warp by specifying that functions are applied to pixels in
raster order.

A new back end was added to the Apply compiler by Mike Scudder during 1989 [3] as a
master’s project. This back end produces code for the CAAPP level of the IUA architecture
[9].

Mike Scudder’s back end was modified during 1992 by Glen Weaver. The main enhance-
ment was to translate the Apply procedures to C++ and IUA Class Library(ICL)[1] code
instead of compiling to primitive forth instructions. Furthermore, the Apply implementation
now matches fully the description in [2]. However, this implementation does not include the

raster-order extensions suggested in [7].

1.2 Fundamental Concepts

Apply is intended to be an application specific but machine independent programming lan-
guage. It provides a way to specify a pixel in an output image or images based on a window
around the corresponding pixel in the input image or images. It thus provides for parallelism
based on input partitioning.

Each operation is written as a procedure for a single pixel position. The Apply compiler

translates this into a program which executes the procedure over the entire set of pixels. In

the original Apply no constraint on the order in which the pixels are processed is allowed
by the language; thus, the system software has complete freedom in partitioning the pixels

among processors.

1.3 The Language Specification

The language is described in [2]. The information in this document supersedes, for release 2

of the UMass implementation, the information in [3].

1.3.1 Syntax

The syntax of Apply corresponds to the syntax of a subset of Ada, with extensions to the
procedure call syntax. This syntax is described in [2], with the exception that the type
REAL is used instead of FLOAT. Apply is by no means an Ada subset, having keywords
not in Ada and different semantics. Nor will it evolve into an Ada subset.

The acceptable syntax is modified by the m4 option. When the m4 option is used, the
Unaiz System V mJ macro preprocessor is called and processes the file according to its syntax
rules before the Apply compiler’s syntax analysis occurs. The option can be specified in the
Apply code with a comment of the form:

-- Options: -m4

as the first line of the file.

1.3.2 Programming Model

When using the Apply language, the programmer writes a procedure which defines the
operation to be applied to the current pixel location. The procedure conforms to the following

programming model:
1. It accepts a rectangular window from each input image.
2. It performs arbitrary computations without the possibility of side-effects.

3. It returns a rectangular array of pixels in each output image.

221,0 | 221,1 | 221,2 | 221,3
—1,-3]—-1,-2[-1,-1] —1,0
B | 222,0 | 222,1 | 222,2 | 222,3
0,-3 | 0,—2 [0,—1 | 0,0
B | 223,0 | 223,1 | 223,2 | 223,3
1,-3 [1,-2 | 1,-1 | 1,0
B | 224,0 | 224,1 | 224,2 | 224,3

225.0 | 225,1 | 225,2 || 225,3

Table 1: An Example Input Window

1.3.3 Semantics

Each procedure has a parameter list containing parameters of any of the following types:
in, out, or constant. Input parameters are either scalar variables or two-dimensional arrays.
A scalar input variable represents the value of an input image at the current processing
coordinates. A two-dimensional array input variable represents a window of an input image.
Element (0,0) of the array corresponds to the current processing coordinates. These param-
eters have an associated border value which is used to fill in windows which extend outside
an input image. This border value defaults to zero if not specified.

Table 1 shows the input window (—1..1, —3..0) around pixel 223,2. The top entry in each
cell is the index within the procedure’s window; the bottom entry is the index within the
image array. The symbol B stands for the specified border value. The dots stand for pixels
beyond the procedure’s window and outside the image array.

As with input parameters, output parameters may be either scalar or two-dimensional
values. A scalar output parameter represents a single pixel value of an output image. A
two-dimensional output parameter represents several pixel values in the same output image.
Thus, the output image would be larger than the number of times the Apply function is
applied (which is normally equivalent to the size of an input image). The final value of an
output variable is stored in the output image at the current processing coordinates.

Constant parameters may be scalars or arrays with an arbitrary number of dimensions.

They represent precomputed constants, such as a convolution mask, made available for use

Apply Types Type on ACU | Type on CAAPP
byte char CharPlane
unsigned byte unsigned char | UCharPlane

integer short ShortPlane

unsigned integer | unsigned short | UShortPlane
real float FloatPlane

Table 2: Translation of Apply to C++ data types.

by the procedure.

Each procedure may also have local variables which may be scalars or arrays. Each
processing location has, conceptually, its own set of these variables. The Apply compiler
may choose, when permissible, to store some variables on the array controller. Variables
used as FOR loop indices must have the same value at each processing location and are
actually stored only once. Direct assignment to these variables is not allowed. Note that
Apply FOR loop indices must be declared at the beginning of a procedure and have scope
global to the whole procedure, unlike FOR loop indices in Ada.

Apply does not provide subprocedures or user defined functions. Apply does not provide
complex data types other than the windows described above and statically defined arrays.

The reserved variables ROW and COL are defined to contain the image coordinates of the
current processing location. This is useful for algorithms which are dependent in a limited
way on the image coordinates. The coordinates start at (0,0), which corresponds to the
upper left hand corner of the image array.

Apply does not allow assignment of real expressions to fixed variables, or assignment of
fixed expressions to real variables. Apply automatically converts expressions of mixed fixed
and real types to real expressions.

Variable names are alpha-numeric strings of arbitrary length, commencing with an al-
phabetic character. Case is not significant, except in the optional preprocessing stage.

The Apply compiler converts data types according to Table 2. Check the IUA Class

Library documentation for further information on data representations.

2 The Apply Compiler

The Apply compiler translates programs written in Apply to C++ code with calls to the
IUA Class Library[1l]. The translated Apply program is compiled again by the C++ compiler
and linked with the TUA Class Library. To distinguish between the two separate compilation
steps, the conversion of Apply to C++ is referred to as translation.

The Apply compiler runs under Unix [5], making use of Lisp [4], Gnu C++, and various
Unix utilities [6].

The Apply compiler consists of a front-end and a back-end, and both have multiple
phases. A main program sets up the file input/output and calls each of the phases in
turn. The front-end consists of the phases: option processing, macro preprocessing, syntax
analysis, parsing, and semantic checking. The back-end consists of two phases: parser tree
massaging and code generation.

Though the top level control is written in Lisp, the phases are composed of various Unix
utilities and Lisp code. The option processing phase is written in LEX and YACC, and
the compiler calls the M4 Unix utility to handle macro preprocessing. The syntax analysis
phase is written in LEX; the parser is written in YACC. The semantic checking phase and
the entire back-end (i.e., the parser tree massaging phase and the code generation phase)

are written in Lisp.

3 How to use and maintain Apply at UMass

3.1 Using Apply, release 2
3.1.1 Setting up an account to use apply

e Apply is currently available on slotnick@cs.umass.edu, a Sun Sparc2.

19

e Set up an alias to point to “~apply/release2/apply”.

Aliases are usually set up in either the .login or .cshrc file. The line should look

something like the following:
alias apply ~apply/release2/apply

This is all that is needed for basic Apply use. Executing ‘apply’ invokes the Apply

compiler. In reality, ‘apply’ is just an executable shell script which invokes a make file

which eventually runs the Apply compiler.

e The “~apply/release2/make_apply environment” shell procedure may be invoked to

copy the ‘apply’ make file from the Apply account to your own.

A copy of the make file is only needed for sophisticated applications or as a model for

linking apply routines into a larger application.

3.1.2 Compiling an Apply Program

o An Apply procedure is written using a text editor.

File names should end in “.app”.

o Use the alias defined in section 3.1.1 to compile the Apply application.

The compilation of an Apply application involves several steps. The original Apply
application is translated to C++ code, which is compiled to object code which is finally
linked.

The shell script, ‘apply’, (and the make file which it calls) takes several parameters:

Application Name (Required) This is the file name of the source file without the
suffix. The shell script automatically prefixes its first parameter with “APP=",
but this prefix would be required if the make file were used directly.

Function (Optional) This tells the make file what function to perform. The following

are the valid values:
— build: This is the default. This will translate, compile, and link the appli-
cation.
— translate_and compile
— compile_and link
— translate
— compile
— link
Configuration (Optional) The hardware configuration for which the Apply compiler
should produce code. Currently this can be either Sequential or Iua. The default

is Sequential. Either of these values may be used as the second or subsequent

parameters to ‘apply’, but it must be prefixed with “CONFIG=".

Debugging (Optional) The Apply compiler will insert debugging code into the C++
source, but the execution of this code depends on the definition of the DE-
BUG macro. Providing “DBG=U" will turn off the debugging code; whereas,
“DBG=D" will compile in the debugging code, see section 3.1.3. “DBG=U"
is the default, and this parameter may be specified as the second or following

parameter to ‘apply’.

3.1.3 Customizing the .cc file

The Apply compiler produces a C++ source file as its output. This source file contains
standard C++ code, Apply specific function calls, and TUA Class Library function calls.
This file may be modified with any text editor, which is useful for debugging, see section
3.1.5.

Appendix A shows an example of translated Apply code. All translated routines have a

similar structure.

1. Beginning of translated Apply Procedure
2. Declaration of debugging display update macro.
3. Declaration of local variables

4. Buffering of input plane windows into each PE’s local memory. This also implements

the Sample option.
5. Initial display planes for debugging.
6. Translated procedure body.

7. Copying of resulting planes to the output planes. This also implements the magnifica-
tion capability for output planes.

8. End of translated Apply procedure

9. The main() function which is provided for debugging.

3.1.4 Interfacing with an Apply procedure

Apply itself is not a complete computer language; it is not possible to describe an entire
program in Apply. Instead, Apply just describes subroutines which must be called from a
driver program written in some other language. In the UMass release 2 implementation, the
natural language choice is C++, but any language which can call Gnu C++ functions and
work with the IUA Class Library may be used.

For each Apply procedure, the Apply compiler produces a separate C++ function. Thus
when the driver program wants to invoke an Apply procedure, it simply calls a C++ function
of the same name as the Apply procedure. Constant parameters are regular C++ variables

(or constants); whereas, images are IUA Class Library planes.

3.1.5 Debugging Apply Procedures

The Apply compiler catches syntax and some semantic errors, and it does not generate any
programs the C++ compiler will reject. However, no array bounds checking is provided in
the language or by the C++ compiler. Apply reports some run-time warnings and errors.
But because Apply procedures are translated into IUA Class Library code, they may be
debugged using the version of 'gdb’ provided with the IUA Class Library.

The Apply compiler embeds debugging code in the C++ source code. The compilation
of this code is controlled by a C++ compiler switch. The debug code does two basic things.
First, it provides a macro to display various planes and calls that macro at various points
during execution of the procedure. Secondly, a C++ main() function is provided which
declares appropriate plane variables, accepts arguments from the command line, and displays
the input and output of the procedure. This is especially useful when debugging, because
Apply cannot generate an entire program of its own. However, the actual call to the Apply
procedure is not included in the main() function. The actual function call must be hand
coded. Also if the Sample option or output arrays are used, the plane sizes declared in

main() may have to be adjusted.

10

3.2 Maintaining the Apply system
3.2.1 The directory structure

Apply currrently has its own user account. All of the release 2 files have been collected under

a single subdirectory, ~apply/release2. Under this directory, the files are divided as follows:

Compiler ~apply/release2/compiler

This directory contains all the files which form the Apply compiler.

Documents ~apply/release2/docs

Any release 2 documents, such as this one, are located here.

Environment ~apply/release2/environment

This directory contains files needed by an Apply application, but which are not inher-

ently part of the translation process.

Examples ~apply/release2/examples

This directory contains example apply applications, see 3.3.
Shell Secripts ~apply/release2

This directory contains the shell scripts which an Apply user will need to use.

3.2.2 Compiling the Apply Compiler

Compiling the Apply compiler is managed by a make file in ~apply/release2/compiler.

3.3 A complete example

Appendix A contains a complete example of the steps required to compile and execute an
Apply procedure to smooth an image. The file ~apply/examples/smooth.app exists on the

system, and the appendix can be used as a tutorial.

4 New for Release 2

This section describes the changes from release 1 to release 2.

11

4.1 Location of Variables

Apply was originally created to run on the Warp, which is a systolic processor. It was not
designed for a SIMD mesh, such as the CAAPP. Thus, Apply syntax does not distinguish
between local variables which need to be stored on the SIMD array and those which can be
stored on the array controller.

Release 1 of Apply at UMass placed only for-loop variables and constant procedure
parameters on the array controller. All other variables were planes. Release 2 has been
enhanced to determine when a variable is assigned only ACU values. If the variable is never
assigned a plane value, then the variable is moved to the ACU. Otherwise, it is kept on the
CAAPP.

4.2 IUA Class Library Code Generation

The most significant change from release 1 to release 2 is that the Apply compiler now
produces C++ code with IUA Class Library subroutines. Thus, the IUA Class Library is
required in order to run a translated Apply procedure.

Any debugging or display capabilities needed are provided through the IUA Class Library.
Also, if necessary a translated Apply procedure can be augmented with IUA Class Library
subroutines by editing the C++ source output by the Apply compiler.

4.3 Image Reduction and Image Buffering

Release 2 implements the Sample function which is part of Apply. Sample causes the Apply
procedure to be applied to only a subset of image pixels. The subset is a regular pattern
across the image, such as every third pixel. However, the nearest neighbor pixels are still
considered to be the nearest neighbors from the original image.

Sample is handled when the input image windows are buffered. The UMass implementa-
tion reads all the pixel values for an input image window into each PE before beginning the
body of the procedure. This uses more memory, but gives better performance. Thus, Apply
uses the whole image as input when building window buffers, but window buffers are built

only at sampled pixels.

12

4.4 TImage Magnification

Release 2 implements the output array capability of Apply. This implies that the Apply
procedure is applied to fewer pixels than are present in the output image. Release 2 handles
this by using an array of planes to hold the output results until the end of the procedure.

Then the arrays are expanded to fit into a single output image (of a larger size).

4.5 Planes as Indices

Release 2 allows plane variables to be used as array indices. However, they may only be used
to index constant parameters. Constant parameters are maintained on the array controller.
When a constant array is indexed by a plane variable, each element of the constant array is
broadcast down to the processor array. Each processing element in the array uses its local

index values to determine which broadcast value is appropriate for it.

4.6 Debugging Support

Release 2 of the Apply compiler inserts debugging code into every C++ source file. See
section 3.1.5 for more information.

4.7 Unsigned Integer Planes

Release 2 permits planes of type unsigned integer.

4.8 Virtualization

Release 2 supports virtualization. Virtualization is the ability of the physical machine to

handle image sizes larger than the array.

References

[1] James Burrill. The Class Library for the IUA Tutorial. Amerinex Aritifical Intelligence,
INC. Unpublished, 1992.

[2] Leonard G. C. Hamey, Jon A. Webb, and I-Chen Wu. Low-Level Vision on Warp and
the Apply Programming Model. Carnegie-Mellon University technical report CMU-RI-
TR-87-17, 1987.

[3] Michael Scudder. An Apply Compiler for the CAAPP. UMass Technical Report 90-60,
1990.

13

4]

Sun Microsystems. Sun Common Lisp 3.0 User’s Guide. Sun Microsystems Part No.
800-3046-10, 1988

Sun Microsystems. Getting Started with UNIX: Beginner’s Guide. Sun Microsystems Part
No. 800-1284-03, 1986.

Sun Microsystems. Programming Utilities for the Sun Workstation. Sun Microsystems

Part No. 800-1301-03, 1986.

Jon A. Webb and Mike B. MacPherson. The Second DARPA Image Understanding
Benchmark on WARP and extending Apply to Include Global Operations. Proceedings
of the May 1989 Image Understanding Workshop, pp. 597-616, 1989.

Jon A. Webb. Steps Toward Architecture-Independent Image Processing. Computer, Vol
25, No. 2, Feb. 1992, pp. 21-31.

Charles C. Weems, Steven P. Levitan, Allen R. Hanson, Edward M. Riseman, J. Gre-
gory Nash, and David B. Shu. The Image Understanding Architecture. University of
Massachusetts COINS Technical Report 87-76, 1987.

14

A An Example: Smoothing an Image

A.1 The Apply Code

procedure smooth(inimg: in array (-1..1, -1..1)
of byte border 128,
outimg: out byte)

18

sum, 1, j: integer
begin
sum := 0;
foriin -1..1 loop
for jin -1..1 loop
sum := sum + inimg(i,j);
end loop;
end loop;
outimg := (sum + 4) / 9; -- 4 is added to round result
end smooth;

A.2 On the command line

alias apply “apply/release2/apply
apply smooth translate
<need to compile smooth.cc and link in with a driver routine>

A.3 The smooth.cc file

#include <math.h>
#include <IuaC.h>
#include <IuaClassLib.h>
#include <IuaUMassLib.h>
#include <apply_lib.h>
#include <apply.h>
#ifdef DEBUG

#tinclude <stdio.h>
#tinclude <stdlib.h>

extern "C" void Pause(char *msg);
#tendif

/* Functions to index acu array by plane. */

void smooth(UCharPlane &INIMG_plane, UCharPlane &OUTIMG_plane)
{

#undef APPLYDisplayUpdate

#ifdef DEBUG

15

#tdefine APPLYDisplayUpdate() \

{\
int i,j,r,c; \
OUTIMG.Update(); \
}
#telse
#define APPLYDisplayUpdate()
#tendif

PlaneSize APPLY_PLANE_SIZE(64,64);

ShortPlane SUM(APPLY_PLANE_SIZE);

int I;

int J;

UCharPlane INIMG(64,64)[9];
##tdefine INIMG_offset 4
#define INIMG_aref(i,j) INIMG_offset+(3*(i))+(1*(j))
##tdefine INIMG_border 128

UCharPlane OUTIMG(APPLY_PLANE_SIZE);

/* Collect input image windows into each PE. x*/
bufferWindow(INIMG_plane, UCharPlane, INIMG, -1, 1, -1, 1, 1,
1,INIMG_border);

#ifdef DEBUG
{/* Display images. */

int i,j,r,c;

char buf[80];

INIMG_plane.Display("INIMG",APPLY_DISP_RUW,APPLY_DISP_COL);

for (i=0,r=-1; r<=1; i++,r++) {

for (j=0,c=-1; c<=1; j++,c++) {
sprintf (buf,"INIMG[%d] [%dl",r,c);
INIMG[(i*3)+j].Display(buf,APPLY_DISP_ROW,
APPLY_DISP_COL);

}
}
OUTIMG.Display ("OUTIMG",APPLY_DISP_ROW,APPLY_DISP_COL);
}
#endif
APPLYfile = "smooth.app";
APPLYname = "SMOOTH";

/* Translation of apply procedure body */
1n=8;APPLYDisplayUpdate(); /* assignment statement */
SUM = 0;

16

1n=9;APPLYDisplayUpdate(); /*for loop*/
for (I = (-1); I <=1; I++) {
1n=10; APPLYDisplayUpdate(); /*for loop*/
for (J = (-1); J <=1; J++) {
1n=11;APPLYDisplayUpdate(); /* assignment statement */
SUM = (SUM + INIMG[LINIMG_aref(I, J)]1);
} /* End for-loop */
} /* End for-loop */
1n=14;APPLYDisplayUpdate(); /* assignment statement */
OUTIMG = ((SUM + 4) / 9);
/* End translation of apply procedure body */

/* Process the magnified planes. */
APPLYDisplayUpdate() ;
QUTIMG_plane = OUTIMG;

#ifdef DEBUG

Pause("End of SMOOTH.");
#tendif
}

#ifdef DEBUG
main(int argc, char *argv[])
{ Everywhere active;

UCharPlane input_INIMG(64,64);
UCharPlane output_OUTIMG(64,64);

if (arge != 2) {
fprintf (stderr,"usage: /s <1 planes>\n", argv[0]);
exit(1);

}

input_INIMG.Read(argv[i]);
input_INIMG.Display("INIMG",APPLY_DISP_RUW,APPLY_DISP_CUL);

Pause("About to execute body of program.");
/*Put actual function calls here.x*/
output_UUTIMG.Display("OUTIMG",APPLY_DISP_ROW,APPLY_DISP_CUL);

Pause("About to end.");

} /* End main() */
#tendif

17

