
Exploiting Non-Volatile Memory in Disks
for Write Caching

K. K. Ramakrishnan
Digital Equipment Corporation
550 King Street, Littleton, MA.

rama@erlang.enet.dec.com

Don Towsley
Computer Science Department
 University of Massachusetts

Amherst, MA.
towsley@cs.umass.edu

Prabuddha Biswas
Digital Equipment Corporation

110 Spitbrook Road, Nashua, NH.
pbiswas@star.enet.dec.com

Exploiting Non-Volatile Memory in Disks
for Write Caching

ABSTRACT
The I/O subsystem in a computer system is becoming the bottleneck as a result of recent dra-
matic improvements in processor speeds. Disk caches have been effective in closing this gap
but the benefit is restricted to the read operations as the write I/Os are usually committed to
disk to maintain consistency and to allow for crash recovery. As a result, write I/O traffic is
becoming dominant and solutions to alleviate this problem are becoming increasingly impor-
tant. A simple solution which can easily work with existing file systems is to use non-volatile
disk caches together with a write-behind strategy. In this study, we look at the issues around
managing such a cache using a detailed trace driven simulation. Traces from three different
commercial sites are used in the analysis of various policies for managing the write cache.
We observe that even a simple write-behind policy for the write cache is effective in reducing
the total number of writes by over 50%. We further observe that the use of hysteresis in the
policy to purge the write cache, with two thresholds, yields substantial improvement over a
single threshold scheme. The inclusion of a mechanism to piggyback blocks from the write
cache with read miss I/Os further reduces the number of writes to only about 15% of the origi-
nal total number of write operations. We compare two piggybacking options and also study the
impact of varying the write cache size. We extend the policies to the case where multiple disks
share the cache and address the issue of performance and fairness in that environment. We fur-
ther investigate the case of a single non-volatile disk cache to estimate the performance impact
of statically partitioning the cache for reads and writes.

3

1 INTRODUCTION
The performance of computer systems has been increasing rapidly in the recent past. This has
been largely due to dramatic increases in processor speeds and the rapid reduction in the costs of
memory. The increase in processor speeds has allowed compute intensive tasks to see the benefit
directly. This has not been true for I/O intensive tasks. Although the reduction in the cost of
memory has allowed the use of large caches, which has alleviated the problem, the performance
of the basic I/O subsystem and particularly the disk subsystem has not increased as quickly as
needed. Thus, the I/O subsystem is often the bottleneck. Several research efforts have been ad-
dressing this issue. One of them is the traditional use of large caches, both for the file system and
in the disk subsystem [8, 15, 16]. In addition, more recently there have been efforts to use disk
arrays for improving disk subsystem performance [4, 9, 11, 13].
Most commercial systems use write through disk caches to maintain strict consistency and to al-
low for crash recovery. Therefore, only the read I/Os get the benefit of the cache and write op-
erations begin to dominate the traffic to the disk. It is becoming increasingly important to address
the performance of write operations. The use of Log Based File Systems [12] addresses this
problem of improving the performance of writes. Another approach that is also becoming attrac-
tive is to use non-volatile caches which allow for write-behind rather than write-through and thus
reduce the number write operations to the disk [1, 7, 17]. This is partly because non-volatile
RAM (NV-RAM) is becoming cheaper and it is easy to incorporate into existing system designs
without major changes to the file system or the rest of the operating system. It must be noted,
however, that NV-RAM is still sufficiently expensive so that it is not feasible to use a single
large NV-RAM cache for the entire disk cache. We therefore consider the performance issues
when there is a separate read cache and a non-volatile write cache. In particular, we are inter-
ested in devising efficient management policies for the write cache because it can only consist of
a relatively small amount of NV-RAM. We would also like to estimate the size of the write
cache that is required to substantially reduce the write I/Os to each disk.
There are several ways to manage a separate write cache. The first obvious policy would be to
use a simple write-behind policy, wherein the writes are buffered in the non-volatile cache until
it is full of "dirty" (written but not committed to the disk) blocks, at which point in time some
number of "dirty" blocks are written out to the disk. We study this and propose enhancements
that we consider to be effective. In particular, we look at the usefulness of a hysteresis based
write behind policy with variable thresholds to begin and terminate the writing out ("purge") of
dirty blocks to the disk. In addition, it is important to examine the interactions between the read
and write cache. We also examine several mechanisms which use the read misses from the read
cache and the write operations to the disk in a complementary way to enhance performance.
Our study of the performance of these different algorithms for managing the read and separate
write cache is based on trace driven simulation. We model the components of the I/O subsystem
of interest: the disk controller, the read and write caches which we postulate are part of the con-
troller, and the magnetic media. The traces we use for the simulation are detailed I/O operation
traces from several commercial time-sharing VAX/VMS systems [10]. The traces are quite large
(between 100-500 K operations per disk) and each of the environments studied had a large num-
ber of users. All the I/O operations to the disk subsystem are captured with detailed time stamps
and the logical block number of the disk blocks accessed. We also had available the precise disk
configurations and architectures to enable us to calculate accurately the position of the disk arm

4

with respect to time. The traces were used to drive a detailed simulation of the disk subsystem
and to analyze the caching alternatives. We focus on reducing the number of write operations to
the disk without adversely affecting the I/O response time.
Section 2 describes the different policies for managing a write cache that will be studied in this
paper. Section 3 provides a brief outline of our methodology and a description of the traces used
for the analysis. Subsequently, we compare the different caching policies and provide insights
regarding the setting of different parameters of the caches. We also look at the performance im-
pact of varying the size of the non-volatile write cache. We then extend the use of the proposed
caching policy to the case where a single cache at the disk controller is shared among multiple
disks. The final section summarizes the major conclusions from this study.

2 DESCRIPTION OF CACHING SCHEMES
Disk caches have become a convenient and effective way to close the ever-widening gap be-
tween CPU and I/O performance. Smith [16] looks at many of the disk caching options and ad-
dresses the important issues of cache location, cache size, cache replacement algorithm, prefetch-
ing strategy, block size, etc. Many commercial disk controllers are available that use
write-through disk caches for data integrity. Thus, reads to the disk are satisfied directly from the
cache. In such systems, as the cache size becomes reasonably large, the cache hit rate for reads
can be quite high and therefore the write I/O operations start to dominate the disk I/O traffic. It is
clear that if the write operations are also cached in the controller, then I/O performance can be
significantly enhanced. Analysis of disks with write behind disk caches can also be found in
[16]. One way to achieve that is to use a separate non-volatile buffer to cache the writes. This is
used in addition to the traditional disk cache which improves read performance. Therefore, it is
becoming increasingly important to analyze the performance of the different caching strategies
that are required when there are two separate cache components: (1) a volatile read cache, and
(2) a non-volatile write cache.
Our discussion of the different caching strategies assumes a simple I/O sub-system model con-
sisting of a controller, a cache unit and the magnetic disk media. The controller is responsible for
receiving the I/O requests in a FIFO queue, checking the cache unit to resolve the request and for
scheduling disk operations. The cache unit, as discussed before, has separate caches for reads
and writes. The disk is made up of one or more platters of magnetic media. There are a certain
number of concentric tracks on each platter. The tracks at the same position on all platters to-
gether comprise a cylinder.

2.1 Write Behind
The simplest policy for managing the write cache would be to employ a write behind scheme. As
disk blocks are written they are inserted into the non-volatile write cache and when the cache
becomes full it is "purged" by committing some of the previously updated blocks to the disk. The
controller can optimize the write cache purge operation by identifying the disk track with the
most "dirty" blocks in the write cache and writing them all back to the disk in one write opera-
tion. The seek distance could also be used to choose the appropriate track to "purge". Once a disk
block is committed to disk it is marked "clean" and the entry placed in an available buffer list. A
subsequent read to a "clean" block can still be resolved from the write cache. The disadvantage
of this scheme is that a write operation that causes the cache to become full is stalled until the
cache purge operation is completed and "clean" write cache buffers are available for use.

5

2.2 Write Behind with Thresholds
The most obvious way to avoid the write stall problem of the previous scheme is to use a proac-
tive write cache purging policy. Each entry in the write cache has a "dirty" flag which is set
when a new block is inserted in the cache. When the percentage of the dirty blocks in the write
cache exceeds a high-limit threshold (WC-HILIM), the controller notes that condition by raising
a "purge-request" flag. Once this flag has been set, the controller finds the first opportunity when
the disk becomes idle (i.e. no read operations pending in the controller queue) and "purges" the
write cache by committing dirty blocks to the disk. The purge operation is identical to the one
used in the previous scheme, in that the track with the most "dirty" blocks in the write cache is
chosen for writing to the disk. This scheme has the benefit that the controller attempts to clean
the write cache before it becomes full of dirty blocks and tries to do the purges when the disk is
quiescent by postponing purge operations if there are read operations pending in the controller
queue. Purging is discontinued once the percentage of dirty blocks fall below the threshold.
However, the drawback of this scheme is that the purge operation is frequently triggered. This
situation can be remedied by introducing a second low limit threshold. The controller continues
to schedule purges until the percentage of the dirty blocks in the write cache falls below this low-
limit threshold (WC-LOLIM). Purge operations are postponed if there are read operations pend-
ing in the controller queue.
The threshold driven proactive purging operations are performed only when the disk is idle.
Hence it is possible, during peak load periods, that the controller may not get the opportunity to
proactively purge the write cache. In that case, the write cache can become full with dirty blocks.
If such a situation arises, the controller schedules an "immediate purge" operation. This opera-
tion has the same priority as the read miss requests to the disk and are handled in FIFO order.
Immediate purging is discontinued as soon as there are any free buffers in the write cache and
the controller returns to quiescent purging if still required.

2.3 Piggybacking
Another mechanism is used to enhance the write behind strategy outlined above. This is to pig-
gyback "dirty" blocks from the write cache with read operations. When a read I/O request is not
satisfied by either of the caches, it results in a "Read Miss" and a disk access operation is re-
quired. At this point the disk controller checks the write cache for "dirty" blocks belonging to the
same disk track as the read request. If such blocks are found, they are "piggybacked" with the
read request and written to disk as part of the same disk access operation. The blocks are marked
"clean" in the write cache. The disk blocks read are inserted into the read cache which is main-
tained using the LRU replacement algorithm.
There are two variations of the piggybacking operation - 1) Free, and 2) Full track piggybacking.
In free piggybacking, not all dirty blocks on the target track are eligible for piggybacking. Only
the dirty blocks in the write cache in the region between where the head is currently at and the
start of the read operation can be written without affecting the read response times. It simply util-
izes the rotational latency period gainfully. In the full track piggybacking case, all dirty blocks
on the track being visited by the read miss are available for piggybacking. In this case the read
service time could potentially be increased as the I/O is not complete until the last dirty block on
the track has been piggybacked out. In the example shown in Figure 2.1, only dirty block A is
eligible for free piggybacking while blocks A and B are both available for the full piggybacking
scheme.

6

The way in which the servo information is stored on the disk impacts the purging and piggyback-
ing schemes. Some disks use a dedicated servo mechanism where one platter surface is dedicated
for servo information. In these disks the heads on each of the platter surfaces are aligned at the
same track. In that case the whole cylinder is available for the purge or piggybacking operation.
Disks which use the embedded servo technique, keep the servo information on every individual
platter. These disks achieve greater track density with the side effect that the heads on the differ-
ent platters are not assumed to be exactly at the same track. When switching from one platter to a
new one, the head reads the servo information on the new platter and fine tunes the head posi-
tion. In these disks there is a significant time delay for switching between platters and all the
dirty blocks on one cylinder cannot usually be written out in one rotation. In that case, we pessi-
mistically assume that only one disk track is available for purging and piggybacking. The purg-
ing and piggybacking mechanisms function exactly in the same way for the track based policies.
We will focus on the track case but also compare it with the cylinder case to provide an upper
bound for the reduction in write I/Os that can be achieved.
When a block is written, we need a mechanism to update the read cache. The read cache could
use a 1) write allocate, 2) write update, or 3) write purge policy. Under the "write allocate" pol-
icy a copy of the block written is also placed in the read cache even if it was not previously in the
read cache. The "write update" policy requires that the block be updated in the read cache only if
it is already present. On the other hand, under the "write purge" scheme, a block that is written is
removed from the read cache if it is present there. The issues surrounding the management of the
read cache is not the primary focus of this paper. Hence, we will assume a write purge strategy
for most of our results. We will also include a comparison between the write allocate and write
purge policies.

Initial Head Position

Blocks to Read

A

B

Blocks to Write

Full Track Case:
Dirty blocks A and B are eligible for
piggybacking
Free Piggybacking:
Only dirty block A is eligible for pig-
gybacking

Figure 2.1: Schematic Diagram of a Disk Platter to explain Piggybacking

Disk
Rotation

7

3 METHODOLOGY
A trace driven simulation was used to evaluate the different caching options. This is usually the
methodology of choice for evaluating cache designs, scheduling algorithms, resource manage-
ment algorithms, etc. where it is important to capture the correlation in the activity pattern. No
simplifying assumption is made about the I/O request arrival stream.
Disk I/O activity was collected at eight commercial customer sites representing interesting and
diverse computing environments. The performance impact of the tracing package was small
(<1% CPU utilization in all the environments) and the users were unaware of the tracing. There-
fore, we believe that the traces capture activity from truly operational, commercial production
systems. A detailed description of the tracing mechanism, the traces and the characteristics of
file I/O activity can be found in [2, 10]. Based on the environment and file access behavior ob-
served, the traces were broadly categorized into three major interactive classes:
• Office and Scientific Time Sharing
• Time Sharing with some database activity
• Transaction processing
We have chosen one trace from each of these three environments. There were many disks at each
of these installations and our analysis was done on many disks from each scenario. For clarity of
presentation, we choose one representative disk from each system. In our effort to make the
analysis less dependent on the operating system, we did not select the system disks or disks used
by some well known VAX/VMS specific applications, even if they were the most active disks in
that environment. Private user disks and database disks were chosen for this analysis. Summary
data from 6 other disks (two from each environment), including operating system related disks, is
presented in Appendix-1 to demonstrate that the results are not affected by the choice of disks for
the analysis.

3.1 Trace Descriptions
The traces were collected by instrumenting the I/O processing routines of the operating system.
This instrumentation captured every I/O request and recorded detailed information about the sys-
tem, storage device, file and process identification and disk block request information. Every
trace record also contains a timestamp with a 100 nanosecond resolution. The three traces used in
this study are classified by their environment and briefly described below:
1. Office Applications and Decision Support (Off-Day): The trace was collected at the head-

quarters of a large Fortune 100 corporation. The installation was a VAXcluster system of 3
processors (~20 SPECmarks) with 51 disk drives. There were about 100 users primarily run-
ning office applications and decision support software. Three consecutive days were traced.
In this study we used a trace from the prime time (7 a.m. to 5 p.m.) period of one day as the
access pattern was found to be very similar across the three days [10].

2. Scientific and Office (Sci-Off): This trace was collected at a Fortune 100 chemical company
site and the workload consisted of a mixture of scientific and office automation applications.
The system was a VAXcluster with four processors (~15 SPECmarks) and 19 disk drives.
The trace data analyzed was from 7 a.m. to 5 p.m., the usual work day for this site.

3. Airline Reservation (Air-Rsv): This is a transaction processing environment for an airline.

8

There were about 500 agents making airline and hotel reservations on a VAXcluster system
of 4 processors (~30 SPECmarks) and 28 disk drives. The system was traced from 9:30 a.m.
to 6:30 p.m., the prime time for this environment.

Some of the important static and dynamic characteristics of the of the three disks chosen for this
study are summarized in Table 3.1. Note that the disk space is the formatted capacity in mega-
bytes (MBytes). The utilization of the disk (% disk busy in Table 3.1) was calculated approxi-
mately based on the number of I/Os and the rated capability of the disk subsystem.

3.2 Simulation Methodology
The simulation model used for this analysis is driven by a time ordered trace of I/O requests. The
time resolution of the trace is 100 nanoseconds which is adequate to accurately simulate the disk
arm traversal on the disk platters. A device status and a device statistic block is maintained for
the disk being simulated. The status block keeps track of the time when the last I/O completed
and the head position at that point. As an I/O request is generated from the trace, the disk status
block of the corresponding disk is checked to see if the disk is busy. If it is idle, then the time
between the completion of the last I/O request and the current time time is taken to calculate the
current head position. If the disk is busy at the I/O arrival instant, then the starting head position
at the time this request is serviced is the point where the last I/O is considered complete. The I/O
request provides the logical block number of the start of the request and the transfer count. That
information and knowledge of the disk architecture is used to calculate the exact cylinder, platter
and track on disk being visited. I/O requests crossing track and/or cylinder boundaries are also
accurately handled. A table of the exact seek times for a large number of selected seek distances
is kept for all the disk types handled by the simulation. Linear interpolation is used to calculate
the seek time for requests with seek distances not available in the table. An example of the seek
time distribution is presented in Figure 3.1. Note that a large number of measured points were
used in the non-linear region. A count of the number of I/Os that had to queue for service and a
cumulative value of the total waiting time is maintained in the statistic block along with a variety
of other cache related information.

Disk Disk
Space

(MBytes)

#
Platters

Tracks /
Platter

Blocks /
Track

Rotational
Speed
(rpm)

Off-Day 456 14 1251 33 3600
Air-Rsv 1200 13 2652 69 3600
Sci-Off 622 15 1426 57 3600

Table 3.1: Characteristics of disks chosen for analysis

Disk # Read
I/Os

Avg.
Read Size
(Kbytes)

Write
I/Os

Avg.
Write Size
(Kbytes)

Approx. %
Time Disk

Busy
Off-Day 58468 1.64 91726 2.40 16%
Air-Rsv 326579 5.27 79635 3.40 36%
Sci-Off 432218 1.30 70535 1.70 43%

9

The operation of the caches, as explained in Section 2, was simulated in detail. It is important to
point out that the simulation was at the level of 512-byte disk blocks. The read cache is main-
tained as an LRU-list and uses a hash table for efficient access. The write cache is maintained as
a tree structure facilitating access to blocks belonging to the same disk track and cylinder.

3.3 Metrics
The focus of the study is to compare different write caching policies and therefore the most im-
portant metric is the number of write operations generated in each scheme. To provide a feel for
the factor by which the write I/Os were reduced, we present the number of write operations as a
percentage of the original number of write operations without using any write caching policies.

It is worth noting that a write operation at the disk might actually be an aggregate of multiple
application level write operations. Therefore, Wwc cannot be interpreted as the write miss ratio.
On the other hand, Rwc, which is used to denote the percentage of the read operations that need
to visit the disk, is precisely the disk cache miss ratio for reads. It is important to look at Rwc
even when the read cache is kept constant because we would like to account for the read opera-
tions that are satisfied by the write cache. Not only is it important to reduce the total number of
I/O operations but it is also crucial to ensure that the number of I/O operations that have to queue
for service should not increase. We express this metric as the percentage of all I/O operations
that has to queue for service.

Not only is it important to know the percentage of I/O operations that queue for service but to
also estimate the average queueing time. The write cache purging operations are usually done
when the disk is idle, so we shall focus on the average read queueing time.

50.00

0.00

10.00

20.00

30.00

40.00

14000 200 400 600 800 1000 1200

Seek Time
(milliseconds)

Seek Distance (in cylinders) --->

Figure 3.1: Example of Seek Time Distribution

 () =
 * 100%

 =
 * 100%

 =

10

Another interesting metric for the schemes that use piggybacking is the percentage of the read
miss I/Os that are successful in piggybacking dirty blocks out of the write cache. We will present
the piggyback success parameter as the following:

We shall always refer to the cache sizes in terms of megabytes. The thresholds used in the purg-
ing policies are expressed as percentages of the total write cache size.

4 CACHE ANALYSIS RESULTS

4.1 Purging with Thresholds
The write cache contains the disk blocks that were modified which must eventually be commit-
ted to disk to make room for new blocks being written. One policy is to wait until the write cache
becomes completely full and then perform a write cache purge operation, as explained in Section
2. We believe that such a policy would result in unacceptably poor performance because the
write I/O that causes the the cache to become full will stall until the purge operation makes room
in the cache. Therefore, we study a track based cache purge policy triggered by a high limit
threshold (WC-HILIM) before the cache becomes full. The read and write cache sizes were 2
and 1 Mbytes respectively. In Table 4.1 we observe that the total number of write I/Os is reduced
to about 40-50% of the original number of write operations for all three disks chosen for this
analysis.

It is also observed from Table 4.1 that the correct choice of WC-HILIM is in the 90-95% range.
Although in some cases, the number of write operations may sometimes be lower at a threshold
of 99%, the percentage of I/O operations that have to queue for service also increases at that
point. As a result, it is necessary to examine improvements to such a simple purge operation. In
particular, we examine the use of hysteresis in the write cache purging process. A low limit
threshold (WC-LOLIM) is added and purge operations continue to be performed until the per-
centage of dirty blocks in the write cache drops below this threshold.

 =
 * 100%

Off-Day Air-Rsv Sci-OffThreshold
WC_HILIM Wwc I/O Stalls Wwc I/O Stalls Wwc I/O Stalls

80% 41.15% 1.82% 43.29% 13.44% 53.14% 3.63%
90% 39.25% 1.78% 41.52% 13.30% 50.82% 3.68%
95% 39.25% 1.77% 41.19% 13.36% 49.48% 3.65%
99% 43.12% 2.96% 41.19% 14.23% 49.44% 3.81%

Table 4.1: Number of Writes with Caching and I/O Stalls for varying
WC-HILIM Threshold values

11

Figure 4.1 shows the total number of write purge operations performed (as a percentage of the
total number of writes) for the best settings of one and two thresholds. It is clear that in all cases,
the total number of disk write operations is significantly reduced by using two thresholds as op-
posed to one. The two threshold write behind purging strategy reduces the the number of writes
to disk to only about 15-20% of the total number of write I/Os in the trace. This is more than
50% improvement over the single threshold policy.
Next, in Figure 4.2 and Table 4.2 we look at the sensitivity of the number of write cache purge
operations to the two thresholds. In Figure 4.2, the WC-HILIM is kept constant at 95% of the
write cache size (i.e., the purge operation is triggered when the write cache contains more than
95% dirty pages) and the WC-LOLIM is varied. It is clear that a choice of WC-LOLIM close to
WC-HILIM is bad because purging is triggered frequently and only a small number of dirty
pages are written out each time. The effectiveness of the cache purging scheme is not affected
significantly once the WC-LOLIM value is below 70%. A very low setting (close to 0%) is also
not a good choice because it appears to increase the number of write cache purge operations.
Dirty pages that may be overwritten are needlessly purged out early (as seen in the Sci-Off envi-
ronment). The performance of the scheme appears to be quite stable for a wide range (20-60%)
of WC-LOLIM values -- that is a desirable feature.
Next we fixed WC-LOLIM at 40% and varied WC-HILIM to understand the impact of this pa-
rameter on the performance of the write cache. We observe (Table 4.2) that both Wwc and I/O
Stalls are very high when WC-HILIM is set at 100%. Clearly, WC-HILIM should be less than
100% so that purging is done proactively. However, if the value is too low, then purging is trig-
gered early and the write cache will be under utilized. This is reflected in an increase in the num-
ber of purges to disk. It appears that a value for WC-HILIM in the 95-99% range is an appropri-
ate choice. The difference in Wwc and I/O Stalls for WC-HILIM values of 95% and 99% is
small and the 95% threshold provides more headroom for the write cache to grow before trigger-
ing an immediate purge operation. It was observed that "immediate" purge operations were either
negligible or completely eliminated when WC-HILIM was set at 95%.

Figure 4.1: Comparison of Wwc for Purging
with 1-Threshold versus 2-Thresholds

50.00

0.00

10.00

20.00

30.00

40.00

Off-Day Air-Rsv Sci-Off

Purge - 1 Threshold

Purge - 2 Thresholds
Writes with Caching
as a percentage of the
Total # Write Operations

12

4.2 Cache Size Variation
Before we try to understand the impact of piggybacking in improving the write cache manage-
ment algorithms, we look at the effect of varying the write cache size while the read cache size is
held constant at 2 MBytes. We used the purging scheme with the WC-HILIM and WC-LOLIM
thresholds set at 95% and 40% respectively.
Figures 4.3-4.5 show the percentage of total read I/Os that go to the disk (Rwc) and the number
of cache purge operations as a percentage of the total number of write I/Os(Wwc) for the three
disks. Wwc decreases rapidly as the write cache is increased to about 1 MBytes. Thereafter, we
begin to see diminishing returns for increasing the size of the write cache. For example, in the
Sci-Off disk, Wwc reduces from 40.6% to 21.1% as the write cache size is increased from 0.125
MByte to 1 MByte. But going from 1 MByte to 2 MByte, Wwc reduces only by 5.9% (21.1% to
15.2%). For the other disks the flattening of the Wwc curve in the 1-2 MByte region is even
more pronounced. We observe that Rwc does not decrease noticeably for the Sci-Off and Air-
Rsv disks as the write cache is increased while it shows some improvement for the Off-Day disk.

50.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

1000 20 40 60 80

Off-Day

Air-Rsv

Sci-Off

Write cache LO_LIM (% of Write Cache Size)----->

Writes with Caching
as a percentage of the
Total # Write Operations

Figure 4.2: Effect of WC-LOLIM on Wwc. WC-HILIM = 95%

Table 4.2: Effect of WC-HILIM on Wwc and I/O Stalls. WC-LOLIM = 40%

Off-day Air-Rsv Sci-OffWC-HILIM
Wwc IO Stalls Wwc IO Stalls Wwc IO Stalls

80% 19.43% 1.09% 20.39% 10.88% 22.54% 2.94%
90% 17.18% 0.89% 19.24% 10.88% 21.47% 3.08%
95% 15.96% 1.00% 18.44% 10.66% 21.09% 2.97%
99% 15.72% 0.95% 18.30% 10.65% 20.55% 2.77%
100% 59.48% 38.37% 42.47% 22.29% 68.06% 13.46%

13

This implies that the Air-Rsv and Sci-Off disk had very little "read-after-write" activity. From
this data, it appears that a 1-2 MByte non-volatile write cache is adequate for all the disks pre-
sented.

Figure 4.3: Rwc and Wwc for Off-
Day Disk for varying Write Cache
Sizes

Figure 4.4: Rwc and Wwc for Air-
Rsv Disk for varying Write Cache

Sizes

60

0

10

20

30

40

50

2.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Read Cache = 2 MBytes
Vary Write Cache Size

Write Cache Size (MBytes) ----->

Percentage

Rwc

WwcOff-Day Disk

60

0

10

20

30

40

50

2.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Read Cache = 2 MBytes
Vary Write Cache Size

Write Cache Size (MBytes) ----->

Percentage

Air-Rsv Disk

R
wc

Wwc

Figure 4.5: Rwc and Wwc for Sci-
Off Disk for varying Write Cache

Sizes

60

0

10

20

30

40

50

2.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Read Cache = 2 MBytes
Vary Write Cache Size

Write Cache Size (MBytes) ----->

Percentage

Sci-Off Disk

R

Wwc

wc

14

4.3 Piggybacking
Next we investigate the impact of piggybacking "dirty" blocks from the write cache on read I/O
requests. Figure 4.6 shows the benefit of track based piggybacking over the 2-Threshold purging
scheme (WC_HILIM=95%, WC-LOLIM=40%). The diagram also compares Wwc for the "full
track" and "free" piggybacking schemes (explained in Section 2). The Read and Write cache
sizes are once again set at 2 MBytes and 1 MByte respectively.

From Figure 4.6 we see that "full track" and "free" piggybacking policies are successful in re-
ducing Wwc by about 10-25% and 5-20% respectively over the 2-Threshold purging scheme.
The improvement in write I/Os achieved with track based piggybacking, as we had mentioned
earlier, is a pessimistic estimate. The piggybacking of dirty blocks on the whole disk cylinder as
the read miss operation, on the other hand, provides the upper bound on the reduction of write
I/Os that can be achieved by the piggybacking policy. Figure 4.7 shows that dramatic reductions
in write I/Os can be attained using the"full cylinder" piggybacking policy. Wwc is reduced by
about 45-99% compared to the 2-threshold purge scheme. For the Air-Rsv database disk the full
cylinder piggybacking policy is so effective that explicit write operations are almost completely
eliminated! The Sci-Off disk also shows an order of magnitude improvement. Piggybacking was
quite effective for the Off-Day disk as well, achieving about 45% reduction in write I/Os over
the best purge-only scheme. Even "free" piggybacking is quite effective - reducing Wwc to only
0.6-5.6% of the total number of write I/Os in the trace, for all the three disks.
In the cylinder case, the total amount of blocks that can be purged or piggybacked in one opera-
tion can be expected to be higher. That should lead to fewer write operations for the cylinder
case than the track case. In Table 4.3 we present a comparison between the "full track" and "full
cylinder" piggybacking and purging policies. We observe (from the piggyback success value)
that about 2-3 times more of the read miss operations are able to piggyback dirty blocks in the
cylinder case than in the track case. Better piggybacking success coupled with more efficient
purges (observe average KBytes per purge in Table 4.3) helps to reduce the number of write op-
erations in the cylinder case (Wwc) to 0.1-4.4% of the original number of writes in the trace. The

Figure 4.6: Comparison of Wwc for the Track based Piggybacking Schemes
versus the 2-Threshold Purge Scheme

25.00

0.00

5.00

10.00

15.00

20.00

Off-Day Air-Rsv Sci-Off

Cached Writes
as percentageof total writes Purge + Free Piggyback

Purge + Full Piggybacking
Purge (2 Thresholds)

15

track based policy on the other hand, is successful in reducing Wwc to 14-17%. One might ex-
pect the percentage of I/Os that stall to increase in the cylinder case because the I/O service times
might be greater than in the track case but it appears from Table 4.3 that the percentage of all
I/Os that stall is always less for the cylinder than the track based policy. This is due to the fact
that the reduction in write I/Os with the "full cylinder" piggybacking more than compensates for
the slightly higher probability of stalls due to the larger I/O service times.

Figure 4.7: Comparison of Writes with Caching for the Cylinder based Pig-
gybacking Schemes versus the 2-Threshold Purge Scheme

12.00

0.00

2.00

4.00

6.00

8.00

10.00

Off-Day Air-Rsv Sci-Off

Cached Writes
as percentage
of total writes

Purge Only

Purge + Free Piggyback
Purge + Full Piggybacking

Table 4.3: Comparison of Rwc, I/O Stalls, Piggyback success and Kbytes per
Purge where a disk track or cylinder is available for write cache management

Disk Policies Wwc %I/O Stalls Piggyback
success

Avg.
KBytes per

Purge
Track 14.34% 1.00% 18.52% 4.38Off-Day

Cylinder 4.41% 0.92% 34.08% 10.14

Track 13.62% 11.27% 4.93% 6.58Air-Rsv

Cylinder 0.10% 11.27% 10.52% 14.58

Track 16.67% 3.02% 5.39% 2.58Sci-Off

Cylinder 1.59% 2.79% 14.03% 7.74

16

4.4 Insights into 1-Threshold versus 2-Thresholds Policies:
It is useful to understand what makes the 2-Threshold hysteresis policy better than than the sim-
pler 1-Threshold policy. At first glance it appears that more dirty pages are purged out of the
write cache each time the HI-LIM threshold is crossed for the 2-Threshold policy. Therefore we
expect more disk writes for that case. But we showed in Section 4.1 and Figure 4.1 that the total
number of disk write operations is significantly lower for the 2-Threshold policy.
Figure 4.8 shows the way the number of dirty pages in the write cache is expected to vary for the
two policies and why you have fewer write cache purge operations in the 2-Threshold case. With
the 1-Threshold policy the number of dirty pages in the write cache always hovers around the
HI-LIM threshold value, thus causing the write cache to be purged quite frequently. On the other
hand, in the 2-Threshold case a large portion of the write cache is cleaned once the HI-LIM
threshold is crossed; but the HI-LIM threshold is crossed infrequently. Table 4.4 compares some
of the important metrics between the 1-Threshold and the 2-Threshold cases. The most striking
observation is that for the 2-Threshold case the number of dirty blocks overwritten in the cache is
significantly higher than the 1-Threshold case. This happens because in the 2-Threshold case
there are fewer write cache purges which lets the dirty blocks to stay longer in the cache. We
also know that in most environments a large percentage of the data is overwritten within a short
interval of time. In Table 4.5 we investigate the data overwrite characteristics of four disks from
two different environments. In all cases we find that almost 80-90% of the modified disk blocks
are overwritten. We also find the mean number of I/O operations between data overwrites to be
in the several thousand I/O range. More importantly however, we observe from the last colum in
Table 4.5 where we see that 50% of the overwrites (the median) happens within about hundred
I/O operations.
Another side effect of blocks staying longer in the cache is that it becomes possible to group
more than one individual write operation into a single disk write. As more dirty blocks are over-
written and with more writes grouped into fewer disk write operations, the need for write cache
purge operations is further reduced.

Cache Size Cache Size

HI-LIM

LO-LIM

Time ---> Time --->

1-Threshold Case 2-Threshold Case

Figure 4.8: Variation of the number of Dirty blocks in the write cache with time for the
1-Threshold and 2-Threshold policies.

17

Table 4.4: Comparison of Cache Purge metrics for 1-Threshold versus 2-Threshold policies.
Read and Write cache Sizes were 2Mbytes and 0.5 Mbytes respectively.

1-Threshold: 95%, 2-Thresholds: 95% and 40%.

Disk Policy Wwc %dirty blocks
overwritten

% Purges
with multiple

writes
1-Threshold 39.3% 30.0% 35.9%Off-Day

2-Threshold 16.0% 71.2% 45.4%

1-Threshold 41.2% 19.2% 17.6%Air-Rsv

2-Threshold 18.4% 61.2% 28.4%

1-Threshold 49.5% 21.1% 17.8%Sci-Off

2-Threshold 21.1% 68.9% 23.4%

Table 4.5: Comparison of data overwrite characteristics for four disks from the Off-Day and
Sci-Off environments

Environment Disk KBytes
written

%dirty data
overwritten

Mean
overwrite

interval (I/Os)

Median
overwrite

interval (I/Os)
disk 1 220370 86.1% 3249.3 100

disk 2 336538 91.8% 1365.7 12

disk 3 254250 82.4% 2818.9 42

Off-Day

disk 4 106420 85.7% 5763.9 127

disk 1 92943 84.3% 17155.0 26

disk 2 67452 84.8% 4884.7 16

disk 3 47117 79.3% 7759.9 115

Sci-Off

disk 4 42483 77.6% 5936.1 60

18

4.5 Service and Queueing Time Analysis

Until this point in the analysis we have focused on reducing the total number of write operations
to disk. We mentioned that the I/O service times may be higher for some of our policies and
showed that it did not have a negative effect on the percentage of I/O operations that had to
queue for service. In this section we look at the impact of our proposed cache management poli-
cies on the the disk I/O service and queueing times. When a non-volatile write cache is used, the
write cache purge operations are performed when the disk is quiescent and therefore these opera-
tions do not queue. But the purge operations may stall other read operations. The read service
time is also likely to increase when using the "full" piggybacking scheme and that could lead to
additional read queueing time. Therefore we focus only on the queueing time seen by the read
operations and also calculate the average time a read request waits behind write operations.

Table 4.6 compares the cache effectiveness (Rwc and Wwc), the read and write I/O service time
and read I/O queueing time for the three schemes we have proposed against two baseline poli-
cies. The first baseline corresponds to a system with no write cache at all. The other baseline
policy is one with a small 125 KByte write buffer but the dirty blocks are committed to disk at
the first opportunity when the disk becomes idle (referred to as the "asap" policy). A 2 MByte
read cache is used in all cases. A 1 MByte write cache is used for our proposed purging and pig-
gybacking policies. We present results for the cylinder based policy in this section because the
impact on service and queueing time is expected to be more pronounced in that scenario. Data
for the track based case is available in Appendix-2.

We observe from Table 4.6 that the write service time for the proposed policies is higher com-
pared to the baseline schemes. One would expect that because effort is made to purge out the
track/cylinder with the most dirty blocks. But the increased write service time does not have any
negative impact on the average queueing time seen by the read I/O requests that visit the disk. In
fact, it is almost always lower for our proposed schemes compared to the baseline cases because
the total number of I/O operations are significantly reduced by the write cache. Even the Rwc
statistic improves with the introduction of a write cache because of read hits in the write cache
due to "read-after-write" I/O activity. Next, we notice that the read service time does not vary
much across all the policies. The read service time for the "full" piggybacking scheme, as we
expect, is slightly higher than the "free" piggybacking scheme. The increase in read service time
for "full cylinder" piggybacking appears to significantly increase the read queueing time only for
the Air-Rsv disk. The last column of Table 4.6 shows that the average amount of time a read
operation spend waiting behind write operations is greatly reduced by our policies compared to
the baseline policies. So we conclude that the proposed write cache purging and "free" piggy-
backing policies have no detrimental effect on the read queueing time.

4.5.1 Aggregate Performance Improvement

The bottomline is that we would like to reduce the total amount of work done at the disk. We
have introduced an additional NV write cache and therefore we expect to reduce the amount of
write work done at the disk. But it is important to look at read operations as well because read
work may be reduced by reads being satisfied in the write cache. Work is defined by the product
of the number of operations and its service time. The read, write and total work is shown in Ta-
ble 4.7. We observe that substantial reduction in total work is achieved with our policies.

19

Disk Policies Rwc%Reads
with

Caching

Wwc%Writes
with

Caching

Read
Service

Time
(ms)

Write
Service

Time
(ms)

 Avg.
Read

Q-Time
(ms)

Avg. Read
Q-Time
behind

Write (ms)

Write Cache =
0

66.70% 100.00% 26.23 25.74 4.71 2.57

Write Cache
=125KB, asap

55.58% 87.51% 20.29 23.44 3.35 1.78

Purge with 2
Thresholds

36.70% 8.05% 25.65 34.26 0.95 0.18

Full Track
Piggybacking

38.34% 4.41% 26.68 35.09 0.93 0.13

Off-Day

Free
Piggybacking

37.76% 5.58% 25.91 34.86 0.83 0.11

Write Cache =
0

59.71% 100.00% 27.14 21.73 134.43 13.73

Write Cache
=125KB, asap

57.63% 89.62% 26.71 22.84 45.42 1.14

Purge with 2
Thresholds

49.40% 10.71% 25.25 29.03 32.70 0.17

Full Track
Piggybacking

50.02% 0.10% 27.37 26.60 69.29 0.00

Air-Rsv

Free
Piggybacking

49.97% 0.61% 25.23 26.74 38.89 0.00

Write Cache =
0

33.04% 100.00% 21.27 21.99 3.64 1.11

Write Cache
=125KB, asap

29.20% 88.80% 20.29 23.44 2.98 0.84

Purge with 2
Thresholds

25.66% 10.65% 18.69 25.10 1.90 0.12

Full Track
Piggybacking

25.96% 1.59% 19.02 27.86 1.82 0.02

Sci-Off

Free
Piggybacking

25.90% 3.42% 18.72 26.18 1.74 0.05

Table 4.6: Comparison of service and queueing time statistics for Cylinder
based case; Read Cache = 2 Mbytes; Write Cache = 1 Mbytes (unless otherwise
noted)

20

Read Work = Number of Reads * Read Service Time

Write Work = Number od Writes * Write Service Time

Total Work= Read Work + Write Work

Disk Policies Read
Work

(seconds)

Write
Work

(seconds)

Total
Work

(seconds)
Write Cache =
0

1022.92 2361.03 3383.95

Purge with 2
Thresholds

550.39 254.55 804.94

Full Track
Piggybacking

597.45 141.62 739.07

Off-Day

Free
Piggybacking

572.63 179.06 751.69

Write Cache =
0

5291.42 1730.47 7021.89

Purge with 2
Thresholds

4073.58 247.36 4320.94

Full Track
Piggybacking

4469.23 2.12 4471.35

Air-Rsv

Free
Piggybacking

4119.79 12.78 4132.57

Write Cache =
0

3033.78 1551.07 4584.85

Purge with 2
Thresholds

2076.09 189.44 2265.53

Full Track
Piggybacking

2137.40 31.44 2168.84

Sci-Off

Free
Piggybacking

2095.60 62.79 2158.39

Table 4.7: Comparison of read, write and total work for Cylinder based case;
Read Cache = 2 Mbytes; Write Cache = 1 Mbytes (unless otherwise noted)

21

4.6 Write-allocate vs. Write-purge
Since we have focused on the caching of writes, we felt it important to analyze the different poli-
cies in which writes affect the read cache. Table 4.8 compared two such policies - the write allo-
cate and write purge in the context of the full track piggybacking scheme. Recall that in the write
allocate scheme a copy of a block written is also kept in the read cache while in the write purge
scheme a block that is updated is removed from the read cache. If the probability of reading a
disk block shortly after it has been updated is small, then in the write allocate scheme, these
blocks will waste read cache space. The penalty will also not be very high if the system is operat-
ing at a point where the marginal benefit of increasing the read cache size is small.
For this comparison, the read and write cache sizes are 2 Mbytes and 1 Mbyte respectively. We
observe that the difference between the two schemes appears to be small; however the write
purge scheme is recommended for all environments except for storage devices with a large
amount of read-after-write activity.

4.7 Multi-Disk Environment
In this set of experiments we examine how our write caching scheme works when the cache is
located in a disk controller serving multiple disks. We study two variations. The first has com-
mon read and write caches for all the disks. In the second case the caches are strictly (equally)
partitioned between all the disks. We keep the read to write cache size ratio fixed at 4:1. WC-
HILIM and WC-LOLIM is kept constant at 95% and 40% respectively. The full cylinder purging
and piggybacking policy is used. The results for varying the cache size is presented in Table 4.9

Disk Policies Rwc%Reads w/
Caching

Wwc%Writes w/
Caching

I/O Stalls Piggyback
success

Write
Allocate

38.32% 14.34% 1.00% 15.46%Off-Day

Write
Purge

37.51% 14.38% 1.09% 18.52%

Write
Allocate

51.30% 13.55% 12.23% 4.61%Air-Rsv

Write
Purge

49.89% 13.62% 11.27% 4.93%

Write
Allocate

26.89% 16.59% 3.33% 5.07%Sci-Off

Write
Purge

25.80% 16.67% 3.02% 5.39%

Table 4.8: Comparison of Write Allocate versus Write Purge read cache
 management policies

22

and Figure 4.9. In this example, four of the most heavily used disks from the Off-Day environ-
ment were chosen. These included the system disk, an application code disk, and two private
user data disks. In Figure 4.9 we observe that the total number of I/O operations is always lower
by about 16-19% in the common cache case than the strictly partitioned cache case. Table 4.9
shows that a common cache shared by the four disks is better than the strictly partitioned cache
for all the metrics shown (in fact, for all metrics analyzed).

We looked at another set of 3 disks from the Air-Rsv and compared the common cache with the

Table 4.9: Comparison of Writes with Caching, I/O Stalls and Piggyback success for a
Common Cache versus a Strictly Partitioned Cache in a 4 disk environment

Cache Size
(Mega Bytes)

Policies Writes with
Caching

%I/O Stalls Piggyback
success

Common Cache 2.13% 2.91% 6.40%Read cache = 2 MB
Write cache = 0.5 MB Strictly Partitioned 3.20% 4.42% 5.15%

Common Cache 1.17% 1.55% 8.51%Read cache = 4 MB
Write Cache = 1 MB Strictly Partitioned 2.06% 2.55% 6.40%

Common Cache 0.74% 1.00% 9.77%Read Cache = 6 MB
Write Cache = 1.5 MB Strictly Partitioned 1.52% 1.72% 7.40%

Common Cache 0.53% 0.74% 10.87%Read Cache = 8 MB
Write Cache = 2 MB Strictly Partitioned 1.07% 1.25% 8.13%

Figure 4.9: Total number of I/O operations for 4 disks sharing a Common Cache versus a
Strictly Partitioned Cache

550000

200000

250000

300000

350000

400000

450000

500000

2MB-0.5MB 4MB-1MB 6MB-1.5MB 8MB-2MB

Strictly Partitioned
Cache
Common Cache

Total Number of
I/O Operations

Read Cache Size-Write Cache Size (in Megabytes)

23

strictly partitioned cache. We again found the common cache to be better than the partitioned
cache at four different cache sizes (Table 4.10 and Figure 4.10).

Table 4.10: Comparison of Writes with Caching, I/O Stalls and Piggyback success for a
Common Cache versus a Strictly Partitioned Cache for the 3 disk case

Cache Size
(MBytes)

Policies Writes with
Caching

%I/O Stalls Piggyback
success

Common Cache 11.82% 8.39% 11.02%Read cache = 3 MB
Write cache = 0.75 MB Strictly Partitioned 12.54% 10.21% 10.31%

Common Cache 8.12% 6.51% 13.55%Read cache = 4.5 MB
Write Cache = 1.125 MB Strictly Partitioned 8.76% 8.17% 12.22%

Common Cache 5.99% 5.38% 15.44%Read Cache = 6 MB
Write Cache = 1.5 MB Strictly Partitioned 6.91% 6.97% 13.76%

Common Cache 2.07% 3.24% 20.79%Read Cache = 12 MB
Write Cache = 3 MB Strictly Partitioned 3.85% 4.54% 17.53%

Figure 4.10: Total number of I/O operations for 3 disks sharing a Common Cache versus a
Strictly Partitioned Cache

(Note: Write Cache = 0.25 * Read Cache Size)

380000

200000

220000

240000

260000

280000

300000

320000

340000

360000

14.002.00 4.00 6.00 8.00 10.00 12.00

Strictly Partitioned
Cache
Common Cache

Total Number of
I/O Operations

Read Cache Size (MBytes) --->

24

4.8 Fairness in Multi-disk Cache Environments
In the previous section we showed that it is better to have multiple disks share the read and write
caches. But it is possible that the overall improvement (decrease in the number of I/Os to the
disk) is achieved at the cost of fairness among the disks sharing the cache. That is, some disks
could have benefitted significantly while other disks suffered disproportionately in the shared en-
vironment compared to the strictly partitioned case. We consider a scheme to be fairer than an-
other if the variance in the performance metrics among the disks is smaller under that scheme. In
this study we focus on the write operations so we use the fraction of all write I/Os going to the
disk (Wwc) as the performance metric. Using the above definition of fairness we define the fol-
lowing two simple fairness metrics:
• Range Metric: The difference between the best and worst performing disks.

Wwc Range = Worst Wwc - Best Wwc
Table 4.11 shows the writes with caching (Wwc) for all the individual disks the multi-disk cases.
The Wwc metric is shown for both the common and partitioned cache policies. We find that the
Wwc for both the best and worst performing disks get closer to the overall mean Wwc. The
range metric is useful in providing a simple indicator but it could be misleading. It ignores all but
the best and worst performing disks. So we define another metric that takes all the disks into con-
sideration.
• Difference Square Metric: This the sum of the square of a performance measure from the

overall average of that measure.
Write Miss Ratio Difference Square = Sum over ’i’[Write Miss Ratio of Disk ’i’ -

 Mean Write Miss Ratio]**2

Table 4.11: Comparion of Write Cache Miss Ratio for the individual disks in the Multi-Disk
Cases. Write cache = 0.5 MBytes for 4 Disk Case and 0.75 MBytes for 3 Disk Case

Writes with Caching
(Wwc)Disks

Common
Cache

Partitioned
Cache

disk 1 3.92% 2.23%
disk 2 23.11% 25.75%
disk 3 9.38% 10.58%
Overall Mean
3-disk

11.82% 12.54%

Writes with Caching
(Wwc)Disks

Common
Cache

Partitioned
Cache

disk 1 1.84% 1.19%
disk 2 18.58% 29.49%
disk 3 6.24% 8.27%
disk 4 3.60% 2.79%
Overall Mean
4-disk

11.25% 16.92%

25

In Table 4.12 we summarize the data for the fairness metrics for the two multi-disk environments
discussed in the previous section for two different cache sizes. We observe that the Common
cache shared by the disks is always fairer than the strictly partitioned case for both the metrics.

4.9 Single non-volatile cache
So far, all of the caching schemes have contained two caches - a volatile read cache and a non-
volatile write cache. It was shown that a small, non-volatile write cache together with a read
cache improves performance significantly. However, in the separate cache environment the size
of the two caches cannot be dynamically varied and therefore have to be conservatively sized to
work well in different environments. In the separate cache design, there are situations when disk
blocks need to be copied between the two caches, which could limit system performance. Tech-
nology trends show that the standby power required by DRAMS is decreasing rapidly [5]. It may
be feasible in the near future to have large non-volatile caches. We therefore quantify the per-
formance of a simpler design that uses a single large non-volatile cache for both reads and
writes. The single NV-cache scheme is also used as a baseline against which other schemes are
compared.
In the single, non-volatile cache environment the system could use the traditional write-back
scheme where a "dirty" block is written out to disk only when it is replaced by another block
being brought into the cache. In that case, a cache insert operation that causes a "dirty" block to
be replaced will stall for the duration of an I/O operation. Such a stall may be unacceptable. We
therefore devise a scheme that attempts to avoid a stall when a new item has to be inserted with-
out requiring any additional hardware support for the disk cache.
All the cache blocks are maintained in a least recently used (LRU) chain with hashed access for
efficient searching. When the cache is full and the LRU element in the cache is a "dirty" block,

Table 4.12: Comparion of Fairness Metrics for the 3 and 4 Disk Cases for two different
cache sizes.

Note: Wwc is represented as a fraction (not percentage) of the total number of disk writes.

Environment Cache Size
(MBytes)

Range
Metric

Diff Square
Metric

Common 0.167 0.023Read cache = 2
Write cache = 0.5 Partitioned 0.283 0.068

Common 0.040 0.001

4 Disk Case

Read cache = 8
Write Cache = 2 Partitioned 0.101 0.009

Common 0.192 0.020Read Cache = 3
Write Cache = 0.75 Partitioned 0.235 0.029

Common 0.056 0.002

3 Disk Case

Read Cache = 12
Write Cache = 3 Partitioned 0.120 0.010

26

the insertion of a new block results in the LRU "dirty" block being simply marked as a "target"
for purging. The LRU "clean" block is replaced to make room for the incoming block. Thereaf-
ter, at the first opportunity when the disk is detected to be quiescent, all dirty blocks on the cylin-
der containing the "target" block for purging are written out to disk and are marked "clean" in the
cache. If it so happens that the cache is completely devoid of "clean" blocks only then an "imme-
diate purge" to the cylinder containing the least recently used dirty block is done. To avoid im-
mediate purges, piggybacking of dirty blocks on read misses from the cache and the threshold-
based quiescent purging (as described for the separate cache case) mechanisms are also used.
A difficult question is what these threshold values should be in this single cache environment. To
get an insight into this issue we first conducted a study where we still had separate read and write
caches but kept the sum of two caches to be constant at 2.5 MBytes. Then we try to answer the
question of how to partition this cache between the read and write caches to minimize the total
number of I/O operations. We used the purging with full cylinder piggybacking scheme with the
WC-HILIM and WC-LOLIM thresholds set at 95% and 40% respectively. The total cache size
(sum of read and write cache) is fixed at 2.5 MBytes.
We expect that as the read cache size increases, the read hit rate will go up. However, the down
side to that is that there would be fewer opportunities to clean the write cache using the piggy-
back mechanism. A large read cache would also imply a small write cache and that would also
make the purge operations frequent. On the other hand, as the write cache size increases, initially
there will be dramatic reduction in the write I/Os but once the point of diminishing returns is
reached, the benefit of reducing the write I/Os would be out-stripped by the increase in the read
miss I/Os. So we expect this to be an interesting trade-off scenario and we should find an optimal
partition point that achieves the minimum number of total I/Os.
The Air-Rsv and Sci-Off disks followed the expected pattern and we observe in Figures 4.11 and
4.12 that the total number of I/Os has a clear U-shape and that the optimal partition occurs when
the read to write cache ratio is about 4:1. But the curve for total I/O for the Off-Day disk has a
very different characteristic (Figure 4.13). The total number of I/Os appear to be almost level for
write cache sizes greater than 1 MByte. This disk, as mentioned earlier, is write intensive and
there is a considerable amount of reading of recently written disk blocks. This results in a large
amount of read requests being resolved at the write cache. In this case, the read miss rate stays
almost constant as the cache size is varied because the misses in the read cache are offset by the
hits in the write cache (Table 4.13). In this case the choice of the partition is determined by the
point of diminishing returns for the size of the write cache size relative to the number of write
I/Os to disk.

27

250000

0

50000

100000

150000

200000

2.50.0 0.5 1.0 1.5 2.0

Read I/Os

Write I/Os

Total I/OsNumber of I/Os

Write Cache Size (MBytes) --->

Read + Write Cache = 2.5 MBytes

300000

0

50000

100000

150000

200000

250000

2.50.0 0.5 1.0 1.5 2.0

Read I/Os

Write I/Os

Total I/OsNumber of I/Os

Write Cache Size (MBytes) --->

Read + Write Cache = 2.5 MBytes

Figure 4.11: Read, Write and Total
I/Os for Air-Rsv Disk for varying

Cache Sizes

Figure 4.12: Read, Write and Total
I/Os for Sci-Off Disk for varying

Cache Sizes

120000

0

20000

40000

60000

80000

100000

2.50.0 0.5 1.0 1.5 2.0

Read I/Os

Write I/Os

Total I/OsNumber of I/Os

Write Cache Size (MBytes) --->

Read + Write Cache Size = 2.5 MBytes

Figure 4.13: Read, Write and Total I/Os for Off-Day Disk for varying
Cache Sizes

28

The amount of read and write operations varies depending on the environment. Therefore the
amount of read and write cache needed depends on the workload characteristics of an environ-
ment. The value of the thresholds at which cache purges are initiated to clean the single cache
essentially adjusts the size of the "clean" and "dirty" portion of the cache. Therefore, we believe
that a single, fixed set of values for the high and low limit thresholds for quiescent purging may
not be appropriate across different environments. The ideal scenario would be one where the
threshold values are dynamically determined from the characteristics of the workload and are ad-
justed periodically. Such a policy should be able to adapt to changes in the workload pattern and
perform well uniformly. We experimented with several different heuristics and found that the
high limit threshold value determined by the ratio of the number of disk block written to the total
number of disk blocks accessed for read and write to be a good choice. The system keeps track
of the number of blocks read and written for a certain interval and uses that to calculates the high
limit threshold value for the next period. The low limit threshold is calculated as a fixed fraction
(0.4 in our simulations) of the high limit threshold.

Note that this formula is applicable only in the single NV-cache case. Table 4.14 compares the
performance of the dynamic threshold policy against the best results obtained with fixed thresh-
old values for a single, 2.5 MByte cache. In the dynamic scheme the threshold values were ad-
justed every 10,000 I/O operations. The results of the dynamic policy did not vary significantly
when the threshold adjustment interval was varied in the 5,000-25,000 I/O range. It is observed
that the dynamic policy is almost always as good as the best achieved with fixed thresholds. This
is a satisfactory result in favor of the dynamic threshold scheme because it will usually not be
possible, in practice, to predetermine the best threshold values for different workload environ-
ments.
Table 4.14 also compared this single non-volatile cache case against the separate read and write
cache scheme. The data presented for the separate cache configuration represents the results ob-
tained when the same 2.5 MBytes of memory is statically partitioned in the best possible way
between the two caches for each workload. We observe that the performance of the separate

Read Cache Size (MBytes)Off-Day
0.5 1.0 1.5 2.0

Blocks hit in
Read cache

54260 58658 62953 65099

Blocks hit in
Write Cache

63026 60821 58377 53419

Table 4.13: Comparison of the blocks hit in the read cache vs. write cache
with different cache sizes for the Off-Day disk. Total Cache Size = 2.5 MBytes

 =
 + * 100%

29

cache is close to the single cache in two out of the three cases. For the Off-Day disk, the total
number of I/O operations with a single cache is about 10% lower than the separate cache case.
Results in Sections 4.1-4.3 showed that a small amount of non-volatile write cache is effective in
reducing the total number of I/O operations without increasing the read queueing time. There-
fore, having a small and separate non-volatile write cache could result in substantial cost savings
without a large performance penalty.

Disk Policies Wwc, %Writes with
Caching

Rwc
%Reads with

Caching

Total # I/Os
 to disk

Single Cache
Fixed Thresholds

1.87% 39.07% 24556

Single Cache
Dynamic Thresholds

1.93% 38.95% 24539

Off-Day

Separate Read and
Write Caches

2.39% 42.90% 27272

Single Cache
Fixed Thresholds

3.51% 48.92% 162555

Single Cache
Dynamic Thresholds

4.43% 48.93% 163330

Air-Rsv

Separate Read and
Write Caches

2.19% 50.63% 167084

Single Cache
Fixed Thresholds

4.49% 26.25% 116627

Single Cache
Dynamic Thresholds

8.81% 25.77% 117583

Sci-Off

Separate Read and
Write Caches

6.78% 26.42% 118994

Table 4.14: Comparison of Fixed vs. Dynamic Threshold for the Single Cache
and Comparison of Single Cache vs. Separate Read and Write Cache

30

5 CONCLUSIONS
In this paper we analyzed the performance of several mechanisms for caching writes to disks.
With the current trend of having much faster processors, but comparatively slower disk subsys-
tems, such mechanisms are increasingly important for removing the I/O bottleneck. We showed
that having a relatively small amount of NV-RAM for a write cache is very effective in reducing
the number of I/O writes to the disk and still allows for a write behind strategy for the write
cache to ensure consistency and crash recovery. Our analysis was based on a trace driven simula-
tion of the disk subsystem. The traces used were taken from three different commercial produc-
tion sites of VAX/VMS time-sharing clusters and each trace comprised several hundred thousand
I/Os. We presented results for one disk from each of these environments to examine the effec-
tiveness of the write cache in conjunction with a separate read cache. Data for six other disks
were summarized in the appendix.
We found that a simple purging policy (write-behind) triggered by a high limit threshold in the
90-95% range for the write cache was effective in reducing the write I/Os to the disk to about
40-50% of the number of write operations without such a write cache. We then showed that a
hysteresis policy for purging the write cache reduces the number of I/Os even further, to about
15-20% of the total writes without a write cache. A properly chosen hysteresis policy thus re-
duces the number of writes to less than half the number of I/Os with a single threshold policy.
The high limit of dirty blocks in the write cache for the hysteresis policy is in the range of 95-
99% of the total number of blocks in the write cache and the low limit at which point the purging
of the write cache ceases is in the range of 20-60%. It was heartening to note that the perform-
ance variation is relatively flat for quite a wide range of threshold values, which helps in design-
ing a policy to be suitable for a variety of environments.
Next we looked at the effect of varying the write cache size on the number of I/Os that access the
disk. We observed that the number of write I/Os decrease as the write cache size is increased but
the point of diminishing returns is reached for write cache sizes beyond 1 Mbyte. We also no-
ticed that the read miss I/Os do not decrease noticeably implying that there isn’t a lot of "read-
after-write" activity. We conclude that a non-volatile write cache of about 1 Mbyte is adequate
for all the disks presented.
We then incorporated a mechanism to "piggyback" writes of dirty blocks from the write cache
along with read misses from the read cache. In this manner, the read and write cache complement
each other. We first examined the piggybacking of dirty blocks in the write cache which belong
in the same track as the blocks of the read miss. In comparison to the purging with hysteresis
scheme, the addition of the "full track" piggybacking further reduces the number of writes to disk
by about 10-25%. The "full cylinder" piggybacking provides the upper bound on the reduction in
write I/Os that can be achieved using piggybacking. Cylinder based "full" piggybacking pro-
duced dramatic improvements. In fact, it almost completely eliminated the the write I/Os for the
Air-Rsv disk.
Piggybacking writes of dirty blocks for an entire cylinder potentially increases the amount of
read stalls in the environment, which we consider to be undesirable. To alleviate this problem, if
any, we investigated a mechanism which we call "free" piggybacking. This policy allows the
piggybacking of dirty block writes only to the range of the blocks that are between the current
head position and the blocks that have to be read due to the read miss. This policy does not in-
crease the read service time and thus there is no potential increase in the amount of read I/O

31

stalls due to piggybacking. We found that "free" piggybacking helps in reducing the amount of
read stalls, especially for heavily loaded disks, but does generate more write I/Os in all the cases
compared to "full cylinder" piggybacking.
The percentage of I/O operations that queue for service does not provide the complete picture. So
we then looked at the impact of our proposed policies on the I/O service and queueing times. The
write cache purge operations are performed when the disk is idle so these operations do not
queue but they may stall other read I/Os. Further, the write service time increases when our purg-
ing policy is used. But this does not adversely affect the read queueing time because the total
number of I/O operations are significantly reduced.
We also looked at the interaction between the read and write cache. We compared two ways of
dealing with the write operations in the read cache - the write allocate and the write purge poli-
cies. We found that the write purge policy is marginally better than the write allocate scheme
except in environments with a substantial amount of read-after-write operations on disk blocks.
We extended the study to consider the issue of having a single cache at the disk controller that is
shared among multiple disks. An issue that arises in this case is that of fairness in the benefit the
cache provides for write operations across the disks sharing it. We showed that it is better, from
both the performance and fairness perspective, to have a common cache shared among the disks
than to partition the cache equally.
We further considered the case of using a single non-volatile disk cache. The single cache has
the advantage that the portion of the cache allocated for reads or writes is not static and it was
therefore expected to provide a baseline against which the separate caching scheme could be
compared. We observed that the difference in performance between the single and separate cache
configurations is small in most cases. We therefore believe that a separate and small non-volatile
write cache would be the appropriate solution in most environments. Such an approach results in
substantial cost savings without sacrificing performance.
This work can be extended in several ways. The disk model can be improved to include sophisti-
cated disk arm movement optimizations [6, 14]. Some of the mechanisms proposed in this paper
have also been extended for use in distributed file system environments [3].

32

6 REFERENCES
1. Baker, M., et al, "Non-Volatile Memory for Fast, Reliable File Systems," Proceedings of the

Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-V), October, 1992.

2. Biswas, P., Ramakrishnan, K.K., "File Access Characterization of VAX/VMS Environments,"
Proceedings of the 10th International Conference on Distributed Computing Systems, May
1990.

3. Biswas, P., et al, "Performance Benefits of Non-volatile Caches in Distributed File Systems,"
To appear in the Journal on Concurrency: Practice and Experience, John Wiley & Sons, Ltd.

4. Chen, S., Towsley, D., "A Queueing Analysis of RAID Architectures," Tech. Report 91-71,
Department of Computer Science, University of Massachusetts, Amherst, MA, September
1991.

5. Copeland, G., et al, "The Case For Safe RAM," Proceedings of the 15th International Confer-
ence on Very Large Data Bases, August 1989.

6. King, R.P., "Disk Arm Movement in Anticipation of Future Requests," ACM Transactions on
Computer Systems 8(3), August 1990.

7. Menon, J., Hartung, M., "The IBM 3990 Disk Cache," Proceedings of the IEEE Computer
Society International COMPCON Conference, 1988.

8. Nelson, M.N., et al, "Caching in the Sprite Network File System," ACM Transactions on
Computer Systems, February, 1988.

9. Patterson, D.A., et al, "A Case for Redundant Array of Inexpensive Disks (RAID)," Proceed-
ings of the 1988 ACM SIGMOD International Conference on the Management of Data, June
1988.

10. Ramakrishnan, K.K., et al, "Analysis of File I/O Traces in Commercial Computing Environ-
ments," Proceedings of the 1992 ACM SIGMETRICS and PERFORMANCE ’92 Interna-
tional Conference on Measurement and Modeling of Computer Systems, June 1992.

11. Reddy, A.L., Banerjee, P., "An Evaluation of Multiple-Disk I/O Systems," IEEE Transactions
on Computers, Vol. 38, No. 12, 1989.

12. Rosemblum, M., Ousterhout, J.K., "The Design and Implementation of a Log-Structured File
System", Proceedings of the 13th Symposium on Operating Systems Principles (SOSP), Oc-
tober, 1991.

13. Salem, K., Garcia-Molina, H., "Disk Striping," Proceedings of the 2nd International Confer-
ence on Data Engineering, 1986.

14. Seltzer, M., et al, "Disk Scheduling Revisited", Proceedings of the Winter 1990 USENIX
Conference, January, 1990.

15. Smith, A.J., "On the Effectiveness of Buffered and Multiple Arm Disks," Proceeding of the
5th Computer Architecture Symposium, April, 1987.

16. Smith, A.J., "Disk Cache - Miss Ratio Analysis and Design Considerations,"ACM Transac-
tions on Computer Systems 3, August 1985.

33

17. Solworth, J.A., Orji, C.U., "Write-Only Disk Caches," Proceedings of the 1990 ACM SIG-
MOD International Conference on the Management of Data, May 1990.

 APPENDIX -1
Disks Total #

Reads
Total #
Writes

RwcReads
with

Caching

WwcWrites
with

Caching

% IO
Stall

%
Piggybck
Success

 Avg.
KBytes

per
Piggybck

Off-Day
System Disk

330916 12868 12.38% 3.51% 1.13% 0.74% 2.20

Off-Day
Application

436041 45719 29.30% 1.58% 4.85% 2.80% 1.55

Air-Rsv
System Disk

143272 37065 26.66% 9.62% 4.13% 8.73% 2.43

Air-Rsv
Database

251095 67546 31.39% 3.44% 4.21% 12.54% 5.01

Sci-Off
System Disk

812034 131906 12.09% 2.77% 1.80% 12.15% 1.77

Sci-Off
Database

576272 61792 76.46% 55.55% 23.71% 3.22% 2.28

Table A2: Comparison of major statistics for 6 disks. Cylinder case, Read
Cache = 2 MBytes; Write Cache = 1 Mbytes; WC-HILIM=95%, WC-LOLIM=40%

Disks Total #
Reads

Total #
Writes

RwcReads
with

Caching

WwcWrites
with

Caching

% IO
Stall

%
Piggybck
Success

 Avg.
KBytes

per
Piggybck

Off-Day
System Disk

330916 12868 12.62% 1.56% 1.14% 2.07% 5.48

Off-Day
Application

436041 45719 29.87% 0.89% 5.01% 3.88% 2.37

Air-Rsv
System Disk

143272 37065 27.29% 4.60% 4.05% 15.19% 5.92

Air-Rsv
Database

251095 67546 33.53% 0.20% 4.45% 18.61% 5.81

Sci-Off
System Disk

812034 131906 12.58% 1.06% 1.83% 16.99% 2.56

Sci-Off
Database

576272 61792 76.48% 16.41% 21.97% 8.62% 1.81

Table A1: Comparison of major statistics for 6 disks. Track based case, Read
Cache = 2 MBytes; Write Cache = 1 Mbytes; WC-HILIM=95%, WC-LOLIM=40%

APPENDIX 2

Disk Policies RwcReads
with

Caching

WwcWrites
with

Caching

Read
Service

Time
(ms)

Write
Service

Time
(ms)

 Avg.
Read

Q-Time
(ms)

Avg. Read
Q-Time
behind

Write(ms)
Write Cache
= 0

66.70% 100.00% 26.23 25.74 4.71 2.57

Write Cache
=125KB, asap

55.59% 94.72% 26.53 25.22 3.44 1.87

Purge with 2
Thresholds

36.73% 15.96% 25.80 28.42 1.15 0.23

Full Track
Piggybacking

37.51% 14.34% 26.72 28.26 1.01 0.21

Off-Day

Free
Piggybacking

37.31% 15.15% 25.83 28.45 1.02 0.25

Write Cache
= 0

59.71% 100.00% 27.14 21.73 134.43 13.73

Write Cache
=125KB, asap

57.65% 95.65% 26.75 22.34 45.44 1.21

Purge with 2
Thresholds

49.61% 18.44% 25.29 27.10 35.20 0.22

Full Track
Piggybacking

49.89% 13.62% 27.51 26.27 67.45 0.17

Air-Rsv

Free
Piggybacking

49.81% 14.97% 25.31 26.98 35.99 0.21

Write Cache
= 0

33.04% 100.00% 21.27 21.99 3.64 1.11

Write Cache
=125KB, asap

29.21% 91.58% 20.28 23.13 2.96 0.84

Purge with 2
Thresholds

25.69% 21.09% 18.72 21.13 1.95 0.18

Full Track
Piggybacking

25.80% 16.67% 19.14 20.92 2.00 0.13

Sci-Off

Free
Piggybacking

25.77% 18.24% 18.74 21.11 1.92 0.15

Table A3: Comparison of service and queueing time statistics for Track based
case, Read Cache = 2 Mbytes; Write Cache = 1 Mbytes when not mentioned.

