
Conch: Experimenting with
Enhanced Name Management for

Persistent Object Systems
Alan Kaplan

Jack C. Wileden
{kaplan,wileden}@cs.umass.edu

CMPSCI Technical Report 94–70
September 1994

Computer Science Department
University of Massachusetts

Amherst, Massachusetts 01003

Appeared in Proceedings of the Sixth
International Workshop on
Persistent Object Systems

Tarascon, France, September, 1994

This material is based upon work sponsored by the Advanced Research Projects Agency under grant MDA972-
91-J-1009 and by Texas Instruments under grant SRA-2837024. The content does not necessarily reflect the
position or policy of the U.S. Government or Texas Instruments and no official endorsement should be inferred.

Abstract

The name management capabilities currently provided by most existing persistent object
systems (POSs) are rather limited. In particular, existing POSs tend to lack powerful and
general mechanisms for forming, manipulating, controlling and reasoning about contexts.
As a result, these POSs offer only weak or awkward support for large-scale data storage,
multi-user computing, code reuse, interoperation of independently developed object stores
and other similarly important classes of applications. As part of our work on improved
name management for convergent computing systems, we have developed a framework for
uniform treatment of the context and interface control facets of name management. In
this paper we describe a realization of that framework, in the form of a shell-style user
interface to a POS, that we are using to experiment both with the framework itself and
with enhanced context control capabilities for POSs.

1 Introduction

A convergent computing system is any system in which two or more distinct computing
domains or paradigms are combined intowhat is intended to be a synergistic whole. Naturally,
various issues and complications arise in constructing such systems.

We are particularly interested in name management for convergent computing systems.
By name management we mean the way in which a computing system allows names to be es-
tablished for objects, permits objects to be accessed using names, and controls the availability
and meaning of names at any point in time. Problems that arise in convergent computing
systems often result from complexities or shortcomings in the name management mechanisms
of their underlying components or from incompatibilities among those mechanisms. An im-
portant goal of our research is improved mechanisms for name management in convergent
computing systems.

Persistent object systems (POSs) are a particularly interesting class of convergent comput-
ing systems. POSs promise to break down barriers between capabilities traditionally found
in programming languages, database systems and operating systems and to combine all (or
at least most) of the best features of each. In recent years, POS research has led to significant
progress at overcoming barriers and synergistically combining capabilities related to various
aspects of such systems, including type models (e.g., [1]), persistence mechanisms (e.g., [2]),
optimization techniques (e.g., [3]) and concurrency control mechanisms (e.g., [4]).

A notable exception to this trend is the limited attention that has been given to name
management for POSs. There have been a few instances of POSs offering some improve-
ments in name management (e.g., [5, 6, 7, 8, 9]). By and large, however, the relatively weak
name management mechanisms found in the ancestors of POSs, i.e., programming languages,
database systems and operating systems, have tended to endure in POSs, being neither im-
proved nor even effectively integrated. Without better name management, POSs will likely
prove cumbersome to use and prone to error, will provide inadequate support for large-scale
data storage, multi-user computing, code reuse and interoperation of independently developed

object stores, and will therefore fail to realize their potential for beneficial employment in a
variety of important application areas.

We believe that our work on name management for convergent computing systems has
particular relevance for POSs. In fact, our interest in the general topic of name management
grew out of earlier work on PGraphite [2, 10] and R&R [11], two complementary prototype
systems that together implemented a rudimentary persistent object capability as an extension
to Ada. Experimental use of these systems highlighted a number of name management
problems, arising primarily from the need to simultaneously manage names of both transient
and persistent objects. Among these, the two most fundamental were the problems of:

Uniformity: the lack of integration between names for transient (programming language-
internal) and persistent (programming language-external) data objects, and

Context Control: the incommensurate, and inadequate, mechanisms for controlling exactly
which names (of both transient and persistent objects) are available for use (at any given
point) within a program.

Having observed these problems while experimenting with PGraphite and R&R, we soon
discovered that similar problems existed in most other POSs and, more generally, in most
convergent computing systems. Both problems are particularly prevalent in “persistent[X]”
POSs, those created by extending some existing programming language with support for
persistence (and possibly some additional database and operating systems capabilities), but
otherwise leaving the underlying language unchanged. The othermajor class of POSs, namely
the de novo POSs, i.e., those that have been created by defining new languages specifically
designed to provide persistence (and possibly some additional database and operating system
capabilities), have sometimes avoided the uniformity problem but generally not the context
control problem.

Initially, our research on name management for convergent computing systems centered
on defining a taxonomy of problems and potential solutions, and on developing and experi-
menting with some simple, but uniform, naming mechanisms [13], as a basis for addressing
the uniformity problem. More recently, we have focused on context control issues. In particu-
lar, we have defined a framework, called PICCOLO, for describing context control problems and
mechanisms in convergent computing systems [14] and begun to experiment with its use.

In this paper, we describe an ongoing experiment in improving the context control facet
of name management in POSs. We begin by sketching some representative context control
problems arising in POSs and outlining the PICCOLO framework. We then describe a pro-
totype realization of the framework in the form of CONCH, a shell-style user interface to a
persistent[C++] POS, and show how it can be used to address the representative problems.
The paper concludes with an assessment of the current status of the experiment, a discussion

In fact, in their list of requirements for persistence [12], Atkinson and Buneman appear to refer to both of
these problems (requirements (4) and (9)).

of related work, and a summary of ongoing and future efforts aimed at further improvements
in name management for POSs.

2 Context Control Problems in POSs

As noted in the previous section, POSs tend to provide inadequate approaches to name
management, especially with respect to controlling context. While orthogonal persistence
should obviate the need for traditional persistence mechanisms, such as file systems and
databases (at least from the programmer’s perspective), users of POSs are typically still faced
with using primitive name management mechanisms, based on those found in operating sys-
tems or database management systems, for controlling the meanings of names for persistent
objects. As a result, existing POSs tend to lack powerful and general mechanisms for forming,
manipulating, controlling and reasoning about contexts.

As an illustration of the shortcomings of context control for POSs, consider the situation
facing a hypothetical application developer wishing to build a system that accesses various
electronic mail-related objects from a persistent store. Some name management problems
that the developer must resolve include:

1. The developer wants to be able to organize objects and their names in the persistent
store into logical, meaningful collections.

2. The developer wants to be able to flexibly form contexts giving particular meanings to
names used in the application. The resulting contexts may not correspond exactly to
any single collection in the set of collections from (1) above. Furthermore, the developer
wants to be able to specify different contexts for the application without necessarily
having to re-compile (or possibly even re-link) the application.

3. The developer wants to be able to reason about how contexts are formed and used by
the application. For example, given an application, the developer should be able to
determine what names the application refers to, whether objects corresponding to those
names exist, whether the objects can be accessed and/or modified by others, and whether
the names used have unambiguous meanings.

As an example of the first point, our hypothetical developer might wish to impose the
conceptual organization depicted in Figure 1 on a relevant subset of objects in the persistent
store. In this figure, persistent objects are represented by both ellipses and rectangles. Ellipses
denote collections of named objects, where names are attached to arcs emanating from an
ellipse to a corresponding object, represented by either a rectangle or another ellipse. The
only exception to this is the name R O O T, which identifies the root collection of the structure
and is not contained in any other collection. For the purposes of this example, assume
that the objects named mailbox contain electronic mail messages, that the objects named
broadcast and lab represent distribution lists, and that the collections named ABC and XYZ

Users
Dists

Formats

ABC XYZJack Alan

mailbox

mailbox

mailboxold

broadcast lab

plain port land landplain filo

ROOT

Figure 1: Conceptual Organization of the Persistent Store

contain a variety of message-printing formats provided by two different vendors. Note that
these collections happen to have common names for some objects, a problematic, though not
uncommon, situation in the commercial arena [15]. In addition, assume that multiple users
and/or applications may be accessing and modifying the persistent store.

Given this logical organization of the persistent store, our developer’s goal is an application
that can manipulate a user’s mailbox (e.g., compose, send, read, print and archive messages),
making use of all the distribution lists and some subset of the message formats. Correct
execution of this application will depend upon the availability of an appropriate context,
connecting names used by the application with specific objects in the persistent store. Thus
the application developer, or user, needs some means of controlling context formation. For
example, the developer should be able to specify what names are needed in the desired context,
what objects are bound to those names, at what point in the application’s lifetime name-object
associations are formed, and whether names are associated with existing objects or copies of
objects in the persistent store. For instance, one possible set of context requirements (and
clearly not the only set) for this hypothetical application might include the following:

1. It should be possible to use the application with any user’s mailbox without either having
to re-compile (or re-link) the application or having to interactively interrogate the user
for the location of the mailbox. This means that the context for the application must
include an association between the name mailbox and a specific object in the persistent

For example, linkers in traditional programming environments typically create copies of object code modules
from libraries and make links to the copies, rather than to the library modules themselves, when constructing an
executable program.

store that is formed at the time when the mailbox object is actually accessed in the
application (as opposed to at compile-time, link-time or load-time).

2. The application will need to access both the broadcast and the lab distribution lists,
but the contents of these lists should be constant during any single execution of the
application. Hence the context associating specific (and subsequently immutable) objects
with those names should be formed at the time the application is loaded into the run-time
system.

3. Finally, our developer is satisfied with the current versions of the message-printing
formats named plain and port contained in the ABC collection, and the formats named
filo and land contained in the XYZ collection. So, it would be appropriate to form a
context associating those names with copies of those specific objects at compile-time.
This means that, once compiled, the application will be shielded from any changes to the
objects through the persistent store (e.g., name changes, message format changes).

One goal, then, for a context control mechanism is to give developers and users explicit
control over context specification for persistent objects [16]. Another important goal is to
give subsequent developers or maintainers access to this information in a uniform manner.
In other words, instead of having the tedious and error-prone task of manually analyzing
source code and/or configuration scripts, developers and maintainers should be able to query
an object directly for its relevant context formation information. Similarly, both humans and
automated tools should be able to reason about this context information, thus facilitating the
detection of potential name management-related inconsistencies and errors.

Most existing POSs support few, if any, of these capabilities. In the next two sections,
we outline a framework and a prototype realization of that framework with the potential to
support all these capabilities and more in a uniform and powerful way.

3 Piccolo

As a step toward enhanced name management for convergent computing systems, and
specifically for POSs, we wish to provide powerful and general mechanisms for forming, ma-
nipulating, controlling and reasoning about contexts. By the very nature of a convergent
computing system, such as a POS, the context mechanism we seek must be uniformly applica-
ble across a broad range of computing paradigms. In the case of POSs, in particular, it should
be applicable to context-related aspects of programming languages, databases and operating
systems, and should apply to both persistent and transient objects.

We believe that this goal is best achieved by basing the mechanism on an abstract model
or framework. We have therefore developed the PICCOLO model, a framework for Precise
Interface and Context Control in Object Libraries and Objects. PICCOLO is inspired in part
by the PIC framework for precise interface control in programming languages [17]. In the

remainder of this sectionwe briefly outline thePICCOLO framework. The next sectiondescribes
one realization of the framework that we are currently using to experiment both with the
framework itself and with enhanced context control capabilities for POSs.

The PICCOLO framework is based on the following set of fundamental name management
concepts:

object: An item of interest in a given setting.

name: An identifier used to reference, access or manipulate an object.

binding: In its simplest, most basic form a (name,object) pair. The availability of binding
makes it possible touse name to reference, access ormanipulate object . Bindings

may also include additional information, such as type and mutability information (as,
for example, in Napier [18]).

binding space: A set of bindings that serves as a collection of definitions for names.

context: A set of bindings that is available for use in referencing, accessing or manipulating
objects. A contextmay consist of, or be formed from, one or more binding spaces, or parts
of binding spaces, or other contexts. PICCOLO’s explicit distinction between binding
spaces, which are primarily a means for organizing collections of bindings, typically for
user convenience, and contexts, which a system uses in interpreting names during its
operation, significantly facilitates modeling of many name management approaches.

closure: In its simplest, most basic form an (object, context) pair. Given the existence of
the closure , it is possible for object to use context in referencing, accessing or
manipulating other objects.

resolution: The action of returning an object when given a name and a context.

Given these fundamental concepts, the PICCOLO framework defines specific name manage-
ment approaches and mechanisms using the following two kinds of components:

context formation template (CFT): A collection of directives governing the formation of
contexts. In a typical approach to name management we can further distinguish between
two kinds of CFTs:

Requestor: A CFT Requestor (or CFTR) describes the context requirements for an
object. In particular, it specifies a collection of names referenced by the object. It
can additionally include directives indicating such things as preferred sources of
definitions (i.e., binding spaces) for the referenced names and preferred times (i.e.,
epochs) for context formation or modification steps.

Provider: A CFT Provider (or CFTP) describes the context definitions potentially avail-
able from an object. Analogously to CFTRs, it can additionally specify such things
as preferred targets (i.e., other objects) for these definitions and preferred times for
context formation or modification steps.

context formation process (CFP): A procedure that produces a context from an initial
context and one or more CFTs.

As suggested by the above definitions of CFTR and CFTP, the PICCOLO framework provides
ameans for explicitly representing distinct times at which contextmanipulation activities may
occur:

epoch: An epoch denotes a particular time period during which context manipulation ac-
tivities may take place. The set of all epochs is described by an enumeration such as

.

Applying the PICCOLO framework involves defining a specific set of epochs appropriate to
the host system’s context formation and manipulation needs, specific kinds of directives that
can appear in CFTs and one or more specific CFPs. It also implies a suitable generalization of
the concept of closure, such as the following:

closure where represents an initial context, represents a
(possibly empty) set of context formation templates for directing the incremental forma-
tion of future contexts, and represents a corresponding set of context formation
processes that will be directed by those CFTs during incremental formation of future
contexts.

One example application of the framework is the experimental context control shell, CONCH,
which is described in Section 4.

We envision two major categories of use for the PICCOLO framework. First, it can serve
as a basis for analyzing context control mechanisms and problems, especially in convergent
computing systems but in more traditional settings as well. Careful description of a particular
context control mechanism in terms of PICCOLO’s CFT and CFP constructs permits rigorous
reasoning about and comparison of various existing, proposed or possible approaches to context
control.

Second, the PICCOLO framework can serve as a foundation for defining and implementing
context control mechanisms. We are, of course, especially interested in applying it to the
definition and implementation of such mechanisms for convergent computing systems, such
as POSs. By defining a mechanism using the framework, we can avoid ad hoc solutions,
reason about properties of a mechanism before implementing it, and achieve uniformity in
the functioning of the mechanism. This latter feature is particularly important in the setting
of convergent computing systems, where the mechanism may well have several different

realizations corresponding to different aspects, or ancestral constituents, of the convergent
system.

In the next section, we describe an experiment in which we have implemented a context
control mechanism based on the PICCOLO framework in the form of a shell-style user interface
to a POS. While there are several other forms in which this mechanism might, and probably
should, be realized in a POS, we have found this one convenient for experimentation and also
rather easy and natural to use for certain kinds of context control operations. We will provide
further assessment of this experiment in the paper’s final section.

4 Conch: A Context Control Shell

The idea of a “shell” acting as an intermediary between applications and the underlying
persistent store is by no means a new one. In traditional systems, such as UNIX, a variety
of shells have been implemented to provide an interface between programs and the UNIX
file system. Similarly, relational database systems often provide an interactive SQL that
allows users to interact with the database. In recent years, graphical browsers for POSs have
begun to emerge [19, 20]. Neither previously existing shells nor graphical browsers, however,
provide sufficiently powerful and general context control capabilities for use with convergent
computing systems like POSs. In this section, we report on CONCH, a prototype CONtext-
Controlling sHell for POSs that we have implemented as a user interface for Open OODB,
a persistent[C++] POS [21]. We then illustrate how CONCH can be applied to the scenario
presented earlier in Section 2.

CONCH is a realization of the PICCOLO framework. It facilitates experimentation with that
framework as well as with enhanced context control capabilities for POSs. More specifically,
the present version of theCONCH prototype represents an experiment with a particular method
of providing a particular set of name management capabilities and an attempt to unify these
capabilities from a “shell” perspective.

In its plain, vanilla form, Open OODB provides relatively limited support for name man-
agement for persistent objects. There exists only a single, flat space of names; names for
persistent objects must always be resolved at run-time and always return a reference to an
object (instead of, perhaps, a copy of that object); and reuse of a name always overrides the
existing binding.

The CONCH prototype addresses many of these shortcomings and has resulted in improved
support for name management in Open OODB. The current set of commands defined by
the CONCH interface is listed in Table 1. (Since Open OODB ordinarily runs under UNIX,
the CONCH command names and syntax are intentionally UNIX-like.) First, CONCH directly

UNIX is a registered trademark in theUnited States and other countries, licensed exclusively throughX/OPEN
corporation.

Alpha Release 0.2

Command Description

lbs List contents of the active binding space
abs name Binding space with name name

becomes active binding space
cbs name Create a new binding space
rtbs ROOT binding space becomes active
rmb name Remove binding for name name
bind name1 name2 Bind name name2 to object

bound to name name1
cftr name Create a CFTR with name name
cftp name Create a CFTP with name name
cftq name Query the CFT with name name
inclos cft-name obj-name Insert CFT into object’s closure
prclos name Print contents of object’s closure

Table 1: Conch Commands

supports the PICCOLO concepts of name, object, binding and binding space, thus, allowing
persistent stores to be organized similarly to the one depicted in Figure 1. Furthermore, the
commands lbs, abs, cbs, rtbs, rmb, and bind permit developers and users to easily traverse,
modify and query the Open OODB persistent store. Similarly to other shell-style approaches,
CONCH supports the notion of an active (or current) binding space. Note that the only way
to create new bindings from the shell is through use of the bind command. In addition,
CONCH provides a collection of C++ class interfaces that allow applications to interact with
the persistent store in a similar manner.

Second, CONCH allows developers to precisely and explicitly express context formation
requirements for applications accessing the persistent store by providing specific kinds of
CFTRs, CFTPs, and CFPs. The commands cftr, cftp and cftq allow users to create and query
CFTs. More specifically, a CFTR in CONCH consists of one or more request clauses, where a
request clause consists of the following fields:

Names: the names whose corresponding bindings should be contained in the context.

Bind: an indication of whether the bindings should be to existing objects (REF) or to copies
of objects (COPY).

Epoch: when the bindings in the context should be formed. (CONCH supports the epochs
{COMPILE, LOAD, RUN}.)

Sources: the source binding spaces for the desired bindings.

Similarly to a CFTR, a CFTP in CONCH consists of one ormore provide clauses, where a provide
clause consists of analogous fields. Finally, CONCH defines a rudimentary CFP for forming

Context CFP (Context current,
CFTR c,
Epoch current)

begin
Context new = current
foreach clause in c do

if current = clause.Epoch then
foreach name in clause.Names do

object = find (name) in
clause.Sources

if not found then
raise ContextError

if clause.Value = copied then
new.Insert (name, object.copy)

else
new.Insert (name, object)

return new
end CFP

Figure 2: Default CFP

request plain, port
copy
compile
sources Root.Formats.ABC;

request filo, land
copy
compile
sources Root.Formats.XYZ;

request broadcast, lab
copy
load
sources Root.Dists;

request mailbox
ref
run
sources *active*;

Figure 3: Example CFTR

contexts. In the current prototype, this CFP is automatically included in the closure for all
objects, thus ensuring that all objects utilize the same method for context formation. The
pseudo-code for the CFP employed by CONCH is shown in Figure 2. This simple CFP creates
a new context by augmenting the contents of a given context with the bindings as directed by
a CFTR and the current epoch. It also checks to ensure that the resulting context is valid and
provides warning or error information in the event the checking should fail. Note that the
CFP is not an explicit command in CONCH. Instead, in the prototype the CFP is invoked by
various system-level tools, such as the compiler, linker and run-time system.

To illustrate the use of CONCH, we return to the scenario outlined in Section 2, in which
a developer is faced with the problem of specifying and constructing a context that associates
appropriate objects in the persistent store with names used in a mail system application.
The developer’s task is complicated by the fact that the different bindings in the resulting
context must satisfy different requirements. With CONCH, one way to solve the problem in
the scenario is to use the cftr and inclos commands to create the CFTR shown in Figure 3
and form a closure associating that CFTR and the application code.

The CFTR directs a context to be created as follows:

At compile-time, the context must contain the names plain, port, filo and land, each
bound to a copy of the appropriate persistent object. The preferred source for the objects

named plain and port is the binding space named ABC, while the preferred source for
the objects named filo and land is the binding space named XYZ.

When the program is first loaded into the run-time system, the contextmust additionally
contain the names broadcast and lab bound to copies of the appropriate persistent
objects, whose preferred source is the Dists binding space.

Each time the mailbox object is accessed, the context should be updated to contain a
binding pairing the name mailbox with the then-current object associated with the
name mailbox in the active binding space.

Once this CFTR has been created and inserted into the applications’ closure, the next step
is to compile, link and run the application. The entire process is depicted in Figure 4, where
the arrows denote and identify epoch boundaries. The starting point is a closure consisting of

plain port landfilo broadcast lab

plain port landfilo broadcast lab

mailbox

Compile

Load

Run

plain port landfilo

Application

m a i n () {
 f i l o
 p l a i n
 p o r t
 l a n d
 b r o a d c a s t
 l a b
 m a i l b o x }

11010001011
00101010001
01010011110
01010101111
01010101111
00001110011
11111110000

11010001011
00101010001
01010011110
01010101111
01010101111
00001110011
11111110000

11010001011
00101010001
01010011110
01010101111
01010101111
00001110011
11111110000

Persistent Store

CFP

CFTR

Context

Closure

Epoch

Binding Space

Users
Dists

Formats

ABC XYZJack Alan

mailbox

mailbox

mailboxold

broadcast lab

plain port land landplain filo

ROOT

Figure 4: Context Formation Process

the application source code, an (initially) empty context, the CFP from Figure 2, and the CFTR

from Figure 3. Invocation of the compiler initiates the compile epoch. The CFP, CFTR and
context are retrieved from the source code’s closure and a new closure consisting of a binary
executable, a (partially formed) context, the CFP and the CFTR is produced. Then, using the
cbs command, the user sets the active binding space to be Jack. In Figure 4, the shaded
ellipse denotes the active binding space. Next the program is loaded into the run-time system.
This signals initiation of the load epoch, so the CFTR directs the context to be augmented
appropriately and a correspondingly updated closure is formed. Finally, execution of the
application begins, initiating the run epoch, and the mailbox object is accessed. As directed
by the CFTR, the context is now augmented with a binding pairing the name mailbox with
the object associated with the name mailbox in the active binding space, i.e., the object named
mailbox in the binding space named Jack.

Note that the closure mechanism in CONCH associates a CFP and a CFTR as well as a
context with each object. Although not illustrated in this simple example, maintaining this
information allows application developers and maintainers to easily determine the context
formation requirements for an application using the prclos command.

5 Summary

In this paper we have described CONCH, a prototype context-controlling shell implemented
as a user interface to Open OODB, and briefly outlined the PICCOLO framework on which it is
based. Initial experimentation with CONCH appears to confirm our expectation that a context
control mechanism based on PICCOLO would provide more general, flexible and powerful
context control than that available in existing POSs. In particular, the approach facilitates
the sharing of context information among objects, while at the same time permitting individual
objects to define their own context formation requirements. Furthermore, since context data is
never discarded, application developers and maintainers can access this valuable information
in a uniform and efficient manner. We therefore believe that the approach embodied in
CONCH and PICCOLO can contribute to making POSs easier to use, less prone to error and
better suited for use in a wide range of applications. Experimentation has, however, also
pointed up a number of possible improvements and extensions that would make the approach
even more beneficial.

We believe that existing approaches to context control in POSs are not as powerful and
general as the approach described in this paper. While Napier [22, 18], for example, certainly
allows for flexible organizations of persistent stores, developers must describe specific persis-
tent store navigations in each application [23]. Moreover, Napier does not provide adequate
means for querying objects regarding their contextual formation information. This can be
problematic in Napier programs that create bindings in closures local to a procedure, since
there is no means for determining whether other Napier programs may be able to access the

In fact, this step could be taken either earlier or later than this, so long as it has occurred before the beginning
of the run epoch.

objects in those bindings. The approach taken by Farkas et al. [9] ameliorates these problems
to some degree, but it is unclear how well a graphical browsing paradigm is suited for manag-
ing contexts in large and complex applications. We view our work on the PICCOLO framework
and the CONCH shell as an approach that could complement these and other approaches in
existing and future POSs. Indeed, in the near future we hope to explore the incorporation
of CONCH-like capabilities into a de novo POS such as Napier in order to further assess the
generality and the efficacy of both the PICCOLO framework and the CONCH constructs.

As noted above, experiments with CONCH have suggested a number of improvements and
extensions that could be made. Some of these involve additional capabilities for the shell, such
as richer mechanisms for binding specification (e.g., allowing CFTs to specify local renaming of
objects), for context specification (e.g., incorporating CFTPs into closure definitions or allowing
CFTRs to define sources as combinations of binding spaces [13]) and for creating and querying
CFPs. Others would make the approach more user-friendly; the existing, relatively low level
and explicit, shell commands are suitable for the fine-grained control needed in experimenta-
tion, but much of the effort involved in creating and manipulating CFTs could, and probably
should, be automated or hidden to benefit POS users. Still others involve enhancements to
the underlying PICCOLO framework. For example, the relationship of context manipulation to
such traditional mechanisms as versioning and transactions needs further exploration; either
descriptions of such mechanisms in terms of PICCOLO need to be formulated or else the PIC-
COLO framework should be extended to account for them. We are already pursuing some of
these directions, and we expect that continued refinement and further experimentation with
both CONCH and PICCOLO will contribute to significant enhancements in name management
capabilities for POSs and, more generally, for convergent computing systems.

REFERENCES

[1] R.C.H. Connor, A.L. Brown, Q.I. Cutts, A. Dearle, R. Morrison, and J. Rosenberg. Type
equivalence checking in persistent object systems. In Proceedings of the Fourth Interna-
tional Workshop on Persistent Object Systems, pages 154–167, Martha’s Vineyard, MA,
August 1990.

[2] J.C. Wileden, A.L. Wolf, C.D. Fisher, and P.L. Tarr. PGRAPHITE: An experiment in
persistent typed object management. In Proceedings of the Third Symposium of Software
Development Environments, pages 130–142, September 1988.

[3] V. Benzaken and C. Delobel. Enhancing performance in a persistent object store: Clus-
tering strategies in O . In Proceedings of theFourth InternationalWorkshop on Persistent
Object Systems, pages 403–412, Martha’s Vineyard, MA, August 1990.

[4] M.H.Nodine, A.H. Skarra, and S.B.Zdonik. Synchronization and recovery in cooperative
transactions. In Proceedings of the Fourth International Workshop on Persistent Object
Systems, pages 329–344, Martha’s Vineyard, MA, August 1990.

[5] M.P. Atkinson and R. Morrison. Types, bindings and parameters in a persistent environ-
ment. In Data Types and Persistence, pages 3–20. Springer-Verlag, 1988. (Proceedings of
the First International Workshop on Persistent Object Systems, Appin, Scotland, August,
1985).

[6] M.P. Atkinson and R. Morrison. Polymorphic names, types, constancy and magic in a
type secure persistent object store. In Proceedings of the Second International Workshop
on Persistent Object Systems, pages 1–12, Appin, Scotland, August 1987.

[7] P.A. Buhr and C.R. Zarnke. Persistence in an environment for a statically-typed pro-
gramming language. In Proceedings of the Second International Workshop on Persistent
Object Systems, pages 317–336, Appin, Scotland, August 1987.

[8] J.W. Schmidt and F. Matthes. Naming schemes and name space management in the
DBPL persistent storage system. In Proceedings of the Fourth International Workshop
on Persisent Object Systems, pages 39–58, September 1990.

[9] A.M. Farkas, A. Dearle, G.N.C. Kirby, Q.I. Cutts, R. Morrison, and R.C.H. Connor.
Persistent program construction through browsing and user gesture with some typing.
In Proceedings of the Fifth International Workshop on Persistent Object Systems, pages
375–394, San Miniato, Italy, 1992.

[10] P.L. Tarr, J.C. Wileden, and A.L. Wolf. A different tack to providing persistence in
a language. In Richard Hull, Ronald Morrison, and David Stemple, editors, Second
International Workshop on Database Programming Languages, pages 41–60, June 1989.

[11] P.L. Tarr, J.C. Wileden, and L.A. Clarke. Extending and limiting PGRAPHITE-style
persistence. In Proceedings of the Fourth International Workshop on Persistent Object
Systems, pages 74–86, Martha’s Vineyard, MA, August 1990.

[12] M.P. Atkinson and P. Buneman. Types and persistence in database programming lan-
guages. ACM Computing Surveys, 19(2):105–190, June 1987.

[13] A. Kaplan and J.C. Wileden. Name management and object technology for advanced
software. In International Symposium on Object Technologies for Advanced Software,
number 742 in Lecture Notes in Computer Science, pages 371–392, Kanazawa, Japan,
November 1993.

[14] A. Kaplan and J.C. Wileden. More precise name management for object-oriented meth-
ods, systems and databases. In preparation.

[15] T. Andrews. Designing linguistic interfaces to an object database or what do C++, SQL
and Hell have in common? In Fourth International Workshop on Database Programming
Languages, New York, NY, Aug–Sep 1993. (Invited Talk).

[16] M.P. Atkinson, P. Buneman, and R. Morrison. Binding and type checking in database
programming languages. The Computer Journal, 31(2):99–109, February 1988.

[17] A.L. Wolf, L.A. Clarke, and J.C. Wileden. The AdaPIC Tool Set: Supporting interface
control and analysis throughout the software development process. IEEE Transactions
on Software Engineering, 15(3):250–263, March 1989.

[18] R. Morrison, F. Brown, R. Connor, Q. Cutts, A. Dearle, G. Kirby, and D. Munro. The
Napier88 reference manual (release 2.0). Technical Report CS/93/150, University of St.
Andrews, St. Andrews, U.K., 1993.

[19] A. Dearle and A.L. Brown. Safe browsing in a strongly typed persistent environment.
The Computer Journal, 31(6):540–544, April 1988.

[20] A. Dearle, Q.I. Cutts, and G.N.C. Kirby. Browsing, grazing and nibbling persistent
data structures. In John Rosenberg and David Koch, editors, Proceedings of the Third
International Workshop on Persisent Object Systems, pages 56–69, Newcastle, Australia,
January 1989.

[21] D.L. Wells, J.A. Blakely, and C.W. Thompson. Architecture of an open object-oriented
database management system. IEEE Computer, 25(10):74–82, October 1992.

[22] A. Dearle. Environments: A flexible binding mechanism to support system evolution. In
22ndHawaii International Conference onSystem Sciences, pages 46–55, Hawaii, January
1989.

[23] M.P. Atkinson. Persistent programming practices. In Proceedings of the Fifth Interna-
tional Workshop on Persistent Object Systems, pages 352–353, San Miniato, Italy, 1992.

