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ABSTRACT

DOMAIN-SPECIFIC KNOWLEDGEACQUISITION
FOR CONCEPTUAL SENTENCE ANALYSIS

SEPTEMBER 1994

CLAIRE CARDIE, B.S., YALE UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Wendy G. Lehnert

The availability of on-line corpora is rapidly changing the field of natural language
processing (NLP) from one dominated by theoretical models of often very specific lin-
guistic phenomena to one guided by computational models that simultaneously account
for a wide variety of phenomena that occur in real-world text. Thus far, among the
best-performing and most robust systems for reading and summarizing large amounts of
real-world text are knowledge-based natural language systems. These systems rely heavily
on domain-specific, handcrafted knowledge to handle the myriad syntactic, semantic,
and pragmatic ambiguities that pervade virtually all aspects of sentence analysis. Not
surprisingly, however, generating this knowledge for new domains is time-consuming,
difficult, and error-prone, and requires the expertise of computational linguists familiar
with the underlying NLP system. This thesis presents Kenmore, a general framework
for domain-specific knowledge acquisition for conceptual sentence analysis. To ease the
acquisition of knowledge in new domains, Kenmore exploits an on-line corpus using
symbolic machine learning techniques and robust sentence analysis while requiring only
minimal human intervention. Unlike most approaches to knowledge acquisition for
natural language systems, the framework uniformly addresses a range of subproblems
in sentence analysis, each of which traditionally had required a separate computational
mechanism. The thesis presents the results of using Kenmore with corpora from two
real-world domains (1) to perform part-of-speech tagging, semantic feature tagging, and
concept tagging of all open-class words in the corpus; (2) to acquire heuristics for part-of-
speech disambiguation, semantic feature disambiguation, and concept activation; and (3)
to find the antecedents of relative pronouns.
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C H A P T E R 1

INTRODUCTION

It is a particularly exciting time for the field of natural language processing (NLP).
The availability of on-line corpora is rapidly changing the field from one dominated
by theoretical models of often very specific linguistic phenomena to one guided by
computational models that simultaneously account for a wide variety of phenomena that
occur in real-world text. As a result, NLP systems that process only a handful of sentences
are no longer taken seriously, and there is increasing emphasis on building programs that
can handle large amounts of real-world text.

Although current natural language processing systems cannot yet perform in-depth
text understanding, they can read an arbitrary text and summarize its major events
provided that those events fall within a particular domain of interest (e.g., stories about
natural disasters or terrorist events) [Chinchor et al., 1993]. This scenario is illustrated in
Figure 1.1. Thus far, among the very best-performing andmost robust language processing

NLP
System

Event:
Target:  
Location:
Injuries:
Damage:

attack
school
Honduras
14
$400000 

Figure 1.1: Simple Summarization Task for Natural Language Processing Systems.

systems for this type of limited summarization task have been knowledge-based natural
language systems — NLP systems that understand an input text by relying heavily
on handcrafted knowledge about the domain and about the world in general. Not
surprisingly, however, generating this background knowledge for new domains is time
consuming, difficult, and error prone, and requires the expertise of computational linguists
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familiar with the underlying NLP system. This is an example of the knowledge engineering
bottleneck for natural language processing systems. It is one of the biggest problems in
designing and building natural language systems and promises only to become worse
as natural language systems attempt to understand a wider variety of texts, to produce
more complex summaries of the text, and to derive knowledge structures directly from
text (see Figure 1.2). On the other hand, much of human knowledge is described in
written documents and, as mentioned above, NLP systems can now perform limited
understanding of complicated texts. Machine learning techniques for inductive learning
have also become increasingly available and offer powerful mechanisms for simplifying
the knowledge acquisition process.

NLP System

Event:
Location:
Target:
Injuries:
Damage:

attack
Honduras
school
14
$400000

Semantic Network Mental Model

Figure 1.2: More Complicated Tasks for Natural Language Processing Systems.

As a result of these advances, we believe that it is feasible for NLP systems to begin
to bootstrap their own knowledge bases and this thesis presents a framework within
which this bootstrapping process can occur. More specifically, the thesis presents a general
framework for tackling the knowledge-engineering bottleneck for natural language processing
systems at the level of sentence analysis. The knowledge acquisition framework, called
Kenmore1, exploits an on-line corpus using a robust parsing strategy and symbolic
machine learning techniques, and requires minimal human intervention. Moreover, the
framework uniformly addresses a range of subproblems in sentence analysis, each of
which traditionally had required a separate computational mechanism. In particular, it
supports the acquisition and application of heuristics for semantic and syntactic ambiguity
resolution at both the lexical and structural levels.

1ken (ken), vi. 1 [Scot.] to know
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1.1 Ambiguity Resolution in Language Understanding
Ascertaining what is intended in a text when more than one interpretation is possible

has always been a central issue in natural language processing: ambiguity resolution is
required whenever the system must choose among two or more distinct representations
of the input. Ambiguity pervades virtually all aspects of language analysis, and sentence
analysis in particular exhibits a large number of syntactic, semantic, and pragmatic
ambiguities that demand adequate resolution before the sentence can be understood. The
Kenmore knowledge acquisition framework is designed to acquire solutions to virtually
all lexical and structural ambiguity problems encountered during sentence analysis. The
sections below describe just a few. Unless otherwise noted, all examples in this section
are taken directly or derived from sentences the TIPSTER/MUC business joint ventures
corpus.2

1.1.1 Part-of-Speech Ambiguity
Knowing the part of speech of a word in a particular context, for example, often

supplies important hints for determining the word’s function in the sentence. Consider
the word “plans” in the sentences below:

1. BMW plans to build a plant for large machine tools in Eisenach.

2. Ambitious BMW plans to build a plant for large machine tools in Eisenach were not
approved by management.

Despite nearly identical local contexts, “plans” is a verb in sentence 1, but a noun in
sentence 2, andmaking this distinction is crucial to determiningmeaning of each sentence.
Themain event in thefirst sentence is a planning event inwhich BMWis the actor. Sentence
2, on the other hand, describes a state change — the canceling of a set of plans.

1.1.2 Word Sense Ambiguity
Even if a word’s part of speech is known, the intended meaning of the word in a

particular context often requires disambiguation. The word “vehicles,” for example, is
a noun in both sentences below. In each sentence, however, the word takes on a very
different meaning:

1. Suzuki Motor Co. will produce 240,000 passenger and commercial vehicles annually
at a new factory in South Korea.

2. Eight industries have emerged as vehicles to transform Indonesia into a nation of
technology.

In sentence 1, “vehicles” refers to the product of a company while in the second sentence
it is used metaphorically to mean “instruments” or “means.” Even when it seems as if
a word is unquestionably unambiguous, it can be used in contexts that confer a novel
meaning. In general, one would probably say that the word “Japan” is unambiguous, for
example. It refers to a country in easternAsia. Consider the following sentences, however:

2This corpus will be described in detail in Chapter 4.
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1. The company reported additional purchases of implanters by unnamed chip makers
in Japan.

2. Pearle has formed a joint venture with Japan Optical.

3. The Soviet Union has proposed a joint venturewith Japan to build a salmon hatchery
in the Soviet Union.

The “country in eastern Asia” meaning of “Japan” is, in fact, the one intended in sentence
1. But in the second sentence, “Japan” is part of a company name and that company may
or may not be located in Japan. In the last sentence, “Japan” refers more precisely to the
government of Japan rather than the body of land that is Japan.

1.1.3 Dealing with Unknown Words
The problem of ambiguity in sentence analysis is also clearly pronounced in the case

of unknown words. When encountering a word for which it has no definition, a robust
NLP system makes a series of decisions that together shape the meaning of the word as
it functions in the current context. Each decision is essentially a separate, but related,
ambiguity resolution task. What is the word’s part of speech in the current context? What
is its meaning? How is it related to other items in the sentence or paragraph or text? Is the
word of special importance with respect to the goals of the text processor?

A related problem for natural language processing systems is knowing when the
system’s knowledge of a word is incomplete. Assume, for example, that an NLP system
had a definition for theword “market” thatwas syntactically and semantically compatible
with its use in sentence 1 below, but then encountered “market” in sentence 2:

1. The Asian beefmarket generally is starting to open up to exporters.

2. Two companies plan tomarket a new chip with ceramic circuits.

A robust system should (1) note that its current definition is inadequate, (2) infer the
appropriate syntactic and semantic features of “market,” (3) incorporate the newdefinition
into the system’s lexicon, and (4) determine how the system will distinguish the two uses
of “market” in the future.

1.1.4 Prepositional Phrase Attachment
In addition to instances of lexical ambiguity (i.e., ambiguity at the word level), ambi-

guity resolution is required at the constituent, or structural, level as well. Consider the
prepositional phrases in the following very similar sentences:

1. Taiyo Oil Co. saidWednesday it plans to open the oil refinery in Bintulu on the island
of Kalimantan inMalaysia.

2. Taiyo Oil Co. said Wednesday it plans to open an oil refinery in a joint venture on the
island of Kalimantan in June.
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Although the low-level syntactic structure of the sentences is identical, the prepositional
phrase attachment decisions vary substantially. As shown in Figure 1.3, the “in” preposi-
tional phrase that follows “refinery” (in1-pp) modifies “refinery” in the first sentence (i.e.,
the refinery will be in Bintulu), but modifies the verb in the second sentence. In addition,
the second prepositional phrase that begins with “in” in sentence 1 (in2-pp) modifies the
preceding noun(i.e., Kalimantan is inMalaysia), while theprepositional phrase in the same
position in sentence 2 modifies the verb (i.e., the refinery will open in June). Again, each
prepositional phrase attachment decision will affect the semantic representation derived
for the sentence by the natural language processing system.

1: Taiyo Oil Co. said Wednesday it plans
to open [the oil refinery] [in Bintulu] [on the island] [of Kalimantan] [in Malaysia]. 

of-ppon-ppin1-pp in2-pp

2: Taiyo Oil Co. said Wednesday it plans 
to open [an oil refinery] [in a joint venture] [on the island] [of Kalimantan] [in June].

in1-pp of-ppon-pp

in2-pp

Figure 1.3: Prepositional Phrase Attachment Ambiguities.

1.1.5 Pronoun Resolution
A natural language system also requires a mechanism for accurately determining the

phrase referenced by a pronoun. Many times, the gender or number of the pronoun can
limit the number of possible referents, but often the ambiguity must be resolved by other
means. Consider the following sentences:

1. Merck & Co. formed a joint venture with Ache Group, of Brazil. It will be called
Prodome Ltd.

2. Merck & Co. formed a joint venture with Ache Group, of Brazil. It will own 50% of
the new company to be called Prodome Ltd.

3. Merck & Co. formed a joint venture with Ache Group, of Brazil. It had previously
teamed up with Merck in two unsuccessful pharmaceutical ventures.

In each sentence, the pronoun is resolved differently by the righthand context that follows.
In sentence 1, “it” refers to the joint venture company; in sentence 2, “it” refers to Merck &
Co.; and in sentence 3, “it” refers to Ache Group.
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1.1.6 Understanding Conjunctions and Appositives
Understanding complicated noun phrases that involve conjunctions and appositives

is also a notoriously difficult structural ambiguity resolution task.

The decision to abandon production of [[Honda’s Legend model at Rover’s Cowley
Plant] and [its Accord model at Strathmere]] was made 18 months after the project
began.

The decision to abandon production of [[Honda’s Legend model at Rover’s [Cowley
andBirmingham] Plants] and [its Accordmodel at Strathmere]] was made 18months
after the project began.

[[The decision to abandon production of Honda’s Legend model at Rover’s Cowley
Plant] and [the subsequent legal suit]] were both items of interest in yesterday’s
Guardian.

As seen in the above examples, even slight changes in the wording of a sentence can
produce radical changes in the attachment decisions for conjunctions. The problem only
becomes worse when appositives appear within the constructions:

The decision to abandonproduction of [[Honda’s Legend, its high-end luxurymodel]
and [its Accord model, the top-selling import in the U.S.]], was made 18months after
the project began.

1.1.7 Uniform Treatment of Ambiguity
The sections above identified a number of ambiguities faced by natural language

systems during sentence analysis. Typically, NLP systems treat each of these ambiguities
separately along a number of dimensions. First, an NLP system views each ambiguity
as a completely different problem. Second, each type of ambiguity is handled by a
separate module of the system. There is often a part-of-speech tagger, for example,
that is solely responsible for handling part-of-speech ambiguities. Third, each ambiguity
resolution module has limited access to the system’s knowledge. The part-of-speech
tagger, for example, may only have access to part-of-speech information for each word in
the sentence. Fourth, computationally, the NLP system handles each ambiguity using a
different mechanism (e.g., rule-based processing, context free parsers, regular expression
recognizers, Markov models, constraint satisfaction, relaxation networks), each one of
which may require very different sorts of background knowledge.

This dissertation presents a knowledge acquisition framework that instead uniformly
addresses the problem of ambiguity in sentence analysis. In Kenmore,

All types of ambiguity are viewed as instances of the same general problem.

As a result, a single ambiguity resolution module handles all types of ambiguity.

That module has access to all of the system’s knowledge for resolving each type of
ambiguity.

Computationally, a single mechanism is responsible for handling each type of ambi-
guity. Moreover, the same mechanism is responsible both for the acquisition and the
application of the ambiguity resolution heuristics.
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As a result of its uniform view of ambiguity, Kenmore can handle lexical, structural,
syntactic, and semantic ambiguity problems within a single architecture. As described
below, solutions to these problems can be acquired with minimal human intervention,
thus avoiding the knowledge acquisition bottleneck in natural language system design.

1.2 A Framework for Knowledge Acquisition
The Kenmore knowledge acquisition framework for natural language processing

systems is motivated by the following observations:

1. The problemof ambiguity resolution can be recast as a classification problem. In classification
problems, the system is presentedwith the description of an object, situation, or set of
observations, and must label it with one of a number of classes or categories.3 Given
a description of the context of a lexical item, for example, a classification system
will tag the word with the appropriate syntactic class (e.g., noun) and semantic class
(e.g., a human); given a prepositional phrase and a description of the surrounding
context, a classification system will choose among available attachment points. By
treating ambiguity resolution as a classification problem, we can immediately apply
any of a number of inductive machine learning techniques to learn solutions to these
problems rather than handcrafting a set of disambiguation rules. We expect the
inductive learning algorithms to capture automatically those regularities in the use
of language that permit the resolution of ambiguity in sentence analysis.

2. Some aspects of language processing can be viewed as memory-based. By this we mean that
a sentence analyzer can resolve an ambiguity by “remembering” how it resolved a
similar ambiguity in the past. Here, the necessary system behavior is best provided
by case-based, or instance-based, learning algorithms that store individual episodes
in their entirety rather than incorporating them into a global concept description. In
addition, case-based reasoning is useful in domains for which no strong domain the-
ory exists. This is the case in natural language processing where themechanisms that
underly language understanding and language acquisition are not well understood.
Finally, there is evidence from psychology that some language acquisition tasks, like
learning word meanings, proceed through instance-based stages (e.g., Keil and Kelly
[1987]).

3. Knowing the context in which an ambiguity occurs is crucial for resolving it. Text under-
standing in general, and sentence analysis in particular, require a series of context-
sensitivemappings from one representation into another— the system oftenmaps the
words of a sentence into parts of speech, the part-of-speech sequences into low-level
constituents, and the low-level constituents into predicate-argument relations, for
example. As a result, the solutions acquired by Kenmore are context-sensitive
solutions.

3Assume, for example, that there are four classes of balls— baseballs, volleyballs, kickballs, and tennis balls
— that will be described in terms of their color, type of covering, and diameter. Given a description of a ball
that is fluorescent green in color, with a fuzzy covering, and three inches in diameter, a classification system
presumably should label the ball a tennis ball.
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4. People are still by far the very best language processors. In spite of the difficulties it creates
for machines, ambiguity resolution is generally a trivial problem for people. For this
reason, a human supplies supervision during Kenmore’s training phase.
Kenmore relies on three major components. First, it requires a corpus of texts —

a collection of on-line documents. Second, it requires a robust sentence analyzer, or
parser. The specific parser used throughout is the CIRCUS conceptual sentence analyzer
[Lehnert, 1990]. This is not a requirement of the framework, however, and a variety of
sentence analyzers could be used in its place. Finally, the framework requires a case-based
reasoning (CBR) module [Riesbeck and Schank, 1989, Kolodner, 1993]. Very generally,
CBR systems solve problems by first creating a case base of previous problem-solving
episodes. Then,when a newproblem enters the system, the “most similar” case is retrieved
from the case base and used to solve the novel problem. The retrieved case can either be
used directly or after one or more modifications to adapt it to the current problem-solving
situation.

There are two phases to the framework: (1) a partially automated training phase, or
acquisition phase, in which the solution to a particular problem in sentence analysis is
learned, and (2) an application phase, in which the learned solution can be applied in
novel situations. More specifically, the goal of Kenmore’s training phase (Figure 1.4) is
to create a case base, or memory, of ambiguity resolution episodes for a particular type
of ambiguity (e.g., prepositional phrase attachment or word sense disambiguation). To
do this, a small set of sentences is first selected randomly from the corpus. Next, the
sentence analyzer processes the training sentences and, with a human supervisor, creates
a case every time an instance of the ambiguity occurs. To learn a set of heuristics to
handle prepositional phrase attachment, for example, the parser would create a case
whenever it recognizes a prepositional phrase. As shown in Figure 1.4, each case has
two parts. The context portion of the case encodes the context in which the ambiguity was
encountered — this is essentially a representation of the state of the parser at the point
of the ambiguity. The context part of the case is supplied automatically by the sentence
analyzer in both the training and application phases. The solution portion of the case
describes how the ambiguity was resolved in the current example. In the training phase,

Case Base

Training Case
context   solution

ambiguity resolution
episode

Sentence
Analyzer

ambiguity solution

Corpus

selected sentences

context of ambiguity

Case-Based Reasoning Component

Human
Supervisor

solution

Figure 1.4: Kenmore Training/Acquisition Phase.

a person supplies this part of the case using a menu-driven interface. For prepositional
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phrase attachment, for example, the human supervisor simply chooses the phrase that the
current prepositional phrase modifies. Together, the context and solution portions of the
case represent a single ambiguity resolution episode. Once the case is created, it is stored
in the case base. In addition, the solution to the ambiguity is forwarded to the parser
so that it can resolve the current ambiguity, update its state, and continue processing the
training sentences. At the end of the training phase, the case base will contain one case for
every instance of the ambiguity that appears in the training sentences. When acquiring
heuristics for prepositional phrase attachment, for example, therewill be one case for every
prepositional phrase attachment decision in the training sentences.

After training, we can use the case base without human intervention to resolve oc-
currences of the ambiguity in novel sentences from the corpus (Figure 1.5). Whenever
the sentence analyzer encounters an instance of the ambiguity, it creates a problem case,
automatically filling in its context portion based on the state of the system at the point
of the ambiguity. The structure of a problem case is identical to that of a training case
except that the “solution” part of the case is missing. To resolve the current ambiguity,
Kenmore next compares the problem case to each case in the case base, retrieves the most
similar training case, and sends the solution stored there back to the parser to be used as
the solution in the current situation.

Case 
Base

Case Retrieval

Probe Case
context         ?

Retrieved Case
context   solution

Sentence
Analyzer

selected sentences
Case-Based Reasoning Component

ambiguity solution

Corpus

context of ambiguity

Figure 1.5: Kenmore Application Phase.

Of course, many issues must be addressed in order to apply the Kenmore framework
to a particular problem in sentence analysis. These include: the choice of an appropriate
learning algorithm and similarity metric, the choice of a corpus and sentence analyzer, and
the representation of the “context” and “solution” in a case. We will address these and
other issues in detail in later chapters and proceed next with an example of Kenmore in
action in an attempt to make the workings of the framework more concrete.

1.3 An Example
This section shows how the Kenmore framework for knowledge acquisition can be

used to learn word sense disambiguation heuristics. To start, we will assume that the goal
of the NLP system is to process texts from a particular corpus — the TIPSTER business
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joint ventures corpus (henceforth, the JV corpus). Briefly, this corpus contains over 1000
actual newswire accounts of world-wide activity in the area of joint ventures or “tie-ups”
between businesses. We also assume that word meanings will be represented in terms
of one or more semantic features from a predefined taxonomy designed for use in the
joint ventures domain.4 Finally, we assume that Kenmore has been instantiated with the
CIRCUS [Lehnert, 1990] sentence analyzer.

To generateword sense disambiguation heuristics for usewith the JV corpus, Kenmore
first randomly selects a subset of sentences from the corpus and presents them as input
to CIRCUS. Without describing its details, CIRCUS processes the training sentences one
word at a time, looking up each word in its domain-specific lexicon for part-of-speech
and word sense information. Whenever more than one word sense is available, Kenmore
consults CIRCUS and a human supervisor to create a word sense disambiguation training
case for the ambiguous word. For example, because “Japan” can refer to either a country,
a company name, or a government in this domain (see Section 1.1.2 above for examples),
Kenmore creates a training case when it reaches “Japan” in the sentence:

IBM opened a factory in Japan.

Cases in Kenmore are represented as a list of attribute-value pairs, also called features.
A portion of the training case for “Japan” is shown in Figure 1.6. All but one of the
displayed features describe the context in which the ambiguity occurred. These are
supplied automatically by CIRCUS and represent CIRCUS’s state when the ambiguous
word was recognized. More generally, Kenmore’s context features are meant to encode
any information available to the sentence analyzer that may be of help in disambiguating
the current word. The exact type and form of knowledge included in the context features,
however, is parser-dependent. In addition, a human supervisor uses a menu-driven
interface to indicate which of the three plausible semantic features is appropriate in the
given context (i.e., country). The selection is encoded as the solution portion of the case
and represents the class information to associate with the training case. Next, Kenmore
stores the training case in the case base and notifies CIRCUS of the correct word sense.
Kenmore creates training cases like the one shown in Figure 1.6 every time a word sense
ambiguity occurs in the training sentences.

After training, the natural language system can use the resulting case base to resolve
semantic feature ambiguities in novel sentences. Consider, for example, the word “tote”
in the following sentence:

AAAI has set up a joint venture with ACL for production of canvas tote bags
for distribution at annual conferences.5

In the joint ventures domain, “tote” has three plausible meanings associated with the
noun form of the word — it can refer to a company name, a product, or a generic thing. (The
thing semantic feature denotes a word meaning that is unimportant in the joint ventures
domain.) To determine which of the three is appropriate in the current context, Kenmore

4Details regarding the taxonomies are not important for the following example; they will be described in
greater detail in subsequent chapters. In addition, the relationship betweenword senses and semantic features
will be discussed in Chapter 7.2.

5This sentence is not from the JV corpus.
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IBM
opened
a
factory
in
Japan
.

Training Sentence

Subject 
     semantic feature: company-name
Verb 
     semantic feature: open-a-business
Direct Object 
     semantic feature: facility
Last Constituent
     type: noun-phrase
     semantic feature: facility
2nd Preceding Word 
     word: factory
     part of speech: noun
     semantic feature: facility
Preceding Word
     word: in
     part of speech: preposition
Current Word
     word: Japan 
     part of speech: noun
     semantic feature:  country
Following Word 
     word: .
     part of speech: period 

Training Case

context feature
     (always  generated by parser)
solution feature / class 
     (supplied by human during training)

Figure 1.6: Training Case for “Japan”.

creates a problem case (Figure 1.7). Like the training cases, the problem case includes a
set of context features that describe the context in which the ambiguous word occurred.
Unlike the training cases, however, the problem case contains no solution (i.e., it contains
no class information). To resolve the ambiguity, the problem case is compared to all of the
cases in the case base and the most similar one is retrieved. For now, we will ignore the
important issue of how to measure similarity and select the best case. In short, the case
retrieved in response to the “tote” case after training on 120 sentences from the JV corpus
(2056 cases) is shown in Figure 1.8 along with the training sentence that generated it. The
retrieved case indicates (correctly) that “tote” refers to a product in the current context.

1.4 Advantages of the Framework
Kenmore’s approach to knowledge engineering for natural language processing sys-

tems has a number of advantages over traditional methods for acquiring the background
knowledge needed for sentence analysis. Althoughmore detailed comparisons to existing
approaches will be discussed in Chapter 2, the major advantages are summarized here:

In Kenmore, the same case-based method is used to acquire solutions to syntactic and semantic
problems at both the lexical and structural levels. This simplifies the system design. As
mentioned earlier, different methods are traditionally used to handle each class of
problem encountered during sentence analysis.

The case base and case retrieval algorithm together implicitly define a set of disambiguation
heuristics. This obviates theneed for generating andmaintaining explicit, hand-coded
disambiguation heuristics.

No hand-coded heuristics are required to drive the acquisition process. Again, this greatly
simplifies system design and maintenance.
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AAAI
has set up 
a joint venture
with ACL
for production
of
canvas
tote
bags
for 
distribution...

Test Sentence

Subject 
     semantic feature: company-name
Direct Object 
     semantic feature: joint-venture-entity
     concept: joint-venture-tie-up
Last Constituent 
     type: prepositional-phrase
     concept: production
     semantic feature: industry
2nd Preceding Word 
    word: of
     part of speech: preposition
Preceding Word 
     word: canvas
     part of speech: noun modifier
     semantic feature: product
Current Word 
     word: tote
     part of speech: noun modifier
Following Word 
     word: bags
2nd Following Word 
     word: for
     part of speech: preposition

Test Case

context feature 
     (parser-generated)

Figure 1.7: Problem Case for “tote”.

Subject 
     semantic feature: company-name
Last Constituent
     type: prepositional-phrase
     concept: production
     semantic feature: industry
2nd Preceding Word 
     word: of
     part of speech: preposition
Preceding Word 
     word: auto
     part of speech: noun modifier
     semantic feature: product
Current Word 
     word: parts 
     semantic feature: product
     part of speech: noun
Following Word 
     word: and
     part of speech: conjunction
2nd Following Word 
     word: engines
     part of speech: noun
     semantic feature: product 

Retrieved Case

Daihatsu...
has so far been
in alliance
w/ Astra Motor
in production
of
auto
parts
and
engines... 

Training Sentence

context feature
solution feature

Figure 1.8: Retrieved Case for “tote” and the Training Sentence that Spawned It.
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Kenmore’s approach requires relatively little training. In addition to noting the presence
of individual words, cases in Kenmore encode relatively high-level information
describing the state of the parser as well as the syntactic and semantic classes
associatedwith bothwords and constituents. As a result, we obtain promising results
with Kenmore after training on a relatively small number of sentences. This makes
the method especially appropriate for use with small corpora where word-based
statistical approaches fail due to lack of data.

Training does not require the expertise of computational linguists. With the possible
exception of part-of-speech tagging, supervisory information can be provided by
anyone who can understand texts from the training corpus.

The case-based reasoning paradigm allows for incremental learning of disambiguation heuris-
tics. This feature allows Kenmore’s training phase to become progressively easier for
the human supervisor because Kenmore can access the existing case base to suggest
solutions to each ambiguity and rely on the supervisor only to override incorrect
predictions.

The machine learning approach to knowledge acquisition provides a flexible control structure
for combining multiple sources of knowledge. Thus, Kenmore fosters exploration of
the usefulness of different types of knowledge for solving a particular problem in
sentence analysis.

1.5 Claims and Contributions of the Thesis
The goal of this thesis is to address the knowledge-engineering bottleneck for nat-

ural language processing systems. To this end, it will present the Kenmore knowledge
acquisition framework for natural language processing systems and make the following
claims:

1. The Kenmore framework is able to address uniformly a range of problems in sentence analysis
each of which traditionally had required a separate computational mechanism. In particular,
a single architecture:

handles both syntactic and semantic ambiguities,
handles ambiguity at both the lexical and structural levels, and
accommodates both the acquisition andapplicationofdisambiguationheuristics.

2. Kenmore demonstrates that symbolic inductive machine learning and case-based techniques
can be used to learn solutions to significant problems in sentence analysis and can be incor-
porated into a working NLP system that has demonstrated success in processing real-world
text. As such, it demonstrates the feasibility of truly trainable, portable, customized
sentence analyzers.

To demonstrate support for these claims, we have used the Kenmore knowledge
acquisition framework to learn lexical and structural parsing knowledge for corpora from
two real-world domains. At the lexical level, Kenmore has been used to acquire part-of-
speech, semantic feature, and concept activation knowledge for all open-class words (e.g.,
nouns, adjectives, verbs) in the JV corpus. More specifically, the system learns for this
domain:
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the parts of speech, semantic features, and concepts that should be associated with
each word, and

a set of lexical disambiguation heuristics that discern which part of speech, semantic
feature, and concept are appropriate for a word in a given context.

Kenmore’s performance in these lexical acquisition tasks has been evaluated in a
series of experiments. In particular, we first assume the existence of a nearly complete
domain-specific dictionary and use Kenmore to infer the features of occasional unknown
words that occur in input texts. Next, we present Kenmore with a much more ambitious
task. We assume only a small dictionary of function words (e.g., prepositions, auxiliaries,
determiners) and use Kenmore to determine the definition of all non-functionwords in an
incoming text from scratch.

At the structural level, Kenmore has been used to learn heuristics for locating the
antecedents of relative pronouns. Hereweused texts that describe LatinAmerican terrorist
events and found that the learned heuristics outperform a set of hand-coded heuristics that
had been developed for use in the terrorism domain.

Finally, because Kenmore relies heavily on machine learning components, the thesis
also addresses the issue of knowledge representation for machine learning systems. In
particular, it is well known that the performance of any machine learning system depends
critically on the representation of the training cases it receives as input. Unfortunately,
finding a good case representation is a notoriously difficult and time-consuming task and
presents anotherpotential knowledge-engineering bottleneck during system development
[Quinlan, 1983]. As a result, this thesis also presents two automated techniques for improv-
ing a baseline case representation. The first approach uses decision trees [Quinlan, 1986]
to discard irrelevant features from a case representation. The second technique explicitly
encodes any of a handful of well-known cognitive biases into the case representation.

1.6 What’s to Follow
Related Work (Chapter 2) This chapter discusses prior work in the area of knowledge

acquisition for natural language processing and distinguishes it from the work
presented here.

Knowledge Acquisition for Conceptual Sentence Analysis (Chapter 3) TheKenmore frame-
work for knowledge acquisition is parser-independent — the sentence analyzer com-
ponent of the systemcanbe replacedbyany languageprocessing system thatprovides
an on-line model of sentence analysis and that can examine its state at any point in
the parse.6 Only the specifics of the case representation (i.e., the context and solution
features) need to change in response to the types and forms of knowledge available
to the new sentence analyzer. This thesis, however, emphasizes the acquisition of
knowledge for the task of conceptual sentence analysis7 [Riesbeck, 1975]. This chapter
describes CIRCUS[Lehnert, 1990], the conceptual sentence analyzer used throughout

6Section 9.2 discusses the requirements of the sentence analyzer in more detail.

7Conceptual sentence analysis focuses on building a representation of the meaning of a sentence rather
than a representation of the syntactic structure of a sentence.
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this work. The chapter also specifies the state information maintained by CIRCUS
during sentence analysis; this information ultimately comprises the context portion of
Kenmore’s case representation. Finally, the chapter discusses a number of knowledge
acquisition tasks that are important for conceptual sentence analysis in general, and
for CIRCUS in particular.

Domain-Specific Knowledge Acquisition (Chapter 4) Although theKenmore framework
for knowledge acquisition for natural language systems is also domain-independent,
it requires a corpus from which training sentences are selected. As a result, the case
base created during the acquisition phase implicitly encodes heuristics tuned to the
training corpus. In short, Kenmore automates the acquisition of domain-specific
ambiguity resolution heuristics. This chapter first discusses the notion of domain-
specific knowledge acquisition. It then describes the domains of the two corpora used
in all Kenmore experiments as well as the information extraction tasks for which the
corpora were designed.

Learning Lexical Knowledge (Chapter 5) This chapter describes and evaluatesMayTag,
an instantiation of Kenmore for the acquisition of lexical knowledge.

Using Decision Trees to Discard Irrelevant Features (Chapter 6) This chapterpresents and
evaluates MayTag’s decision tree approach to improving a baseline case representa-
tion. The technique uses decision trees [Quinlan, 1986] to locate the relevant features
in a representation so that the irrelevant ones can be discarded.

MayTag Performance Analysis (Chapter 7) This chapter provides a deeper analysis of
MayTag’s ability to handle lexical ambiguity.

Finding Antecedents of Relative Pronouns (Chapter 8) This chapterdescribesWHirlpool,
an instantiation of Kenmore that learns heuristics for finding relative pronoun an-
tecedents. It also presents and evaluates WHirlpool’s approach to finding an appro-
priate case representation — an automated method that explicitly encodes cognitive
biases into a baseline case representation.

Establishing Constraints on the Kenmore Framework (Chapter 9) This sectiondiscusses
constraints on the Kenmore framework that must be satisfied before successful
instantiation of the framework on a new problem.

Conclusions (Chapter 10) This section summarizes the general conclusions of the work
and outlines directions for future work.

The chapters have been organized and written so that different paths through the
thesis are possible, depending on the reader’s interests:

For an overview of the work, read Chapters 1, 3, and one of 5 or 8.1-8.5.

To focus on lexical ambiguity tasks, read Chapters 1, 3, 5, and 7.

To focus on structural ambiguity tasks, read Chapters 1, 3, and 8.

To concentrate on the thesis’s contributions in machine learning, read Chapters 1, 6,
and 8.6.



C H A P T E R 2

RELATED WORK

Toaddress theknowledge engineering bottleneck for NLP systems, this thesis presents
Kenmore, a knowledge acquisition framework within which solutions to problems in
sentence analysis can be learned. More specifically, however, Kenmore addresses the
problem of domain-specific knowledge acquisition for conceptual sentence analysis. These
constraints on the knowledge acquisition task lead to a number of implicit design goals
that may not apply to the general language acquisition task. Namely, (1) semantic
disambiguation at both the lexical and structural levels will be of particular importance,
(2) the domain-specific nature of the task precludes the use of general lexicons1, (3)
any heuristics acquired by the system should be tailored for use with the corpus of
interest, (4) it is better if domain experts can train the system rather than computational
linguists or system designers, (5) the training phase should become easier for the human
supervisor over time, and (6) the acquired knowledge bases and heuristics should have
some capability for explaining their decisions.

Many of these design goals were mentioned briefly in Section 1.4, a summary of
Kenmore’s advantages over existing approaches to the knowledge engineering bottleneck
for NLP systems. The purpose of this chapter is to provide a more detailed comparison of
theKenmore frameworkwith existingwork in knowledge acquisition for natural language
systems. In particular, we have divided related work into seven separate areas: (1)
hand-crafted knowledge acquisition, (2) intelligent interfaces to natural language systems,
(3) statistical approaches, (4) knowledge-based approaches, (5) connectionist approaches,
(6) machine learning approaches, and (7) case-based approaches. We treat each area in
turn in the following sections.

2.1 Hand-crafted Knowledge Acquisition

Generating lexical knowledge, lexical disambiguation heuristics, and structural dis-
ambiguation heuristics by hand is clearly a time-consuming and tedious task. The ability
to acquire knowledge about words and to encode this knowledge in the lexicon has

1On-line sources of linguisticand commonsense knowledge usuallywill not havedetailed enough coverage
in the area of interest.
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been labeled by some as the major bottleneck for building natural language processing
systems (e.g., Zernik [1991a]). In addition, the manual encoding of lexical and structural
disambiguation rules — especially those that merge syntactic and semantic constraints —
is particularly difficult and prone to error. Maintenance of rule sets becomes increasingly
difficult over time. Moreover, hand-coded heuristics and lexicons are often incomplete
and perform poorly in new domains comprised of specialized vocabularies or a different
genre of text.

Until fairly recently, natural language processing systems relied exclusively on hand-
crafted lexicons and knowledge bases. Early systems for conceptual sentence analysis
(e.g., ELI [Riesbeck and Schank, 1978] and QA [Lehnert, 1978]) embedded much of their
background knowledge in hand-coded lexicons. Other text analyzers relied on detailed,
hand-coded knowledge of scripts, plans, goals, and even political beliefs, in addition to
hand-coded lexicons (e.g., SAM [Schank and Riesbeck, 1981], FRUMP [DeJong, 1979],
PAM [Wilensky, 1978], and POLITICS [Carbonell, 1978]). The Boris system [Dyer, 1983]
included all of these knowledge structures (andmore) and integrated themdirectly into the
parser. Martin’s DMAP system [Riesbeck and Martin, 1985], which processed texts using
a memory-based approach to language understanding, relied on a hand-coded represen-
tation of event memory. In general, reliance on hand-crafted background knowledge was
possible in these systemsbecause thedomains and tasks forwhich theyweredesignedwere
very narrow in scope, and the texts processed by the systems for the most part contained
short, simple sentences of limited syntactic structure. Conversely, the need for extensive
hand-coded background knowledge demanded that the domains and tasks of these systems
remain limited and narrowly focused. More recently, NLP systems have begun to tackle
relatively ambitious language-processing tasks, for which reliance on hand-coded lexicons
and hand-coded background knowledge is impractical.

It is partly in response to such scalability issues that Kenmore was created. Kenmore
provides an automated mechanism for acquiring knowledge for sentence analysis and
tunes that knowledge to a particular domain. It requires human intervention only during
the training phase and thus avoids many problems associated with human-generated
heuristics. There is no explicit rule base to maintain. In addition, algorithms used
within Kenmore’s architecture provide access to a simple knowledge representation and
control structure that together naturally handle the assimilation of syntactic and semantic
knowledge. Most importantly, the same basic framework accommodates the acquisition
of a wide variety of knowledge needed for conceptual analysis of texts.

2.2 Intelligent Interfaces
One approach to the problem of lexical knowledge acquisition is to design intelligent

interfaces to help computational linguists assign syntactic and semantic tags to individual
words in a corpus. Interfaces increase the speedwithwhichknowledge canbe acquiredand
also help avoid some problems associated with the manual encoding of such knowledge.
The Kenmore framework for knowledge acquisition, however, requires much less human



18

intervention than interfaces that demand human perusal of possibly an entire corpus —
Kenmore is able to generalize from the relatively small set of examples it is given during
training. In addition, both structural and lexical ambiguity resolution are handled within
the Kenmore framework. Smart interfaces, on the other hand, assist the user in tagging
or bracketing a corpus (see Marcus [1991]), but do not generally assist in the acquisition
andmaintenance of disambiguation heuristics. Notable exceptions are interfaces that help
the user define semantic case frames and their associated selectional restrictions [Ayuso
et al., 1987, Grishman et al., 1986] — structures that implicitly perform some lexical and
structural disambiguation. Traditionally, this type of knowledge is crafted exclusively by
hand.

An intelligent interface with some similarities to Kenmore is the Simmons and Yu
system [Simmons and Yu, 1992]. They present a simple user interface for acquiring
context-dependent part-of-speech tags and context-dependent grammars as well as an
algorithm for applying the acquired rules. Like the Simmons and Yu system, Kenmore
also acquires context-dependent parsing knowledge; however, Kenmore is designed more
for the acquisition of disambiguation heuristics than for the acquisition of grammars. In
addition,we rely onmachine learningmethods for retrieval of similar training cases during
the application phase while the Simmons and Yu system indexes all acquired rules based
on the top two items of the current stack of a shift-reduce parser. A nearest-neighbor
algorithm is then used to locate the best of the retrieved cases. Finally, Kenmore allows
the use of semantic as well as syntactic knowledge (if that knowledge is available to the
parser), while Simmons and Yu allow only syntactic knowledge in the acquired rules. Like
Kenmore, the Simmons and Yu system uses relatively few training examples. In their
evaluation, a case base of over 8000 cases was created in response to the manual tagging
of 345 sentences. The system correctly predicts the part of speech 99.52% of the time when
testing on the training set; choosing themost frequent part of speech achieves an accuracy
of 97.52%. No results were posted for novel test sets.

2.3 Statistical Approaches

2.3.1 Acquisition of lexical knowledge

Statistical methods that acquire lexical knowledge have enjoyed recent success. For the
most part, work in this area has concentrated on automated part-of-speech tagging using
Markov model-based stochastic taggers (e.g., Jelinek [1985], Church [1988], DeMarcken
[1990], Charniak [1993]). These systems predict the part of speech of the current word,
given the part of speech assigned to the preceding words.2 They essentially choose the
tag sequence that maximizes the following equation across all words of the sentence:

2If 2, then the model is a bigrammodel; if 3, then a trigrammodel, etc.
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In general, Markov-based tagging algorithms achieve accuracies in the 95% correct range
for part-of-speech tagging of unrestricted text [Church and Mercer, 1993, Charniak, 1993].
It has been postulated that thesemethods succeedwhere traditional rule-based approaches
fail because they manage to account for lexical preferences (e.g., “bird” is generally used
as a noun rather than a verb).

Unfortunately, statistical methods require the existence of extremely large, often
hand-tagged training corpora. For example, one corpus that is often used to construct
statistical models for natural language acquisition tasks is the 4.5 million-word Penn
Treebank [Marcus et al., 1993]; the smaller Tagged Brown Corpus (one million words) is
considered too small for many tagging tasks [Church et al., 1991]. However, corpora of
even150millionwords havebeen found tobe inadequate for some statistical approaches to
ambiguity resolution [Dagan and Itai, 1991]. Lexical ambiguity resolution in Kenmore, on
the other hand, incorporates lexical preferences into the learned heuristics (whenever
word-level information is included as part of a case) and also includes higher-level
information regarding the semantic classes of surrounding words and the (syntactic and
semantic) state of the parser. We believe that it is this access to higher-level knowledge
sources that allowsKenmore to succeedwith relatively little training.3 As a result, Kenmore
is particularly well-suited to learning lexical knowledge in domains where large amounts
of annotated text are unavailable. In addition, Kenmore allows evidence from multiple
knowledge sources to be combined without the complex modeling of dependencies that
is often required in statistical approaches.

Another advantageof Kenmore over statistical approaches to lexical ambiguity resolu-
tion is its explanation capabilities: Kenmore captures information about lexical ambiguity
resolution in the individual cases rather than in very large tables of statistics. This
allows the system to provide a more compelling explanation of its decisions than purely
statistical methods. The rule-based part-of-speech tagger presented in Brill [1992] also
has this advantage. His system acquires a set of ordered, non-stochastic rules using
transformation-based error-driven learning [Brill, 1993]. To learn a set of rules, the system
requires an annotated corpus, a method for assigning a word its most likely tag, and a set
of allowable transformations.4 The system tries every possible transformation, counts the
errors caused by each, chooses the transformation that best reduces theoverall error rate on
the corpus, andadds it to the endof theordered list. This cycle continuesuntil the error rate
falls below some preset threshold. To tag a new sentence, the most likely tags are assigned
to each word and all rules are applied to each word, in turn. Unlike most corpus-based

3Evidence that incorporation of such knowledge can reduce sparse data problems can be found in Fisher
and Riloff [1992].

4Examples of transformations are: (1) If the currentword has tag and the preceding (following) word has
tag , then change to ; (2) If the current word has tag and the preceding word has tag and the following
word has tag , then change to .
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approaches to part-of-speech tagging, the acquired rule set directly and explicitly captures
relevant linguistic knowledge while performing as well as stochastic taggers.

Like Kenmore, Brill’s approach has also been applied to a number of language
learning tasks — part-of-speech tagging, grammar acquisition, and prepositional phrase
attachment. There are a number of differences in the two systems, however. Brill assumes
that a new a set of transformations will be specified for each new ambiguity task. The
equivalent task in Kenmore is the specification of the attributes that should be part of each
case. For Kenmore, these are parser-specific features rather than task-specific and need
not be redefined for each new type of ambiguity. As a result, Kenmore’s uniform view of
ambiguity resolution gives the learning component access to the same knowledge sources
for all types of ambiguity. In addition, the rules acquired using Brill’s transformation-based
approach access only lexical information for one or two words in a six-word window
surrounding the unknown word. Because Kenmore’s learning component is embedded
within the parser, heuristics learned by the system can be more varied and flexible — they
can access lexical information for any or all words in a small window centered on the
unknown word and can also test features of the global state of sentence analysis. Finally,
modifications to Brill’s original system were required to incorporate lexical preferences
and to handle unknownwords or words that did not appear during training [Brill, 1994].
These situations are handled naturally within the Kenmore framework for knowledge
acquisition.

Most statistical approaches to lexical ambiguity resolution have focused primarily on
the acquisition of syntactic knowledge. However, a few systems have been designed to
learn semantic knowledge for sentence analysis — or at least knowledge that is on the
boundary of syntax and semantics. Brent has focused on the acquisition of semantic
knowledge for verbs: (1) distinguishing stative from non-stative verbs5 [Brent, 1990], and
(2) detecting verbs with one of five subcategorization frames[Brent, 1991]. His systems are
particularly interesting because they avoid the need for human supervision by searching
for a predefined set of unambiguous syntactic contexts. Other work on verbs includes
a method for inferring predicate argument relations using mutual information statistics
[Church and Hanks, 1990]. Some progress has also been made in the area of word sense
disambiguation. Brown et al. present a statistical method to label word senses of a word
with the context in which they appear. In their work, the “context” consists of thewords in
a window surrounding the ambiguous word, but includes no higher level knowledge. In
addition, their system assigns at most two senses to each word. Yarowsky [1992] presents
a class-based variation of a Bayesian classifier for word sense disambiguation. Resnik
[1993] uses large corpora to discover lexical relationships for use in selectional constraints.

Another general approach to knowledge acquisition for lexical ambiguity tasks that
bears some similarity to Kenmore is a method for acquiring decision lists for lexical

5Stative verbs are verbs whose actions are assumed to hold at all times after their assertion (e.g., know,
believe, love); the actions of non-stative verbs are not always assumed to hold after assertion (e.g., fix, walk).
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ambiguity resolution [Yarowsky, 1994]. Yarowsky’s decision lists are ordered lists of
single-antecedent rules — each entry in the list tests one feature and produces a classifi-
cation. Unlike Brill’s transformation-based rule set, only the first applicable pattern in the
list is applied to a novel instance. The decision lists are task-specific and are created by (1)
measuring collocational distributions across a corpus for a predefined set of hand-crafted
lexically-based collocations (e.g., the word to the right (left) of the current word or pair
of words at offsets -2 and -1), and (2) sorting them by their log-likelihoods. As in most
statistical approaches, the method has been tested on a very large annotated corpus,
but not on the smaller, domain-specific corpora that Kenmore handles. In addition, the
approach has been applied only to fairly low-level lexical ambiguity tasks (e.g., restoring
accents in Spanish and French texts), although the approach could be extended to handle
structural ambiguity tasks as well. The output of the system is a set of heuristics, each of
which classifies a new instance by checking at most one piece of the available evidence.
A surprising result is that this approach performs as well as more complex approaches
that try to combine all available evidence. Kenmore’s heuristics, on the other hand, fall
somewhere in between, testing some, but not necessarily all, sources of syntactic and
semantic knowledge.

All of the above approaches to lexical acquisition require supervision of some sort.
However, a number of systems have begun to look toward unsupervised methods for
finding clusters of related words (e.g., Brown et al. [1992], Grefenstette [1992]). While
preliminary results are very promising, problems with ambiguous words and inconsistent
clusters (see Brown et al. [1992]) make it difficult to incorporate the learned lexical
knowledge into existing NLP systems, especially those that use specialized vocabularies
and require domain-specific distinctions.

In summary, Kenmore differs from statistical approaches to lexical knowledge acqui-
sition in a number of ways. First, syntactic and semantic lexical knowledge can be learned
simultaneously within the same framework. Next, Kenmore requires a very small training
corpus by allowing access to class-level and structural knowledge in addition to individual
words. This makes Kenmore especially attractive for acquiring lexical knowledge for texts
in specializeddomainswhereonly small, untagged corpora are available. Finally, Kenmore
learns knowledge in a form directly usable by the sentence analyzer.

2.3.2 Acquisition of structural knowledge
Statistical approaches have been used for at least one structural disambiguation task

— prepositional phrase attachment [Hindle and Rooth, 1993, Resnik and Hearst, 1993,
Brill, 1993]. Like the statistical methods employed for lexical disambiguation, the systems
that handle structural ambiguity also use very large corpora for training. Kenmore handles
structural ambiguity usingmuch less text by creating training cases based onparser output
rather than only lexical cooccurrences. Kenmore also provides a better explanation of its
ambiguity resolution decisions than most statistical approaches because it knows which
training case is responsible for each ambiguity decision. This provides useful feedback for
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the system designer and, as discussed in Section 10.2.3, could be used to make Kenmore’s
training phase an active, rather than a relatively passive one. Statistical approaches to
knowledge acquisition generally offer no such credit assignment mechanism.

2.3.3 Comprehensive approaches to ambiguity resolution

In addition to Brill’s transformation-based system for learning solutions to a variety
of problems in natural language understanding (see above), BBN’s PLUM system offers
another statistically-based, comprehensive approach to knowledge acquisition for sen-
tence analysis [Weischedel et al., 1993]. Like Kenmore, PLUM handles lexical ambiguity,
unknown words, and structural ambiguity for real-world text. It also espouses a hybrid
approach to knowledge acquisition and text processing by integrating probabilistic models
with knowledge-based parsing methods. Nevertheless, the two systems treat ambiguity
resolution very differently. At the lexical level PLUM finds all part-of-speech tags for an
entire sequence of words simultaneously.6 At the structural level, the system deals with
ambiguity after the parser and semantic interpreter have computed all plausible parses for
the sentence. Only then is a context-free probabilistic model applied to choose among the
available options. Kenmore, on the other hand, employs an on-line model of ambiguity
resolution — it resolves both lexical and structural ambiguity dynamically as the parse
proceeds. This on-line model makes Kenmore better suited to incorporate results from
psycholinguistic experiments directly into its sentence processing strategies.

Both PLUM and Kenmore include a non-trivial supervised training phase. However,
Kenmore’s reliance on symbolic machine learning methods, and case-based methods in
particular, allows learning to proceed incrementally — each decision made by the human
supervisor is incorporated directly into the case base and, hence, is available for retrieval
immediately. This means that supervision becomes progressively easier over time because
the system learns with each training instance. Incremental learning is not feasible within
PLUM’s current architecture or, for that matter, within many of the statistical approaches
described above. The incremental nature of Kenmore’s learning algorithms also provides
a built-in mechanism for knowing when to stop training — training can end when the
current case base has begun to provide supervisory information at an acceptable level.
Weischedel et al. [1993] presents guidelines for when to stop training based on corpus
statistics, rather than overall system performance.

Like the statistical approaches described above, PLUM also requires the derivation
of different probability models for dealing with each new class of ambiguity as well as
mechanisms for efficiently and accurately estimating the probabilities for those equations.
Kenmore, on the other hand, handles all ambiguity uniformly without similar modifica-
tions.

6Although PLUM could be extended to handle lexical semantic ambiguity, it currently ignores that class of
ambiguity.
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2.4 Knowledge-Based Approaches

There exist a number of knowledge-intensive methods for the acquisition of syntactic
and semantic lexical knowledge. These systems rely heavily on either hand-coded back-
ground knowledge (e.g., Berwick [1983], Granger [1977], Hastings et al. [1991], Lytinen
and Roberts [1989], Martin [1992], Selfridge [1986]) or detailed hand-coded heuristics
that describe how and when to acquire new word definitions (e.g., Jacobs and Zernik
[1988], Wilensky [1991]). Unfortunately, generating either world knowledge or acquisition
heuristics is more difficult and time-consuming than generating the lexical knowledge
itself. In addition, it is very likely that the background knowledge and rules for acquisition
will be domain- or corpus-dependent andwill have to be regeneratedor at least customized
for use with texts in new domains. Finally, we know of no knowledge-based approaches
for the automatic acquisition of structural disambiguation heuristics.

Kenmore, on the other hand, acquires lexical knowledge without the use of either
world knowledge or explicit lexical acquisition heuristics and also handles the acquisition
of structural disambiguation heuristics.

2.5 Connectionist Approaches

2.5.1 Distributed Approaches
Connectionist techniques have been applied to natural language processing for a

number of years without much success in terms of real-world progress. Many have
addressed the problem of full sentence analysis or grammar learning using distributed
connectionist methods (e.g., Elman [1990], Jain [1989], McClelland and Kawamoto [1986],
Miikkulainen and Dyer [1987], Miikkulainen and Dyer [1989], St. John [1992]), but each of
these systems only processes sentences of limited syntactic structure in very narrow, toy
domains, and scaling the systems to real-world domains does not seem imminent. Like
the statistical approaches to knowledge acquisition and the localist approaches described
below, these connectionist systems tend to have poor explanation capabilities.

A number of systems that combine traditional parsing techniques and distributed
connectionist modules have also been developed for sentence analysis (e.g., Wermter
[1990], Wermter and Lehnert [1989], Chen et al. [1993]). Like Kenmore, these systems
integrate a traditional parser with separate learning components, each of which specializes
in the resolution of a single class of ambiguity. In theory, these systems could be extended
to handle real-world text and additional structural ambiguities, but they currently tackle
only noun phrase analysis within limited syntactic constructs. Work in this area has also
focused purely on learning heuristics for structural rather than lexical disambiguation.
In addition, none of the connectionist systems described above provides a capability for
incremental learning. Incorporating a single training instance requires retraining the entire
network,which can takehours or evendays. In comparison, the symbolicmachine learning
systems used in Kenmore, particularly the case-based and instance-based algorithms, can
incorporate new instances with very little computation.
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2.5.2 Localist Approaches
Like Kenmore, localist connectionist approaches to word sense disambiguation (e.g.,

Cottrell [1986]), sentence analysis (e.g., Waltz and Pollack [1985]), and high-level inferenc-
ing (e.g., Lange and Dyer [1989]) provide a unified approach to problems of disambigua-
tion. Again, however, these approaches either handle only extremely simple sentence
structures or assume large amounts of world knowledge (or both). More importantly, they
provide nomechanisms for learning this background knowledge, for acquiring knowledge
about how to structure the underlying networks, or for remembering decisions from one
run to thenext. Kenmore provides a framework for both learning and applying knowledge
required for sentence analysis.

2.6 Machine Learning Approaches
There have been relatively few systems that use standard symbolic machine learning

techniques to learn knowledge for natural language processing systems. Prior work in
this area has concentrated mainly in the application of explanation-based learning (EBL)
methods to grammar learning (e.g., Samuelsson and Rayner [1991], Samuelsson [1991]).
The work presented here, on the other hand, focuses on learning knowledge for natural
language systems that process text without the use of formal grammars. Although EBL
has also been used for low-level language tasks like learning phonological representations
[Stetham, 1991] and higher level tasks like learning causal relationships [Bozsahin and
Findler, 1992, Pazzani, 1991], it has not been used to learn solutions to the lexical and
structural disambiguation tasks handled within the Kenmore architecture. In addition,
the EBL systems mentioned above generally require extensive background knowledge in
the form of commonsense knowledge, detailed semantic hierarchies, or causal theories.
The Kenmore framework presumes no such background knowledge.

Inductive logic programming (ILP) techniques [Muggleton, 1992] have only recently
been employed to learn case-role mappings (e.g., Zelle and Mooney [1993]) and to learn
rules from parsed text (e.g., Delannoy et al. [1993] and Matwin and Szpakowicz [1993]).
While learning within the realm of logic programming is appropriate for certain NLP
systems, few conceptual sentence analyzers translate text into the formal logic format
required for some ILP techniques. This translation often precludes the kind of robust
parsing needed to process real-world text. In very recent work, however, Zelle and
Mooney [1994] have used ILP techniques to generate Prolog parsers from real-world text,
making ILP an exciting new area of resesarch in machine learning and natural language
processing.

Finally, Riloff [1993] has used one-shot learning in her AutoSlog system to learn one
type of knowledge structure for conceptual sentence analysis — semantic case frame
definitions. AutoSlog differs from all of the above systems in that it relies on a small
set of hand-coded rules that are, for the most part, domain-independent, to propose
semantic case frame definitions for perusal by a human supervisor, who then decides
which definitions to keep and which to discard.
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2.6.1 A Comparison with SOAR
Kenmore has been presented as an architecture in which solutions to a number of

problems in sentence analysis can be acquired. As such, it may seem similar to SOAR
[Laird, 1987, Newell, 1990] — a general architecture for building intelligent systems. Both
systems, for example, are able to handle seemingly very different problems within a
single framework; both systems incorporate a learning component. Nevertheless, the two
systems vary tremendously. First, SOAR provides a general problem-solving architecture.
Kenmore is not nearly as general an architecture—itwasdesigned solely for the acquisition
of knowledge needed for natural language processing. Natural language understanding,
for instance, is just one of the tasks that can be handledwithin SOAR [Lehman et al., 1993].
Second, all aspects of the SOAR architecture are based on a set of assumptions regarding
the cognitive nature of problem solving; cognitive biases and cognitive limitations are
built directly into the system architecture. Kenmore, on the other hand, incorporates
all cognitive biases and constraints into its case representation rather than in the case-
based architecture itself (see Chapter 8). Third, Kenmore assumes that a person provides
supervisory information. When needed, SOAR receives supervisory information through
interaction with the world (or the system’s model of it). Finally, SOAR learns solely via
chunking, or remembering useful sequences of rulefirings and combining them into a single
rule. Kenmore learns by storing new cases in its case memory — it remembers individual
parsing actions rather than a sequence of actions. Also, SOAR always generalizes chunks
before adding them to long-termmemory, but Kenmore’s cases are never generalized prior
to storing them in the case base.

2.7 Case-Based Approaches
Kenmore views knowledge acquisition for natural language processing systems from

a case-based reasoning perspective. As a result, Kenmore can be compared to existing
CBR systems along a number of dimensions including:

Case Representation: Like HYPO [Ashley, 1990, Rissland and Ashley, 1986], Kenmore
uses a simple attribute-value pair case representation rather than a more structured
case representation (e.g., the semantic network case representation of GREBE[Brant-
ing and Porter, 1991, Branting, 1991]).

Case Indexing: In handling lexical ambiguities, Kenmore indexes cases using a decision
tree subsystem. In particular, this aspect of the system is related toHYPO’s dimensions
[Rissland et al., 1984], ReMind’s prototypes and inductive indexing [Cognitive Sys-
tems, 1992], and CYRUS’s E-MOPs [Kolodner, 1983]. (See Chapter 6.)

Case Retrieval: Kenmore’s case retrieval system is based on a nearest-neighbor similarity
metric and, hence, ismuch simpler than thedomain-dependent andknowledge-based
case retrieval algorithms typically employed inCBR systems (e.g., CHEF[Hammond,
1989]).
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Best Case Selection: Kenmore uses a simple voting scheme to derive a solution from the
retrieved cases rather than using more sophisticated case selection methods (e.g.,
HYPO [Ashley, 1990, Rissland and Ashley, 1986] and GREBE [Branting and Porter,
1991, Branting, 1991]).

Case Adaptation: Unlike most CBR systems, Kenmore uses only a veryweak form of case
adaptation to modify the retrieved cases to better fit the context of the problem case.
(See Section 8.4.)

The components of Kenmore’s case-based inductive learning component reflect the goals
of our approach— to acquire the knowledge needed for sentence analysiswithout relying
heavily on handcrafted heuristics and handcrafted background knowledge: (1) Kenmore’s
simple case representation facilitates the automatic generation of cases by the parser; (2)
case indexes are learned rather than handcoded; (3) no domain-specific knowledge is used
(or available) for case selection or case adaptation.

In general, Kenmore’s knowledge acquisition task is one of interpretation: Given
an ambiguous word or phrase, Kenmore must provide a syntactic and semantic in-
terpretation of the word or phrase that is consistent with the current context. This
makes Kenmore an interpretive CBR system — a system that analyzes a new case by
comparing and analogizing it with previous interpretation episodes. Interpretive CBR
systems exist in a number of domains: (1) The HYPO system, for example,[Ashley, 1990,
Rissland and Ashley, 1986] creates legal arguments for a problem case in the domain
of trade secret disputes; (2) GREBE [Branting and Porter, 1991, Branting, 1991] and
CABARET [Rissland and Skalak, 1991] analyze problems in the domain of legal reasoning;
(3) ANAPRON’s [Golding andRosenbloom, 1991] interpretive task is word pronunciation.
The remainder of this section of the thesis, however, focuses specifically on related work
from CBR in the area of knowledge acquisition for NLP systems. Additional comparisons
to particular components of existing CBR systems will be provided in the chapters that
describe the details of Kenmore’s case-based inductive learning algorithm (Chapters 5 and
6).

Although others have addressed language learning within the case-based paradigm,
prior research in the area has focused on learning fairly low-level knowledge rather than
the higher level parsing knowledge acquiredwithin the Kenmore framework. Stanfill and
Waltz [1986], for example, used a case-based approach in their MBRtalk system that learns
how to pronounce English words. More recently, ANAPRON[Golding and Rosenbloom,
1991] tackled the problem of surname pronunciation using an architecture that combines
rule-based and case-based reasoning. Additional work in low-level language acquisition
has been done by researchers from the ATILA project — a joint effort between Antwerp
and Tilburg Universities to study the process of human language acquisition by applying
machine learning algorithms to a variety of language learning tasks. They have found
that instance-based approaches to language acquisition work well for low-level language
tasks like stress acquisition[Daelemans et al., 1994] and grapheme-to-phoneme conversion
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[Bosch and Daelemans, 1993] and have hypothesized that they will also perform well
for higher level tasks. In addition, they argue that language acquisition is a behavior-
based, data-driven process rather than one guided by knowledge-based principles and
parameter setting. Like the work presented here, the authors view many problems in
NLP as categorization problems, to which case-based learning techniques can be applied
[Daelemans, to appear].

A commercial system thatuses a case-based architecture to acquire parsing knowledge
is Parse-O-Matic [Goodman, 1991]. Parse-O-Matic is a conceptual sentence analyzer that
builds semantic case frame representations directly from simple requests. The sentence
analyzer used in Parse-O-Matic is a rule-based system that builds a semantic representation
of the input by creating, linking, and modifying (partial) case frames in response to words
in the input stream. The rules appear to be domain-dependent, however, and a new
set is required when the system is moved from one domain to the next. The goal of
Parse-O-Matic was to develop a case memory that effectively replaces the rules of the
system. In short, when used to design a new NLP system, Parse-O-Matic was able to cut
knowledge engineering time in half while losing noneof the performance of the rule-based
system.

Cases in Parse-O-Matic are much more complicated than those used in Kenmore. The
“context portion” of each case consists of the current word, any previous cases generated
for earlier parts of the sentence, and all active semantic representations for the sentence.
The “solution” portion of a case contains a case frame representation of the actions to
apply to the active semantic representations in response to the current word. In effect,
each case represents a rule. Cases are created in a partially automated fashion. The system
supplies the context portion and the user helps the system to create the solution portion by
modifying existing knowledge structures. Some of the hand-crafted knowledge structures
that may be modified include (1) case adaptation routines, (2) the lexicon, (3) a set of
conceptual hierarchies, (4) case frame definitions. In one sense, the system is an intelligent
interface for designing natural language processing systems (although the final system is
entirely automatic).

Because cases are so complex, indexing them for retrieval becomes a problem. Parse-
O-Matic relies on an automated, inductive, statistical indexing scheme based onHartigan’s
interaction detection algorithm [Hartigan, 1975]. In addition, it relies on a set of hand-
crafted heuristics that decide which cases andwhich features of the current case to present
to the clustering algorithm. It is the indexing scheme that generalizes the cases/rules for
more flexible retrieval.

Kenmore differs from Parse-O-Matic in a number of ways. First, Kenmore currently
relies on case-based approaches only to handle ambiguities, not to perform all functions
for sentence analysis. Second, Parse-O-Matic requires extensive hand-coding of all back-
ground knowledge required by the CBR component and the parser. It is not at all clear
how much, if any, of this knowledge is reusable when Parse-O-Matic must tackle a new
language processing task in a new domain. Finally, Kenmore has been shown to work
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with real-world corpora that contain long, complicated sentences rather than the short,
highly structured sentences handled in Parse-O-Matic.

AnotherCBR system that is similar toKenmore in its focus onknowledge acquisition is
PROTOS [Bareiss, 1989, Bareiss et al., 1989]. PROTOS, however, is not designed specifically
for knowledge acquisition in the domain of natural language processing. Instead, it
provides a general architecture for knowledge acquisition and has been employed in a
number of domains including the diagnosis of hearing disorders. Like Kenmore, however,
PROTOS relies on case-based reasoning techniques to perform classification as well as
knowledge acquisition. Given a new set of symptoms and laboratory test results, PROTOS
retrieves the best-matching training case and uses its classification as the diagnosis in
the new situation. During training, a human expert monitors the decisions of PROTOS
and intervenes when errors occur. Unlike Kenmore, however, the human expert is
responsible for supplying the missing knowledge that caused the error as well as the
correct classification. This step would be difficult to implement in a natural language
context where (1) the supervisor may not know what knowledge was missing, or (2) the
problem may not have been due to missing knowledge in the first place. PROTOS also
differs from Kenmore in that it relies extensively on a highly connected case library and
on background knowledge in the form of a domain model. The domain model includes
important functional, correlational, causal, and taxonomic relationships and specifies how
andwhen the features of two cases should be considered a match. In addition, knowledge
acquisition in PROTOS is driven solely by its mistakes.

2.8 Summary

In summary, Kenmore’s machine learning and case-based approach to knowledge
acquisition is especially useful for addressing the problem of domain-specific knowledge
acquisition for conceptual sentence analysis. When the natural language system must
process complex, real-world text, it is not feasible to generate the necessary background
knowledge by handor evenwith the help of an intelligent interface: the process is too slow
and subsequent maintenance of the knowledge bases is difficult and generally requires
the expertise of the NLP system designers. In addition, knowledge-based approaches
to language acquisition do not necessarily avoid the knowledge acquisition bottleneck
because the design and maintenance of the necessary background knowledge and of
procedures that specify whenandhow toacquire newbackground knowledge is extremely
difficult. Statistical approaches to knowledge acquisition, nevertheless, appear to work
well for many natural language tasks. However, we have concentrated on knowledge
acquisition for domain-specific tasks where the large, tagged corpora generally required
for stastistical approaches are not readily available. To avoid the need for huge amounts
of manually tagged text, Kenmore instead incorporates its inductive language-learning
component within the parser, giving the learning algorithms access to higher level knowl-
edge regarding the progress of sentence analysis. One final advantage of the Kenmore
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framework is its ability to handle many subproblems in sentence analysis uniformly and
within the same architecture.



C H A P T E R 3

KNOWLEDGE ACQUISITION FOR
CONCEPTUAL SENTENCE

ANALYSIS

As described briefly in the introduction, the Kenmore framework for knowledge
acquisition is compatible with a variety of language processing theories and parsing
frameworks. It requires only that the natural language system used as Kenmore’s sentence
analyzer component have the ability to examine its current state at the point of an
ambiguity. Whenever the sentence analyzer component is replaced by a new one, only
the underlying case representation needs to change to conform to the type and form of
knowledge available in the new sentence analyzer. Despite the general applicability of the
framework, however, this work emphasizes the acquisition of knowledge only for the task
of conceptual sentence analysis [Riesbeck, 1975].

This chapter first describes the conceptual sentence analyzer called CIRCUS[Lehnert,
1990] that will be used in all experiments throughout this work. It is important to
understand generally how CIRCUS processes sentences for two reasons: (1) because the
context portion of each case in Kenmore’s case-based reasoning component depends on
the state of the CIRCUS parser, and (2) because CIRCUS’s approach to sentence analysis
constrains the types of knowledge that must be acquired before CIRCUS can process a
text. The chapter begins by describing how CIRCUS understands simple and complex
sentences (Section 3.1) and then provides examples of CIRCUS’s state representation at
different points in a sentence (Section 3.2). The chapter concludes with a summary of the
kinds of knowledge necessary for parsingwithin theCIRCUS conceptual sentence analysis
framework (Section 3.3) and a list of the specific knowledge acquisition tasks that will be
addressed in later chapters (Section 3.3.4).

3.1 The CIRCUS Conceptual Sentence Analyzer

The goal of conceptual analysis is to produce a representation of the meaning of
a text rather than a representation of its syntactic structure. Because this goal differs
substantially from that of syntactically-oriented parsers, the relative role of syntactic and
semantic analysis in conceptual sentence analyzers has been disputed (see Lytinen [1984]).
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Traditionally, however, conceptual analyzers employ no distinct syntactic grammar and
reflect a completely integrated theory of natural language interpretation (e.g., Birnbaum
and Selfridge [1981], Cullingford [1986], Dyer [1983], Lebowitz [1980], Riesbeck [1975]).
They not only allow syntactic and semantic processing to happen at the same time, but
intertwine the parser’s morphological, syntactic, semantic, and pragmatic knowledge in a
monolithic and largely procedural representation.

CIRCUS [Lehnert, 1990] is a conceptual sentence analyzer that synthesizes three
distinct processing techniques to produce a semantic case frame representation of an
input sentence. It uses (1) a stack-oriented control for syntactic analysis, (2) a marker-
passing design for predictive preference semantics, and (3) lexically-indexed control ker-
nels [Cardie and Lehnert, 1991] for handling embedded clauses.1 Although CIRCUS
makes no commitment to a particular style of semantic representation, we use “deep”
semantic case frames of the sort found in conceptual dependency [Schank, 1975]. In gen-
eral, CIRCUS recognizes low-level syntactic constituents like noun phrases, verbs, and
prepositional phrases, and consults semantic knowledge prior to making any attachment
decisions. In addition, CIRCUS explicitly attaches constituents only to the semantic
representation of the sentence. Syntactic attachments occur implicitly as a side effect
of the semantically-driven modifications. The CIRCUS system has been used success-
fully to provide natural language processing capabilities for a variety of projects in-
cluding summarization of wire service texts [Lehnert et al., 1993a, Lehnert et al., 1992,
Lehnert et al., 1991], text classification [Riloff andLehnert, 1992], and the analysis of citation
sentences in research papers [Lehnert et al., 1990]. Its components will be described in the
next three sections.

3.1.1 Syntactic Processing in CIRCUS
CIRCUS’s stack-oriented syntactic analyzer segments incoming text into constituent

phrases. In the tradition of conceptual analyzers, this component produces no parse
tree of the input and employs no global syntactic grammar. It is based on the McEli
parser [Schank and Riesbeck, 1981] and uses lexically-indexed, local syntactic knowledge
to recognize noun phrases, prepositional phrases, and verb phrases. These constituents
are stored in global buffers that track the subject, verb, direct object, indirect object, and
prepositional phrases of a sentence. Like lexical-functional grammars [Bresnan, 1982],
CIRCUS stores the syntactic predictions associated with each word in the lexicon and
retrieves them during sentence analysis. Because we restrict the buffer contents to simple
syntactic structures with a strongly “local” sense of the sentence, larger constituents like
clauses are not explicitly recognized by the syntactic component.

To process the sentence that begins,

1CIRCUS also employs a numerical relaxation algorithm to perform bottom-up insertion of unpredicted
slots into case frames. This module is not important for the purposes of this work, however, and will not be
discussed here.



32

John brought...

for example, CIRCUS scans the sentence from left to right, using its stack-oriented control
and the lexically-indexed syntactic predictions to assign words and phrases to syntactic
constituents. Initially, the stack contains a single prediction — the hypothesis for a subject
of the sentence. WhenCIRCUS sees theword “John,” it accesses its part-of-speech lexicon,
finds that “John” is a proper noun, loads the standard set of syntactic predictions associated
with proper nouns onto the stack, and recognizes “John” as a noun phrase (NP). Because
the presence of a noun phrase satisfies the initial prediction for a subject, CIRCUS then
places “John” in the subject buffer (*S*) and pops the satisfied syntactic prediction from
the stack. Next, CIRCUS processes the word “brought,” finds that it is a verb, and assigns
it to the verb buffer (*V*) as shown in Figure 3.1. In addition, the current stack contains

  *S*

  John brought ...

  
*V*

 {(1) if NP, NP -> *DO*; 
         predict : if EndOfSent, NIL -> *IO*.

  (2) if NP, NP -> *DO*; 
        predict : if PP(to), PP -> *PP*,
                      NIL -> *IO*.

  (3) if PP(to), PP -> *PP*; 
        predict : if NP, NP -> *DO*.

  (4) if NP, NP -> *IO*; 

        predict : if NP, NP -> *DO*.          }

Mc Eli Stack Predictions:

Figure 3.1: CIRCUS Status After “John brought...”

a single packet encoding the syntactic expectations associated with “brought.”2 This verb
predicts (1) a direct object (DO), (2) a direct object followed by a “to” prepositional phrase
(PP), (3) a “to” prepositional phrase followed by a direct object,3 or (4) an indirect object
(IO) followed by a direct object. The following sentences illustrate each possibility:

1. John brought a cake.

2Each prediction in a packet is called a request. Whenever one request in the topmost packet on the stack
is satisfied, the entire packet containing the request is popped from the stack and all subsequent predictions
associated with the request are pushed onto the stack in a new packet.

3Although this sentence is ungrammatical, it is still possible to ascertain its intendedmeaning. As a result,
we let CIRCUS derive a meaning representation for the sentence.
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2. John brought a cake to the party.

3. *John brought to the party a cake.4

4. John brought Mary a cake.

If the nextword in the sentencewere the nounphrase “Mary,” for example, CIRCUSwould
assign “Mary” to both the direct object and the indirect object buffers and update its stack
of syntactic expectations. The new predictions resolve themomentary syntactic ambiguity
by overwriting the contents of either *DO* or *IO* depending on the phrase that follows
“Mary” in the sentence.

3.1.2 Predictive Semantics in CIRCUS
As soon as CIRCUS recognizes a syntactic constituent, that constituent is made avail-

able to themechanisms performing predictive semantics. The predictive semanticsmodule
(PSM) is responsible for making case role (or thematic role) assignments. In CIRCUS,
this consists of top-down slot-filling for any active semantic case frames.5 Whenever a
syntactic constituent becomes available in one of the global buffers, PSM examines any
active case frame that expects a slot filler from that buffer. PSM then fills the slot if the
constituent satisfies the slot’s semantic constraints. CIRCUS allows both hard and soft
slot constraints. A hard constraint is a predicate that must be satisfied. In contrast, a soft
constraint defines a preference for a slot filler rather than a predicate that blocks slot-filling
when it is not satisfied. Consider, for example, the semantic case frame for a PTRANS
event triggered by the word “brought” in the phrase “John brought” (Figure 3.2).6 The
case frame definition indicates the mapping between surface constituents and case frame
slots: subject Actor; direct object Object; prepositional phrase or indirect object
Destination. In addition, it specifies a set of enabling conditions that describe the linguistic
context in which the case frame should be triggered. In this case, the PTRANS case frame
should be triggered by “brought” only when the verb occurs in an active construction. As
in lexical-functional grammar (LFG), a different case frame definition (with a different set
of enabling conditions) would be needed to handle a passive sentence construction.

Figure 3.2 also depicts the hard and soft constraints associated with each slot. Namely,
the Actor should be animate, the Object should be a physical object (phys-obj), the

4A “*” will be used to mark those examples that either are difficult for a person to understand or display
ungrammatical or atypical usage of English.

5Semantic case frames in CIRCUS represent the meaning, or “deep” structure of the sentence rather than
its surface structure; slots in the case frames represent conceptual roles (e.g., actor and object) rather than
syntactic positions (e.g., subject, direct object).

6PTRANS is a primitive act in conceptual dependency describing a physical transfer (see Schank [1975]).
The PTRANS case frame actually has a fourth slot — the original location or Source of the object. For the
purposes of this example, however, we will ignore this slot.
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  John brought... 

PTRANS:

yes nono

soft constraints
syntactic constituents

hard constraints
slot names
semantic case frame
enabling conditions

animate? phys-obj? location?

to?

Actor Object Destination

*S* *V*

*DO* *IO* *PP*

active?

Figure 3.2: PSM Status After “John brought...”

Destination should be a location, and the prepositional phrase filling the Destination
slot must begin with the preposition “to.”7 At this point in the parse, PSM successfully
fills the Actor slot with “John” because “John” is the subject of the sentence and its entry
in the lexicon indicates that “John” is animate. All of the other slots in the PTRANS frame
remain empty.

When a frame satisfies certain instantiation criteria, PSM “freezes” the case framewith
its assigned slot fillers. Any instantiated case frames then become part of the semantic
representation CIRCUS derives for the sentence. Figure 3.3, for example, shows the
PTRANS case frame instantiation returned by CIRCUS after parsing “John brought Mary
to Manhattan.”

Sentence: John brought Mary to Manhattan.

PTRANS
Actor = “John”
Object = “Mary”
Destination = “Manhattan”

Figure 3.3: Instantiated Semantic Case Frame.

7This is a hard constraint.
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3.1.3 Handling Embedded Clauses in CIRCUS

When sentences become more complicated, CIRCUS has to “partition” the stack
processing in a way that recognizes embedded syntactic structures as well as conceptual
dependencies. Consider, for example, the embedded clauses in the following sentences:

(a) John asked Bill to eat the leftovers.

(b) That’s the gentleman that the woman invited to go to the show.

(c) That’s the gentleman that the woman declined to go to the show with.

Understanding these constructions requires that the parser infer the existence of an invisi-
ble or phonetically null constituent in the embedded clause and then associate themissing
constituent with an antecedent phrase that may be arbitrarily distant from it. In (a), for
example, the parser should infer that “Bill” is the subject of “eat”; in (b), “gentleman” is the
direct object of “invited” as well as the subject of “go”; and in (c), “woman” is the subject
of “go” while “gentleman” is the prepositional object of “with.” This is accomplished in
CIRCUS with lexically-indexed control kernels (LICKs) [Cardie and Lehnert, 1991].

We view the stack of syntactic predictions as a single control kernelwhose expectations
and binding instructions change in response to specific lexical items as we move through
the sentence. When we come to a subordinate clause, the top-level kernel creates a
subkernel that takes over toprocess the interior clause. In otherwords, whena subordinate
clause is first encountered, the parent LICK spawns a child LICK, passes control over to the
child, and later recovers control from the child when the subordinate clause is completed.

Each control kernel essentially creates a new parsing environment with its own set of
bindings for the syntactic buffers, its own copy of the main stack, and its own predictive
semantics module. The spawning of LICKs is deterministic — the current LICK can
spawn exactly one child LICK at a time. Once control is returned to the parent from
a child, however, the parent is free to spawn another child if necessary as the sentence
progresses. To understand the behavior of multiple LICKs, we need only specify rules for
passing control among LICKs and rules for passing variable bindings across LICKs:

Inter-LICK Control Rules:
1. An existing LICK can create a new LICK at which time control moves from
the parent LICK to the child LICK.

2. When a child LICK relinquishes control, control reverts back to the parent
LICK.

Inter-LICK Communication Rules:
1. When moving from a parent LICK to a child LICK, all syntactic buffers in
the child LICK are initialized by the parent LICK. The buffers are initialized
to nil unless otherwise specified by the parent.
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2. When moving from a child LICK to a parent LICK, the only buffer that can
be initialized or reassigned in the parent LICK is the *LB* buffer.

*LB* (lick buffer) is a special syntactic buffer used only for inter-LICK communication.
Typically, the conceptual representation for an entire subordinate clause is stored in *LB*
until it can be incorporated into the representation being constructed by a parent control
kernel.

LICKs, then, embody the basic control mechanism of ATN’s[Woods, 1970] but enforce
a much stricter set of communication rules. The ATN framework, for example, provides
at least three different mechanisms for handling embedded clauses [Winograd, 1983] —
one possibility is to use a global hold register to store a constituent until its gap can be
found. None of these mechanisms, however, allows the parent to instantiate more than
a single syntactic buffer8 in the embedded clause with the antecedent. Instead, ATN’s
rely on nondeterminism to allow an antecedent to fill one of a number of possible gap
sites. In addition, CIRCUS’s use of LICKs differs tremendously from the pervasive
recursion of ATN’s — CIRCUS employs the LICK mechanism only at the clause level
and selectively triggers the mechanism via lexically-indexed signals. Unlike ATN’s, the
parsing of constituents within a clause remains deterministic and strictly bottom-up.

The next sections walk through specific examples that use LICKs to process relative
clauses (e.g., I saw the man who ate the ice cream cone) and infinitival complements (e.g.,
John asked Bill to go to the restaurant).

3.1.3.1 UnderstandingWh-Constructions

This section shows how sentences containing embedded wh-phrases (i.e., phrases
introduced by a relative pronoun like “who,” “whom,” “that,” “which”) are handled by
local syntactic predictions and interactions between cooperating LICKs. Consider the
following sentence:

The policeman saw the boy who the crowd at the party accused of the crime.9

Figure 3.4 shows the state of CIRCUS after the word “who.” The LICK processing the
main clause has triggered a semantic case frame for SAW and has successfully filled its
Actor and Object slots. In addition, the lexicon entry for “who” indicates that processing
of the main clause should be temporarily suspended and a child LICK spawned. Because

8The ATN equivalents to CIRCUS’s syntactic buffers in this case are called role registers.

9For most English dialects, “whom” is actually the grammatically correct relative pronoun to use in this
example. We use an ungrammatical example for two main reasons. First, we want to emphasize the fact
that CIRCUS should have the ability to understand sentences that people can understand, regardless of
grammaticality. Second, we want to show that the LICK solution to understanding relative clauses handles
ungrammatical input without sacrificing the ability to handle grammatical constructions.
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the antecedent for “who” can bind to one of four possible syntactic constituents within the
subordinate clause, CIRCUS initializes each of the child *S*, *DO*, *IO*, and *PP* buffers
with “boy.” (The issue of how CIRCUS can learn that “boy” is the correct antecedent of
“who” will be addressed in Chapter 8.) When the child completes a semantic case frame

  *S*

animate? 

saw 

  *V*

phys-obj? 

Object Actor SAW:

yes yes

  *DO*

the boy

  *S*
*DO*

  *IO*

  *PP*

Child LICK

who...

(1) if NP, NP -> *S*; 
      predict : if V, V -> *V*
(2) if V, V -> *V*;  } 

{
McEli Stack :

    The policeman

Figure 3.4: State of CIRCUS after “The policeman saw the boy who...”

instantiation, only the buffer associated with the gap (i.e., the missing or phonetically null
constituent) should hold the filler (i.e., the antecedent). At the end of the example sentence,
the filler “boy” should appear only in the direct object buffer — “the crowd accused
[the boy] of the crime.” The other buffers initialized with the antecedent will either be
overwritten with actual phrases from the embedded clause or eliminated as possible gaps
by syntactic information associated with the verb. In any case, few case frame definitions
will access all four buffers. As indicated in the McEli stack of Figure 3.4, “who” also sets
up syntactic predictions for either a verb phrase or a subject-verb sequence before passing
control to the embedded clause LICK.

Figure 3.5 shows the state of the child LICK just after processing “accused.” “Crowd”
has overwritten *S* and “party” has overwritten *PP*.10 In addition, “accused” activates
a case frame and makes initial slot assignments based on the case frame definition: Actor
= crowd and Patient = boy. The Accusation slot remains empty even though we have a
prepositional phrase because the hard constraint that the preposition be “of” is violated.11

Note that althoughboth *IO* and *DO* contain the antecedent“boy,” *IO*doesnot interfere

10Currently CIRCUS has only one prepositional phrase buffer (*PP*). The implication is that the parser only
has access to the most recent prepositional phrase. Clearly, we should be using multiple buffers or a stack of
*PP* buffers.

11As described above, a hard constraint is a predicate that must be satisfied before the filler is allowed to fill
a slot.
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animate? 

PatientActor ACCUSE: Accusation 

yes

animate? 

yes

action? 

no

of? 

no

  *S*   *DO*  *V*   *IO*

accused... (the boy)...the crowd at the party

  *PP*

Figure 3.5: Child LICK Status after “The policeman saw the boy who the crowd at the party
accused...”

with the semantic representation because the ACCUSE case frame does not access that
buffer.

Figure 3.6 shows the state of the child LICK at the end of the embedded clause: Actor
= crowd, Patient = boy, Accusation = crime. At this point, CIRCUS freezes the ACCUSE
case frame, assigns the instantiated representation to the *LB* buffer, exits the child LICK,
and returns control to the main clause where *LB* is attached to the antecedent “boy.”

of the crime.

  *PP*  *S*

accused (the boy)at the party

  *DO*  *V*   *IO*   *LB*

animate? 

...the crowd

PatientActor ACCUSE: Accusation 

yes

animate? 

yes

action? 

of? 

yes

yes

Figure 3.6: Child LICK Statusafter “The policeman saw the boywho the crowd at the party accused
of the crime.”

3.1.3.2 LICK Caveats and Conclusions
The last section illustrated the use of LICKs to process only wh-phrases. However,

CIRCUS currently handles many types of embedded clauses using a small number of
LICKs. For example, the LICKmechanism is responsible for handling some sentential com-
plements (e.g., The peasants thought the president had been assassinated) and compound
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verb phrases (e.g., Castellar was kidnapped in Achi and taken by car to El Salvador). In
particular, verbs that optionally predict an infinitival complement (e.g., “ask,” “promise,”
“want”)12, are handled by LICKs that initialize the child subject buffer with the subject or
direct object of the main clause depending on the constituent structure of the main clause.
Consider the following sentences:

1. John asked ? to eat the leftovers.

2. asked ? to eat the leftovers.

3. asked Bill the question ? to shock the crowd.

In the first sentence, the presence of the verb “ask” followed by an indirect object and
the word “to” causes a child LICK to be spawned that inherits the indirect object of the
main clause as its subject. This *IO* inheritance makes “Bill” the Actor of “eat” in the
embedded clause. If, on the other hand, there is no indirect object between “ask” and the
infinitive (sentence 2), a LICK is triggered that clears all child buffers except *S*, which is
inherited from the parental *S* buffer. In this case, the *S* inheritance makes “John” the
Actor of “eat”.13 Finally, if the verb “ask” is followed by an indirect object and a direct
object (sentence 3), no LICK is triggered by “ask” at all.

However, many embedded-clause problems cannot be resolved by the simple inter-
LICK control rules and communication rules described here. Infinitives in the subject
position (e.g., To win would be a welcome change) and infinitival indirect questions (e.g.,
It is unknownwhat to do in this case) are two examples. In both of these cases, the actor of
the infinitive is implied. In addition, a reduced relative clause presents an ambiguity that
must be resolved by either a parent LICK (in the case of an active past tense verb form)
or a child LICK (in the case of a passive past participle verb form). The control kernel
formalism encourages us to view this disambiguation problem in terms of competition for
control, but does not suggest how that competition should be resolved. This approach to
syntactic-semantic interactions simply recasts the problems of embedded constructions as
issues concerning communication across scoping environments.

3.2 Examples of “Context” in CIRCUS

As described in Chapter 1, Kenmore relies on a case-based approach to knowledge
acquisition where each “case” encodes a description of the context of an ambiguity as well
as its solution in that context. This section provides concrete examples of the “context”
available to CIRCUS as it processes a sentence. In general, the context is a representation
of the state of CIRCUS at any given point in time. In practice, however, there are many

12These verbs are often called control verbs.

13For control verbs, it is the soft constraints of the associated semantic case frame that are actuallyresponsible
for triggering the appropriate LICK.
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viable representations of that state. The approach that we have taken is to choose a
representation that is natural for CIRCUS and then to rely on automated techniques to
modify this representation as needed.14 The state representation used throughout this
work incorporates the following basic processing characteristics of CIRCUS:

CIRCUS recognizes phrases as it finds them in its left-to-right traversal of a sentence.

CIRCUS recognizes major constituents like the subject, verb, and direct object.

CIRCUSmakesno immediatedecisions on structural attachment. Inparticular, it does
not handle conjunctions or appositives, or perform prepositional phrase attachment.

CIRCUS has access to constituent information for the current LICK only.

CIRCUS uses one or more semantic features to describe every noun and adjective in
its lexicon. For instance, in the terrorist domain, “mayor” is tagged as human, “ELN”
as an organization, and the noun “murder” as an attack.

CIRCUS treats punctuation marks as individual words.15

CIRCUS has access to all of the words in an input sentence.

Consider the following sentence from the TIPSTER business joint ventures corpus:

Japan Airlines Co. (JAL) and Toyo Real Estate Co., a subsidiary of Sanwa Bank, bought
a six million U.S. dollar luxury hotel Tuesday, Malaysia’s first hotel to be wholly owned
by Japanese.

If we assume that CIRCUS has access to semantic feature information for each word and
that each verb will trigger the appropriate semantic case frame, CIRCUS should have
determined the following by the time it reaches the word following “bought”16:

Japan Airlines Co. *S*, company name
JAL noun phrase, company alias
Toyo Real Estate Co. noun phrase, company name
a subsidiary noun phrase, joint venture entity
of Sanwa Bank *PP*, company name
bought *V*, triggers a BOUGHT case frame
a current word

14Two methods for automaticallymodifying a baseline representation are described in Chapters 6 and 8.6.

15This lets us handle all tokens in an input sentence using the same general processing routines.

16TheActor slot of the BOUGHT case framewill be filled by “JapanAirlinesCo.,” but not the full conjunction
since no such attachments are made by CIRCUS at this time.
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All of this information is part of CIRCUS’s “context” at this point in the parse. Not
included in the above representation is information about the positions of nearby words.
As noted above, CIRCUS also knows all of thewords of the current sentence. However, we
arbitrarily include only a window of four words surrounding the current word as part of
the context representation. As a result, the following becomes part of the current context:

, comma, 2nd preceding word
bought verb, preceding word
six following word
million 2nd following word

Just after “Tuesday,” the state representation should look like the following:

Japan Airlines Co. *S*, company name
JAL noun phrase, company alias
Toyo Real Estate Co. noun phrase, company name
a subsidiary noun phrase, joint venture entity
of Sanwa Bank *PP*, company name
,
bought *V*, triggers a BOUGHT case frame
a six million U.S. dollar luxury hotel *DO*, money/facility
hotel noun, facility, 2nd preceding word
Tuesday adverb, time, preceding word
, current word
Malaysia’s following word
first 2nd following word

At the end of the sentence, however, the state representation includes only information
from the embedded clause because LICKs maintain state information for one clause at a
time:

Malaysia’s first hotel *S*, facility
to
be *AUX*
wholly adverb
owned *V*, triggers OWN case frame
by Japanese *PP*, nationality
by preposition, 2nd preceding word
Japanese noun, nationality, preceding word
. period, current word

The following sentence fragment (also from the joint ventures corpus) shows how
information that is carried from one clause to another via one of the lexically-indexed
control kernels can affect CIRCUS’s state:

When you wanted to make a copy of something, you had to...

At “wanted,” CIRCUS’s state looks like the following:
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when connective, 2nd preceding word
you *S*, human, pronoun, preceding word
wanted current word
to following word
make 2nd following word

By theword“of,” however, a childLICKhasbeen spawnedand the subject of the embedded
clause instantiated with the subject from the main clause:

you *S*, human
to
make *V*, triggers MAKE case frame
a copy *DO*, entity
a determiner, entity, 2nd preceding word
copy noun, entity, preceding word
of current word
something following word
, 2nd following word

The above examples should give a general idea of the kinds of information that will
be included in the “context” portion of Kenmore’s cases. In practice, however, this state
information first will have to be mapped into a representation that can be used with the
particular inductive learning algorithm employed. The details of how this is done will
be described in later chapters (Chapter 5 for learning lexical disambiguation heuristics;
Chapter 8 for learning relative pronoun disambiguation heuristics).

3.3 Knowledge Needed for Conceptual Analysis

Given the general description of CIRCUS presented above, this section simply lists
the types of knowledge needed for each phase of conceptual sentence analysis within the
CIRCUS system. Section 3.3.4 indicates the subset of these that we will attempt to learn
within the Kenmore framework in subsequent chapters.

3.3.1 Syntactic Processing

1. For each part of speech distinguished by the system, CIRCUS requires a set syntactic
predictions to drive the McEli syntactic analyzer.

2. For each word in the lexicon, CIRCUS needs to know which parts of speech are
associated with the word.

3. CIRCUS also needs a set of disambiguation routines to handle part-of-speech ambi-
guities.
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3.3.2 Predictive Semantics Module
1. CIRCUS requires a set of semantic case frame definitions to pick up or extract
information from a sentence. Each case frame definition includes:

(a) enabling conditions that specify the contexts in which the case frame should be
activated (e.g., the PTRANS case frame in Figure 3.3 should only be activated for
“brought” when the verb appears in an active construct);

(b) a mapping from syntactic buffers to slots;

(c) hard slot constraints;
(d) soft slot constraints in the form of semantic features (e.g., the Actor of a PTRANS

should be animate).

2. Case frame definitions have to be explicitly linked to the lexical items that “trigger”
the case frame. (The PTRANS case frame in Figure 3.3 might be linked to “brought”
and “took.”)

3. Each noun and adjective in the lexicon (and optionally adverbs) has to be described
in terms of one or more semantic features so that CIRCUS can test whether the word
satisfies a slot’s hard and soft constraints. (We assumed, for example, that “John”
was tagged as animate in the example in Section 3.1.2.)

4. CIRCUS requires a mechanism for word sense disambiguation whenever a word has
more than one semantic feature assigned to it. (For instance, the word “ball” may be
tagged with both the toy semantic feature and the social event semantic feature.)

3.3.3 LICK Processing

Each LICK describes how to handle a particular class of embedded clause and requires
the following pieces of information:

1. a list of the Child LICK syntactic buffers that should be instantiated with the an-
tecedent by the Parent;

2. a specification of the syntactic construction to expect in the Child clause; and, for
some LICKs,

3. a set of heuristics that can locate an antecedent (or notice that there is none) so that
it can be used to fill a gap in a subsequent clause. For example, “boy” should be
recognized as the antecedent of “who” in “I saw the boy who...” but there is no
antecedent for “who” in “I don’t know who...”
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3.3.4 Knowledge Acquisition Tasks for Kenmore

The last three subsections enumerated the types of knowledge required by each
component of CIRCUS for a minimal semantic analysis of a sentence. Later chapters
present automated solutions to a subset of these knowledge acquisition tasks. Chapter 5
describes the learning of lexical knowledge required by CIRCUS including both syntactic
lexical knowledge (Section 3.3.1 items 2 and 3 above) and lexical knowledge used by the
predictive semantics module (Section 3.3.2 items 2, 3, and 4 above). In addition, that
chapter shows how Kenmore can learn the enabling conditions associated with each case
frame definition (Section 3.3.2, item 1a above). Chapter 8 focuses on learning one class
of structural disambiguation knowledge. It describes the learning of heuristics that find
relative pronoun antecedents for LICK processing.



C H A P T E R 4

DOMAIN-SPECIFIC KNOWLEDGE
ACQUISITION

This thesis addresses the problem of knowledge acquisition for natural language
processing systems. However, we have narrowed that broad topic along two dimensions.
First, the thesis concentrates on learning knowledge for conceptual sentence analysis. This
was discussed in the preceding chapter. Second, the thesis concentrates on domain-specific
knowledge acquisition, the topic of this chapter. The goals of the chapter are to (1) describe
the task of domain-specific knowledge acquisition and distinguish it from knowledge ac-
quisition for open-ended texts (Section 4.1), (2) discuss the constraints that domain-specific
text processing imposes on the knowledge acquisition task (Section 4.2), and (3) briefly
describe the two corpora that will be used throughout this work as well as the associated
text processing tasks (Section 4.3).

4.1 The Task
Domain-specific knowledge acquisition for natural language systems is the process of

acquiring the knowledge needed to process texts from a particular domain of interest. The
requirements of domain-specific text processing are generally less stringent than open-
ended text processing because the NLP system only needs to understand those portions
of the text that pertain to the area of interest. Any texts or portions of text that fall outside
of the domain effectively can be ignored. As a result, system designers can concentrate
on encoding knowledge from a single sphere of expertise. An NLP system designed to
understand only texts about bicycle repair, for example, can ignore descriptions of bicycle
routes or training regimens that appear in the text and can ignore entire documents if they
describe something outside the realm of bicycle repair and bicycle maintenance.

On the other hand, a domain-specific natural language system needs some method
for distinguishing relevant texts or sections of text from irrelevant ones. This distinction
may be less of a problem for open-ended text processing where the option to ignore
text may not be available. Usually, however, there is an implicit relationship between
domain-specific text processing and the level at which entire texts must be understood.
Analysis of domain-specific documents promotes the use of variable-depth text processing
— the NLP system can spend a lot of time on sections of the text that contain information
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relevant to the domain of interest while just skimming the rest.1 Conversely, open-ended
text understanding often implies in-depth analysis of all input documents.

Although even open-ended text processing does notmake sense without the existence
of global goals to drive theunderstandingprocess, domain-specific text processing systems
may have to handle very detailed constraints that address the specialized information-
processing needs of a particular audience. A system designed specifically to summarize
texts about recent terrorist acts in Great Britain, for example, will need to operationalize
the idea of recency and pay particular attention to the location of events. Normally,
summarization of open-ended texts will not have to handle constraints of this type.

4.2 Constraints on the Knowledge Acquisition Process
Domain-specific text processing imposes the following two constraints on the knowl-

edge acquisition process:

1. The acquired knowledge must be able to support variable-depth
text processing. To meet this constraint, we will use variable-depth
representations of semantic knowledge.

2. The acquired knowledge must be adequate for enforcing domain-
specific constraints. In particular, any semantic feature taxonomies must
be able to distinguish relevant objects from irrelevant ones.

For CIRCUS, the first constraint is handled by (1) creating semantic feature taxonomies
that provide deep coverage of categories pertaining to the domain of interest and cursory
coverage of objects and events unconnected to the domain, (2) defining semantic case
frames that organize topics relevant to the domain and, (3) ensuring that these case frames
are activated only in relevant contexts. In the business joint ventures domain, for example,
we might want to recognize nouns that describe company names, governments, business
persons, products, factory names, anddates, but all other nouns canbemerged into a single
“don’t care” semantic class. In addition, we might define an INDUSTRY-PRODUCT case
frame that extracts from a sentence a company name and a description of the product that
the company plans to produce. The case frame would be triggered by phrases like “will
produce” in a sentence like:

IBM Japan will produce 2000 laptop computers a month.

Here, the INDUSTRY-PRODUCTcase framewould recognize “IBM Japan”as the company
and“2000 laptop computers” as theproduct. However, it is important that the INDUSTRY-
PRODUCT case frame not be activated in a non-business context, such as:

1Ultimately, variable-depth text processing should recognize and make use of discourse structures and
cues that indicate a change of focus or a change of topic because these changes can help the system identify
important passages in a text. However, focus is generally considered a discourse problem, that is, a problem
that spans multiple sentences[Sidner, 1983, Grosz and Sidner, 1986]. Because this work concentrates on the
analysis of individual sentences, issues of focus will not be explicitly addressed.
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The new recipe will produce approximately five dozen cookies.

The second constraint imposed on the knowledge acquisition process states that the
acquired knowledge must distinguish differences that matter for the domain. In the
terrorism domain, for example, the NLP system must distinguish civilian victims from
military ones. Therefore, CIRCUS’s semantic feature hierarchy must make that distinction
— a single “human” category would not be adequate. In the business joint ventures
domain, however, the civilian vs. military distinction is unimportant and a single “human”
category might be appropriate.

The use of variable-depth semantic representations that encode important domain-
specific distinctions transforms CIRCUS from a sentence analyzer that is, in theory, capable
of in-depth processing of all types of text, into a sentence analyzer designed expressly for
domain-specific text processing. The section below describes the two corpora used in all
experiments in the context of the domain-specific text-processing tasks inwhich theywere
used.

4.3 The MUC and TIPSTER Performance Evaluations
TIPSTER and MUC2 are ARPA-sponsored performance evaluations of natural lan-

guage systems. The general task in the evaluations is one of domain-specific information
extraction [Lehnert et al., 1994] — the NLP system processes a collection of texts, finds all
information of interest, and produces a summary of that information in a rigid template
format. In the TIPSTER and MUC performance evaluations, each participating site
initially is given a corpus of texts and the corresponding “answer keys” to use for
system development. The answer keys are manually encoded templates that capture
all information from the corresponding source text that is relevant to the domain, as
specified in a set of written guidelines.3 After a six-to-nine month development phase,
the NLP systems are evaluated by comparing the summaries each produces with the
summaries generated by human experts for the same test set of previously unseen texts.
The comparison is performed using an automated scoring program that rates the system
according to measures of recall and precision.4

2MUC is an acronym for Message Understanding Conference.

3In spite of the guidelines, the notion of “relevance” remains somewhat vague and human encoders often
disagree as to the contents of an individual answer key.

4Each answer key template and system output template is a series of slots and possibly empty slot fillers.
Recall (# correct slot-fillers in output template) / (# slot-fillers in key). Precision (# correct slot-fillers in
output template) / (# slot-fillers in output template). Therefore, if a system correctly filled 600 of a possible
1000 template slots correctly, its recall is 60%. If it only attempted to fill 800 of the 1000 slots, however, its
precision is 75%.
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In the 1991 MUC-3 performance evaluation, 15 industry and university research labs
participated; 19 labs took part in the 1992MUC-4 evaluation. Both evaluations used a cor-
pus of texts describing terrorist activity in Latin America that was provided by the Foreign
Broadcast Information Service. The 1993 MUC-5 and TIPSTER performance evaluations
ran concurrently and together included 19 sites. This time, however, information was
extracted for texts in two new domains — newswire accounts of business joint ventures
and advances in microelectronics.

The work presented here draws from both the terrorism and joint ventures corpora.
The sections below present examples of the information extraction task in each of those
domains and describe each corpus in a little more detail.

4.3.1 MUC Corpus of Latin American Terrorism

TheMUC-3/MUC-4 development corpus contains 1300 documents and the associated
answer keys. These textswere selected as relevant to the LatinAmerican terrorism domain
from a number of on-line sources using keyword-based algorithms. Slightly over half of
the texts actually describe terrorist acts given the more specific definition of terrorism
provided in the MUC-3 guidelines. The remaining texts are considered irrelevant and
should generate empty summary templates when presented as input to a MUC NLP
system. Also associated with the MUC corpus are four sets of 100 texts and answer keys
originally used for evaluation purposes only.

Documents in this corpus vary in length from a paragraph to a page or two. Average
sentence length in the corpus is 27words; the average length of each article is 12 sentences.
There are newswire stories, speeches, radio and TV broadcasts, interviews, and even rebel
communiques. Texts contain both well-formed and ungrammatical sentences. All texts
are entirely in upper case.

The MUC-3/MUC-4 task is to extract information about terrorist incidents from each
text and store that information in a template format, one template per event. Although
the details of the extraction task are not important for the work described here, it is useful
to look at a sample text and its associated answer key. Below is a text taken from the
development corpus.

DEV-MUC3-0008 (NOSC)

BOGOTA, 9 JAN 90 (EFE) -- [TEXT] RICARDO ALFONSO CASTELLAR, MAYOR
OF ACHI, IN THE NORTHERN DEPARTMENT OF BOLIVAR, WHO WAS KIDNAPPED ON 5
JANUARY, APPARENTLY BY ARMY OF NATIONAL LIBERATION (ELN) GUERRILLAS,
WAS FOUND DEAD TODAY, ACCORDING TO AUTHORITIES.

CASTELLAR WAS KIDNAPPED ON 5 JANUARY ON THE OUTSKIRTS OF ACHI,
ABOUT 850 KM NORTH OF BOGOTA, BY A GROUP OF ARMED MEN, WHO FORCED HIM
TO ACCOMPANY THEM TO AN UNDISCLOSED LOCATION.

POLICE SOURCES IN CARTAGENA REPORTED THAT CASTELLAR’S BODY SHOWED
SIGNS OF TORTURE AND SEVERAL BULLET WOUNDS.



49

CASTELLAR WAS KIDNAPPED BY ELN GUERRILLAS WHILE HE WAS TRAVELING IN
A BOAT DOWN THE CAUCA RIVER TO THE TENCHE AREA, A REGION WITHIN HIS
JURISDICTION.

IN CARTAGENA IT WAS REPORTED THAT CASTELLAR FACED A ’’REVOLUTIONARY
TRIAL’’ BY THE ELN AND THAT HE WAS FOUND GUILTY AND EXECUTED.

CASTELLAR IS THE SECOND MAYOR THAT HAS BEEN MURDERED IN COLOMBIA IN
THE LAST 3 DAYS.

ON 5 JANUARY, CARLOS JULIO TORRADO, MAYOR OF ABREGO IN THE
NORTHEASTERN DEPARTMENT OF SANTANDER, WAS KILLED APPARENTLY BY ANOTHER
GUERILLA COLUMN, ALSO BELONGING TO THE ELN.

TORRADO’S SON, WILLIAM; GUSTAVO JACOME QUINTERO, THE DEPARTMENTAL
GOVERNMENT SECRETARY; AND BODYGUARD JAIRO ORTEGA, WERE ALSO KILLED.

THE GROUP WAS TRAVELING IN A 4-WHEEL DRIVE VEHICLE BETWEEN CUCUTA
AND THE RURAL AREA KNOWN AS CAMPANARIO WHEN THEIR VEHICLE WAS BLOWN UP
BY FOUR EXPLOSIVE CHARGES THAT DETONATED ON THE HIGHWAY.

The text includesdescriptions of two terrorist events—thekidnappingof Castellar and
the bombing of Torrado’s four-wheel drive vehicle. This means that there should be two
output templates generated for the text. For the terrorism domain, each template includes
the same 24 slots describing the date and location of the incident, the type of incident (one
of 24 possible types), the perpetrators and victims, and any physical objects targetted in
the attack. The answer key templates for the above story are shown in Figures 4.1 and
4.2.5 Slots that have more than one legal filler will list each option individually, separated
by a “/.” The output templates generated for each story by theNLP system, however, may
only have one filler per slot. The slot “matches” the corresponding slot in the answer key
if its filler matches any of the allowable fillers for that slot in the answer key.

There were a number of constraints for the domain that complicated this information
extraction task. For example,

1. Only terrorist acts that occurred in one of nine Latin American countries are consid-
ered relevant.

2. Only “recent” terrorist acts (i.e., those that occurred within three months of the
wire date) or texts that provide new information regarding old terrorist events are
considered relevant.

3. Generic descriptions of terrorist events are not relevant. The text must provide
information regarding either the specific type of terrorist attack or the specific targets
of the attack. For example, a newswire noting a “terrorist attack on peasants in El

5Some of the slots in a template are to be filled with phrases taken directly from the text (e.g., the “string
fills” denoting names of victims). Others hold information converted into a canonical form (e.g., dates and
locations), and the rest are “set fills” or fillers taken from a fixed set of options (e.g., effects on physical targets
can be one of SOME DAMAGE, DESTROYED, NO DAMAGE).
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1. message: template 1
2. incident: date 05 JAN 90
3. incident: location COLOMBIA: BOLIVAR (DEPARTMENT): ACHI (TOWN)
4. incident: type KIDNAPPING
5. incident: stage of execution ACCOMPLISHED
6. incident: instrument id *
7. incident: instrument type *
8. perp: incident category TERRORIST ACT
9. perp: individual id “GUERRILLAS” / “GROUPOF ARMEDMEN” /

“ARMEDMEN”
10. perp: organization id “ARMY OF NATIONAL LIBERATION” / “ELN”
11. perp: organization confidence SUSPECTEDOR ACCUSED /

REPORTEDAS FACT: “ARMY OF NATIONAL
LIBERATION” / “ELN”

12. phys tgt: id *
13. phys tgt: type *
14. phys tgt: number *
15. phys tgt: foreign nation *
16. phys tgt: effect of incident *
17. phys tgt: total number *
18. hum tgt: name “RICARDO ALFONSO CASTELLAR”
19. hum tgt: description “MAYOR OF ACHI”: “RICARDO ALFONSO

CASTELLAR”
20. hum tgt: type GOVERNMENT OFFICIAL: “RICARDO ALFONSO

CASTELLAR”
21. hum tgt: number 1: “RICARDO ALFONSO CASTELLAR”
22. hum tgt: foreign nation -
23. hum tgt: effect of incident DEATH: “RICARDO ALFONSO CASTELLAR”
24. hum tgt: total number -

Figure 4.1: Terrorism Corpus Answer Key (Part 1).
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0. message: id DEV-MUC3-0008 (NCCOSC)
1. message: template 2
2. incident: date 05 JAN 90
3. incident: location COLOMBIA: CUCUTA (CITY) -

CAMPANARIO (RURAL AREA)
4. incident: type BOMBING
5. incident: stage of execution ACCOMPLISHED
6. incident: instrument id “FOUR EXPLOSIVE CHARGES” /

“EXPLOSIVE CHARGES”
7. incident: instrument type EXPLOSIVE: “FOUR EXPLOSIVE CHARGES” /

“EXPLOSIVE CHARGES”
8. perp: incident category TERRORIST ACT
9. perp: individual id “GUERILLACOLUMN”
10. perp: organization id “ARMY OF NATIONAL LIBERATION”/ “ELN”
11. perp: organization confidence SUSPECTED OR ACCUSED: “ARMY OF NATIONAL

LIBERATION”/ “ELN”
12. phys tgt: id “VEHICLE”/ “4-WHEELDRIVE VEHICLE”
13. phys tgt: type TRANSPORT VEHICLE: “VEHICLE”/ “4-WHEEL

DRIVE VEHICLE”
14. phys tgt: number 1: “VEHICLE” / “4-WHEELDRIVE VEHICLE”
15. phys tgt: foreign nation -
16. phys tgt: effect of incident DESTROYED: “VEHICLE”/ “4-WHEELDRIVE VEHICLE”
17. phys tgt: total number -
18. hum tgt: name “CARLOS JULIO TORRADO”

“TORRADO’S SON, WILLIAM” / “WILLIAM”
“GUSTAVO JACOMEQUINTERO”
“JAIROORTEGA”

19. hum tgt: description “MAYOR OF ABREGO”:
“CARLOS JULIO TORRADO”

“SON”: “TORRADO’S SON, WILLIAM” / “WILLIAM”
“DEPARTMENTALGOVERNMENT SECRETARY”:
“GUSTAVO JACOMEQUINTERO”

“BODYGUARD”: “JAIROORTEGA”
20. hum tgt: type GOVERNMENT OFFICIAL:

“CARLOS JULIO TORRADO”
GOVERNMENT OFFICIAL:
“GUSTAVO JACOMEQUINTERO”

CIVILIAN: “TORRADO’S SON, WILLIAM” /
“WILLIAM”

SECURITY GUARD: “JAIROORTEGA”
21. hum tgt: number 1: “CARLOS JULIO TORRADO”

1: “TORRADO’S SON, WILLIAM” / “WILLIAM”
1: “GUSTAVO JACOMEQUINTERO”
1: “JAIRO ORTEGA”

22. hum tgt: foreign nation -
23. hum tgt: effect of incident DEATH: “JAIRO ORTEGA”

DEATH: “GUSTAVO JACOMEQUINTERO”
DEATH: “TORRADO’S SON, WILLIAM” /
“WILLIAM”

DEATH: “CARLOS JULIO TORRADO”
24. hum tgt: total number -

Figure 4.2: Terrorism Corpus Answer Key (Part 2).
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Salvador” is specific enough to warrant an output template, but a “terrorist attack in
El Salvador” is not.

4. Terrorist acts against military targets or military personnel are not relevant, unless a
civilian target (human or otherwise) is injured or damaged as a result.

It will be important that the knowledge acquired by Kenmore aid the NLP system in
meeting such constraints. The same will be true for the joint ventures domain described
below.

4.3.2 TIPSTER Corpus of Business Joint Ventures

The goal of the extraction task for the MUC-5/TIPSTER Joint Ventures (JV) domain
is to find information relevant to all business joint ventures mentioned in a text. A joint
venture (also known as a “tie-up”) is defined as “a cooperative association between two
or more parties to own and/or develop a project together.” Like the terrorism domain, all
relevant information is to be captured in template format.

The JVdevelopment corpus contains approximately 1000documents,mainlynewswire
accounts. Some documents include tables, graphs, or charts. Some texts are mixed case,
butmost are all upper case. Documents vary considerably in length, ranging from a single
paragraph to about 18 pages. Like the terrorism corpus, this corpus also currently has
four additional sets of texts used for evaluation purposes. Unlike the terrorism corpus,
however, most (approximately 90%) of the texts in the JV corpus are relevant to the goals
of the domain and should generate non-empty output templates.

A sample text from the development is included below:

<DOC>

<DOCNO> 0024 </DOCNO>

<DD> FEBRUARY 18, 1991, MONDAY </DD>

<SO> Copyright (c) 1991 Jiji Press Ltd.; </SO>

<TXT>

DAIWA SECURITIES CO. SAID MONDAY ITS HUNGARIAN JOINT VENTURE,
DAIWA-MKB, HAS OBTAINED A SECURITIES BUSINESS LICENSE FROM AUTHORITIES
IN THAT COUNTRY. DAIWA-MKB IS THE FIRST JAPANESE -AFFILIATED
BROKERAGE TO RECEIVE THE LICENSE FROM THE STATE SECURITIES SUPERVISION
OF HUNGARY. THE JOINT VENTURE BETWEEN DAIWA AND MAGYAR
KUELKERESKEDELMI BANK WILL START BROKERAGE, DEALING AND UNDERWRITING
SERVICES IN EARLY MARCH, TAKING OVER THE HUNGARIAN FOREIGN TRADE
BANK’S MEMBERSHIP OF THE BUDAPEST STOCK EXCHANGE, DAIWA OFFICIALS
SAID.

</TXT>
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Given this text, an NLP system should note that there is a single joint venture event
that involves three entities. The system must also distinguish parent companies in
the joint venture from child companies. In this text, Daiwa Securities Co. and Magyar
Kuelkereskedelmi Bank are parent companies of the Daiwa-MKB joint venture company.
The system also must determine the locations of the entities, if possible, and find any
aliases used to describe them. In addition, the NLP system should determine the reason
that the companies are collaborating. Figure 4.3 depicts a simplified version of the answer
key associated with this text. The actual answer key is shown in Figure 4.4 — its structure
is more complicated than that used in the terrorism domain because slot fillers are often
references or pointers to other slots. TIPSTER systems must generate output templates in
this latter format.

TEMPLATE-0024-1 :=
DOC NR: 0024
DOC DATE: 180291
DOCUMENT SOURCE: “Jiji Press Ltd.”

TIE UP RELATIONSHIP-0024-1 :=
TIE-UP STATUS: EXISTING

ENTITY-1:
NAME: DAIWA SECURITIES CO
ALIASES: “DAIWA”
TYPE: COMPANY
ENTITY RELATIONSHIP: PARENT

ENTITY-2:
NAME: MAGYAR KUELKERESKEDELMI BANK
TYPE: COMPANY
ENTITY RELATIONSHIP: PARENT

JOINT VENTURE CO:
NAME: DAIWA-MKB
LOCATION: HUNGARY (COUNTRY)
TYPE: COMPANY
ENTITY RELATIONSHIP: CHILD

ACTIVITY:
INDUSTRY-TYPE: FINANCE
PRODUCT/SERVICE:
(“BROKERAGE, DEALINGAND [UNDERWRITING SERVICES]”)

Figure 4.3: Simplified JV Answer Key.

Finally, like the terrorism domain, vague guidelines that distinguish a relevant joint
venture event from an irrelevant one complicate the extraction task:
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TEMPLATE-0024-1 :=
DOC NR: 0024
DOC DATE: 180291
DOCUMENT SOURCE: “Jiji Press Ltd.”
CONTENT: TIE UP RELATIONSHIP-0024-1

TIE UP RELATIONSHIP-0024-1 :=
TIE-UP STATUS: EXISTING
ENTITY: ENTITY-0024-1

ENTITY-0024-2
JOINT VENTURE CO: ENTITY-0024-3
ACTIVITY: ACTIVITY-0024-1

ENTITY-0024-1 :=
NAME: DAIWA SECURITIES CO
ALIASES: “DAIWA”
TYPE: COMPANY
ENTITY RELATIONSHIP: ENTITY RELATIONSHIP-0024-1

ENTITY-0024-2 :=
NAME: MAGYAR KUELKERESKEDELMI BANK
TYPE: COMPANY
ENTITY RELATIONSHIP: ENTITY RELATIONSHIP-0024-1

ENTITY-0024-3 :=
NAME: DAIWA-MKB
LOCATION: Hungary (COUNTRY)
TYPE: COMPANY
ENTITY RELATIONSHIP: ENTITY RELATIONSHIP-0024-1

INDUSTRY-0024-1 :=
INDUSTRY-TYPE: FINANCE
PRODUCT/SERVICE:
(62 “BROKERAGE, DEALINGAND [UNDERWRITING SERVICES]”)

ENTITY RELATIONSHIP-0024-1 :=
ENTITY1: ENTITY-0024-1

ENTITY-0024-2
ENTITY2: ENTITY-0024-3
REL OF ENTITY2 TO ENTITY1: CHILD
STATUS: CURRENT

ACTIVITY-0024-1 :=
INDUSTRY: INDUSTRY-0024-1
ACTIVITY-SITE: (- ENTITY-0024-3 )
START TIME: TIME-0024-1

TIME-0024-1 :=
DURING: EA0391

Figure 4.4: Actual JV Answer Key.
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1. Long-term business relationships are reportable as joint ventures as long as the
relationship is not purely a standard practice for the business.

2. Joint ownership of a company does not necessarily count as a joint venture. The
owners must be pursuing some common activity.

3. Agreements between governments are not reportable as joint ventures unless some
business activity is mentioned.

Whenever possible, the lexical and structural knowledge acquired by Kenmore for use in
this domain should help the NLP system adhere to and satisfy these guidelines.



C H A P T E R 5

LEARNING LEXICAL KNOWLEDGE

This chapter demonstrates Kenmore’s ability to acquire lexical knowledge in a system
called MayTag.1 MayTag simultaneously learns the part of speech, semantic feature(s),
and domain-specific concept(s) to be activated for all open-class words in a corpus using
a case-based reasoning algorithm. It first creates a case base of context-sensitive word
interpretations during a human-supervised training phase. Each interpretation encodes
the context in which the word was encountered as well as the “definition” of the word
as it would be specified in the lexicon of the NLP system. For CIRCUS, this “definition”
consists of theword’s part of speech, semantic class, andactivated concepts. After training,
given an unknownword and the context in which it occurs, MayTag retrieves similar past
cases of interpretation from the case base to infer the word’s syntactic and semantic class
information in the new context. As such, MayTag is one of a number of interpretive CBR
systems including HYPO [Ashley, 1990, Rissland and Ashley, 1986], GREBE [Branting
and Porter, 1991, Branting, 1991], CABARET [Rissland and Skalak, 1991], and ANAPRON
[Golding and Rosenbloom, 1991]. Very generally, case similarity in MayTag is assessed
using a hybrid case retrieval algorithm that combines a k-nearest neighbors matching
routine with a decision tree approach for finding relevant features. All retrieved cases
then vote on the syntactic and semantic interpretation of the current word. The details of
the case retrieval and case selection algorithms will be described in Section 5.4 as well as
in the next chapter.

By encoding context as part of a word interpretation case, the meaning of a word can
change dynamically in response to surrounding phrases without the need for explicit lex-
ical disambiguation heuristics. Moreover, as an instantiation of the Kenmore framework,
MayTag acquires all three classes of knowledge using the same case representation and
requires relatively little training and no hand-coded knowledge acquisition heuristics.

The chapter first briefly introduces the problem of lexical acquisition (Section 5.1)
and then presents the specifics of MayTag (Sections 5.2 - 5.4). We then evaluate the
system in experiments that explore two of many practical applications of the technique
(Sections 5.5.1 and 5.5.2). In the first application, we assume the existence of a nearly
complete domain-specific dictionary and use MayTag to infer the features of occasional
unknown words. In the second, more ambitious application, we assume only a small

1Some of the material from this chapter appeared originally in Cardie [1993a].
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dictionary of function words and use MayTag to determine the definition of all open-class
words in an input text. Results of these experiments indicate that MayTag provides a
promising approach to automated dictionary construction and knowledge acquisition for
sentence analysis in limited domains. Sections 5.5.3 and 5.5.4 briefly explore MayTag’s
ability to create static lexicons and to handle domain-independent lexical disambiguation.

5.1 The Problem
Theability or inability of a natural languageprocessing (NLP) system to handle gaps in

lexicon coverage ultimately affects the system’s performance on novel texts. Suppose, for
example, that a natural language system is processing a text and unexpectedly encounters
anunknownword. Rather than stopandwait for a knowledge engineer to enter themissing
lexical information, or skip the offending word altogether, a robust sentence analyzer
should infer the necessary syntactic and semantic knowledge for the unknown word and
then continue processing the text. Although the exact type and form of the knowledge
required by a parser varies from system to system, knowledge-based domain-specific
language processing systems typically rely on at least the following information: for each
word encountered in a text, the system must (1) knowwhich parts of speech, word senses,
and concepts are plausible in the given domain, and (2) determine which part of speech,
word sense, and concepts apply, given the particular context in which the word occurs.

For example, consider the following sentences within the context of the MUC domain
of Latin American terrorism2:
1. The terrorists killed General Bustillo.
2. The general concern was that children might be killed.

It is clear that in this domain the word “general” has at least two plausible parts of
speech (noun and adjective) and two plausible word senses (the military officer sense
and the universal entity sense). A sentence analyzer has to know that these options
exist3 and then choose the noun/military officer form of “general” for sentence 1 and the
adjective/universal entity form in sentence 2.

Thus far, we have used the term word sense ambiguity to refer to ambiguities with
respect to themeaning of a word; however, this type of ambiguity is often more accurately
described as a semantic feature ambiguity because many NLP systems (including CIRCUS)
represent word meanings using one or more semantic features drawn from a predefined

2See Chapter 4 for a description of this domain and the associated corpus.

3In addition, the system should know when its existing knowledge will not handle the current usage of the
word. This aspect of lexical ambiguitywill be discussed in detail in Section 5.4.1.
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taxonomy (e.g., military officer and universal entity).4 Together these semantic features
denote the meaning of the word in the current context.5 Sometimes the same semantic
feature will be used to describe two words with distinct meanings. For example, an NLP
system may assign the human semantic feature to both “child” and “policeman” if a more
specific distinction is not represented in the system’s semantic feature taxonomy. On the
other hand, a word considered to have a single word sense may be represented by one of
a number of distinct semantic features depending on the context in which it is used. In the
business joint ventures domain, for example, “Japan” can refer to a location, a government,
or part of a company name even though it has only one real word sense.

In addition to part-of-speech and semantic feature ambiguity, sentences 1 and 2 also
illustrate a form of concept ambiguity with respect to the domain of terrorism. Sentence 1,
for example, clearly describes an instance of the terrorist act concept — the word “killed”
implies that a murder took place and the perpetrators of the crime were “terrorists.” This
is not the case for sentence 2— the verb “killed” appears, but no murder has occurred and
there is no implication of terrorist activity. This distinction is important in the terrorism
domain where the goal is to extract from texts only information concerning eight classes
of terrorist events including murders, bombings, attacks, and kidnappings. All other
information effectively should be ignored. To be successful in this selective concept extraction
task [Lehnert et al., 1991], a sentence analyzer not only needs access to word-concept
pairings (e.g., the word “killed” is linked to the TERRORISTMURDER concept), but must
also accurately distinguish legitimate concept activation contexts from bogus ones (e.g.,
the phrase “terrorists killed” implies that a TERRORISTMURDERoccurred, but “children
might be killed” probably does not).

Domain-specific concept activation is akin to themore general problem of recognizing
and handling open-textured concepts— concepts for which necessary and sufficient condi-
tions ofmembership are difficult or impossible to describe. Open-textured concepts feature
prominently in tasks other than natural language processing and have been studied from
a number of perspectives: philosophy (e.g., Wittgenstein [1953]), law (e.g., Hart [1961]),
psychology (e.g., Rosch [1973], Rosch and Mervis [1975]), cognitive science (e.g., Lakoff
[1987]), and artificial intelligence and law (e.g., Rissland [1990] and Rissland and Skalak
[1991]). Although the problems of representing and recognizing open-textured concepts
remain largely unsolved, a number of CBR systems have offered promising computational
framework for the interpretationof open-textured concepts. Inparticular, mixed-paradigm
reasoners like ANAPRON[Golding and Rosenbloom, 1991] and CABARET [Rissland and

4We will see shortly that this taxonomy will be a component of the concept description language made
available to MayTag’s learning algorithm. As a result, the taxonomy limits the range of concepts that can be
learned by the inductive learning component.

5Some systems, however, restrict semantic feature tagging to a subset of syntactic classes. This subset
usually includes nouns and adjectives and sometimes includes adverbs. CIRCUS (Chapter 3), for example,
does not assign semantic features to verbs.
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Skalak, 1991] use a combination of rules and cases to handle concept ambiguity within
their domains: heuristic rules are used to recognize unambiguous instances of a concept
and cases are used to handle exceptions to the general rules. As will be described shortly,
MayTag relies entirely on case-based reasoning for concept disambiguation — it gathers
examples of instances and non-instances of the concepts during training and then draws
from those examples to interpret concepts in the application phase.

The relationship between semantic features and concept activation requires some dis-
cussion. In conceptual sentence analyzers, and inmost NLP systems, “concept activation”
implies the triggering of a semantic case frame whose slots eventually will contain the
information to be extracted from the sentence. The word “killed” in sentence 1, for
example might trigger a MURDER semantic case frame that would be instantiated as
shown in Figure 5.1 by the end of the sentence. Unlike semantic features, which may

MURDER
Actor: terrorists
Victim: General Bustillo

Figure 5.1: MURDER Semantic Case Frame.

be assigned to all words in a sentence to represent word meanings, only words that
indicate objects or events that are important in the current domain and that organize
the surrounding information should activate a domain-specific semantic case frame. Not
all words assigned the attack semantic feature, for example, may activate the ATTACK
concept. In addition, as shown in the “killed” examples above, a word that activates a
concept in one context may not activate the concept in a different context.

The remainder of this chapter describes MayTag, an instantiation of the Kenmore
architecture that performs lexical knowledge acquisition. MayTag begins with an empty
lexicon and learns (1) to tag each word in an incoming text with the appropriate part of
speech and semantic feature(s), and (2) to recognize which lexical items should activate
domain-specific concepts. Thus, MayTag learns part-of-speech, semantic feature, and
concept activation knowledge for all words in the corpus. No explicit system lexicon is
constructed, however. Instead, the lexical knowledge associated with all words in the
corpus is stored implicitly in the case base.

5.2 Instantiating the Kenmore Framework for MayTag

To learn domain-specific lexical knowledge we instantiate the three components of
the Kenmore architecture as illustrated in Figure 5.2. As described in Chapter 4.3.1, the
business joint ventures (JV) corpus contains over 1000documents that describeworld-wide
activity in the area of joint ventures or “tie-ups” between businesses. CIRCUS [Lehnert,



60

Corpus: Business Joint Ventures
Sentence Analyzer: CIRCUS
Inductive Learning Algorithm: CBR ( -nearest neighbor)

Figure 5.2: Instantiating Kenmore for MayTag.

1990] is a conceptual sentence analyzer that produces a semantic case frame representation
of themeaning of an input sentence. Details regarding CIRCUS can be found in Chapter 3.

The heart of the learning component employed by MayTag is a nearest-neighbor
case-based reasoning (CBR) algorithm. In this algorithm, the case base is effectively a set
of training examples, each of which describes a single episode in lexical disambiguation.
After training, each word in an incoming text is tagged using a case retrieval algorithm
that compares the current context to those stored in the case base, finds the most similar
cases, and then uses them to assign a syntactic and semantic interpretation to the current
word. As described in the introduction, we chose a case-based reasoning algorithm as the
inductive learning component because of the lack of a strong domain theory for natural
language learning tasks. In addition, there is evidence frompsychology that some language
acquisition tasks, including the learning of word meanings, proceed through instance-
based stages (e.g., Keil and Kelly [1987]). Finally, we chose the nearest-neighbor similarity
metric for its simplicity: it allows us to test the basic case-based approach on lexical
acquisition tasks. For reference, the components ofMayTag’s case-based inductive learning
algorithm are summarized in Figure 5.3; the specifics of the CBRmodule and comparisons
to related work will be described in Section 5.4.

Case Indexing: performed automatically by decision trees
Similarity Metric: 10-nearest neighbors
Case Selection: prefer cases that match unknownword
Solution Policy: majority vote
Automated Improvements to
Baseline Case Rep: via decision tree approach

Figure 5.3: Components of MayTag’s Case-Based Inductive Learning Algorithm.

Very generally, MayTag acquires lexical knowledge in its training phase with the help
of a human supervisor and then uses the acquired knowledge to handle lexical ambiguities
during the application phase without any human intervention. The next two sections and
5.4) describe MayTag’s acquisition and application phases in detail.
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5.3 MayTag’s Training Phase

The goal of MayTag’s training phase (Figure 5.4) is to create a case base of episodes in
lexical ambiguity resolution. Since each case encodes the part of speech, semantic features,
and activated concepts for a single word in a specific context, cases also can be seen as
context-sensitive word interpretations. To create the case base, MayTag randomly selects
sentences from the JV corpus and provides them as input to CIRCUS, which processes
each sentence, one word at a time, and, together with a human supervisor, creates a case
as each word is encountered. As described in Chapter 1 and shown in the training case
of Figure 5.4, cases have two parts. The context portion describes the context in which the
currentword occurred. This is just a representation of the state of theCIRCUS parser when
the current word is recognized and is supplied automatically by CIRCUS. (See Section 3.2

Training Case
context   interpretation

word interpretation
 case

Joint Ventures
Corpus

Case-Based Reasoning Component

Human
Supervisor

interpretation
selected sentences

interpretation

context of unknown 
word

Case Base

CIRCUS

Figure 5.4: MayTag Training Phase.

for examples of thekindsof knowledge that aremaintainedbyCIRCUS.) The secondpart of
the case (called the solution in Chapter 1) encodes the syntactic and semantic interpretation
of the current word and is supplied by a person using a menu-driven interface. The
supervisor simply chooses the part of speech, semantic feature(s), and domain-specific
concepts to associate with the current word from a menu of predefined options. The
choices are encoded into the solution part of the case, and MayTag stores the case in the
case base. In addition, the part-of-speech, semantic feature, and concept information are
directed back to CIRCUS so that CIRCUS will know how to interpret the current word,
can update its state, and continue with the next word in the training sentence.

At the end of training, MayTag will have created one case for each word that occurred
in the training sentences. In particular, if a word appears times in the training sentences,
therewill be cases associatedwith it in the case base. As of yet, we have not addressed the
specifics of MayTag’s case representation. Because the same representation is used both
in the training and application phases, we will describe the case representation in detail in
the next subsections before discussing its use during the application phase (Section 5.4).
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5.3.1 The Taxonomies
Cases in MayTag are represented as a set of attribute-value pairs. Although some

case-based reasoning systems use a richer case representation (e.g., CHEF [Hammond,
1989], GREBE [Branting and Porter, 1991, Branting, 1991]), the simple attribute-value pair
knowledge representation is a very general representation scheme that can be used in
conjunction with case-based algorithms (see HYPO [Ashley, 1990]) as well as the vast
majority of symbolic inductive machine learning algorithms.6 More specifically, MayTag
cases consist of 37 attribute-value pairs: 33 features represent the context in which the
current word was encountered and 4 represent the syntactic and semantic interpretation
of the current word in this context. The case representation relies on three predefined
taxonomies, one for each class of knowledge that we are trying to learn. These will be
described briefly before presenting the solution and context parts of the case.

MayTag first requires a taxonomy of semantic features. This taxonomy was designed
for use with the business joint ventures corpus and is shown in Tables 5.1 and 5.2. It
is a two-level taxonomy that includes 14 general semantic features and 42 more specific
semantic features. Asdiscussed inSection 4.2, this taxonomyshould reflect anydistinctions
in word meanings that are important for processing texts from the joint ventures domain.
For example, in this domain it is important to know when a word is describing a party
involved in a joint venture. Any word used in this fashion should be tagged with the
jv-entity general semantic feature. In addition, it is also important to note whether that
word describes a more specific joint venture entity like a company name, a government, or a
person.

Next, MayTag requires a set of domain-specific concepts for usewith texts from the JV
corpus. MayTag’s current taxonomy contains 11 domain-specific concept types (Table 5.3).
These represent a subset of the concepts that are important in the joint ventures domain
and act as semantic case frame types for CIRCUS. (See Chapter 3 for more information
about the use of semantic case frames in the CIRCUS parser.)

Finally, MayTag uses a taxonomy of 18 parts of speech (Table 5.4). The taxonomy
specifies 7 parts of speech for open-class words and reserves the remaining 11 parts of
speech for closed-class words. Closed-class words are function words like prepositions,
auxiliaries, and connectives, whose meanings vary little from one domain to another.
All other words (e.g., nouns, verbs, adjectives) are open-class words. Open-class words
are generally considered content words. Although the semantic feature and concept
taxonomies are clearly domain-specific, the part-of-speech taxonomy is parser-dependent
rather than domain-dependent.

6Although we concentrate on case-based classificationmethods, we will also investigate the use of decision
trees as MayTag’s inductive learning component in Chapter 6.
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Table 5.1: Semantic Feature Taxonomy (Part 1).

General Semantic Features Description
Specific Semantic Features

jv-entity party involved in a tie-up
company-name name of company
company-alias alias for company
generic-company e.g., “Co.” in “Plastics Co.”
government government-affiliated entity
person an individual

industry type of business or industry
research research and development
production manufacturing, production
sales sales, marketing, trade
service consumer services, service industry
finance e.g., banking, finance, real estate

capitalization total cash capitalization
person-position position of a person within company
ceo chief executive officer
cob chairman of the board
pres head of company
offic any officer of company
srexec senior executive
exec other management
owner owner, partner
gov government official
spoke spokesperson
prof titled professional
emp employee
other-position any position not included above
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Table 5.2: Semantic Feature Taxonomy (Part 2).

General Semantic Features Description
Specific Semantic Features

facility building or site
communications e.g., radio, television, satellite
site e.g., development sites, industrial buildings
factory e.g., manufacturing building, computing facilities
farm e.g., agricultural and forestry facilities, orchards
office e.g., auxiliary offices, departments, sales offices
mine e.g., coal or mineral mines, quarries, gas wells
store e.g., stores, shops, dealers, amusement parks
transportation land, air, water transportation, pipelines
utilities e.g., electric power, heat, lighting
warehouse general and specialized storage
facility-name name of facility
other-facility any facility not included above

ownership-percentage share in company
entity generic entity/thing, irrelevant object w.r.t.

JV domain
money any monetary reference
nationality any nationality
human person not a jv-entity or person-position
human-name person name
human-title person title

time any reference to time or date
location reference to a specific place
country country name
city city name
province province or state
continent name of continent
other-loc any other specific place name

generic-location general spatial area, e.g., north, Midwest
nil no general semantic feature applies
nil no specific semantic feature applies; this feature

can be used in conjunction with ANY
general semantic feature
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Table 5.3: Concept Type Taxonomy.

Concept Types Description
tie-up-relationship (tie-up) indicates a tie-up activity
tie-up-relationship-secondary weak indicator of a tie-up
(tie-up-secondary)

tie-up-relationship-jv-entity-only indicates a tie-up activity but only mentions
(tie-up-jv) the joint venture company

total-capitalization total cash capitalization
ownership-% percentage share in the tie-up
industry type of industry performed within the

scope of the tie-up
industry-research research and development
industry-production manufacturing, production
industry-sales sales, marketing, trade
industry-service consumer services, service industry
industry-finance e.g., banking, finance, real estate
nil no concept should be triggered

Table 5.4: Part-of-Speech Taxonomy.

Open-Class Closed-Class
noun preposition (prep)

nounmodifier (nm) auxiliary (aux)
adverb (adv) copular (cop)

verb article (art)
past participle (pasp) relative pronoun (rel)
present participle (pres) modal

gerund (ger) infinitive (inf)
conjunction (conj)
negation (neg)
connective (conn)
particle (ptcl)
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5.3.2 Case Representation
As mentioned above, each case in MayTag represents the syntactic and semantic

interpretation of a single word as well as the context in which it occurs in the corpus. It
is a list of 37 attribute-value pairs in which 4 features encode the solution part of the case
and the remaining 33 features encode the context. The best way to describe MayTag’s case
representation is to look at an example. Throughout this section, we will examine the case
that would be generated for the word “venture” in the following sentence taken directly
from the JV corpus:

Toyota Motor Corp. has set up a joint venture firm with Yokogawa Electric
Corp.

Figure 5.5 shows the training case for “venture” as it is used in the sentence above. The
4 features that encode the syntactic and semantic interpretation of “venture” are depicted
at the top of thefigure and are labeled “Worddefinition features.” These are the “solution”
features of the case and are supplied by the human supervisor. In the current context, the
supervisor has specified that (1) the part of speech (p-o-s) for “venture” is a noun modifier
(nm),7, (2) its general semantic feature (gen-sem) is entity, (3) no specific semantic feature
(spec-sem) applies, and (4) “venture” activates the domain-specific tie-up concept.

Toyota Motor Corp. has set up a joint  venture firm with Yokogawa Electric Corp. ...

Local context features

word:
p-o-s:
gen-sem:
spec-sem:
concept:

a
art
nil
nil
nil

prev2
word:
p-o-s:
gen-sem:
spec-sem:
concept:

with
prep
nil
nil
nil

fol2
word:
p-o-s:
gen-sem:
spec-sem:
concept:

joint
nm
entity
nil
nil

prev1
word:
p-o-s:
gen-sem:
spec-sem:
concept:

firm
noun
jv-entity
nil
nil

fol1

p-o-s:
gen-sem:
spec-sem:
concept:

nm
entity
nil
tie-up

Word definition features

gen-sem:
spec-sem:

concept:

jv-entity
company-name
generic-company-name
nil

subject

concept: nil
verb

gen-sem:
spec-sem:
concept:

nil
nil
nil

direct object
syn-type:
gen-sem:
spec-sem:
concept:

verb
nil
nil
nil

last constit

Global context features

word:
morphol:

venture
nil

unknown word

Figure 5.5: Case for “venture.”

The case’s 33 “context” features are divided conceptually into two sets:

7The noun modifier category covers both adjectives and nouns that act as modifiers. We reserve the noun
category for head nouns only.
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local context features (22) that represent semantic and syntactic knowledge for the
words within a five-word window centered on the unknownword; and

global context features (11) that encode information for any major syntactic con-
stituents that have been recognized in the current clause at the point of the unknown
word.

The general idea behind the representation of context is to include any information that
the parser has that might be useful for inferring the definition of the current word. This
representation of context is necessarily dependent on the kinds of information available
to and maintained by the sentence analyzer employed by MayTag. Therefore, the context
features described below are consistent with theCIRCUSparser. If MayTag uses a different
parser, the representation of context will change.

The 22 local context features include two attribute-value pairs that describe surface
features for the unknown word. First, CIRCUS knows that the unknown word is “ven-
ture.” Second, the morphol feature indicates morphological information for the word
based on its suffix. The nil value used here means that no such information was available
for “venture.” The remaining 20 local context features describe information that CIRCUS
maintains for the twowords that precede and the twowords that follow the unknownword
(labeled prev1, prev2, fol1, and fol2 in Figure 5.5). For each of these positions, CIRCUS
should know (1) the word in that position, (2) its part of speech, (3) semantic features, and
(4) activated concepts. The word immediately preceding “venture,” for example, is the
noun modifier “joint.” It has been recognized as an entity and activates no domain-specific
concept in this context.

Finally, the 13 global context features encode information about any major syntactic
constituents that CIRCUS has recognized at the point of the unknown word. When the
parser reaches “venture,” for example, it has recognized two major constituents — the
subject and verb phrase. Neither activates any domain-specific concepts, but the subject
does have general and specific semantic features. These are acquired by taking the unionof
the semantic features of each word in the noun phrase. As described above (Section 5.3.1),
verbs in CIRCUS are assigned no general or specific semantic features, but can activate
domain-specific concepts although none was activated in the example sentence. Because
CIRCUS has not yet recognized the direct object (this will not happen until after the word
“firm”), all of the direct object features in the case are empty. In addition to specifying
information about each of the main constituents, the global context features also include
syntactic and semantic knowledge for the most recent low-level constituent (last constit).
A low-level constituent can be either a noun phrase, verb, or prepositional phrase, and
sometimes coincides with one of the major constituents — the subject, verb phrase, or
direct object. This is the case in Figure 5.5 where the low-level constituent preceding
“venture” is the verb.

Because CIRCUS generally maintains syntactic information for at most one clause at
a time, the global context features are limited to constituents recognized in the current
clause. An exception to this is when the LICK mechanism instantiates constituent buffers
in the current clause with phrases from the preceding clause (see Section 3.1.3). When
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this happens, the global context features may refer to portions of the preceding clause. In
addition, the last constit feature takes on the value clause at the beginning of a new clause,
indicating that the last item recognized by CIRCUS was a clause. Clause boundaries are
only implicitly noted in the local context features, via the presence of punctuation marks
or connectives, for example.

5.3.3 Case Base Construction
Using the case representation described in the last section, MayTag creates a case base

of context-dependent word interpretations from a small, randomly selected subset of the
sentences in the JV corpus. As eachword in the training sentences is encountered,MayTag
creates a case by alternately consulting a human supervisor and the CIRCUS parser. The
human supervisor supplies the current word’s part-of-speech, semantic features, and
concept activation information. These values are stored in the p-o-s, gen-sem, spec-
sem, and concept word definition features and are used by the parser to process the
current word. CIRCUS automatically supplies the global and local context features of the
case after examining its state. The prev1 and prev2 features are immediately available
because a person has already provided CIRCUS with the necessary syntactic and semantic
information for those words. The local context features associated with the words in the
fol1 and fol2 positions, however, are added to the current case after thosewords have been
tagged by the supervisor in CIRCUS’s left-to-right traversal of the training sentence. After
training, MayTag will have produced one case for every word in the training sentences.
In particular, if “venture” appears times during training, there will be cases associated
with it in the case base.

5.4 MayTag’s Application Phase

Once the case base has been constructed, MayTag can use it to determine the interpre-
tation of new words in the corpus (Figure 5.6). Assume, for example, that CIRCUS needs
to know the part of speech, semantic features, and activated concepts for “Toyo’s” in the
sentence:

Yasui said this is Toyo’s and JAL’s third hotel joint venture.

Based on the state of the CIRCUS parser at the word “Toyo’s,” MayTag creates a problem
case for “Toyo’s” filling in its global and local context features just as it would during
training.8 The only difference between a problem case and a training case is the word
definition features — the gen-sem, spec-sem, p-o-s, and concept features for the unknown
word. During training, the human supervisor specifies values for these features. During
the application phase, it is the job of the case retrieval algorithm to find the training cases

8There is a bootstrapping problem in that the fol1 and fol2 features are needed to specify the problem case
for “Toyo’s.” This problem will be addressed in the second experiment. For now, assume that the parser has
access to all fol1 and fol2 features at the position of the unknown word.
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Figure 5.6: MayTag Application Phase.

that are most similar to the problem case and then use them to determine values for the
missing word definition features of the unknown word. We use the following algorithm
for this task:
1. Compare the problem case to each case in the case base, counting the number of
context features that match (i.e., match = 1, mismatch = 0). Only give partial credit
(.5) for matches on nil’s and for partial matches.9

2. Keep the ten highest-scoring cases.

3. Of these, return those case(s) whoseword featurematches the unknownword, if any
exist. Otherwise, return all ten cases.10

4. Let the retrieved cases vote on the values for the four word definition features of the
problem case. Ties are broken randomly.

The case retrieval algorithm is essentially a k-nearest neighbors algorithm ( = 10)
with a bias toward cases whose word matches the unknown word.11 Because MayTag
uses the retrieved cases to derive an appropriate syntactic and semantic interpretation
for the current word, it is considered an interpretive CBR system. (For examples of
other interpretive CBR systmes, see HYPO [Ashley and Rissland, 1988, Ashley, 1990],
GREBE [Branting andPorter, 1991, Branting, 1991], CABARET [Rissland and Skalak, 1991],

9Partial matches occur when two features have overlapping, but not identical values. A partial match
occurs, for example, when the subject of the problem case is (company-name product) and the subject of the
training case is (company-name).

10More than ten cases will be returned if there are ties.

11Other values of were tested, but setting to ten produced the best results overall given the corpus,
taxonomies, and training sets used in the experiments.
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ANAPRON [Golding and Rosenbloom, 1991].12) MayTag, however, differs from many
traditional case-based problem solvers in that it employs no case adaptation phase —
the retrieved solution is used directly rather than being modified to fit the new situation.
In addition, MayTag’s case representation contains none of the deep or derived features
that typically comprise a case in a CBR system.13 MayTag’s emphasis on case-based
classification using simple feature vectors and without case adaptation makes it more
similar to instance-basedmachine learning algorithms [Aha et al., 1991].

5.4.1 Recognizing Incomplete Word Definitions
As a result of its case-based approach to lexical disambiguation, MayTag allows aword

to take on an interpretation different from any it received during the training phase. This
will happen if the word appears in a context that is different from any in which it occurred
during training. The case retrieval algorithm delivers this behavior by first looking for
cases that are the best overall matches for the problem case (step 2) and then searching
among these for cases generated during training in response to the current unknownword
(step 3). In a preliminary training phase, for example, the word “lettuce” appeared once
across all of the training sentences where it was tagged as a noun/industry/product:

Guam United Agricultural Management...has developed a small computerized
water culture system which can grow vegetables like tomatoes, lettuce, spring
onions, melons...

When running MayTag in test/application mode, however, “lettuce” was recognized as
a nm/jv-entity/company-name. Although it initially seemed that this definition must be
incorrect, the opposite was actually the case. “Lettuce” had been seen in the following
context:

OgdenAllied Services Corp. had formed a joint venture with RichardMelman’s
Lettuce Entertain You Enterprises.

This type of adaptive behavior is generally very difficult to achieve in natural language
processing systems. It is much easier for an NLP system to assume that it knows either all
or noneof thedefinitions of aword rather thandealwith the complications that accompany
partial definitions. The ability to recognize novel uses of words is a natural side effect of
MayTag’s case-based approach to lexical acquisition.

5.4.2 Modified Case Retrieval Algorithm
One problem with the case retrieval algorithm presented above is that it assumes that

all context features are equally important for learning part-of-speech, semantic feature,

12See Section 2.7 for a brief description of the interpretive tasks performed by these systems.

13It could be argued, however, that MayTag’s global context features are actually derived features since they
represent higher level knowledge obtained by the sentence analyzer from one or more words.
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and concept activation knowledge. Intuitively, it seems that accurate prediction of each
part of the definitionmay rely on very different subsets of the features. Unfortunately, it is
difficult to knowwhich combinations of features will best predict each class of knowledge
without trying many (or all) of them. To avoid this additional knowledge engineering
bottleneck, we developed an automated approach for locating the relevant features in a
baseline instance representation and have incorporated the approach into the original case
retrieval algorithm.14 Themodified algorithm uses theC4.5 decision tree system[Quinlan,
1992] and will be described in detail in Chapter 6. (Related work will also be discussed
in that chapter.) For the remainder of this chapter, however, it will suffice simply to think
of this feature selection algorithm as a black box (Figure 5.7) that takes as input a set of
training cases for a particular classification task. Each training case is described in terms of
features, 1 through , and the class value to be associated with the case. For MayTag,
1 through are the local and global context features and is one of the p-o-s, gen-sem,
spec-sem, or concept word definition features. As output, the algorithm produces a list,

, of the context features that are useful or relevant for prediction of .15

f1 f2  f3  ... fn            c
feature values class value

...

Training Cases

f1 f2 f3 f4 f5 f6 f7 f8 f9 ... fn

feature values

feature values

feature values

feature values

feature values

feature values

feature values

class value

class value

class value

class value

class value

class value

class value

Feature
Selection
Algorithm

Figure 5.7: Black Box View of Feature Selection Algorithm.

All experimentsdescribed in this chapter rely ona case retrieval algorithm thatuses this
automated feature selection algorithm to select the subset of context features that should
take part in the nearest-neighbor calculations. To use the feature selection algorithm in
this manner, the original case retrieval algorithm must be altered in two ways. First, the
training phase must include an additional offline step:

14It should be noted that the problem of automated feature selection is not new: it was first addressed by
Samuel [1963,1967] in the context of evaluation function learning for game tree search. MayTag, however,
encounters the problem in the context of learning an appropriate similarity function.

15One can also view the feature selection algorithm as a feature weighting algorithm in which relevant
features are assigned a weight of one and irrelevant features a weight of zero.
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Given MayTag’s case base of training cases as input, use the feature selection algo-
rithm to create a list of relevant features, , for each word definition feature to be
predicted.

This produces four feature lists: , , , and . Second,
we alter the original case retrieval algorithm to use these lists as follows:

Instead of invoking the case retrieval algorithmonce for each problem case, run it four
times, once for each class value to be predicted.16 In the retrieval for any particular
class attribute , however, include only the features in in the nearest-neighbors
calculations.

By using the feature selection algorithm to discard irrelevant features, we automatically
tune the case retrieval algorithm for independent prediction of part of speech, semantic
features, and domain-specific concepts. Chapter 6 describes the series of experiments
that compare this modified algorithm for feature specification to the original case retrieval
algorithm and to knowledge-based methods for feature specification. It also discusses
related work in the area of automated feature set specification. The next section describes
experiments that evaluate the performance of MayTag on a number of lexical acquisition
tasks. As stated above, all experiments use the modified case retrieval algorithm.

5.5 Evaluation of MayTag

We ran a number of experiments to test MayTag’s ability to acquire lexical knowledge
from a corpus using the modified case retrieval algorithm. Each experiment drew its
training and test cases from the same set of 120 randomly selected sentences from relevant
texts in the JV corpus. For each experiment, we supplied CIRCUS with a small lexicon of
function words (e.g., the, a, an, is, are, was, and, or) and used MayTag to supply syntactic
and semantic information all remaining (open-class) words in the test sentences. The
function word lexicon maintains the part of speech and semantic features (if any apply)
for 129 words. None of the function words has any associated domain-specific concepts.

All experiments report average results using 10-fold cross validation. We first ran-
domly partition the 120 sentences into ten segments. Altogether, the 120 sentences
generate 2056 cases, one context-sensitive word interpretation case for each occurrence
of an open-class word. In each of ten experiments, we use the sentences in nine of
the segments to generate the case base (approximately 2050 cases) while reserving the
sentences in the remaining segment for testing (approximately 205 cases). Results are
averaged across the ten runs, which progress through all training/testing combinations.
The same training/test set combinations are used for each experiment.

We evaluate MayTag with respect to two main tasks. In the first set of experiments,
we demonstrate MayTag’s ability to provide the part of speech, semantic features, and

16There is a single case base, but each case has four class labels associatedwith it, values for the four solution
features.
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domain-specific concept for occasional unknown words in an input text (Section 5.5.1).
Next, we demonstrate MayTag’s ability to tag all open-class words in an input text from
scratch (Section 5.5.2). Finally, we explore the possibility of using MayTag to generate
explicit domain-specific lexicons for a corpus (Section 5.5.3). Chapter 7 provides a more
qualitative analysis of MayTag’s ability to handle each type of lexical ambiguity.

5.5.1 Handling Occasional UnknownWords

In this section we describe experiments that use MayTag to determine the part of
speech, semantic features, and domain-specific concepts for occasional unknown words
in an input text. This task is important when an NLP system is using a nearly complete
domain-specific dictionary, but still occasionally encounters words for which the lexicon
has no entry. We simulate this situation by assuming that MayTag has perfect knowledge
of all words in a test sentence except the word that it currently is trying to tag. This
means that the representation of context that becomes part of the problem case is relatively
accurate. Table 5.5 shows MayTag’s average percentage correct for prediction of each
of the four word definition features and compares them to two baselines.17 The first

Table 5.5: Handling Occasional Unknown Words (% correct for prediction of word definition
features).

Word Random Default MayTag MayTag
Definition Selection (open-class (all words)
Feature words)
p-o-s 34.3 81.5 93.0 96.1
gen-sem 17.0 25.6 78.0 87.7
spec-sem 37.3 58.1 80.4 89.0
concept 84.2 91.7 95.1 97.2

baseline indicates the expected accuracy of a system that randomly guesses a legal value
for each missing feature based on the distribution of values across the training set. The
second baseline shows the performance of a system that always chooses the most frequent
value across the training set as a default. The third column of results indicates MayTag’s
performance on the open-class words in the test sentences and the final column indicates
MayTag’s performance when function words are included. Chi-square significance tests
on the associated frequencies show that MayTag performs significantly better than both
baselines ( 01).

17Note that we allow mismatches between the noun and noun modifier part-of-speech categories for all
experiments and baselines because the parser can accurately fix these errors.
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5.5.2 Tagging All Open-Class Words From Scratch — Acquiring a
Domain-Specific Lexicon

In the second, more ambitious, task, we use MayTag to acquire definitions of all
open-class words in the test sentences from scratch. Unlike the experiments above, we
make no assumptions about the availability of definitions for words surrounding the
current unknownword. Instead, MayTag has to rely on its own predictions for preceding
words even though some of those may have been incorrect. As a result, the representation
of context that comprises each problem case may contain many errors. More specifically,
MayTag calls onCIRCUS to parse each test sentence and to create a problem case each time
anopen-class word is encountered,filling in its global context features and the local context
features for the preceding two words. Determining values for the fol1 and fol2 features
is more difficult because CIRCUS has not processed those words yet in its left-to-right
traversal of the input sentence. If the following two words are both function words,
then the fol1 and fol2 features can also easily be specified by looking up the words in
the function word lexicon. Most of the time, however, one or both of fol1 and fol2 are
open-class words forwhich the system has no definition. In these cases, theMayTagmakes
an educated guess based on the training cases:

1. If the word appeared during training, let each fol1 and fol2 feature be the union of
the values that occurred in the word’s training phase definitions.

2. If the word did not appear during training, fill in theword features, but use nil as the
value for the remaining fol1 and fol2 attributes.

We also relax the case retrieval matching algorithm and allow a non-empty intersection on
any fol1 or fol2 feature to count as a full match during the nearest-neighbor matching.18

Results for this tagging-from-scratch task are shown in Table 5.6 along with the same
baseline comparisons from the first experiment. Not surprisingly, all of the results have
dropped somewhat; however, chi-square analysis still shows that MayTag’s performance
is significantly better than the baselines ( 01).

5.5.2.1 MayTag in the MUC-5/TIPSTER Evaluation

MayTag handled the semantic feature tagging task for the UMass/Hughes CIRCUS
system that participated in the MUC-5 and TIPSTER evaluations [Lehnert et al., 1993a,
Lehnert et al., 1993b]. Very generally, the goal for each system in this evaluationwas to read
a set of previously unseen texts from the business joint ventures domain and to produce a
template summary for any joint venture event described in the texts. Chapter 4 provides
a more detailed description of this information extraction task. In the UMass/Hughes

18Matches on nil continue to receive only half credit. In the original case retrieval algorithm, both partial
matches (i.e., matcheswhere two cases have overlapping, but not identical values) andmatches on nil received
half credit.
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Table 5.6: Tagging from Scratch (% correct for prediction of word definition features).

Word Random Default MayTag MayTag
Definition Selection (open-class (all words)
Feature words)
p-o-s 34.3 81.5 91.0 95.0

gen-sem 17.0 25.6 65.3 80.6
spec-sem 37.3 58.1 74.0 85.5
concept 84.2 91.7 94.3 96.8

system, theOTB tagger [Lehnert et al., 1993a] supplied parts of speech for each word in the
texts and domain-specific concept triggering information was generated by the AutoSlog
system [Riloff, 1993], which was described briefly in Section 2.6. In addition, the CIRCUS
system included three “specialists” that recognized date expressions, money expressions,
and some location expressions, and converted them into canonical forms. Instead of the
case base used in the above experiments (2056 cases based on 120 sentences), MayTag
relied on a new, larger case base for this task. The new case base contained 3060 cases and
was created from 174 training sentences from the JV corpus.

Table 5.7 shows the performance of this version of MayTag on the base set of 174
sentences from the JV corpus using 10-fold cross validation. Experiments tested the
system’s ability to perform semantic feature tagging from scratch. Results from theoriginal
semantic feature tagging experiments are included for comparison.

Table 5.7: Using MayTag with Larger Case Base for the Tagging-From-Scratch Task (% correct).

Word Original Results Larger Case Base Larger Case Base
Definition open-class words open-class words incl. function words
Feature (2056 cases) (3060 cases) (3060 cases)
gen-sem 65.3 74.0 85.7
spec-sem 74.0 75.0 86.3

In an attempt to determine the impact of MayTag on the overall performance of the
UMass/HughesMUC-5/TIPSTERsystem, we ran two variations of the system on the three
test sets from the final TIPSTER evaluation.19 In the first run, the system used MayTag
(and the usual lexicon of 129 function words) to assign semantic features to all open-class
words in the test texts. In the second run, the system had access to the function word
lexicon, but MayTag was turned off and all open-class words were assigned the nil general

19Thanks to Jonathan Peterson for running these experiments.
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and specific semantic features. In this run, the system was forced to rely on its default
heuristics for determining object types rather than relying onMayTag for that information.

Without MayTag, precision on the test sets increases by 1%, but recall falls by 41%,
resulting in a 35% drop in F-measure.20 These results can be explained by the fact that the
default heuristics handle only clearcut cases (e.g., “Co.” indicates the name of a company),
butwere not designed to handlenovel or ambiguous situations. In addition, themodule of
the system that is responsible for generating output templates uses decision trees that rely
on semantic feature information. It should be emphasized that this experiment was meant
only to give an indication of the extent towhichMayTag contributed to theUMass/Hughes
MUC-5/TIPSTER system. More rigorous testing would be required to determine the exact
role played by MayTag.

Training MayTag for use with the UMass/Hughes MUC-5/TIPSTER system took
approximately 14 hours. The case base acquired during training acts both as the lexicon
for all open-class words and as the set of accompanying disambiguation heuristics that
would be required. The 14-hour training time is minimal in comparison to the task of
building the lexicon and disambiguation heuristics for the approximately 32,000 distinct
words in the joint ventures corpus by hand. Specifying semantic features for only the
5,000 most frequently occurring words would take 1,250 hours at 15 seconds per word.
Building the disambiguation heuristics would take an additional day or two at the least
and the resulting system would require additional routines to handle words that were
missing from the lexicon. It is doubtful that a lexicon created by hand would produce
significant improvements over MayTag’s automated approach for a number of reasons:
(1) people can introduce unnecessary ambiguity in lexical entries by listing semantic
features that are seldom(ornever) used, (2) conversely, people canomit important semantic
features for a word, (3) novel uses of words will be impossible for the resulting system to
recognize without the addition of special routines, and (4) the disambiguation heuristics
and heuristics for handling unknownwords are difficult for people to specify accurately.

5.5.3 Creating Explicit System Lexicons

MayTag’s approach to lexical acquisition and lexical ambiguity does not create any
explicit lexicons. The cases and the case retrieval algorithm together represent an implicit
domain-specific lexicon tuned expressly for the JV corpus. However, MayTag can also be
used to construct explicit domain-specific lexicons. To do this, one first creates the case
base by trainingMayTag on a subset of sentences from the selected corpus. ThenMayTag is
run on the entire corpus in application mode, keeping track of the interpretations assigned
to each lexical item. By examining the frequency with which a word was assigned various
“definitions” across the corpus and by setting thresholds appropriately, a static dictionary

20TheF-measure combines recall ( ) andprecision ( ) scores: . This version of the F-measure
weights recall and precision equally and gives a higher score to systems with a high recall and precision sum
andwith relatively close recall and precision values.
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that lists the allowable parts of speech, semantic features, and domain-specific concepts
for all words in the corpus can be generated automatically. At the very least, this method
can be used to create a static dictionary of words that are unambiguous with respect to
the current domain. MayTag might then rely on the static lexicon entry whenever one
of these unambiguous words is encountered rather than perform the relatively expensive
case retrieval operation to infer its definition.

As an exploratory investigation, we trained MayTag on 174 sentences from the JV
corpus (as in Section 5.5.2.1) and then ran MayTag in application mode on 100 novel texts
from the corpus.21 As in the above experiments, theOTB tagger suppliedparts of speech for
each word in the texts and domain-specific concept triggering information was generated
by the AutoSlog system. Whenever aword in the sample was assigned a noun, nm, gerund,
or adverb part-of-speech tag by the OTB tagger, we gathered information regarding the
semantic features assigned to the word by MayTag. Table 5.8 lists the semantic features
assigned to a handful of the 5546 unique words appearing in that sample along with their
associated frequencies. If this pattern of usage continued as more texts in the corpus were
tagged, one might want to conclude that: “also” should always be assigned the nil/nil
tags; “largest” and “proposed” should always be assigned the entity/nil tags; “Subaru,”
“Sugetsu,” and“Sumitomo” shouldalways be considered jv-entity/company-names; “years”
is a time/nil; and “still” and “technology” are too ambiguous to assign any default semantic
feature tags.

5.5.4 ExtendingMayTag forDomain-IndependentLexicalDisambigua-
tion

Kenmore has been presented as a framework for domain-specific knowledge acqui-
sition for conceptual sentence analysis. Hence, MayTag has been presented as a system
that can acquire domain-specific lexical knowledge. An important question, however, is
how this approach can be extended to handle lexical ambiguities in unrestricted domains.
One solution would be to build up a collection of case bases, each one of which was
designed to cover texts in a single specialized domain. A more feasible solution might
be to start with a general, on-line dictionary and use the case-based approach to decide
which of the definitions listed for a word is appropriate in a given context. Each case in
the case base includes the usual context and solution portions, but the context part could
be expanded to include a description of the options available for the current word in the
on-line dictionary. The solution part of the case specifies the definition that is correct in
the current context or, if none were correct, describes the novel definition. This approach
allows one to start with a general lexicon (rather than creating one from scratch) and make
implicit domain-specific or parser-specific additions to it via the case base. Unfortunately,
broadening the domain of the texts without limiting the scope of the natural language task
may make MayTag’s training phase prohibitively long — both proposed solutions still

21This included every other text of the 200 TIPS2 evaluation texts.
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Table 5.8: Creating an Explicit Lexicon.

Word Semantic Feature Frequency
Combination

ALSO nil/nil 86
LARGEST entity/nil 23

jv-entity/company-name 1
PROPOSED entity/nil 10
STILL nil/nil 11

time/nil 9
SUBARU jv-entity/company-name 8

jv-entity/government 2
SUGETSU jv-entity/company-name 5
SUMITOMO jv-entity/company-name 8
TECHNOLOGY entity/nil 10

industry-product/nil 5
industry-product/research 4
industry-product/product 3
jv-entity/company-name 1

YEARS time/nil 28
entity/nil 5

require supervised training. We will return to these issues again in Chapter 10 following
a more detailed analysis of the results presented in this chapter.

5.6 Summary

MayTag illustrates Kenmore’s ability to acquire lexical knowledge. It simultaneously
learns three classes of knowledge using the same case representation, and requires no
hand-codedacquisition heuristics and relatively little training. By encoding context as part
of a word’s representation, MayTag also allows the syntactic and semantic interpretation
of a word to change dynamically in response to new contexts without the use of lexical
disambiguation heuristics. In addition,MayTag’s context-sensitive interpretations provide
a simplemechanism for detectingwhenanexisting “definition” for aword is inappropriate
or incomplete. MayTag has been tested in two practical applications — (1) assigning
interpretations for occasional unknown words and (2) tagging all words in an incoming
text from scratch. In these tasks, MayTag performs statistically significantly better than
baselines that randomly guess or choose default values for the features of the unknown
word. In addition, the system was used to provide semantic feature tagging for the
UMass/Hughes CIRCUS system, which competed in the MUC-5 and TIPSTER national
performance evaluations of text processing systems. Finally, we have demonstrated that
MayTag provides a uniform computational mechanism for handling ambiguous words
and unambiguous words, as well as completely unknownwords.



C H A P T E R 6

USING DECISION TREES TO
DISCARD IRRELEVANT FEATURES

The Kenmore framework uses an inductive learning component to acquire knowledge
for conceptual sentence analysis.1 In the last chapter, we saw how MayTag successfully
used a case-based reasoning algorithm as its inductive learning component to acquire
lexical disambiguation knowledge for theCIRCUS sentence analyzer. In general, however,
the performance of any learning algorithm depends to a large extent on the representation
used to encode the training cases. Unfortunately, choosing an appropriate case repre-
sentation is both a time-intensive and knowledge-intensive task and is another potential
knowledge engineering bottleneck during system development. As a result, we take the
following approach to designing an adequate case representation within the Kenmore
framework. First, because Kenmore’s cases encode the progress of sentence analysis, we
choose a case representation that is natural for the sentence analyzer. This means that
the representation should adhere to the sentence analyzer’s major language processing
assumptions. CIRCUS, for example, recognizes major syntactic constituents like the
subject, verb, and direct object of a sentence, so any case representation used with the
CIRCUS sentence analyzer should include those constituents. Second, once this baseline
case representation has been created, we will rely on entirely automated approaches
to improve the representation by discarding irrelevant features, associating appropriate
weights with the features, and adding new features.

This thesis presents two approaches for improving a baseline case representation. One
method has been used in conjunction with the WHirlpool system (Chapter 8) and will be
described in Chapter 8.6. The second method has been used in conjunction with MayTag
and was described at a high level in the last chapter. It is a domain-independent approach
that uses decision trees to find the relevant features in the representation, those features
that aid a particular classification task. Any features that are not deemed relevant to the
task can then be discarded from the representation. The main goal of this chapter is to
describe and evaluate this decision tree approach to feature selection. Section 6.1 first
presents the approach; Section 6.2 evaluates it using the lexical acquisition task described
in the last chapter. We compare three case-based solutions to that problem: (1) a solution
that accesses all context features during case retrieval (i.e., MayTag’s original case-based

1Some of the material from this chapter appeared originally in Cardie [1993b].
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reasoning component), (2) a solution that uses only the “relevant” context features during
case retrieval as determined by the decision tree subsystem, and (3) a solution that uses
a set of human-generated “relevant” features during case retrieval. In addition, all of
the case-based solutions are compared to a solution that uses the decision tree directly.
Experiments show that the solution that includes the automated approach to feature set
selection performs the best of the case-based solutions and also outperforms the pure
decision tree approach. Moreover, a related result emerges in the experiments of this
chapter: MayTag consistently achieves better resultswhen the contextmadeavailable to the
learning component is appropriately limited, indicating that lexical ambiguity resolution
in CIRCUS can proceed without the use of all available syntactic and semantic cues.

6.1 A Decision Tree Approach to Feature Set Selection

In Section 5.4.2, we described the decision tree approach to feature set selection at
a high level as a black box that takes as input a set of training cases for a particular
classification task described in terms of attribute-value pairs. It produces as output a list of
those attributes that are useful for the task. This section provides the details of the feature
selection algorithm.

A decision tree is a data structure or knowledge structure that represents a set of rules
for classification. Figure 6.1 shows a simple decision tree that might be used to classify
balls into one of five classes — a tennis ball, basketball, baseball, kickball, or football. Each
internal node in a decision tree represents a single feature of a ball (e.g., its diameter, color,
or covering) and edges from a parent node to its children represent various values of the
parent node feature (e.g., the covering of a ball can be one of leather or fuzzy). Leaves in
the tree provide the class information, in this case the type of ball. Once the tree is created,
a new instance of a ball is classified by starting at the root, testing the specified feature
at each node, and branching to the appropriate child until a leaf node is reached. The
decision tree in Figure 6.1, for example, would classify a brown, fuzzy ball, four inches in
diameter as a football.

Although there are a number of methods for building a decision tree that are consistent
with a set of training examples, we use the C4.5 decision tree system [Quinlan, 1992]. In
building a decision tree, C4.5 employs a metric from information theory (i.e., information
gain ratio) to decide which feature to test at each branching point. The information gain
ratio metric finds the feature that best discriminates among the remaining training cases
assigned different class values. Features that become part of the decision tree, therefore,
are features that C4.5 has found to be important for the current classification task; features
omitted from the tree are regarded as irrelevant.

Figure 6.2 illustrates the decision tree approach to finding the relevant features in a
case representation. The algorithm begins with a set of training cases, each of which is
described in terms of features, 1 through , and the class value to be associated with
the case. For MayTag’s lexical acquisition task, features 1 through are the local and
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basketball
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other
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football kickball

covering

leather fuzzy

baseball tennis ball

Figure 6.1: Simple Decision Tree for Classifying Balls.

global context features that encode the state of the parser at an ambiguity point and the
class to be predicted is one of the word definition features for the current word — the
part of speech, semantic features, or concept to associate with the word. C4.5 then uses
the training cases to create a decision tree for predicting the value of class . Finally, the
algorithm notes which features occur in the tree.2 These are the features that C4.5 found
useful for predicting the value of for the training cases; they are returned as the “relevant”
features in the representation. Features that are not referenced in the decision tree can be
discarded from the representation as irrelevant to the task.

f1 f2  f3  ... fn            c
feature values class value
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predict c
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class value

class value

class value

Feature Selection Algorithm

Figure 6.2: Decision Tree Feature Selection.

2C4.5 produces a full decision tree and a pruned tree. Unless otherwise noted, we use the pruned tree in
all experiments.
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6.2 Evaluation of the Approach

In the next sections, we evaluate this decision tree method for feature set selection. In
all experiments we use the following simplification of the problem tackled by the MayTag
system:

Given the context in which an unknown word occurs as a set of attribute-
value pairs, predict the word’s part of speech, general semantic feature(s), and
specific semantic feature(s).

It is a simplification of the original problem in that no concept activation information will
be predicted. To evaluate the decision tree feature selection algorithm on this task, we
compare three case-based solutions to the problem:

1. The first solution employs all context features during case retrieval (Section 6.2.1). It
is equivalent to MayTag’s original case-based reasoning algorithm (see Section 5.4).

2. Next, we use the same general case-based algorithm as above, but rely on a human-
generated set of “relevant” features during case retrieval (Section 6.2.2).

3. Finally, we use the decision tree feature selection algorithm to find the “relevant”
context features and thenaccess just these featuresduring case retrieval (Section 6.2.3).
This variation is equivalent to MayTag’s modified case retrieval algorithm and was
employed in all experiments in Chapter 5.

From a case-based reasoning perspective, the human- and decision-tree-generated
“relevant” feature sets are being used to handle the case indexing problem— the problem of
assigning labels to cases so that only applicable ones are retrieved at the appropriate times.
Most CBR systems rely on indexing schemes specified by the system designers that are
based on expert knowledge of a particular domain. TheHYPO system[Rissland et al., 1984,
Ashley, 1990], for example, retrieves relevant cases in the trade secrets legal reasoning
domain based on a predetermined set of dimensions that influence the outcome of cases
in this domain. Examples of dimensions in that domain are the competitive-advantage
dimension (i.e., the extent to which the defendant’s access to the plaintiff’s trade secrets
gave the defendant a competitive advantage), and the disclose-secrets dimension, (i.e.,
the extent to which the plaintiff had already disclosed the trade secrets to people outside
the company). Given a set of dimensions for the domain, HYPO restricts case retrieval to
those cases that address dimensions that are present in the problem case. Similarly, the
ReMind case-based reasoning tool [Cognitive Systems, 1992] provides two mechanisms
for specifying features that will be important during case retrieval. First, the user can
assign weights to each feature in the case representation or can specify that some features
should be ignored entirely when ReMind’s nearest-neighbor case retrieval algorithm is
used. Second, the user can define prototypes — a handcrafted combination of specific
attribute-value pairs that will always be associated with a particular outcome or solution
feature. An example of a prototype in the “balls” domain might be the following: If
diameter 8 inches and covering = leather, then the ball is a basketball. When prototypes are
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used as the case retrieval mechanism and an incoming case matches one of the predefined
prototypes, ReMind retrieves all training cases indexed under the prototype. MayTag’s
decision tree approach to case indexing differs from HYPO’s dimensions and ReMind’s
feature weights and prototypes in that it automatically determines the features that are
relevant for the current retrieval task. ReMind, however, also has a mechanism for using
decision trees to create indexes automatically.3 It will be discussed in Section 6.2.3 along
with other automated papproaches to case-indexing after the details of MayTag’s hybrid
case retrieval algorithm have been presented.

In the experiments below that compare three case-based solutions to MayTag’s lexical
acquisition problem, we draw the training and test instances from MayTag’s base set of
2056 cases, one case for each occurrence of an open-class word in 120 sentences of the JV
corpus. In addition, all experiments use 10-fold cross validation: we randomly partition
the case base into ten segments and, in each of ten runs, use nine segments as the case
base and keep the remaining segment for testing. The runs progress through all ten
training/testing combinations. In particular, we emphasize that the same ten training and
test set combinations were used in the 10-fold cross validation of each experiment. All
experiments simulate the occasional-unknown-word task introduced in the last chapter.

The baseline case representation used in the experiments below predates the one
used in the MayTag experiments of Chapter 5. Nevertheless, it is nearly identical to the
MayTag case representation described in detail in Section 5.3. The only difference is that
the representation used here includes “semantic” features for verbs. These are used to
provide information about the use and tense of the verb. This difference is highlighted in
Figure 6.3, which depicts the training case for “venture” as it is used in a sentence from
the JV corpus.

6.2.1 Case Retrieval Using All Context Features
MayTag’s original case-based reasoning algorithm for learning lexical disambiguation

knowledge was described in Section 5. During the training phase a flat case base of
training examples is created. During the application phase, cases most similar to the
current context are retrieved and used to resolve the current lexical ambiguity. MayTag’s
original algorithm for case retrieval as described in Section 5.4 employs all context features
in its similarity metric and is essentially a k-nearest neighbors (k-nn) algorithm with a bias
toward examples of the unknownword encountered during training:

1. Compare the test case to each case in the case base, counting the number of context
features that match (i.e., match = 1, mismatch = 0). Only give partial credit (.5) for
partial matches and matches on nil’s.

2. Keep the highest-scoring cases.4

3Prototypes are actually used in conjunction with ReMind’s decision tree indexing scheme.

4In the original MayTag case retrieval algorithm, 10. Here we will test three values of .
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Toyota Motor Corp. has set up a joint  venture firm with Yokogawa Electric Corp. ...
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Figure 6.3: Training Case for “venture” as it is Used in the Sentence “Toyota Motor Corp. has set
up a joint venture firm with Yokagawa Electric Corp...”

3. Of these, return the case(s) whose word matches the unknown word, if any exist.
Otherwise, return all cases.

4. Let the retrieved cases vote on the definition of the current unknown word. Break
ties randomly.

The case retrieval algorithm first finds cases that best match the context of the problem
case and then restricts retrieval, if possible, to cases that were generated during training
in response to the same unknownword. As discussed in the previous chapter, this allows
the system to generate novel interpretations for words that were seen during training, but
encountered in very different contexts than the current one.

Table 6.1 shows the accuracy of the above algorithm in predicting the part of speech
and semantic features of occasional unknown words in the test sentences for = 1, 5, and
10.5 The results are compared to two baselines. The first baseline (Random Selection)
indicates the expected accuracy of a system that randomly guesses a legal value for each
missing word definition feature based on the distribution of values across the training set.
The second baseline (Default) shows the performance of a system that always chooses the
most frequent value as a default. Chi-square significance tests indicate that the case-based
approaches always outperform the baselines at the 99% significance level.

5As in Chapter 5, we allow mismatches between the noun and noun modifier parts of speech because the
parser can accurately fix these errors.
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Table 6.1: Case Retrieval Using All Context Features (% correct).

Word CBR CBR CBR Random Default
Definition (k=1) (k=5) (k=10) Selection
Feature
p-o-s 86.6 88.8 89.4 34.3 81.5
gen-sem 58.5 66.2 69.1 15.9 25.6
spec-sem 62.9 70.4 72.2 24.7 45.3

6.2.2 Case Retrieval Using Human-Generated Relevant Features

The problem with the original MayTag case retrieval algorithm as described above is
that it assumes that all context features are equally important for predicting each of the
word definition features for anunknownword. Intuitively, however, it seems that accurate
prediction of each class of missing information may rely on very different subsets of the
feature set. Indeed, it has been shown that nearest-neighbor algorithms perform poorly in
the presence of irrelevant features [Aha et al., 1991, Aha, 1989].

One general method for optimizing our case retrieval algorithm for a particular
interpretation task is to include in the k-nn calculations only those features deemed
relevant to the task according to some collection of expert knowledge. As described
at the beginning of Section 6.2, HYPO’s dimensions andReMind’s prototypes allow expert
domain knowledge to restrict case retrieval to relevant portions of the case base.

In the same way, we can optimize MayTag’s case retrieval algorithm for prediction of
eachworddefinition feature by incorporating into the similarity metric informed intuitions
about thenature of each class of knowledge tobepredicted. Some successful part-of-speech
taggers, for example, make decisions based only on knowledge of the words in a window
to either side of the unknown word. This implies that the k-nn routine should only
include the local context features in its calculations — the global context features may be
irrelevant to the part-of-speech tagging task. On the other hand, the semantic features of
an unknown word seem to depend partially on local context and partially on knowledge
about the global state of the parse. For example, the semantic class of a noun in the
direct object position may depend on the semantic class of the clause’s subject. The direct
object is much more likely a company if it follows “IBM bought...” than “John bought...”
Therefore, when predicting the semantic class of a lexical item (e.g., human, company-name),
it might be better first to find the most similar cases using the local context features and
then to choose from these the cases that match best along both the local and global context
dimensions.

We incorporated these observations into two variations of the original MayTag case
retrieval algorithm. The first variation, labeled the “p-o-s” variation, was designed to
improve part-of-speech (p-o-s) prediction and uses only the local context features in its
k-nn comparisons. The second variation, labeled the “semantic feature” variation, was
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designed to improve prediction of the gen-sem and spec-sem word definition features.
It submits those cases initially selected using just local context features to an additional
k-nn filter that includes the global context features as well. Like the original case retrieval
algorithm, both intuitive variations also prefer cases whose word feature matches the
unknownword.

Table 6.2 shows the results of using the human-generated relevant feature sets for case
retrieval and compares them to MayTag’s original case retrieval algorithm that accessed
all context features in the nearest-neighbor calculations. Only the results for =10 are
shown, but runs using =1 and 5 exhibited similar behavior. Also shown in the table
are annotations for statistical significance. (*’s indicate performance of human-generated
feature sets as compared to the “all features” variation.) As expected, focusing on local

Table 6.2: Case Retrieval Using Human-Generated Relevant Features (Table shows % correct for
=10; ** indicates significance with respect to the “all features” variation; 01).

Word P-O-S Semantic All
Definition Variation Feature Features
Feature Variation Variation
p-o-s 91.4** 91.0** 89.4
gen-sem 70.3 69.4 69.1
spec-sem 73.6 72.2 72.2

features improved part-of-speech prediction when compared to the original case retrieval
algorithm. This result is consistent with other results that have shown part-of-speech
tagging to rely mainly on local, lexical information (e.g., Brill [1994]).6 As shown in
Table 6.2, the semantic feature variation unfortunately did not improve performance of
semantic feature prediction. Instead, it unexpectedly improved performance of part-of-
speech prediction. This seems to indicate that semantic feature disambiguation does not
require access to global context features often enough to warrant their inclusion in the
nearest-neighbor matching.

In more general terms, the above experiments indicate that it is possible to use
informed intuitions and expert domain knowledge to discard irrelevant attributes from a
case representation, but that the results are not always predictable.

6It should also be noted, however, that a global context feature can only contribute fully to the similarity
score when (1) the same syntactic constituent (e.g., subject, direct object) exists in both the problem case and
the training case, and (2) their semantic classesmatch. As a result, the system is biased toward using the global
context features only for tasks that rely on semantic rather than syntactic cues, and suggests that accuracy
in part-of-speech assignment does not rely on the kind of semantic information encoded in MayTag’s global
context features.
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6.2.3 Hybrid Case Retrieval Algorithm

The experiments in the last section relied on handcrafted feature sets to improve the
performance ofMayTag’s k-nn case retrieval algorithm. Given that feature set specification
is a notoriously time-consuming and knowledge-intensive task [Quinlan, 1983], however,
it would be better if the feature set could be chosen systematically and automatically. This
is exactly what the decision tree algorithm for feature selection described in Section 6.1
was designed to do. The experiments below use a hybrid case retrieval algorithm that
combines the decision tree feature selection algorithm with the usual nearest-neighbor
case retrieval algorithm — the decision tree selects the features to be included in the k-nn
calculations. This is MayTag’s modified case retrieval algorithm thatwas described briefly
in Section 5.4.2 and used in all experiments of that chapter.

As described in Section 5.4.2, the hybrid case retrieval algorithm requires two mod-
ifications to MayTag’s original case-based reasoning algorithm. First, after the case base
has been created, we use the decision tree feature selection algorithm to find three sets
of relevant features — one set for each of the three classes of lexical knowledge to be
predicted for the unknownword ( , , and ). This is performed
once, prior to the first case retrieval operation, and appears in Figure 6.4.7 Then, instead
of invoking the case retrieval algorithm once for each test case, we run it three times, once
for each of the three word definition features to be predicted. In the retrieval for attribute
, however, only the features in should be included in the k-nn calculations.8 The
hybrid case retrieval algorithm is depicted in Figure 6.5.

Table 6.3 shows the average performance of the hybrid case retrieval algorithm across
ten runs and compares it to the “all features” and “p-o-s” variations as well as to two
additional baselines.9 The first of these baselines (Random Features) is a system that
randomly chooses the features to be used in the k-nn calculations while controlling for
feature set size (i.e., weuse the samenumberof features thatwereused in the corresponding
run for the hybrid approach).10 The second baseline (Pure Decision Tree) shows the
accuracy of a system that uses the C4.5-generated decision tree directly to predict each
word definition feature. Again, only results for =10 are shown although results for =1

7Note that as part of the 10-fold cross validation scheme, we actually create ten decision trees for eachword
definition feature — one for each group of training cases.

8We actually only compare each test case to the entire case base once (not three times) and use the results
of that comparison for each of the three k-nn calculations.

9We omitted the “semantic features” variation from the table because it performed poorly.

10This baseline was included to ensure that the performance of the decision tree approach to feature set
selection is not simply a result of choosing a smaller set of features.
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and5weremuch the same.11 In all but one instance in Table 6.3, the case retrieval algorithm
that used the decision tree features significantly outperforms the other approaches at the
99% level ( 01). The only exception was for part-of-speech prediction, in which the
decision tree features variation outperformed the “p-o-s” variation at the 95% significance
level and the remaining approaches at the 99% level.

Table 6.3: Case Retrieval Using C4.5-Generated Relevant Features (Table shows % correct for
10; * and ** indicate the significance of the decision tree features variation with respect to all

other variations. 01 and 05. See accompanying text for explanation of **/*.).

Word Decision Tree All P-O-S Random Pure
Definition Features Features Variation Features Decision
Feature Variation Variation Tree
p-o-s 92.5**/* 89.4 91.4 89.7 89.0

gen-sem 73.4** 69.1 70.3 62.9 66.0
spec-sem 76.7** 72.2 73.6 71.1 69.9

The use of decision trees to create indexes for the case base may initially appear
similar to a number of automated approaches to case indexing. For example, the CYRUS
system [Kolodner, 1983] andmany follow-on CBR systems (e.g., CHEF[Hammond, 1989])
use E-MOPs to organize cases hierarchically in a dynamic memory [Schank, 1982]. The
resulting discrimination network is then traversed when processing new problem cases.
The E-MOPs indexing scheme, however, explicitly encodes generalizations of individual
cases as higher level nodes in the network. In addition, E-MOPs index a new case in terms
of all of its non-“normative” features — that is, in terms of any features that are not part
of the generalized event description. MayTag’s use of decision trees as a case-indexing
method is very different than E-MOPs: no generalizations are calculated or represented
and an incoming case is indexed in terms of all attributes deemed relevant by the decision
tree rather than in terms of its individual differences from a norm.

The ReMind case-based reasoning shell [Cognitive Systems, 1992] also uses decision
trees as one of its available case-indexing methods. Like MayTag, the system creates a
decision tree from the case base during training by determining which context features
correspond to each solution feature. ReMind’s decision tree generator, however, keeps
track of the training cases affected by decisions at each node in the tree. After training,
when a new case enters the system, ReMind presents the case to the decision tree and
returns all cases indexed at the leaf. ReMind’s use of decision trees, then, is equivalent to

11In general, we did not expect the decision tree to perform as well as the case-based approaches because
attribute values in MayTag can be a list of values (e.g., the subject of the sentence may contain both a
company-name and an industry-product). The case-based approaches allow partial matches on features of this
type; the decision tree forces the use of a single, combined attribute value (e.g., company-name-industry-product).
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our experiments that use thedecision tree directly to determine themissingworddefinition
features. MayTag, on the other hand, uses the decision tree to for feature set selection and
then indexes each case with respect to this set of relevant features.

6.3 Analysis of Approach
The sections below take a closer look at the decision tree approach to feature set

selection. In each section we provide concrete examples of the decision trees used in
MayTag’s hybrid case retrieval algorithm. In addition, we look more generally at the
classes of features deemed relevant by the decision tree algorithm for each of MayTag’s
lexical acquisition tasks. We find that, for CIRCUS, the solution to each lexical ambiguity
task accesses a limited subset of the available context features.

6.3.1 Decision Trees for Part-of-Speech Prediction
Figure 6.6 shows oneof the decision trees created by C4.5 for part-of-speech prediction.

(There were ten such trees created for the experiments above and in Chapter 5 as part of
the 10-fold cross validation evaluation scheme.) The tree indicates that the part of speech
of the current word should be determined by first checking the general semantic feature
associated with the following word (fol1-gen-sem). For most values of fol1-gen-sem, the
tree dictates that the current word is a noun modifier. However, if the general semantic
feature for the following word is industry-product, time, or nil, then the part of speech of the
preceding word (prev1-pos) plays a role in determining the current word’s part of speech.
For part-of-speech prediction, fol1-gen-sem was the root node feature in all ten decision
trees. Although this one word lookahead seems reasonable, it may cause problems for
the tagging-from-scratch task where information regarding the next word is unavailable
unless the word appeared during training.

Figure 6.7 shows the frequency with which the non-“word” context features occurred
in the ten relevant features lists for the MayTag part-of-speech experiments of
Chapter 5 (Section 5.5).12 Preceding and following context features appear to be equally
important for part-of-speech prediction, especially those for the immediately preceding
and immediately following words. In addition, 100% of the context features associated
with syntactic knowledge appeared in the relevant features lists. The same was not true
for context features associated with semantic knowledge. Finally, very few global context
features appear to play a part in part-of-speech prediction although the semantic features
associated with the subject of the current clause are sometimes important.

6.3.2 Decision Trees for Semantic Feature Prediction
Figure 6.8 shows one of the ten decision trees for general semantic feature prediction

that was generated during the MayTag experiments of Chapter 5. The tree indicates that

12Recall that all “word” features were omitted from the cases used to train the decision trees.
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fol1-gen-sem = generic-loc, location, person-position, ownership-percentage, 
                          capitalization, human, facility, money, nationality, entity, jv-entity -> nm
fol1-gen-sem = industry-product ->
|          prev1-pos = conjunction ->
|          |          prev2-gen-sem = industry-product -> nm
|          |          prev2-gen-sem = [others] -> verb
|          prev1-pos = [others] -> nm, verb 
fol1-gen-sem = time ->
|          prev1-pos = noun -> 
|          |          prev1-gen-sem = human -> verb
|          |          prev1-gen-sem = jv-entity -> verb
|          |          prev1-gen-sem = [others] -> adv
|          prev1-pos = nm -> 
|          |          fol1-pos = noun -> nm
|          |          fol1-pos = [others] -> noun
|          prev1-pos = [others] -> adv, verb, nm
fol1-gen-sem = nil -> 
|          prev1-pos = connective -> noun, adv
|          prev1-pos = adv -> adv, verb
|          prev1-pos = aux, verb, comma -> pasp, verb, adv, noun
|          prev1-pos = noun ->
|          |          morphol = ed -> pasp, verb
|          |          morphol = nil ->verb, adv, pasp, modl
|          |          morphol = [others]-> verb, conn, pres, adv noun
|          prev1-pos = determiner -> noun, adv, nm
|          prev1-pos = [others]-> noun, verb

Figure 6.6: Sample Decision Tree for Part-of-Speech Prediction.
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the general semantic feature of the current word should be determined by first checking
the specific semantic feature of the preceding word (prev1-spec-sem). If this information is
missing (i.e., nil), then the specific semantic feature of the following word (fol1-spec-sem)
should be noted. If we look at the decision trees associated with all ten feature
lists, we find that prev1-spec-sem is always the top-ranked feature. A sample decision
tree for specific semantic feature prediction is shown in two parts in Figures 6.9 and 6.10.
Not surprisingly, many of the same context features are tested at the top levels of both
the general and specific semantic feature decision trees. Like general semantic feature
prediction, prev1-spec-sem is always the root node feature in the C4.5 decision trees for
specific semantic feature prediction.

Figures 6.11 and 6.12 show the frequencywith which the non-“word” context features
occurred in the ten and relevant feature lists for the MayTag experi-
ments of Chapter 5 (Section 5.5). Aswas the case for part-of-speech prediction, 100% of the
syntactic context features are referenced by at least onedecision tree for general and specific
semantic feature prediction. For general semantic feature prediction, the “following” local
context features appear to be slightly more important than the “preceding” local context
features. In addition, three semantic global context features appear to play a role — the
domain-specific concepts associated with the verb and the last constituent, and the specific
semantic features associated with the subject. For specific semantic feature prediction,
the “preceding” and “following” local context features are equally important. Although
a greater variety of global context features are referenced for specific semantic feature
prediction than for general semantic feature prediction, the specific semantic feature
lists access the global context features less often (8 vs. 23 times).

6.3.3 Decision Trees for Concept Type Prediction
Figures 6.13 and 6.14 show a sample decision tree for predicting the domain-specific

concept associated with the current word. Unlike the decision trees for part-of-speech
and semantic feature prediction, however, the concept type tree is the full C4.5 decision
tree rather than the pruned version. The full trees were used to derive the lists
because the pruned trees test no context features at all. They simply state that the nil
concept type should be returned.13 In any case, the decision trees indicate that the first
feature to check for concept type prediction of an unknown word is the specific semantic
feature of the second following word, i.e., fol2-spec-sem. Fol2-spec-sem is the root node
feature in all ten feature lists. This implies that the concept associated with the
current word can be determined by looking for the semantic type of potential slot fillers
for the concept. If this information is missing (i.e., nil), then the concept associated with
the second following word (fol2-cn) should be noted.

Figure 6.15 shows the frequencywithwhich the non-“word” context features occurred

13The pruned trees were of this form because relatively few words actually activate concepts in this domain
and returning the default value of nil works quite well overall.
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prev1-spec-sem =  ceo, exec, sr-exec -> person-position
prev1-spec-sem =  generic-company, company-name -> jv-entity
prev1-spec-sem =  factory, mine -> entity
prev1-spec-sem =  research, government -> industry-product
prev1-spec-sem =  product+site, facility+production, other-facility,    
                               facility-name -> facility
prev1-spec-sem =  sales+store, service+store -> facility+industry-product
prev1-spec-sem =  person, human-title, human-name -> human
prev1-spec-sem =  other-loc, continent -> location
prev1-spec-sem =  sales ->
|          last-constit = clause, prep-phrase, noun-phrase, nil -> jv-entity
|          last-constit = verb -> entity
prev1-spec-sem =  country ->
|          prev2-gen-sem = location, jv-entity -> jv-entity
|          prev2-gen-sem = entity -> money
|          prev2-gen-sem = [others] -> location
prev1-spec-sem =  finance ->
|          prev2-gen-sem = nationality -> jv-entity
|          prev2-gen-sem = [others] -> industry-product
prev1-spec-sem =  city ->
|          fol2-pos = infinitive -> jv-entity
|          fol2-pos = adv -> facility
|          fol2-pos = verb -> entity
|          fol2-pos = [others] -> location
prev1-spec-sem =  nil ->
|          fol1-spec-sem =  ceo, sr-exec -> person-position
|          fol1-spec-sem =  mine, transportation -> entity
|          fol1-spec-sem =  production+site -> money
|          fol1-spec-sem =  site, factory, production, store -> industry-product
|          fol1-spec-sem =  person, finance, government -> nationality
|          fol1-spec-sem =  other-loc, other-facility, city -> location
|          fol1-spec-sem =  continent, exec -> generic-loc
|          fol1-spec-sem =  service -> time
|          fol1-spec-sem =  spoke, generic-company, company-name -> jv-entity
|          fol1-spec-sem =  human-name -> human
|          fol1-spec-sem =  facility-name -> facility
|          fol1-spec-sem = research -> 
|          |          prev1-pos ...
|          |          fol2-gen-sem ...
|          fol1-spec-sem = nil ->
|          |          morphol ...
|          |          |          prev2-pos ...
|          |          |          fol2-cn ...
|          |          |          |          fol1-pos ...
|          |          |          |          |          prev1-pos ...
|          |          |          last-constit-cn ...
|          |          |          fol1-gen-sem ...
   ...

Figure 6.8: Sample Decision Tree for General Semantic Feature Prediction (partial tree).
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prev1-spec-sem =  company-name ->
|          fol1-gen-sem = person-position -> exec
|          fol1-gen-sem = product-service -> product
|          fol1-gen-sem = time -> generic-company
|          fol1-gen-sem = [others] -> company-name
|          fol1-gen-sem = nil -> 
|          |          morphol = ing, proper -> company-name
|          |          morphol = [others] -> generic-company
|          |          morphol = s -> 
|          |          |          fol1-pos = prep -> sales
|          |          |          fol1-pos = aux, conj -> company-name
|          |          |          fol1-pos = [others] -> spoke
prev1-spec-sem =  ceo -> ceo
prev1-spec-sem =  generic-company -> generic-company
prev1-spec-sem =  exec -> exec
prev1-spec-sem =  factory, mine, sales, service, city, finance -> nil
prev1-spec-sem =  research -> research
prev1-spec-sem =  sr-exec -> sr-exec
prev1-spec-sem =  production+site -> site
prev1-spec-sem =  sales+store -> sales+store
prev1-spec-sem =  person -> person
prev1-spec-sem =  other-loc -> other-loc
prev1-spec-sem =  human-title, human-name -> human-name
prev1-spec-sem =  government -> production
prev1-spec-sem =  factory+production -> factory
prev1-spec-sem =  other-facility -> other-facility
prev1-spec-sem =  facility-name -> facility-name
prev1-spec-sem =  service+store -> service+store
prev1-spec-sem =  country ->
|          prev2-gen-sem = location, entity, jv-entity -> nil
|          prev2-gen-sem = [others] -> country

Figure 6.9: Sample Decision Tree for Specific Semantic Feature Prediction (partial tree, part 1).

in the ten relevant features lists for the MayTag experiments of Chapter 5
(Section 5.5). In general, the “following” local context features are accessed more often
than the “preceding” local context features. In addition, it is interesting that the decision
tree accessed many syntactic features (i.e., the last-constit attribute and p-o-s features)
in spite of the fact that concept activation would seem to be a purely semantic question.
One explanation for this is that accurate concept activation requires clause boundary
recognition and some knowledge of the type of syntactic structure that the parser is
processing. Although neither of these pieces of information is included explicitly in the
case representation14, both canbe inferred by examining the last-constit andp-o-s features.
Finally, many global context features appear to play a role in concept activation — only
the semantic features associated with the last constituent are not accessed by any of the
decision trees for concept type prediction. It should be noted, however, that many more
context features appear in this chart than in the previous charts simply because we are
using the full C4.5 decision tree rather than the pruned version.

14The last-constit feature does note when clause boundaries have been crossed, but clause boundaries to
the right of the current word are not recognized.
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prev1-spec-sem = nil ->
|          fol1-spec-sem = ceo -> ceo
|          fol1-spec-sem = mine -> nil
|          fol1-spec-sem = sr-exec -> sr-exec
|          fol1-spec-sem = production+site, continent, exec, sales, finance, service, government, 
                                      transportation, store, service+store -> nil
|          fol1-spec-sem = site -> production+site
|          fol1-spec-sem = sales+store -> sales+store
|          fol1-spec-sem = person -> person
|          fol1-spec-sem = other-loc -> other-loc
|          fol1-spec-sem = factory -> factory+production
|          fol1-spec-sem = spoke, generic-company, company-name -> company-name
|          fol1-spec-sem = other-facility -> city
|          fol1-spec-sem = facility-name -> facility-name
|          fol1-spec-sem = research -> 
|          |          prev1-pos = determiner -> nil
|          |          prev1-pos = [others] -> research
|          fol1-spec-sem = country -> 
|          |          fol2-gen-sem = money -> nil
|          |          fol2-gen-sem = [others] -> country
|          fol1-spec-sem = production -> 
|          |          prev2-gen-sem = time -> company-name
|          |          prev2-gen-sem = entity -> 
|          |          |          fol1-gen-sem ...
|          |          prev2-gen-sem = nil -> 
|          |          |          prev1-cn = nil -> nil
|          |          |          prev1-cn = [others] -> production
|          |          prev2-gen-sem = [others] -> production
|          fol1-spec-sem = human-name ->
|          |          prev1-pos ...
|          fol1-spec-sem = nil ->
|          |          prev2-spec-sem ...
|          |          |          fol1-pos ...
|          |          |          morphol ...
|          |          |          prev1-pos ...
|          |          |          |          morphol ...

Figure 6.10: Sample Decision Tree for Specific Semantic Feature Prediction (partial tree, part 2).

6.4 Problems with the Hybrid Case Retrieval Algorithm

MayTag’s modified case retrieval algorithm (Section 6.2.3) combines the decision tree
approach to feature set selection with a nearest-neighbor matching routine. In spite of
the promising performance of this hybrid case-based reasoning algorithm on the lexical
acquisition task, there are problems with the current approach. In general, the speed of
case retrieval degrades linearly with the size of the case base. This is a problem with
the nearest-neighbors component rather than the decision tree component, however. On
the other hand, introducing decision trees for feature selection transforms MayTag from
an incremental learning algorithm to a nonincremental one. This is a disadvantage if we
want to employ the case-based learning algorithm during the training phase to propose
definitions for the current word. One solution to this problem is to replace C4.5 with an
incremental decision tree algorithm [Utgoff, 1989, Utgoff, 1994]. This would allow the
system to determine the relevant attributes associated with each word definition feature
as training cases arrive without reprocessing all preceding instances. Alternatively, one
might wait until the case base was relatively stable before employing the decision tree
approach to feature selection. Another option is to recompute the relevant feature sets
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Figure 6.11: Histogram of Features From Lists (general semantic feature prediction).
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Figure 6.12: Histogram of Features From Lists (specific semantic feature prediction).
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fol2-spec-sem = government -> tie-up-relationship
fol2-spec-sem = research -> 
|          last-constit = verb -> industry-research
|          last-constit = [others] -> nil
fol2-spec-sem = finance -> 
|          fol1-pos = determiner -> industry
|          fol1-pos = [others] -> nil
fol2-spec-sem = production -> 
|          do-cn = industry-research -> industry-production
|          do-cn = nil ->
|          |          prev2-cn = industry-research -> industry-research
|          |          prev2-cn = industry-production -> 
|          |          |          prev1-pos = nm -> nil
|          |          |          prev1-pos = [others] -> industry-sales
|          |          prev2-cn = nil -> 
|          |          |          prev1-pos = adverb, noun-phrase -> industry-production
|          |          |          prev1-pos = verb -> 
|          |          |          |          s-gen-sem = entity+nationality -> industry-sales
|          |          |          |          s-gen-sem = entity+jv-entity, jv-entity -> industry-production
|          |          |          |          |         prev1-cn ...
|          |          |          prev1-pos = aux -> 
|          |          |          |          s-cn ...
|          |          |          prev1-pos = [others] -> nil
|          |          prev2-cn = [others] -> nil
|          do-cn = [others] -> nil
fol2-spec-sem = country -> 
|          last-constit = verb -> 
|          |          prev2-pos = determiner -> tie-up-relationship
|          |          prev2-pos = [others] -> nil
|          last-constit = [others] -> nil
fol2-spec-sem = company-name -> 
|          prev1-gen-sem = ownership-percentage -> ownership-%
|          prev1-gen-sem = product-service -> 
|          |          fol1-pos = preposition -> tie-up-relationship
|          |          fol1-pos = [others] -> nil
|          prev1-gen-sem = entity -> 
|          |          morphol = er -> tie-up-relationship
|          |          morphol = nil -> 
|          |          |          fol1-pos = connective -> ownership-%
|          |          |          fol1-pos = conjunction -> nil
|          |          |          fol1-pos = comma, nm -> tie-up-relationship-jv-entity-only
|          |          morphol = [others] -> nil
|          prev1-gen-sem = nil -> 
|          |          prev2-gen-sem = jv-entity -> 
|          |          |          prev1-pos = aux -> tie-up-relationship-jv-entity-only
|          |          |          prev1-pos = [others] -> nil
|          |          prev2-gen-sem = [others] -> nil
|          prev1-gen-sem = [others] -> nil
 

Figure 6.13: Sample Decision Tree for Concept Type Prediction (part 1).
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fol2-spec-sem = nil -> 
|          fol2-cn = industry-production -> 
|          |          do-gen-sem = jv-entity, entity+jv-entity -> industry-research
|          |          do-gen-sem = [others] -> nil
|          fol2-cn = industry-sales -> 
|          |          fol1-pos = infinitive, aux, comma -> nil
|          |          fol1-pos = [others] -> industry-production
|          fol2-cn = tie-up-relationship -> 
|          |          morphol = number -> ownership-%
|          |          morphol = ed -> tie-up-relationship-secondary
|          |          morphol = nil -> 
|          |          |          fol2-pos = nm -> industry
|          |          |          fol2-pos = [others] -> nil
|          |          morphol = [others] -> nil
|          fol2-cn = nil -> 
|          |          fol2-gen-sem = ownership-percentage -> 
|          |          |          s-gen-sem = nil -> nil
|          |          |          s-gen-sem = [others] -> ownership-%
|          |          fol2-gen-sem = jv-entity -> 
|          |          |          last-constit-cn = tie-up-relationship-secondary -> tie-up-relationship
|          |          |          last-constit-cn = [others] -> nil
|          |          fol2-gen-sem = [others] -> nil
|          |          fol2-gen-sem = nationality -> 
|          |          |          v-cn ...  
|          |          |          |          prev1-gen-sem ...  
|          |          |          |          |          fol1-pos ...
|          |          fol2-gen-sem = entity -> 
|          |          |          prev1-pos ...  
|          |          |          |          do-cn ...  
|          |          |          |          |          fol1-spec-sem ...
|          |          |          |          morphol ... 
|          fol2-cn = [others] -> nil
fol2-spec-sem = [others] -> nil

Figure 6.14: Sample Decision Tree for Concept Type Prediction (part 2).
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( , etc.) only occasionally. In the last two solutions, however, we might lose some
of the inherent advantages associated with the incremental nature of case-based reasoning
algorithms. Finally, our decision tree approach to feature set selection should be tested on
additional data sets to determine its generality and to determine the class of problems that
will respond favorably to the technique.

6.5 Related Work in Automated Feature Set Selection
We are not the first to use decision trees to find a set of relevant features in a case

representation. Aha and Kibler [1987] used decision trees to specify the features to be
included in k-nearest neighbor case retrieval. They evaluated their approach using two
datasets from amedical domain task. However, they obtained mixed results — the hybrid
case retrieval approachmarginally improved overall classification accuracy for onedataset
(from 96% to 97% correct) butdegraded accuracy for theother (from89% to 84%). In related
work, Aha [1989] presents a method for learning concept-dependent attribute relevancies
in a case-based paradigm. Hedynamically updates the similarity function for each concept
by modifying its attribute weight vector in response to classification performance. Here
weuse decision trees essentially to create an attributeweight vector for each conceptwhere
the weights are either zero or one. However, one possibility that we have not yet explored
is to use the information gain metric directly to derive attribute weights. This approach
has been used in Daelemans et al.[1993] and Daelemans [in press] to find attribute weights
for a number of low-level language learning tasks.

The results of the experiments in this chapter indicate that the decision tree approach
to feature set selection is a viable method for improving a baseline case representation.
This result has important implications for work in case-based paradigms because it clearly
indicates that decision tree algorithms can be used to improve the performance of some
CBR systems without reliance on potentially expensive expert knowledge. On one hand,
these results may not seem surprising since previous research has found the converse
to be true — Skalak and Rissland [1990] show that a case-based reasoning system can
successfully perform the feature selection task for a decision tree classification system.
However, Almuallim and Dietterich show that the ID3 decision tree system [Quinlan,
1986] is not particularly good at selecting a minimum set of features from an original set
containing possibly many irrelevant attributes [Almuallim and Dietterich, 1991]. While
their results may hold in general, we claim that there is at least one important class of
problem for which decision tree algorithms can perform feature specification reasonably
well. In particular, this approach may succeed when the baseline case representation
contains many irrelevant features.



C H A P T E R 7

MAYTAG PERFORMANCE
ANALYSIS

The last two chapters described MayTag, an instantiation of the Kenmore framework
that acquires lexical knowledge, aswell as its decision tree approach to feature set selection.
This chapter examines more closely MayTag’s ability to handle lexical ambiguities. In it,
we discuss when and why our case-based approach to lexical disambiguation succeeds
and when and why it fails. In addition, we outline possible solutions to some of the
problems that were discovered.

7.1 Part-of-Speech Disambiguation

Figure 7.1 summarizes MayTag’s performance for part-of-speech prediction in two
different tasks: (1) predicting the part of speech for occasional unknownwords in the test
sentences and (2) predicting the part of speech for all words in a test sentence — tagging
from scratch. These results were presented in Chapter 5 where a detailed description of
the experiments can be found. Briefly, the experiments of that chapter draw from a base set
of 2056 cases created during a human-supervised training phase. Each case represents the
context-dependent interpretation of a single occurrence of an open-class word from 120
sentences in the JV corpus. In each experiment, MayTag relied on a hand-coded lexicon of
129 functionwords to provide part-of-speech information for closed-class words anddrew
from the interpretations stored in the case base to predict the part of speech for all other
(open-class) words in each test sentence. The results in Figure 7.1 showMayTag’s average
percentage correct using 10-fold cross validation and are compared to two baselines. The
first baseline (RandomSelection) indicates the expectedaccuracyof a system that randomly
guesses a legal part of speech based on thedistribution of parts of speech (for theopen-class
words) across the training set. The second baseline (Default) shows the performance of
a system that always chooses the most frequent part of speech as a default. MayTag’s
performance on the open-class words is shown in the third column of each block of
results and MayTag’s performance across all words in the test sentences is shown in the
final column of each block. In general, MayTag’s overall performance for part-of-speech
prediction is comparable to the performance of statistical part-of-speech taggers, which
generally achieve accuracies in the 96% range [Charniak, 1993].
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Figure 7.1: Part-of-Speech Prediction (% correct).

As described in Chapter 5, the part-of-speech taxonomy used by MayTag contains
18 parts of speech (see Table 5.4). Seventeen of 18 part-of-speech tags occur across the
prev1-pos, prev2-pos, fol1-pos, and fol2-pos features of the training cases. (Only copulars
do not occur.) However, only 11 parts of speech were selected by the human supervisor as
values for the part of speech of the unknownword represented by each training case, i.e.,
for the part-of-speech word definition feature. The distribution of these values is shown
in Table 7.1. Although most closed-class words are defined in the function word lexicon,
the table shows that some are represented in the case base (e.g., modl, conn, prep). This
happens in one of two situations: (1) a closed-class word is missing from the function
word dictionary (e.g., the connective “otherwise” appeared in the training sentences, but
was not in the function word dictionary), or (2) a particular closed-class word is very
ambiguous for the domain and, hence, was removed from the functionword dictionary so
that MayTag might perform the part-of-speech disambiguation. For example, in the joint
ventures domain theword “may” is sometimes amodal (e.g., “IBMmay begin building...”)
and sometimes a noun (e.g., “The company will open in May”). Rather than design a
complicated procedural definition for “may” that can determine when the noun form is
preferred over a modal (and vice versa), we simply exclude the word from the function
word dictionary altogether and let MayTag provide the disambiguation.

In any case, it is clear from Table 7.1 that the vast majority of open-class words are
either nouns or noun modifiers.1 Because MayTag receives more training on words of
these classes, onewould expectMayTag’s accuracy for noun andnounmodifier prediction
to be quite good. This is, in fact, the case. Figure 7.2 shows the breakdown of MayTag’s
performance on individual parts of speech for the occasional-unknown-word task using

1The number of nouns and noun modifiers is high for two reasons: (1) the texts contain many company
names and product descriptions comprised of nounmodifiers and nouns, and (2) the part-of-speech taxonomy
does not have separate categories for proper nouns and pronouns — both will be labeled as nouns or noun
modifiers depending on their position within the noun phrase.



102

Table 7.1: Part-of-Speech Frequencies for Unknown Words (2056 cases).

Part of Speech Frequency
modl (modal) 1
conn (connective) 2
prep (preposition) 3
ger (gerund) 5
pres (present participle) 15
ptcl (particle) 24
pasp (past participle) 73
adv (adverb) 83
verb (verb) 175
noun (head noun) 792
nm (noun modifier) 883

the 2056-instance case base.2 The graph shows two values for each part of speech, . The
’s indicate the percentage of unknownwords that should have been taggedwith and the
corresponding ’s show MayTag’s accuracy in predicting . The graph clearly shows that
MayTag performs well overall because it performs well on the frequently occurring parts
of speech. Taken together, the noun and nounmodifier categories account for 81.5% of the
test cases of which MayTag correctly tags 98.6% correctly. In general, the graph indicates
that accuracy on individual part-of-speech prediction improves as representation of that
part of speech in the training set increases.

7.1.1 Types of Errors

It is informative to examine the kinds of errorsmade byMayTag during part-of-speech
prediction. MayTag’s errors for the occasional-unknown-word task are shown in Table 7.2.
Each row of the table corresponds to a part of speech, , while the columns indicate
how words that should have been tagged with were misclassified by MayTag. Verb
particles (PTCL), for example, were mistaken once for a preposition (PREP) and twice for
noun modifiers (NM). In sentence analysis, some errors cause more trouble than others.
Recognizing an adverb (ADV) as a verb particle (PTCL), for example, will have little effect
on the meaning representation derived by CIRCUS for a sentence, for example. The most
grievous part-of-speech tagging errors are those that mistake non-verbs for verbs and vice
versa.3 All such errors are marked with *’s in Table 7.2. Approximately 46% of MayTag’s
errors were of the verb/non-verb variety. Of these, 66% were due to false hits on nouns

2The average accuracy for part-of-speech prediction of the open-class words in this 10-fold cross validation
run was 92.8%.

3Here we use “verb” to denote any of MODL, PASP, PRES, or VERB.
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Figure 7.2: Performance on Individual Parts of Speech for Occasional-Unknown-Word Tagging.
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or noun modifiers. For the tagging-from-scratch task, 55% of MayTag’s errors were of
the verb/non-verb variety and 79% of these were due to false hits on nouns and noun
modifiers.

There are a number of possible reasons for the large number of false hits. First, the case
retrieval algorithm uses a rather high value for (i.e., ten) in its nearest-neighbor retrieval
algorithm and all retrieved cases vote on the value of the unknownword’s part of speech.
In fact, more than ten cases are sometimes retrieved when there are ties. Because there are
many more noun/nm cases in the case base, the majority vote tends to be one of noun or
nounmodifier even though some of the retrieved cases cast (correct) dissenting votes. For
example, MayTag retrieved 15 cases in determining the part of speech for “decided” in the
sentence,

Tamotsu Goto, JAL senior vice president, said the airline decided to take part in the
project...

The words associated with these 15 cases are shown in rank order in Table 7.3 with their
corresponding part of speech. Of the 15 cases, five vote that “decided” should be a noun,
four vote that it should be a verb, four vote for pasp, and two vote for noun modifier. In spite
of the fact that together the verb and pasp votes account for the majority of retrieved cases
(and indicate at the very least that “decided” should be one of the verb classes), MayTag’s
simple voting scheme assigns “decided” the noun part of speech.

7.1.2 Reducing False Hits on Majority Classes
One method for reducing the number of verb/non-verb errors is to tackle the general

problem of reducing the number of false hits on nouns and noun modifiers. One way
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Table 7.2: Part-of-Speech Error Matrix for Occasional-Unknown-Word Tagging. (*’s indicate
verb/non-verb errors.)

M C P P P N P A N G V
O O T R A O R D M E E
D N C E S U E V R R
L N L P P N S B

MODL 1
CONN 2
PTCL 1 2
PREP 1 1 1*
PASP 7* 6* 6
NOUN 4 3 5*
PRES 2 1* 4* 5
ADV 2 1* 18 1* 21 6*
NM 2 2* 1 6*
GER 3
VERB 1* 5 7* 20*

Table 7.3: Unknown Words and Parts of Speech for Retrieved Cases.

UnknownWord Part of Speech
plan verb
wanted verb
expected pasp
involved pasp
held pasp
due nm
firm noun
venture noun
said verb
venture noun
construction noun
intends verb
scheduled pasp
project noun
established nm
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to do this might be to use smaller values for in the case retrieval algorithm. In all,
62% of MayTag’s errors were false hits on nouns and noun modifiers for the occasional-
unknown-word task when was ten. As shown in Table 7.4, the false hit rate drops to
57% by lowering to five, and to 45% when is set to one. The second row of the table
shows that MayTag’s overall accuracy for part-of-speech prediction is unaffected when
is set to five and declines only slightly when is set to one.4 A bigger question is whether
smaller values of will reduce the number of verb/non-verb errors. In the “decided”
sentence from above, for example, retrieving just the top-ranked case would result in the
correct part-of-speech assignment and retrieving the top five cases would at least allow
MayTag to choose one of the verb parts of speech (i.e., pasp) rather than a non-verb. The
results shown in the bottom row of Table 7.4, however, do not support this hypothesis.
As described above, 46% of MayTag’s errors in the occasional-unknown-word task are of
the verb/non-verb variety when is ten. When is five, 50% of MayTag’s errors in the
occasional-unknown-word task are verb/non-verb errors. When is one, this percentage
drops back to 46%.

Table 7.4: Using SmallerValues of for Part-of-SpeechPrediction in theOccasional-Unknown-Word
Task (Results shown are for open-class words only using the 2056-case case base).

MayTag Results 10 5 1
% false hits 62 57 45
% correct 92 92 91
% verb/non-verb errors 46 50 46

There are additionalmethods available for reducing the number of false hits and, thus,
possibly reducing the number of verb/non-verb errors. One option is to modify the case
retrieval voting scheme to assigngreaterweight to caseswith low-frequencypart-of-speech
values. Alternatively, each vote might be weighted by the degree of similarity between
the retrieved case and the problem case, or additional cases for under-represented parts
of speech (and for the verb classes in particular) could be included in the training set.
Finally, we might modify the case retrieval algorithm to use information regarding the
verb/non-verb distinction explicitly. The retrieved cases could first vote as to whether the
unknown word was a verb or a non-verb and then only those cases of the appropriate
general class would participate in the final vote for a particular part of speech.

A final source of the false hit problem might be lurking in the hybrid similarity metric
itself. As described in Section 5.4, MayTag’s nearest-neighbor calculations include only
those features associated with nodes in the part-of-speech decision tree— the decision tree

4Again, note that we are using results from a different 10-fold cross validation run than those presented in
Chapter 5.
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generated to predict the part of speech for a word given its context. However, 81.5% of the
instances used to train the decision tree fall into either the noun or noun modifier class.
As a result, the features that appear as nodes in the corresponding decision tree more than
likely will be those that aid the recognition of nouns and nounmodifiers rather than one of
the minority parts of speech. One potential solution to this problem is to use the decision
tree to find case-specific relevant feature sets rather than a single set of relevant features
that applies to all problem cases. Given a problem case, for example, we would first
send the instance through the decision tree and note the features that were tested during
the tree traversal. Then just those features would be included in the nearest-neighbors
calculations. This approach is different from the current case retrieval algorithm which
includes all features that appear in the decision tree in all nearest-neighbors calculations.

7.2 Semantic Feature Disambiguation
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Figure 7.3: General Semantic Feature Prediction (% correct).

Figures 7.3 and 7.4 summarize MayTag’s performance for semantic feature prediction
for tagging occasional unknown words and for the tagging-from-scratch task using a
case base with 2056 cases. These results and the associated experiments were presented
in Chapter 5. As was the case in analyzing MayTag’s performance on part-of-speech
prediction,MayTag’s ability topredict the semantic features of anopen-classworddepends
on the quality of its training cases, that is, on howwell the training cases cover the semantic
feature disambiguation concepts to be learned.

As described in Chapter 5, the semantic feature taxonomy (see Tables 5.1 and 5.2)
includes 14general semantic features and42 specific semantic features and reflects domain-
specific distinctions that are important for an NLP system processing texts from the JV
corpus. All 14 general semantic features occur across the prev1, prev2, fol1, and fol2
features in the 2056 training cases. However, 12 of the 42 specific semantic features
did not occur across those local context features in the training cases: province, other-
position, emp, prof, gov, owner, offic, warehouse, utilities, office, farm, and communications. The
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Figure 7.4: Specific Semantic Feature Prediction (% correct).

unknown open-class word represented by each training case assumed one of 18 general
semantic feature combinations and one of 35 specific semantic feature combinations.5 The
distribution of these values is shown in Tables 7.5 and 7.6.

Aswas the casewithpart-of-speechprediction, a small numberof semantic features are
used to tag a large percentage of the unknown open-class words in the training sentences.
The jv-entity and entity general semantic features, for example, were used to tag over 50%
of the open-class words in the training sentences and the nil specific semantic feature
was assigned to 58% of them. As shown in Figures 7.5 and 7.6, MayTag attains greater
predictive accuracy for a semantic feature as the number of training cases with that feature
increases. These graphs show the breakdown of MayTag’s performance on individual
general and specific semantic features, respectively. Both graphs are based on a 10-fold
cross-validation run inwhichMayTag simulates semantic feature prediction for occasional
unknownwords using the usual 2056-instance case base.6 For each semantic feature, , the
graphs show two values. The indicates the percentage of unknown words that should
have been tagged with and the corresponding showsMayTag’s performance on . Like
the part-of-speech performance analysis, the graphs indicate that MayTag performs best
on frequently occurring semantic features. For general semantic feature prediction, the
three most frequent tags (i.e., jv-entity, entity, nil) account for 66.3% of the test instances
and MayTag attains 88.0% accuracy across these features. For specific semantic feature
prediction, two features (i.e., nil, company-name) account for 74.6% of the instances and
MayTag achieves an average of 91.1% correct for these features.

5All 14 general semantic features and 30 of the possible 42 specific semantic features were supplied as
gen-sem and spec-sem values for the open-class word defined in each training case. In addition, some words
were assignedmore than one semantic feature in certain contexts.

6The average accuracy for open-class words across the ten runs for was 77.4% for general semantic features
and 80.1% for specific semantic features.
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Table 7.5: General Semantic Feature Frequencies for Unknown Words (2056 cases).

General Semantic Feature Frequency
NATIONALITY, JV-ENTITY 1
LOCATION, JV-ENTITY 1
CAPITALIZATION 5
INDUSTRY, JV-ENTITY 6
FACILITY, INDUSTRY 9
MONEY 24
GENERIC-LOC 25
PERSON-POSITION 25
OWNERSHIP-PERCENTAGE 31
HUMAN 41
FACILITY 43
NATIONALITY 65
TIME 95
LOCATION 131
INDUSTRY 191
NIL 322
ENTITY 515
JV-ENTITY 526
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Figure 7.5: Performance on Individual General Semantic Features for Occasional-Unknown-Word
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Table 7.6: Specific Semantic Feature Frequencies for Unknown Words (2056 cases).

Specific Semantic Feature Frequency
PRES 1
COB 1
FACTORY, PRODUCTION 1
SITE, PRODUCTION 1
MINE 1
COUNTRY, GOVERNMENT 1
CEO 2
SITE 2
STORE, SALES 2
OTHER-FACILITY 2
TRANSPORTATION 3
PERSON 3
STORE, SERVICE 5
GOVERNMENT 5
EXEC 5
HUMAN-TITLE 6
SREXEC 7
COMPANY-ALIAS 7
STORE 7
SERVICE 8
RESEARCH 8
CONTINENT 9
SPOKE 9
FACILITY-NAME 11
FINANCE 12
FACTORY 13
SALES 17
OTHER-LOC 22
CITY 25
HUMAN-NAME 28
COUNTRY 75
GENERIC-COMPANY 78
PRODUCTION 146
COMPANY-NAME 338
NIL 1195
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Figure 7.6: Performance on Individual Specific Semantic Features for Occasional-Unknown-Word
Tagging. ( ’s indicate % correct for predicting specific semantic feature, ; ’s indicate % of instances
that should have been assigned ; line is best linear approximation to ’s.)

7.2.1 Types of Errors

The error matrix of Table 7.7 displays MayTag’s errors for general semantic feature
prediction. Of seven errors in taggingmoneywords, for example, onewasmistakenly given
the jv-entity feature, five were presumed to be entity’s, and one, an industry. A portion of
the error matrix for specific semantic feature prediction is shown in Table 7.8.7 Neither
table shows errors for words tagged with more than one semantic feature by the human
supervisor (for a single occurrence of the word). There were 16 such cases for general
semantic feature tagging in the test sentences, 44% of which MayTag correctly assigns at
least one of the required features. For example, in one test sentence the word “China”
should have been assigned both the location and jv-entity general semantic features, but
MayTag thought that only the location feature applied.

It is clear from Table 7.7 that a majority of general semantic feature tagging errors
(67%) are due to false hits on the jv-entity and entity features. A similar situation holds for
specific semantic feature tagging, where 77% of the errors are caused by false hits on either
the nil or company-name semantic features. General solutions to the problem of false hits
were presented in Section 7.1.2 and would apply here as well.

7Only those features used to tag more than nine open-class words in the test sentences are included.
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Table 7.7: General Semantic Feature Error Matrix for Occasional-Unknown-Word Tagging.

A CAPITALIZATION
B GENERIC-LOC
C LOCATION
D HUMAN
E PERSON-POSITION
F OWNERSHIP-PERCENTAGE
G NIL
H MONEY
I JV-ENTITY
J ENTITY
K FACILITY
L INDUSTRY
M NATIONALITY
N TIME

A B C D E F G H I J K L M N
A 2
B 6 1 12 1 1
C 1 11 18 1 2
D 2 3 14 3
E 1 8 5
F 2 1 7
G 4 15 16 3 2
H 1 5 1
I 12 1 1 11 1 24 6 1 2
J 1 5 1 3 12 2 21 12 2 5
K 2 8 19 2 1
L 6 2 20 38 1
M 1 2 2 9 15 1
N 1 3 1 11 6 25
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Table 7.8: Specific Semantic Feature Error Matrix for Occasional-Unknown-Word Tagging.

A SPOKE
B CONTINENT
C FACILITY-NAME
D FINANCE
E FACTORY
F PRODUCTION
G SALES
H OTHER-LOC
I CITY
J HUMAN-NAME
K COUNTRY
L GENERIC-COMPANY
M GOVERNMENT
N COMPANY-NAME
O NIL

A B C D E F G H I J K L M N O
A 1 1
B 1 3
C 2 1 2 4
D 1 9
E 1 7
F 1 5 66
G 1 2 7
H 4 2 15
I 7 1 2 10
J 5 13
K 1 2 16
L 3 6
M 1 4
N 1 2 21 47
O 1 13 5 9 32
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7.2.2 Domain-Dependent vs. Domain-Independent Features

The set of semantic features used with the JV corpus can be divided into two major
groups — domain-dependent features and domain-independent features (see Table 7.9).
Eight general semantic features, for example, represent distinctions that must be made in
the domain of business joint ventures but that may not pertain outside the domain. The
remaining entries in the general semantic feature hierarchy, however, might be of use in
other domains. The domain-independent features of Table 7.9 were, in fact, also part of
the semantic feature taxonomy for the terrorism domain [Lehnert et al., 1991].

Table 7.9: Domain-Dependent and Domain-Independent Semantic Features. (General semantic
features are shown in UPPER CASE; specific semantic features are shown in lower-case.)

Domain-Dependent Domain-Independent
Features Features
JV-ENTITY MONEY
company-name company-alias NATIONALITY
generic-company government HUMAN
person human-name human-title

INDUSTRY TIME
research production LOCATION
sales service country city
finance province continent

CAPITALIZATION other-loc
PERSON-POSITION GENERIC-LOCATION
ceo cob NIL
pres offic nil
srexec exec
owner gov
spoke prof
emp other-position

FACILITY
communications site
factory farm
office mine
store transportation
utilities warehouse
facility-name other-facility

OWNERSHIP-
PERCENTAGE

ENTITY

It is useful to evaluate MayTag’s performance on domain-dependent vs. domain-in-
dependent semantic feature prediction because it is directly related to MayTag’s ability
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to acquire variable-depth knowledge representations.8 Given that the corpus is domain-
specific, one may hypothesize that the texts naturally will provide contexts that make
domain-specific distinctions easier to predict. On the other hand, the domain-independent
semantic features seem to represent more general semantic categories, which may be
easier to predict. The results in Tables 7.10 and 7.11 indicate that MayTag is better
at assigning domain-dependent semantic features than assigning domain-independent
semantic features.9 For the smaller case base (2056 cases), 34.2% of the open-class words
were given domain-independent semantic features by the human supervisor. In the
occasional-unknown-word task, MayTag provides the correct general semantic feature
for 71.5% of these cases (see Table 7.10). Words with domain-dependent features, on
the other hand, account for 65.3% of the open-class words in the training sentences and
MayTag correctly assigns the general semantic feature for these words 80.4% of the time.
For specific semantic features, there is a question as to whether the value nil should be
considered domain-dependent or domain-independent because it can be used to indicate
either that no specific semantic feature from the taxonomy applies or that a word is of
a type for which no semantic features should be assigned (e.g., a verb). The first use of
nil seems to be a very general, but domain-dependent one, while the second use of nil
seems to be a domain-independent one. Excluding nil’s, MayTag correctly tags 47.9%
of the unknown words that require domain-independent features (see Table 7.11). This
rate increases to 63.5% for domain-dependent features. When nil is considered both a
domain-independent and domain-dependent semantic feature, the results aremuch closer
— 89.1% for domain-independent semantic features and 83.5% for domain-dependent
features. Tables 7.10 and 7.11 indicate that these trends continue as the case base grows
and hold for the more difficult tagging-from-scratch task.

Table 7.10: Results for Domain-Independent vs. Domain-Dependent General Semantic Features
(% correct).

General Semantic Occasional Occasional Tagging
Feature Type UnknownWord UnknownWord From Scratch

2056 cases 3060 cases 2056 cases
domain-dependent 80.4 80.7 71.2
domain-independent 71.5 69.3 64.2

8These were proposed in Section 4.2 to support variable-depth text processing, which, in turn, is needed
for most domain-specific text summarization tasks.

9Note that the results do not include cases (two) in which the human supervisor supplied a domain-
dependent as well as a domain-independent semantic feature for the unknown word.



115

Table 7.11: Results for Domain-Independent vs. Domain-Dependent Specific Semantic Features
(% correct). (Values in parentheses indicate percentage correct if nil included.)

Specific Semantic Occasional Occasional Tagging
Feature Type UnknownWord UnknownWord From Scratch

2056 cases 3060 cases 2056 cases
domain-dependent 63.5 70.2 45.2

(83.5) (83.8) (77.2)
domain-independent 47.9 51.2 37.9

(89.1) (91.6) (89.1)

7.3 Domain-Specific Concept Disambiguation
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Figure 7.7: Concept Type Prediction (% correct).

Concept activation in CIRCUS was described in Chapter 3. It is a complex task
that amounts to selectively triggering a semantic case frame, and requires that MayTag
implicitly learn three pieces of information. First, MayTag must decide whichword should
trigger the case frame. Next, it must determine the type of case frame to trigger (i.e., the
concept type). Finally, itmust learn to recognize the context inwhich the case frame should
be activated: in CIRCUS’s terminology, MayTag must learn a set of enabling conditions.
Figure 7.7 summarizes MayTag’s ability to predict domain-specific concept activation
for both the occasional-unknown-word task and the tagging-from-scratch task using the
2056-case case base. These results were presented in Chapter 5. Possibly the most striking
result from this chart is the exceptional performance of the default baseline, a system that
always decides that a word activates no domain-specific concepts (i.e., activates the nil
concept). This strategy achieves an accuracy of 91.7% correct across open-class words
in the test sets. Although chi-square significance tests indicate that MayTag performs
significantly better than this baseline, a closer examination of these results is provided
below.
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MayTag’s concept taxonomy is shown in Table 5.3 of Chapter 5. It represents a
subset of the events that are important to recognize in the joint ventures domain. Of
the 11 concept types in the taxonomy (12 including nil), 9 occur across the open-class
words in the training sentences. Only the industry-sales and industry-finance concepts
are not represented. Table 7.12 shows the distribution of concept types across the 2056
open-class words in the training sentences and Figure 7.8 displays MayTag’s ability to
predict individual concept types.

Table 7.12: Concept Type Frequencies for UnknownWords (2056 cases).

Concept Type Frequency
INDUSTRY-RESEARCH 4
TOTAL-CAPITALIZATION 9
TIE-UP-RELATIONSHIP-SECONDARY 11
TIE-UP-RELATIONSHIP-JV-ENTITY-ONLY 12
INDUSTRY-SALES 16
INDUSTRY 18
INDUSTRY-PRODUCTION 24
OWNERSHIP-TIE-UP-RELATIONSHIP 48
NIL 1885

Aswas the case for part-of-speech and semantic feature prediction, the graph indicates
that MayTag performs best on frequently occurring concept types. The nil concept type
that was used in the default baseline, for example, accounts for 91.7% of the test cases
and MayTag achieves 98.8% accuracy for this value. If we discard all words associated
with the nil concept type, however, MayTag only predicts 49% of the concept types of
open-class words correctly. In the tagging-from-scratch task, this value drops to 43%.
Not surprisingly, false hits on nil account for 68% of MayTag’s errors in the occasional-
unknown-word task and for 75% of MayTag’s errors in the tagging-from-scratch task.

7.3.1 Types of Errors

Table 7.13 showsMayTag’s concept activation errors in the occasional-unknown-word
task. For this task, 37% of the errors that were not false hits on nil were near misses in
the sense that main event type (e.g., tie-up, industry) was predicted correctly. In one case,
for example, MayTag recognized an industry-product concept as an industry-sales concept.
In another case, a tie-up-relationship event was recognized as a tie-up-relationship-secondary.
For the tagging-from-scratch task, 34% of the errors were near misses. If we count near
misses as correct, MayTag’s accuracy for prediction of non-nil concept activations increases
from 49% to 52% correct (occasional-unknown-word task) and from 43% to 49% correct
(tagging from scratch).
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Figure 7.8: Performance on Individual Concept Types for Occasional-Unknown-Word Tagging.
( ’s indicate % correct for predicting concept type, ; ’s indicate % of instances that should have
been assigned ; line is best linear approximation to ’s.)

As discussed in Section 7.1.2, using a smaller value of may help reduce the number
of false hits on majority class values like the nil concept types. Table 7.14 summarizes
the effects of changing the value of on domain-specific concept activation and shows
that lowering does reduce the percentage of false hits. While this seems encouraging,
the reduction in the number of false hits on nil does not increase MayTag’s accuracy in
predicting non-nil concept types. To keep the false hit rate low and the accuracy for non-nil
concept prediction high, we might use small values of in conjunction with one or more
methods for increasing the representation of minority concept types in the training set
(described in Section 7.1.2).

7.3.2 Expanding the Concept Type Taxonomy

Thus far, all concept activation experiments drew from a taxonomy that represented
just a subset of the concepts that should be recognized in the joint ventures domain. To
process texts from the JV corpus to the degree required in the official MUC and TIPSTER
performance evaluations, however, anNLP system requires amore detailed and expanded
taxonomy of concept types. The taxonomy used by the UMass/Hughes CIRCUS system
for the MUC-5 evaluation contained sixteen concept types. Table 7.15 lists all concept
types from this expanded taxonomy that appeared in the 174 training sentences used to
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Table 7.13: Concept Type Error Matrix for Occasional-Unknown-Word Tagging.

A INDUSTRY-RESEARCH
B INDUSTRY-PRODUCTION
C TIE-UP-RELATIONSHIP-JV-ENTITY-ONLY
D NIL
E INDUSTRY
F TIE-UP-RELATIONSHIP
G TIE-UP-RELATIONSHIP-SECONDARY
H TOTAL-CAPITALIZATION
I OWNERSHIP-%
J INDUSTRY-SALES

A B C D E F G H I J
A 2
B 8 1
C 4 8
D 2 3 11 1 5
E 16
F 1 12 1
G 9 2
H 1
I 14
J 9

Table 7.14: Effect of Smaller Values of for Prediction of Non-nil Concept Types. (Results shown
are for open-class words using the 2056-case case base for the occasional-unknown-word task).

Domain-Specific Concept Prediction 10 5 1
% false hits 68 61 36
% non-nil correct 49 49 47
% non-nil correct (incl. near misses) 56 56 58
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generateMayTag’s larger case base of 3060 cases alongwith its corresponding concept type
from our original taxonomy. The MUC-5 taxonomy includes three entirely new concept
types and expands two of the original concepts into six more specialized ones. For the

Table 7.15: Expanded Concept Type Taxonomy.

MUC-5 Concept Types Corresponding MayTag Concept
jv-entity-person-not-jv tie-up-relationship
jv-entity-company-not-jv tie-up-relationship
jv-person tie-up-relationship
jv-entity-not-jv tie-up-relationship
jv-entity-company-jv tie-up-relationship-jv-entity-only
jv-entity-jv tie-up-relationship-jv-entity-only
industry industry
industry-production industry-production
industry-sales industry-sales
industry-service industry-service
facility none
ownership none
own percent ownership-%
revenue none
nil nil

MUC-5 performance evaluation, the UMass/Hughes system used the AutoSlog [Riloff,
1993] system to acquire concept activation knowledge for the JV corpus in the form of
concept activation rules. For example, consider the following sentence:

IBM recently formed a subsidiary for production of PowerPC chips.

Given this sentence, the CIRCUS parser, a small set of rules, and the fact that the phrase
“IBM” denotes a parent company involved in a joint venture, AutoSlogwould suggest the
following rule:

If the current word is “subsidiary” and the verb is “formed”, used in active voice, then
activate a JV-ENTITY-COMPANY-NOT-JV concept.

AutoSlog was used to generate concept activation rules like the above for the entire JV
corpus. However, because many of AutoSlog’s concept activation rules are too general,
too specific, or just incorrect, a person first must peruse the proposed rule set and discard
bogus entries.

Weuse theAutoSlog-generated concept activation rules in experiments that investigate
MayTag’s ability to perform concept activation for the expanded concept taxonomy. Dur-
ing the training phase in these experiments, we use the human-filtered AutoSlog concept
activation rules to indicate the domain-specific concept that should be activated for each
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open-class word rather than asking the human supervisor to supply that information.10

In the application/test phase, therefore, MayTag is trying to predict when the AutoSlog
concept activation rules should fire without explicitly knowing the rules. Table 7.16 shows
the results for the occasional-unknown-word task using 10-fold cross validation for a case
base of 3060 cases.11 The overall accuracy for concept prediction declines from 95% correct
to 92% correct using the expanded taxonomy, this in spite of the fact that more training is
provided. On the other hand, the new task is much more difficult because there are many
more non-nil concepts to predict across the test sentences — only 83% of the open-class
words are associated with the nil concept as compared to 92% in the original experiments.
This means that the use of the expanded concept taxonomy and a larger set of training
sentences produce a case base that is better balanced than the original and this may at least
partially explain the improved performance on words that activate a non-nil concept type
(see the last three rows of the table).

The new task is more difficult for another reason: many words activate more than
one domain-specific concept, but MayTag receives credit only when it predicts all of the
expected concepts. The frequency with which different concept type combinations are
used across the training set is shown in Table 7.17. The final column in the Table shows
that, in general, MayTag performs better as the representation of the concept type in the
training sentences increases.

Table 7.16: Prediction of Concept Types from the Expanded Taxonomy (occasional-unknown-word
task, =10).

MayTag Results Original Concept Expanded Concept
Taxonomy Taxonomy
2056 cases 3060 cases

% correct 95 92
% nil concepts 92 83
% false hits on nil 68 61
% non-nil correct 49 63
% non-nil correct incl. near misses 56 68

One problem with the concept activation rules acquired by AutoSlog is their limited
notion of the linguistic context that is adequate for activating the concept. In the terrorism
domain, for example, whenever “killed” is used as a verb in the passive voice, the concept

10In addition, OTB [Lehnert et al., 1993b] was used for part-of-speech tagging.

11This is the same case base and experimental design as was used in Section 5.5.2.1 that tested MayTag’s
ability to predict semantic features for theMUC-5/TIPSTER evaluation. In particular, the current experiments
use the same subset of relevant features in its nearest-neighbor calculationsaswere used for those experiments.
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Table 7.17: Concept Type Frequencies forUnknownWords Using the Expanded Concept Taxonomy
(3060 cases).

Concept Type Frequency % Correct
jv-entity-company-not-jv, facility, industry 1 0
jv-entity-jv, jv-person 1 0
jv-entity-jv, industry 1 0
jv-entity-company-not-jv, industry-production, revenue 1 0
jv-entity-company-jv, jv-entity-jv, own percent 1 0
jv-entity-company-not-jv, jv-entity-not-jv, own percent 1 0
industry-service 2 0
jv-entity-company-not-jv, jv-entity-person-not-jv 2 0
jv-entity-company-not-jv, industry, revenue 2 0
jv-entity-company-not-jv, industry-sales, revenue 2 0
jv-entity-company-not-jv, facility, industry-production 3 67
jv-entity-company-not-jv, jv-entity-not-jv, industry, 3 0
revenue

jv-entity-not-jv 5 0
revenue 5 40
jv-entity-company-jv, ownership 6 40
jv-person 6 50
industry-sales 6 0
jv-entity-company-not-jv, industry-sales 6 50
jv-entity-company-not-jv, own percent 7 29
ownership 8 63
jv-entity-not-jv, jv-person 9 100
jv-entity-company-not-jv, industry-production 9 22
facility, industry-production 10 70
jv-entity-company-jv, own percent 10 63
industry-sales, revenue 11 64
own percent 11 9
facility 12 58
jv-entity-company-not-jv, industry 15 46
facility, industry 15 73
jv-entity-jv, jv-entity-not-jv 17 94
jv-entity-company-jv, jv-entity-company-not-jv, 17 88
own percent

jv-entity-company-jv jv-entity-jv 24 71
jv-entity-company-jv 28 71
jv-entity-jv 32 34
industry 34 52
jv-entity-company-not-jv 50 53
jv-entity-company-jv, jv-entity-jv, own percent, 65 98
revenue

industry-production 78 68
nil 2545 98
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activation rule for TERRORIST-MURDER is satisfied. This means that the TERRORIST-
MURDER concept would be activated in the following sentence:

Gun law legislation was killed in Congress by powerful NRA lobbyists.

Because MayTag activates concepts based on a more flexible set of (implicit) enabling
conditions, it can recognize these inappropriate contexts more readily. The current
experiments, however, do not test MayTag’s ability in this regard because no human
supervisor was used todiscard erroneousAutoSlog concept activations during the training
phase.

7.4 Generalization Issues
One question that arises for MayTag is whether the system learns any useful general-

izations. For example, after training on the sentences from the joint ventures corpus, does
MayTag know that “in” implies “location?” It is difficult to address generalization issues
because the case-based approach does not encode any explicit generalizations. However,
given that MayTag learns to predict that “locations” follow “in” in certain contexts and
“time” phrases follow “in” in other contexts, we would argue that MayTag is learning to
make implicit generalizations based on the training cases. There is a further complication
in determining the extent ofMayTag’s generalizations— some features are discarded from
the case representation by the decision tree subsystem. If the features that represent “in”
in a test sentence are discarded from the case representation, for example, then the case
retrieval algorithm will not be able to use “in” as a cue that a location will follow.

7.5 Summary

MayTag provides a data-driven approach to lexical acquisition (see Chapter 5). It
should not be surprising, therefore, that its success depends to a large degree on the
examples it receives for training and how well they cover the lexical ambiguity resolution
concepts to be learned. In general, the preceding sections determined that MayTag’s
performance on a particular class value (e.g., a particular part of speech, semantic feature,
or concept) increases as thenumberof training caseswith that value increases. Inparticular,
if those classes that are most important to recognize for the natural language processing
task are well-represented in the case base, then MayTag’s approach will be successful for
that NLP task. In the business joint ventures domain, for example, it is very important to
recognize company names and, at the very least, to distinguish them from products and
people. Since the training cases for the JV corpus provide adequate representation of these
classes, MayTag’s approach is sufficient. If it were more important to recognize facilities,
however, our machine learning approach to lexical disambiguation will fail. Happily, it is
usually the case that classes that are important for a domain or task occur frequently in the
corpus, and, hence, occur frequently in the case base.

Onemajorproblem inMayTag is that cases associatedwithmajority classes overwhelm
the case base and make it difficult for the system to perform well on minority classes.
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Section 7.1.2 outlined a number of modifications to the case retrieval algorithm (and to
the training phase) that may help to solve this problem. In addition, MayTag could also be
improved if the training and/or case retrieval algorithm were tailored to reduce specific
errors that are especially detrimental to system performance (e.g., mistaking verbs for
non-verbs during part-of-speech disambiguation). These modifications, however, require
expert domain knowledge that is often difficult, expensive, and time-consuming to obtain.



C H A P T E R 8

FINDING ANTECEDENTS OF
RELATIVE PRONOUNS

This chapter demonstrates Kenmore’s ability to acquire heuristics for one class of
structural disambiguation problem — finding the antecedents of relative pronouns.1

We instantiate Kenmore in a system called WHirlpool that uses a case-based reasoning
algorithm to predict the antecedent of a relative pronoun like “who” or “whom” given
a description of the clause that precedes it. During a human-supervised training phase,
WHirlpool creates a case base of context-sensitive heuristics for relative pronoun disam-
biguation. Because context is encoded as part of each case, no explicit disambiguation
rules need to be formulated. After training, WHirlpool draws from the case base to find
the antecedent of a relative pronoun without any human intervention. Our experiments
show that the heuristics learned within the Kenmore framework equal the performance of
a set of hand-coded rules in terms of prediction accuracy.

The chapter first introduces the problem (Section 8.1) and then presents WHirlpool,
the instantiation of Kenmore that learns to find relative pronoun antecedents (Section 8.2).
We describe WHirlpool’s training phase, application phase, and initial case representation
in Sections 8.3-8.4, and then evaluate WHirlpool using this initial case representation in
Section 8.5. Next, we describe and evaluateWHirlpool’s approach to improving a baseline
case representation, an approach in which cognitive biases are explicitly incorporated
into an existing case representation (Section 8.6). Experiments indicate that WHirlpool
performs as well as a set of hand-coded heuristics for relative pronoun disambiguation
and performs significantly better than a default rule that always chooses the most recent
constituent as the antecedent. In addition, we find that WHirlpool’s prediction accuracy
increases monotonically as each of three cognitive biases is added to the baseline case
representation.

8.1 The Problem
Relative clauses consistently create problems for language processing systems. Con-

sider, for example, the sentence in Figure 8.1. Its semantic interpretation should include

1Some of the material from this chapter appeared originally in Cardie [1992a, 1992b, 1992c].
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Tony  saw  the boy   who        won  the  award. 

Figure 8.1: Understanding Relative Clauses.

the fact that “the boy” is the actor of “won” even though the phrase does not appear in
the embedded clause. Making this inference depends on the accurate resolution of two
ambiguities, each of which must be performed over a potentially unbounded distance.
The system has to:

1. find the antecedent of the relative pronoun “who,” and

2. determine the antecedent’s implicit position in the embedded clause — this is also
called finding the gap.

This chapter focuses only on the first problem: locating the antecedent of the relative
pronoun.2

Although relative pronoun disambiguation seems a simple enough task, there are
many factors that make it difficult:

S1.   We wondered who stole the watch.
S2.   Tony saw the boy who won the award.
S3.   The boy who gave me the book had red hair.
S4.   Tony ate dinner with the men from Detroit who sold computers.
S5.   I spoke to the woman with the black shirt and green hat over in the  
        far corner of the room who wanted a second interview.
S6.   I'd like to thank Jim, Terry, and Shawn, who provided the desserts.
S7.   I'd like to thank our sponsors, GE and NSF, who provide financial 
        support.
S8.   We talked with the woman and the man who were/was dancing.
S9.   We talked with the woman and the man who danced.
S10. The woman from Philadelphia who played soccer was my sister.
S11.  The awards for the children who pass the test are in the drawer.

Figure 8.2: Relative Pronoun Antecedents.

Initially there is the problem of distinguishing uses of wh-words that are relative
pronouns from uses that are not. Making this distinction will be important because uses
of “who” that are not relative pronouns (e.g., interrogatives like S1 of Figure 8.2) have no
antecedent.

2Locating the gap is an equally difficult problem because the gapmay appear in a variety of positions in the
embedded clause: the subject, direct object, indirect object, or object of a preposition. Chapter 3.1.3 describes
the solution to the gap-finding problem employed by the CIRCUS parser.
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The head of the antecedent of a relative pronoun does not appear in a consistent
position or syntactic constituent. In both S2 and S3, for example, the antecedent is “the
boy.” In S2, however, “the boy” is the direct object of the preceding clause, while in S3
it appears as the subject of the preceding clause. On the other hand, the head of the
antecedent is the phrase that immediately precedes “who” in both cases. S4, however,
shows that this is not always the case. The antecedent head may be very distant from its
coreferent wh-word3 (e.g., S5).

The antecedent is not always a single noun or compound noun. In S6, for example,
the antecedent of “who” is a conjunction of three phrases and in S7, either “our sponsors”
or its appositive “GE and NSF” is a semantically valid antecedent.

Disambiguation of the relative pronounmay depend on information in the embed-
ded clause. In S8, for example, the antecedent of “who” is either “theman” or “thewoman
and the man,” depending on the number of the embedded clause verb.

Sometimes, the antecedent is truly ambiguous. For sentences like S9, the real
antecedent depends on the surrounding context.

Locating the antecedent requires the assimilation of both syntactic and semantic
knowledge. The syntactic structure of the clause preceding “who” in sentences S10 and
S11, for example, is identical (a noun phrase followed by a prepositional phrase). The
antecedent in each case is different, however. In S10, the antecedent is the subject, “the
woman;” in S11, the antecedent is the prepositional phrase modifier, “the children.”

As a direct result of these difficulties, NLP system builders have found the manual
coding of rules that find relative pronoun antecedents to be very hard. In addition,
the resulting heuristics are prone to errors of omission and may not generalize to new
contexts. For example, the UMass/MUC-3 CIRCUS system4 [Lehnert et al., 1991] be-
gan with nineteen rules for finding the antecedents of relative pronouns. These rules
included both structural and semantic knowledge and were based on approximately 50
instances of relative pronouns. As counter-examples were identified, new rules were
added (approximately ten) and existing rules changed. Over time, however, we became
increasingly reluctant to modify the rule set because the global effects of local rule changes
were difficult to measure.5 In addition, most rules were based on a class of sentences that
the UMass/MUC-3 system had found to contain important information. As a result, the
hand-coded rules tended to work well for relative pronoun disambiguation in sentences

3Relative pronouns like who, whom, which, that, where, etc. are often referred to as wh-words.

4UMass/MUC-3 is the version of the CIRCUS parser (see Chapter 3) used for the MUC-3 performance
evaluation (see Chapter 4).

5One possibility not considered in this work is to use a mixed-paradigm approach to finding antecedents
of relative pronouns. In the same way that ANAPRON [Golding, 1991, Golding and Rosenbloom, 1991]
and CABARET [Rissland and Skalak, 1991] combine case-based and rule-based reasoning, we might use
handcrafted rules to represent a small set of safe, clear-cut relative pronoun disambiguation heuristics and
then rely on cases to represent the exceptions.
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of this class (93% correct in one set of 50 texts), but did not generalize to sentences outside
of this class (78% correct for the same set of 50 texts). The rules do play a large role in
processing texts from theMUC-3 corpus, however— approximately 25% of the sentences
contain at least one relative pronoun, and “who” occurs in approximately one out of ten
sentences. Given that the system as awhole performed very well on texts from this corpus
in the MUC-3 evaluation, we believe that the hand-coded heuristics were fairly reliable.

8.1.1 Current Approaches to Relative Pronoun Disambiguation
Although descriptions of natural language processing systems do not usually include

the algorithms used to find relative pronoun antecedents, current high-coverage parsers
seem to employ one of three approaches for relative pronoun disambiguation. Systems
that use a formal syntactic grammar often directly encode information for relative pronoun
disambiguation in the grammar. Alternatively, a syntactic filter is applied to the parse tree
and any nounphrases for which coreferencewith the relative pronoun is syntactically legal
are passed to a semantic component, which determines the antecedent using inference or
preference rules (see, for example, Correa [1988], Hobbs [1986], Ingria and Stallard [1989],
Lappin and McCord [1990]). The third approach employs hand-coded disambiguation
heuristics that rely mainly on semantic knowledge but also include syntactic constraints
(e.g., CIRCUS). However, there are problems with all three approaches:

1. the grammar must be designed to find relative pronoun antecedents for all possible
syntactic contexts;

2. the grammar and/or inference rules require tuning for new corpora;

3. in most cases, the approaches unreasonably assume a completely correct parse of the
clause preceding the relative pronoun.

In the remainder of the chapter, we describe WHirlpool, an instantiation of the
Kenmore knowledge acquisition framework that learns heuristics for relative pronoun
disambiguation and avoids the above problems.

8.2 Instantiating the Kenmore Framework for WHirlpool
To learnheuristics for relativepronoundisambiguationwe instantiate the three compo-

nents of the Kenmore architecture as shown in Figure 8.3. The Latin American Terrorism
corpus was developed for the MUC-3 and MUC-4 performance evaluations and was
described in Chapter 4.3.1. The CIRCUS conceptual sentence analyzer [Lehnert, 1990]
was described in Chapter 3. It takes as input a single sentence and produces as output
a semantic case frame representation of the meaning of the sentence. As was the case
for MayTag (Chapter 5), the learning algorithm employed by WHirlpool is a case-based
reasoning (CBR) algorithm.

As an instantiation of Kenmore, WHirlpool’s method for relative pronoun disam-
biguation closely resembles MayTag’s approach to acquiring lexical knowledge:
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Corpus: Latin American Terrorism
Sentence Analyzer: CIRCUS
Inductive Learning Algorithm: CBR (1-nearest neighbor)

Figure 8.3: Instantiating Kenmore for WHirlpool.

1. In the training phase, the sentence analyzer and a human supervisor together create
a case base of relative pronoun disambiguation cases for a randomly selected set of
sentences from the corpus.

2. After training, for each new occurrence of a wh-word, WHirlpool retrieves the most
similar case(s) from the case base using a representation of the context of thewh-word
as the problem case.

3. Finally, WHirlpool uses the antecedent information in the retrieved case(s) to find the
antecedent for the wh-word in the problem case.

One difference betweenWHirlpool andMayTag is the approach each uses to automate
the design of an adequate case representation. As described in Chapter 6, MayTag
relied on a decision tree approach to discard the irrelevant features in a baseline case
representation. The modified case representation was shown to perform better than a
baseline representation that included all features and better than a representation inwhich
expert knowledge was used to discard irrelevant features. We expected irrelevant features
to be only part of the feature set selection problem in the relative pronoun disambiguation
task. As a result,WHirlpool employs a very different approach for feature set selection that
is based on evidence from psycholinguistic studies of sentence processing. It augments a
baseline case representation by explicitly encoding cognitive biases into the representation.
The possibility of using both the decision tree and cognitive bias approaches to improving
a baseline case representation is discussed in Section 9.5.3.

Indexing: none, flat case base
Similarity Metric: weighted 1-nearest neighbor
Case Selection: none (only one case retrieved)
Solution Policy: weak adaptation of retrieved solution
Automated Improvements to
Baseline Case Rep: cognitive bias approach

Figure 8.4: Components of WHirlpool’s Case-Based Inductive Learning Algorithm.

For reference, the components ofWHirlpool’s case-based inductive learning algorithm
are summarized in Figure 8.4. In the sections that follow, we describe and evaluate
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WHirlpool’s training and application phases in detail using a baseline case representation
(Sections 8.3-8.5). The final section of the chapter presents and evaluates WHirlpool’s
cognitive bias approach to improving the baseline case representation (Section 8.6).

8.3 WHirlpool’s Training Phase

Case Base

Training Case
context   antecedent

RP disambiguation 
case

CIRCUS

antecedent

Terrorism
Corpus

context of RP

Case-Based Learning Component

Human
Supervisor

antecedentselected sentences
(that contain a RP)

Figure 8.5: WHirlpool Training Phase.

The goal of WHirlpool’s training phase (Figure 8.5) is to create a case memory of
relative pronoun disambiguation decisions. Our initial efforts have concentrated on the
resolution of “who” because the hand-coded heuristics for that relative pronoun were the
most complicated and difficult to modify. We expect that the resolution of other wh-words
will fall out without difficulty. To create the case base, WHirlpool first randomly selects
a set of sentences that contain wh-words6 from the terrorism corpus and presents them
to CIRCUS for analysis. CIRCUS processes each sentence and, with a human supervisor,
creates a case as each wh-word is encountered. As described in Chapter 1, cases have
two parts. The context portion describes the context in which the wh-word occurred and
is a representation of the current state of the CIRCUS parser. It is supplied automatically
by CIRCUS. The second part of the case, called the solution part in Chapter 1, encodes
the antecedent of the wh-word for the current example. It is supplied by a person during
training using a menu-driven interface. The human supervisor simply chooses the phrase
orphrase combination from the current sentence that represents the antecedent. WHirlpool
encodes the user’s choice into the solution part of the case and then stores the entire case
in the case base. Finally, WHirlpool sends the antecedent back to CIRCUS so that CIRCUS
can update its state information and continue processing the training sentence. At the end
of training, WHirlpool will have created one case for each wh-word that occurred in the
training sentences.

6Not all of the uses of the wh-words in those sentences may be relative pronouns. Some will be
interrogatives, for example, butWHirlpool will be responsible for noting the distinction.
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8.3.1 Case Representation

As described above, each WHirlpool case represents the disambiguation decision for
a single occurrence of a relative pronoun. In theory, all knowledge acquisition systems
designed within the Kenmore framework should employ the same case representation.
Currently, however, the case representations for MayTag and WHirlpool differ in a few
respects that are noted below. Chapter 9 re-examines the role of using a single ambiguity
resolution case representation in the Kenmore framework.

Verygenerally,WHirlpool cases consist of a set of attribute-valuepairs, and include any
information about the state of the CIRCUS parser that may help determine the antecedent
of the current relative pronoun. Like MayTag, WHirlpool begins with a baseline case
representation and then uses an automated approach to tune it for the current acquisition
task. The context portion of WHirlpool’s baseline case representation contains two types
of features: one or more constituent attribute-value pairs, and two most-recent features.
The solution portion of the case contains a single antecedent attribute-value pair. The
paragraphs below briefly describe each attribute type in the baseline representation using
the cases in Figure 8.6 as examples.

S1:              [The judge] [of the 76th court] [,] who 

constituents: ( s human ) ( s-pp1 physical-target ) 
most-recent: ( mr-phrase physical-target )   (mr-syn-type comma ) 
antecedent: ( antecedent ((s)) )

S2:   [The police] [detained] [Juan Bautista] [and] [Rogoberto Matute] [,] who ...  

constituents: ( s human ) ( v t ) ( do proper-name )  ( do-np1 proper-name )
most-recent: ( mr-phrase proper-name ) ( mr-syn-type comma )  
antecedent:  ( antecedent ((do-np1 mr-phrase)) ) 

constituents:  ( s human ) ( s-np1 proper-name ) 
most-recent: ( mr-phrase proper-name ) ( mr-syn-type comma ) 
antecedent:  ( antecedent ((mr-phrase) (s mr-phrase) (s)) )

S3:  [Her DAS bodyguard] [,] [Dagoberto Rodriquez] [,] who...

Figure 8.6: Relative Pronoun Disambiguation Training Cases.

WHirlpool cases include one constituent attribute-value pair for each phrase in the
current clause.7 The attribute describes the syntactic class and position of the phrase as

7Note that we are using the term “constituent” rather loosely to refer to all noun phrases, prepositional
phrases, and verb phrases prior to any attachment decisions.
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it was encountered by CIRCUS. In S1 of Figure 8.6, for example, “of the 76th court” is
represented with the attribute s-pp1 because it is a prepositional phrase that immediately
follows the subject. In S2, “Juan Bautista” and “Rogoberto Matute” are represented with
the attributes do and do-np1, respectively, because CIRCUS recognizes them as the direct
object and the noun phrase that directly follows the direct object. (The true direct object of
the sentence is the conjoined noun phrase, but CIRCUS does not make these attachment
decisions.) The subject and verb constituents (e.g., “the judge” in S1 and “detained” in S2)
retain their traditional s and v labels, however—no positional information is included for
those attributes.

The value associated with a constituent attribute is simply the semantic feature that
best describes thephrase’s headnoun. Like the semantic feature taxonomyused in the joint
venturesdomain (Section 5.3.1), the taxonomyused in the terrorism domain is amulti-level
hierarchy of general and specific semantic features. However, only values at the top level
of the hierarchy (i.e., the general semantic features) were used for this application because
the handcrafted heuristics for relative pronoun disambiguation accessed the semantic
features at this level. The top level of the hierarchy contains the following semantic
features: human, proper-name, location, entity, physical target, organization (org), and weapon.
The subject constituents in Figure 8.6 receive the value human, for example, because their
headnouns aremarkedwith the “human” semantic feature in the lexicon. BecauseCIRCUS
does not associate semantic featureswith verbs, cases note only the presence of verbs using
the value t.

In addition, every case includes twomost-recent features that represent the phrase last
recognized by CIRCUS. Themr-syn-type attribute-valuepair specifies the syntactic class of
the most recent phrase and themr-phrase attribute represents its semantic class. The only
exception to this is when the relative pronoun is preceded by an item of punctuation. In
these cases the value ofmr-syn-type is simply the item of punctuation. In all sentences of
Figure 8.6, for example, the value ofmr-syn-type was comma. The value of themr-phrase
feature, however, varies across the sentences. In S2, the phrase recognized just before
“who” was “Rogoberto Matute,” resulting in amr-phrase value of proper-name. In S1, “of
the 76th court” is the most recent phrase and a physical-target.

WHirlpool’s context features intersect with the set of “global context features” used
in the MayTag lexical acquisition system. WHirlpool’s most-recent features correspond
to the last-constituent features in MayTag, for example. However, WHirlpool includes
an attribute-value pair for every phrase recognized in the current clause, while MayTag’s
case representation includes global context features only for the major constituents of
the current clause. In addition, WHirlpool cases include none of the “concept activation”
features, “specific semantic feature” attributes, or “local context features”used inMayTag’s
case representation.

As mentioned above, the solution portion of a WHirlpool case contains a single
antecedent attribute-value pair. This feature encodes information regarding the position
of the relative pronoun antecedent. For CIRCUS, the antecedent is the head of the phrase
that the relative pronoun refers to — without any post-modifier phrases. Therefore, the
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value of this attribute is a list of the constituent attributes (and/or the mr-phrase attribute)
that represent the location of the antecedent head. In S1, for example, the antecedent of
“who” is “the judge.” Because this phrase occurs in the subject position, the value of the
antecedent attribute is (s). A value of (none) is used if no antecedent is required for this use
of “who” or if none can be determined.

Sometimes, however, the antecedent is actually a conjunction of constituents. In these
cases, we represent the antecedent as a list of the constituent attributes associated with
each element of the conjunction. Look, for example, at sentence S2. Because “who”
refers to “Juan Bautista” and “Rogoberto Matute,” the antecedent can be described as
(do mr-phrase) or (do do-np1). Although the lists represent equivalent surface forms, we
choose the more general (do mr-phrase).8 S3 shows yet another variation of the antecedent
attribute-value pair. In this example, an appositive creates three semantically equivalent
antecedent values, all of which become part of the antecedent feature:

“Dagoberto Rodriguez” (mr-phrase)
“her DAS bodyguard” (s)
“her DAS bodyguard, Dagoberto Rodriguez” (s mr-phrase)

8.3.2 Case Base Construction
Using the case representationdescribedabove,WHirlpool creates a case base of relative

pronoun disambiguation cases from a small set of sentences in the terrorism corpus. Each
training sentence is presented to CIRCUS, which processes the sentence and creates a
case each time a wh-word is encountered. The CIRCUS parser automatically creates all
constituent andmost-recent features of the training cases as a side effect of syntactic anal-
ysis. As noted above, CIRCUS recognizes only low-level constituents like noun phrases,
prepositional phrases, and verb phrases, but makes no initial attachment decisions. This
makes construction of the cases easier for CIRCUS, but transfers responsibility for many
difficult attachmentdecisions to the case-based reasoning component. DuringWHirlpool’s
application phase, that component must recognize all phrases that comprise a conjunction
of antecedents and must specify at least one of the semantically valid antecedents in the
case of appositives.

Sometimes, however, postponing an attachment decision until after the relative pro-
noun antecedent has been located makes the decision easier. Consider the prepositional
phrase attachment decision for “in the restaurant” in the sentence, “I talked with the men
in the restaurant.” Depending on the context, “in the restaurant” modifies either “talked”
or “themen.”9 If we know that “themen” is the antecedent of a relative pronoun, however

8This form is more general because it represents both (do do-np1) and (do do-pp1).

9In yet another reading, “in the restaurant” may modify the entire clause, i.e., as if the sentence had been
“In the restaurant, I talked with the men.”
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(e.g., “I talked with the men in the restaurant, who offered me the job”), it is probably the
case that “in the restaurant” modifies “the men.”

It shouldbe noted that only specification of the antecedentattribute-valuepair requires
human intervention via a menu-driven interface that displays the antecedent options. The
user chooses the phrase or phrases that comprise the antecedent and this information is
encoded byWHirlpool in the antecedent feature. As each training case becomes available,
it is stored in the case base of relative pronoun disambiguation decisions. In addition,
the antecedent is passed back to CIRCUS so that the appropriate syntactic buffers can be
instantiated with the antecedent and processing of the embedded clause can begin. After
training, WHirlpool will have produced one case for every occurrence of a wh-word in the
training sentences.

8.4 WHirlpool’s Application Phase

Probe Case
context         ?

Retrieved Case
context   antecedent

CIRCUS

selected sentences
(that contain a RP)

Terrorism
Corpus

Case-Based Reasoning Component

RP disambiguation
case

antecedent

context of RP

Case 
Base

Case Retrieval

Figure 8.7: WHirlpool Application Phase.

Once the case base hasbeen constructed,WHirlpool can use it to predict the antecedent
of a wh-word in new contexts (Figure 8.7). When WHirlpool encounters a wh-word in
application mode, it first creates a problem case. The problem case is just a training
case that is missing the antecedent attribute-value pair. During training, the human
supervisor specified the value of this feature, but during the application phase, the case
retrieval algorithm will retrieve the training case that is most similar to the problem
case and use its antecedent feature to select the antecedent for the novel case. (The
specific algorithm used to find the best training case will be described in the next section.)
Consider sentence S1 of Figure 8.8, for example. In response to the problem case for this
sentence, WHirlpool retrieved a case that specifies the direct object (do) as the location of
the antecedent. Therefore, WHirlpool chooses the current contents of the direct object —
“the hardliners” — as the antecedent of “who” in S1.

Sometimes, however, the single retrieved case lists more than one option as the
antecedent. In these cases, we rely on the following simple heuristics to choose an
antecedent:
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1. Choose the first option whose constituents are all present in the problem case.

2. Otherwise, choose the first option that contains at least one constituent present in
the problem case and ignore those constituents in the retrieved antecedent that are
missing from the problem case.

[There] [are] [criminals] [like] [Vice President Merino]  [,] [a man] who... 

 (s entity) (v t) (do human) (do-np1 proper-name)  (do-np2 human) (mr-phrase human) (mr-syn-type  np)

S2:

Antecedent of Retrieved Case: ((do-np1 do-pp2 mr-phrase))
Antecedent of Probe: (do-np1 mr-phrase) = "Vice President Merino, a man"                                     

[It] [encourages] [the hardliners] [in ARENA] [,] who...S1:

(s entity)  (v t)  (do human)  (do-pp1 org) (mr-phrase  org)  (mr-syn-type comma) Probe Case:
Antecedent of Retrieved Case: ((do))
Antecedent of Probe: (do) = "the  hardliners"

Probe Case:

Figure 8.8: WHirlpool Case Retrieval.

From a case-based reasoning perspective, this post-processing of the retrieved an-
tecedent could be considered a very weak and purely syntactic form of case adaptation. In
general, WHirlpool tries to choose an antecedent that is consistent with the context of the
problem case (heuristic 1) or to generalize the retrieved antecedent so that it is applicable
in the current context (heuristic 2). S1 of Figure 8.8 illustrates the first case adaptation
filter. In S2, however, the retrieved case specifies an antecedent from three constituents,
only two of which are actually represented in the problem case. Therefore, we ignore the
missing constituent do-pp2 and look to just do-np1 and mr-phrase for the antecedent.

8.4.1 Case Retrieval in WHirlpool

Asof yet, wehavenotdescribed the specific case retrieval algorithmused inWHirlpool.
It is basically the same as MayTag’s nearest-neighbor approach to case retrieval:

1. Compare the problem case to each case in the case base, counting the number of
context features that match (i.e., match = 1, mismatch = 0).

2. Return the highest scoring case as well as any ties.

3. Let the retrieved cases vote on the value for the antecedent of the problem case.

As described, WHirlpool’s case retrieval algorithm is a simple 1-nearest neighbor
(1-nn) algorithm. Unfortunately, there is a problem with the algorithm that didn’t arise
for MayTag. All MayTag cases have the same number of features, but the same is not true
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for cases inWHirlpool. AlthoughWHirlpool cases always have twomost-recent features,
there is no guarantee that two cases will have any additional attributes in common. The
problem cases for S1 and S2 in Figure 8.8, for example, have three additional attributes in
common (i.e., both have s, v, and do constituent attributes). A sentence like the following,
however, produces a problem case that has no overlapping constituent attributes with
either S1 or S2:

Sentence: In most respects, the man who...
Problem case: (pp1 entity) (np2 human) (mr-phrase human) (mr-syn-type np)

Thequestion for the similaritymetric is how to handle attributes that appear in the problem
case but are missing from a training case and vice versa. If the case retrieval algorithm
determines similarity by simply counting the number of attribute-value pairs in a training
case that match those in the problem case, then two training cases that match the same
number of problem case features will achieve the same similarity score regardless of the
percentage of training case features correctly matched. Consider the following scenario:

Training case 1: ((s attack) (s-pp1 human) (v t) (do organization)
(mr-phrase human) (mr-syn-type comma))

Training case 2: ((s attack) (s-pp1 human) (mr-phrase human)
(mr-syn-type comma))

Problem case: ((s attack) (s-pp1 human) (mr-phrase human)
(mr-syn-type comma))

Given the problem case, the case retrieval algorithm described above assigns the same
similarity score to both training cases even though training case 2 is an exact match for the
problem.

The case retrieval algorithm employed by WHirlpool is actually a modified version of
the 1-nn algorithm that systematically handles this problem. First, we describe all cases in
terms of a normalized set of features:

1. Derive a normalized feature set by keeping track of every attribute that occurs in the
training cases.

2. Augment the training cases and problem case to include every feature of the normal-
ized feature set, filling in a nil value if the feature does not pertain to the particular
case.

This means that WHirlpool cases, like MayTag cases, now will always have the same
number of features. However, most of the features in a normalized case will have
nil values because they will not apply to the current context. To ensure that the 1-nn
case retrieval algorithm focuses on features that are present rather than missing from the
problem case, we modify the original 1-nn case retrieval algorithm to award full credit for
matches on features present in the problem cases and to allow partial credit for matches
on missing features. This is done by associating with each feature a weight that indicates
the importance of the feature in determining case similarity and by using a weighted 1-nn
case retrieval algorithm:



136

1. Give a problem case, first set the weight associated with each feature in the
normalized feature set. For each feature, , in the normalized feature set, , set
the weight associated with , :

= 0.2 if is missing from the (unnnormalized) problem case,10

= 1 otherwise.

2. Compare the (normalized) problem case to all cases in the case base. Compare the
problem case, , to each training case, , in the case base and calculate, for each pair:

1

where is the th feature in , is the value of in the problem case, is the
value of the training case, and is a function that returns 1 if and are
equal and 0 otherwise.

3. Return the case with the highest score as well as all ties.

4. Let the retrieved cases vote on the value of the antecedent.

8.5 Evaluation of WHirlpool Using the Baseline Case Representa-
tion

To evaluateWHirlpool and its weighted 1-nn case retrieval algorithm, we use a 10-fold
cross validation testing scheme. Specifically, WHirlpool first generates cases for all 241
examples of “who” from three sets of 50 texts from the terrorism corpus. Next, the 241
examples are randomly partitioned into ten non-overlapping segments of 24 cases. (One
case appears in none of the ten segments.) In each of ten runs, we reserve the cases in one
segment for testing and store the remaining 217 cases in the case base. For each test case,
we invoke the weighted 1-nn case retrieval algorithm to predict the antecedent. Results
are averaged across the ten runs.

The results using the weighted 1-nn case retrieval algorithm and the baseline case
representation are shown in Table 8.1. WHirlpool’s performance is compared with that
of the hand-coded heuristics of the UMass/MUC-3 system and a default strategy that
simply chooses the most recent phrase as the antecedent. The hand-coded heuristics
perform significantly better (at the 95% level) than the default rule and WHirlpool’s
performance falls somewhere between the two. Chi-square significance tests indicate
that WHirlpool’s prediction accuracy does not differ from either the default rule or the
hand-coded heuristics.

10Other values for the missing features weight were tested as well.
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Table 8.1: WHirlpool Results (% correct).

WHirlpool Default Hand-Coded
Rule Heuristics

76.2 74.3 80.5

8.6 Using Cognitive Biases to Improve a Baseline Case Representa-
tion

The above results were posted using WHirlpool’s baseline case representation de-
scribed in Section 8.3.1 and the weighted 1-nn case retrieval algorithm described in
Section 8.4.1. This section describes WHirlpool’s automated approach to improving a
baseline case representation. It shows that explicitly encoding cognitive biases into a
case representation can improve the performance of the case-based reasoning algorithm.
Like MayTag’s decision tree approach to feature set selection, the cognitive bias approach
to improving a baseline case representation is able to discard irrelevant features from a
representation. This is accomplished by reducing the weight associated with a feature,
possibly to zero. The cognitive bias approach, however, entails a number of additional
manipulations to theoriginal case representation including increasing the importance of an
attribute andaddingnew features to the feature set. Because the cognitive bias anddecision
tree approaches to improving a case representation draw from very different sources of
bias (i.e., psychological bias vs. information theoretic bias), it may prove advantageous to
combine the approaches. This possibility is addressed in Chapter 9.

In the experiments below, we modify WHirlpool’s baseline case representation in
response to three cognitive biases:

1. the tendency to rely on the most recent information,

2. restricted memory limitations, and

3. the heightened accessibility of the subject of a sentence.

Using the weighted 1-nn case retrieval algorithm, we compare each of the modified case
representations to the baseline and measure the effects of each bias on relative pronoun
antecedent prediction. Our experiments show that the overall performance of the case-
based reasoning algorithm improves as each of the cognitive biases and limitations is
incorporated into the case representation. Unless otherwise noted, all results shown
will be 10-fold cross validation averages. In particular, we emphasize that the same ten
training and test set combinations as the baseline experiments of Section 8.5 will be used
in all subsequent experiments. This procedure ensures that differences in performance are
not attributable to the random partitions chosen for the test set.
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8.6.1 Incorporating the Recency Bias
In processing language, people consistently show a bias towards the use of the most

recent information (e.g., Frazier and Fodor [1978], Gibson [1990], Kimball [1973], Nicol
[1988]). Inparticular, Cuetos andMitchell [1988], Frazier andFodor [1978], andothers have
investigated the importance of recency in finding the antecedents of relative pronouns.
They found that there is a preference for choosing themost recent nounphrase in sentences
of the form NP V NPOF-PP, with ambiguous relative pronoun antecedents, e.g.:

The journalist interviewed the daughter of the colonel who had had the accident.

In addition, Gibson et al. [1993] looked at phrases of the form: NP1 PREP NP2 OF NP3
RELATIVE-CLAUSE. E.g.,

...the lamps near the paintings of the house that was damaged in the flood.

...the lamps near the painting of the houses that was damaged in the flood.

...the lamp near the paintings of the houses that was damaged in the flood.

He found that themost recent nounphrase (NP3) was initially preferred as the antecedent.
People had the greatest difficulty when the middle noun phrase (NP2) was the antecedent
of the relative pronoun although this difference was not significantly greater than when
NP1 was the antecedent. Finally, recognizing antecedents in the NP2 and NP1 positions
were significantly harder than recognizing the most recent noun phrase as the antecedent.

We translate this recency bias into representational changes for the training andproblem
cases in two ways. The first is a direct modification to the attributes that comprise the case
representation, and the second modifies the weights to indicate a constituent’s distance
from the relative pronoun.

In the first approach, we label the constituent attribute-value pairs by their position
relative to the relative pronoun. This establishes a right-to-left labeling of constituents rather
than the left-to-right labeling that the baseline representation incorporates. In Figure 8.9,
for example, “inCongress” receives the attribute pp1 in the right-to-left labelingbecause it is

Sentence: [It] [was] [the hardliners] [in Congress] who...
Baseline Representation: (s entity)  (v t)  (do human)  (do-pp1 entity)  (mr-phrase entity) 
                                               (mr-syn-type prep-phrase)  (antecedent ((do))) 
Right-to-Left Labeling:  (s entity)  (v t)  (np2 human)  (pp1 entity)  (mr-phrase entity) 
                                             (mr-syn-type prep-phrase)  (antecedent ((np2)))

Figure 8.9: Incorporating the Recency Bias Using a Right-to-Left Labeling.

a prepositional phrase oneposition to the left of “who.” Similarly, “the hardliners” receives
the attribute np2 because it is a noun phrase two positions to the left of “who.” The right-
to-left ordering yields a different feature set and, hence, a different case representation.
For example, the right-to-left labeling assigns the same antecedent value (i.e., pp2) to both
of the following sentences:
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“it was a message from the hardliners in Congress, who...”

“it was from the hardliners in Congress, who...”

The baseline (left-to-right) representation, on the other hand, labels the antecedents with
distinct attributes — do-pp1 and v-pp1, respectively.

In the second approach to incorporating the recency bias, we increment the weight
associatedwith a constituent attribute as a function of its proximity to the relative pronoun
(see Table 8.2). The feature associated with the constituent farthest from the relative
pronoun receives aweight of one, and theweights are increased by one for each subsequent
constituent. All features added to the case as a result of feature normalization (not shown
in Table 8.2) receive a weight of one. In addition, we assign the maximum weight to both
themr-phrase andmr-syn-type features.

Table 8.2: Incorporating the Recency Bias by Modifying the Weight Vector.

Phrase Feature Baseline Recency
Weight Weight

It s 1 1
was v 1 2
the hardliners do 1 3
in Congress do-pp1 1 4

mr-phrase 1 5
mr-syn-type 1 5

who...

The results of experiments that use each of the recency representations separately and
in a combined form are shown in Table 8.3. To combine the two implementations of the
recency bias, we first relabel the attributes of a case using the right-to-left labeling and then
initialize the weight vector using the recency weighting procedure described above. The
table shows that the recency weighting representation alone tends to degrade prediction
of relative pronoun antecedents as compared to the baseline. Both the right-to-left labeling
and combined representations improve performance — they perform significantly better
than the default heuristic, but do not yet exceed the level of the hand-coded heuristics.
The final row of results will be described below.

As shown in Table 8.3, the combined recency bias outperforms the right-to-left labeling
despite the fact that the recency weighting tends to lower the accuracy of relative pronoun
antecedent prediction when used alone. The right-to-left labeling appears to provide
a representation of the local context of the relative pronoun that is critical for finding
antecedents. The disappointing performance of the recency weighting representation, on
the other hand, may be caused by (1) its lack of such a representation of local context,
and (2) its bias against antecedents that are distant from the relative pronoun (e.g., “...to
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Table 8.3: Results for the Recency Bias Representations (% correct).

Baseline 76.2
R-to-L Labeling 79.2
Recency Weighting 75.8
R-to-L + RecWt 80.0
Hand-Coded Heuristics 80.5
Default Heuristic 74.3
Baseline w/o Recency 69.2

help especially those people living in the Patagonia region of Argentina, who are being
treated inhumanely...”). Nineteen of the 241 cases have antecedents that include the
often distant subject of the preceding clause. Finally, the recency bias performs well
despite the fact that the baseline representation already provides a built-in recency bias.
The baseline represents the constituent that precedes the relative pronoun up to three
times in the baseline representation — as a constituent feature, the mr-phrase feature,
and the mr-syn-type feature.11 The last row in Table 8.3 shows the performance of the
baseline representation when this built-in bias is removed by discarding the mr-phrase
andmr-syn-type features anddisallowing references to them in the antecedent class value.

8.6.2 Incorporating the RestrictedMemory Bias

Psychological studies have determined that people can remember at most seven
plus or minus two items at any one time [Miller, 1956]. More recently, Daneman and
Carpenter [1983, 1980] show that working memory capacity affects a subject’s ability to
find the referents of pronouns over varying distances. King and Just [1991] show that
differences in working memory capacity can cause differences in the reading time and
comprehension of certain classes of relative clauses. Moreover, it has been hypothesized
that language learning in humans is successful precisely because limits on information
processing capacities allow children to ignore much of the linguistic data they receive
[Newport, 1990]. Some computational language learning systems (e.g., Elman [1990])
actually build a short term memory directly into the architecture of the system.

WHirlpool’s baseline case representation does not necessarily make use of this restrict
memory bias, however. Each case is described in terms of the normalized feature set, which
contains an average of 38.8 features across all partitions of the 10-fold cross validation.
Unfortunately, incorporating the restricted memory limitations intoWHirlpool’s case rep-
resentation is problematic. Previous restricted memory studies (e.g., short term memory

11This means that when the constituent immediately preceding “who” in the problem case and a training
case match, that constituent accounts for a greater percentage of the similarity score than does any other
constituent.
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studies) do not state explicitly what the memory limit should be — it varies from five to
nine depending on the cognitive task and depending on the size and type of the “chunks”
that have to be remembered. In addition, the restricted memory bias alone does not state
which chunks, or features, to keep and which to discard.

To apply the restricted memory bias to the baseline case representation, we let
represent the memory limit and, in each of five runs, set to one of five, six, seven,
eight, or nine. Then, for each test case, the system randomly chooses features from the
normalized feature set, sets the weights associated with those features to one, and sets the
remaining weights to zero. This effectively discards all but the selected features from
the case representation.

Table 8.4: Results for the Restricted Memory Bias Representation (% correct). (*’s indicate
significance with respect to the original baseline result shown in boldface, 0 05).

Memory Limit Baseline R-to-L + RecWt
none 76.2 80.0
9 78.3 81.2*
8 74.2 81.2*
7 76.2 80.0
6 75.8 80.4
5 75.0 81.7*

Results for the restricted memory bias representation are shown in Table 8.4. The first
column of results shows the effect of memory limitations on the baseline representation.
In general, the restricted memory bias with random feature selection degrades the ability
of the system to predict relative pronoun antecedents although none of the changes is
statistically significant. This is not surprising given that the current implementation of the
bias is likely to discard relevant features as well as irrelevant features. We expect that this
bias will have a positive impact on performance only when it is combined with cognitive
biases that provide feature relevancy information. This is, in fact, the case. The final
column in Table 8.4 shows the effect of restricted memory limitations on the combined
recency representation. To incorporate the restricted memory bias and the combined
recency bias into the baseline case representation, we (1) apply the right-to-left labeling,
(2) rank the features of the case according to the recency weighting, and (3) keep the
features with the highest weights (where is thememory limit). Ties are broken randomly.

We expected the merged representation to perform rather well because the combined
recency bias representation worked well on its own and because the restricted memory
(RM) bias essentially discards features that are distant from the relative pronoun and
rarely included in the antecedent. As shown in the last column of Table 8.4, four
out of five RM/recency variations posted higher accuracies than the combined recency
representation. In fact, three of the RM/recency representations now outperform the
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original baseline representation (shown in boldface) at the 95% significance level. (Until
this point, the best representation had been the combined recency representation, which
significantly outperformed the default heuristic, but not the baseline case representation.)

8.6.3 Incorporating the Subject Accessibility Bias
A number of studies in psycholinguistics have noted the special importance of thefirst

item mentioned in a sentence. In particular, it has been shown that the accessibility of the
first discourse object, which very often corresponds to the subject of the sentence, remains
high evenat the endof a sentence [Gernsbacher et al., 1989]. This subject accessibility bias is an
example of a more general focus of attention bias. In vision learning problems, for example,
the brightest object in view may be a highly accessible object for the learning agent; in
aural tasks, very loud or high-pitched sounds may be highly accessible. We incorporate
the subject accessibility bias into WHirlpool’s baseline representation by increasing the
weight associated with the constituent attribute that represents the subject of the clause
preceding the relative pronounwhenever that feature is part of the normalized feature set.

Table 8.5: Results for the Subject Accessibility Bias Representation (% correct).

Baseline Baseline Baseline Baseline Baseline
SubjWt=2 SubjWt=5 SubjWt=7 SubjWt=10

76.2 75.0 74.2 73.7 73.3

Table 8.5 shows the effects of allowingmatches on the subject attribute (s) to contribute
two, five, seven, and ten times as much as they did in the baseline representation.
Weights on the s attribute were chosen arbitrarily. Results indicate that incorporation
of the subject accessibility bias never improves performance of the learning algorithm,
although dips in performance are never statistically significant. At first it may seem
surprising that this bias does not result in a better representation. Like the recency bias,
however, WHirlpool’s baseline representation already encodes the subject accessibility
bias by explicitly recognizing the subject as a major constituent of the sentence (i.e., s)
rather than by labeling it merely as a low-level noun phrase (i.e., np). It may be that this
built-in encoding of the bias is adequate or that, like the restricted memory bias, additional
modifications to the baseline representation are required before the subject accessibility
bias can have a positive effect on the learning algorithm’s ability to find relative pronoun
antecedents.

Table 8.6 shows the effects of merging the subject accessibility bias with both recency
biases (R-to-L refers to the right-to-left labeling and RecWt refers to the recency weighting
representation) and the restricted memory bias (RM). The results in the first column
(Baseline) are just the results fromTable 8.5—they indicate theperformanceofWHirlpool’s
baseline case representation with various levels of the subject accessibility bias. The
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Table 8.6: Additional Results for the Subject Accessibility Bias Representation (% correct). (*’s
indicate significance with respect to the original baseline result shown in boldface, 0 05,

0 01; RM refers to the memory limit).

Subject Baseline SubjAcc SubjAcc SubjAcc SubjAcc SubjAcc SubjAcc
Weight R-to-L R-to-L R-to-L R-to-L R-to-L R-to-L

RecWt RecWt RecWt RecWt RecWt RecWt
RM=5 RM=6 RM=7 RM=8 RM=9

none 76.2 80.0 81.7* 80.4 80.0 81.2* 81.2*
2 75.0 79.6 84.2** 82.5* 82.1* 81.2* 80.8
5 74.2 78.3 79.6 79.2 78.3 80.4 79.6
7 73.7 77.5 79.6 79.2 77.9 76.7 77.9
10 73.3 76.7 79.6 79.2 78.3 80.4 79.6

second column shows the effect of incorporating the subject accessibility bias into the
combined recency bias representation. To create this merged representation, we first
establish the right-to-left labeling of features and then add together the weight vectors
recommended by the recency weighting and subject accessibility biases. As was the case
with the baseline representation, incorporation of the subject accessibility bias steadily
decreases performance of the learning algorithm as the weight on the subject constituent
is increased. None of the changes is statistically significant.

The remaining five columns of Table 8.6 show the effects of incorporating all three
cognitive biases into the baseline case representation. To create this representation, we
(1) relabel the attributes using the right-to-left labeling, (2) incorporate the subject and
recency weighting representations by adding the weight vectors proposed by each bias,
(3) apply the restricted memory bias by keeping only the features with the highest
weights (where is the memory limit) and choosing randomly in case of ties. Results
for these experiments indicate that some combinations of the cognitive bias parameters
work very well together and others do not. In general, associating a weight of two with
the subject constituent improves the accuracy of the learning algorithm as compared to
the corresponding representation that omits the subject accessibility bias. (Compare the
first and second rows of results). In particular, three representations (shown in italics)
now outperform the best previous representation (which had the r-to-l labeling, recency
weighting, memory limit = 5 and achieved 81.7% correct).12

8.6.4 Discussion
It should be emphasized that modifications to the baseline case representation in re-

sponse to eachof the individual cognitive biases areperformedautomaticallybyWHirlpool,

12In addition, the best-performing representation now outperforms the hand-coded relative pronoun
disambiguation rules (84.2% vs. 80.5%) at the 90% significance level.
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subject to the constraints provided in Table 8.7. Upon invocation of WHirlpool, the user
need only specify (1) the names of the biases to incorporate into the case representation,
and (2) any parameters required for those biases (e.g., the memory limit for the restricted
memory bias). WHirpool’s approach to improving a case representation should also be
applicable to learning tasks in other domains. The right-to-left labeling implementation
of the recency bias, for example, can be applied to any learning task for which (1) there is
a temporal ordering among the features, and (2) this ordering is denoted in the attribute
names. To invoke this bias, the usermust supply a function thatmaps the original attribute
names to new attribute names.

Table 8.7: Cognitive Bias Modifications.

Bias Assumptions Parameters
Recency Attribute names indicate Function mapping original
(r-to-l labeling) recency attribute names to new

attribute names
Recency Attributes in original case None
(recency weighting) are provided in inverse

recency order
Restricted Memory None memory limit
Focus of Attention None Weight factor, attribute
(subject accessibility) associated with object of

focus, e.g., the subject

In addition, WHirlpool relies on the following general procedure when incorporating
more than one cognitive bias into the baseline representation:

1. First, incorporate any bias that relabels attributes (e.g., r-to-l labeling).

2. Then, incorporate biases that modify feature weights by adding the weight vectors
proposed by each bias (e.g., recency weighting, subject accessibility bias).

3. Finally, incorporate biases that discard features (e.g., restricted memory bias), but
give preference to those features assigned the highest weights in Step 2.

One problem that has not been addressed in the discussions above is how to select
automatically the combination of cognitive biases that will achieve the best performance
for a particular learning task. For the relative pronoun task, we exhaustively enumerated
all combinations of available cognitive biases and chose the combination that peformed
best in cross-validation testing. Because this method will get quickly out of hand as
additional biases are included or parameters tested, future work should investigate less
costly alternatives to cognitive bias selection.

In spite of its incorporation of cognitive biases, WHirlpool tends to make two classes
of errors. First, a portion of WHirlpool’s errors are due to insufficient training: either the
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problem case required an antecedent combination never seen in any of the training cases
or the problem case involved a new syntactic context for the wh-word. In one sentence,
for example, “who” was preceded by a preposition, i.e., “regardless of who,” and no
context similar to this one had been encountered during training. When the semantic and
syntactic structure of the novel clause differs significantly from any represented in the
context features of the training cases, we cannot expect accurate retrieval from the case
base. The remaining errors exhibited by WHirlpool’s learned heuristics generally involve
relative pronoun antecedents that are difficult even for people to specify. Some examples
are provided below. (In each example below, the antecedent chosen by WHirlpool is
indicated in italics; the correct antecedent is shown in boldface type.)

1. “... 9 rebels died at the hands of members of the civilian militia, who resisted the
attacks”

2. “...the number of peoplewho died in Bolivia...”

3. “...the rest of the contra prisoners, who are not on this list...”

8.7 Summary

This chapter presented WHirlpool, an instantiation of the Kenmore framework that
locates the antecedent of the relativepronoun“who.” Wefind that our automatedapproach
to relative pronoun disambiguation performs as well as a set of hand-coded rules for
relative pronoundisambiguation andperforms significantly better than a default heuristic
that chooses the most recent phrase as the antecedent. The chapter also presented a
cognitive bias approach to improving a baseline case representation. The experiments of
Sections 8.6.1-8.6.3 showed that performance ofWHirlpool’s case-based algorithm steadily
improved as each of the available cognitive biases was incorporated into its baseline case
representation. Although one would not expect monotonic improvement to continue
forever, it is clear that explicit incorporation of cognitive biases into the case representation
can improve the learning algorithm performance for the relative pronoun disambiguation
task. Table 8.8 summarizes these results.
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Table 8.8: Summary of Cognitive Bias Results.

Case Representation % Correct
Baseline w/o Built-in Recency Bias 69.2
Default Heuristic: Choose Most Recent Phrase 74.3
Baseline 76.2
Baseline
+ Recency Bias 80.0

Hand-Coded Heuristics 80.5
Baseline
+ Recency Bias
+ Restricted Memory Bias (limit=5) 81.7

Baseline
+ Recency Bias
+ Restricted Memory Bias (limit=5)
+ Subject Accessibility Bias (subj wt=2) 84.2



C H A P T E R 9

ESTABLISHING CONSTRAINTS ON
THE KENMORE FRAMEWORK

This thesis presents the Kenmore framework for knowledge acquisition for natural
language processing systems. As described in the introduction and elsewhere, Kenmore
requires three major components: a robust sentence analyzer, a corpus of texts, and an
inductive learning module. This chapter draws from the results of previous chapters and
establishes constraints on each component thatmust be satisfied for successful instantiation
of the frameworkonanewproblem. In addition, it offers practical advice onhow toattack a
newparsing ambiguity problemwithin theKenmore framework. In general, the following
tasks must be performed:
1. Choose a corpus.

2. Choose a sentence analyzer.

3. Set up variable-depth semantic knowledge structures as well as any necessary back-
ground syntactic knowledge.

4. Choose the parsing problem.

5. Specify the case representation and the method for improving case representation.

6. Choose the inductive learning algorithm. (For case-based approaches, this includes
choosing the case-indexing method, the similarity metric, and the method for com-
bining, or deciding among, solutions proposed by the retrieved cases.)

7. Train and test the system.

The remaining sections of the chapter discuss each step separately. The final section of the
chapter shows how one might use Kenmore to learn heuristics for many parsing decisions
simultaneously rather than one at a time.
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9.1 The Corpus

Kenmore espouses a corpus-based view of knowledge acquisition for natural lan-
guage processing. Disambiguation heuristics are implicitly encoded in the case base as
training sentences from the corpus are processed by the sentence analyzer and a human
supervisor. In particular, the thesis demonstrates the performance of Kenmore only using
domain-specific corpora. As discussed in Section5.5.4, it is not clear that Kenmore will
be useful with corpora containing totally unrestricted texts because the length of the
human-supervised training phase would increase dramatically. If the supervised training
phase can be transformed into an unsupervised one, however, then Kenmore should be
usable with unrestricted text. (Extending Kenmore in this direction will be discussed in
Chapter 10.)

In general, Kenmore will be judged successful if the heuristics it learns perform
accurate disambiguation within a specific language processing task. Therefore, a very
basic criterion for the corpus is simply that it contain examples of the kinds of sentences,
stories, or text fragments that are most important for the NLP system to understand. If
the goal of the NLP system is to summarize stories about terrorist events, for example,
then the training corpus primarily should contain texts that describe terrorist events. If,
on the other hand, it will be important for the NLP system to distinguish sentences/texts
that contain relevant information from those containing no relevant information, then the
training corpus should contain a mixture of both relevant and irrelevant text excerpts.

Theminimum size of the corpus will vary depending on four related factors: the scope
of the overall natural language task, the particular problem in sentence analysis for which
heuristics need to be acquired, the variety of sentence structures that the system must
process, and the size of any syntactic and semantic taxonomies or knowledge structures.
As the scope of the natural language understanding task expands, for example, it may be
important that the NLP system obtain a deeper understanding of the input texts. This, in
turn, may require that (1) the system process sentences with a greater variety of syntactic
structures, and (2) the system recognizefiner distinctions among semantic categories. Both
(1) and (2) imply that Kenmore will require additional training sentences. In general, as
any associated semantic and syntactic taxonomies grow or the NLP task becomes more
complicated, Kenmore will require additional training sentences, and hence, a bigger
corpus.

Even so, experiments with the MayTag and WHirlpool systems, indicate that sur-
prisingly few training sentences are necessary to obtain adequate performance for many
real-world tasks. WHirlpool used 108 training sentences (90% of the base set of 120
sentences) to acquire relative pronoun disambiguation heuristics for use with texts in the
terrorism domain. MayTag used 157 training sentences to learn lexical disambiguation
heuristics for use with texts in the business joint ventures domain. Kenmore’s reliance on
knowledge beyond word frequencies may account for its needing such a small training
corpus— training cases inKenmore encode the state of theparser as well as semantic infor-
mation for individual words while many statistical approaches maintain only individual
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word counts and possibly part-of-speech information. As a result, Kenmore needs fewer
training cases than approaches that fail to include abstract views of the current context.
Our current experiments, however, indicate that the corpus should contain a minimum of
100-200 sentences.

9.2 The Sentence Analyzer

All work described here relies on theCIRCUS conceptual sentence analyzer. However,
Kenmore can be instantiated with any parser as long as it conforms to the following
constraints. First, the sentence analyzer must be robust enough to process large amounts
of text. However, only a partial syntactic parse of each sentence is required. The sentence
analyzer need only recognize individual noun phrases, prepositional phrases, and verb
phrases without making any attachment decisions. Parsers that perform full syntactic
analysesmay, in fact, have to “undo” some attachmentdecisions to create cases in attribute-
value pair format. Alternatively, the inductive learning component could accept cases that
represent trees rather than flat structures. In addition, the parser should be able to locate
the major syntactic constituents of each clause — the verb, subject, direct object, and/or
indirect object. In theory, either a serial or parallel parser can be used: Kenmore would
be consulted to resolve the current ambiguity directly or to prune one or more existing
representations maintained by the parser.

Second, the parser must also be able to observe its own state. That is, it should be able
to provide a description of all syntactic and semantic structures it builds and maintains
during sentence processing. Although the sentence analyzer used here relies heavily
on semantic knowledge, this is not a constraint enforced by the Kenmore framework.
Nonetheless, all results obtained in earlier chapters relied on case representations that
included this semantic information and further experimentation would be required to
determine whether the framework is successful without this semantic knowledge. We
emphasize, however, that the type of information maintained by a parser affects howwell
and how easily disambiguation heuristics can be learned rather than whether the parser
can be used within the Kenmore framework.

9.3 The Taxonomies
To instantiate the Kenmore framework to solve a new problem in sentence analysis,

system developers must also set up any taxonomies that will be required. In the lex-
ical acquisition task, for example, MayTag tagged words in an incoming text with the
appropriate syntactic and semantic class. In order to do this, we provided MayTag
with part-of-speech and semantic feature hierarchies. The taxonomies used in both
the MayTag and WHirlpool systems observed the guidelines established in Chapter 4
regarding variable-depth knowledge representations. To ensure that new instantiations
of the Kenmore framework are successful in the larger language processing task in which
they are being used, we suggest that system developers abide by these guidelines as well.
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In short, any semantic hierarchies should focus on the representation of domain-specific
knowledge and should be detailed enough tomake the distinctions required in the domain
of interest. Any syntactic hierarchies should be detailed enough to allow the parser to
accomplish its goals, e.g., segmentation of incoming text into low-level constituentphrases.
Further experimentation would be required to determine which of these constraints can
be relaxed without any loss in performance.

In Section 7.2.2 we found that MayTag was better at assigning domain-dependent
semantic features than domain-independent ones. This implies that Kenmore will be
more successful when the NLP tasks require primarily domain-dependent taxonomies.
On the other hand, the results of Section 7.2.2 indicate that Kenmore should perform
adequately on even domain-independent semantic features if those features are fairly
general ones. The key in determining the success of Kenmore on any particular task is
to balance two conflicting constraints. First, the underlying taxonomies must be detailed
enough to support the natural language task. Second, the underlying taxonomies should
be general enough to allow adequate coverage of each value in the taxonomy across
the training cases. In semantic feature tagging, for example, Kenmore will not learn
to recognize words denoting humans or company-names unless it is given a reasonable
number of examples of each. In general, the first constraint supersedes the second because
the second constraint can always be satisfied by extending the training phase until enough
cases have been created.

9.4 The Parsing Task To Be Learned

Kenmore provides a framework within which solutions to problems in sentence
analysis can be learned. The only constraints on the choice of parsing problem are that

1. the sentence analyzer be able to recognize an instance of the problem, and

2. the problem be recast as a classification problem.

As an example, consider the problem of prepositional phrase attachment. To satisfy the
first constraint, the parser must know when a prepositional phrase attachment decision
will need to bemade— just after eachprepositional phrase is recognized. This is important
because the parser must create a case whenever an instance of the problem is encountered.

In general, lexical ambiguities (e.g., concept activation, semantic feature tagging),
require that a decision be made for individual words. Therefore, the parser should
create a lexical disambiguation case as each word is recognized. Structural ambiguities
(e.g., relative pronoun disambiguation, prepositional phrase attachment, understanding
conjunctions and appositives, analysis of compound nouns), on the other hand, represent
attachment decisions rather than tagging decisions. As a result, a case should be created
when the attachment decision must be made (e.g., after the prepositional phrase has been
recognized forprepositional phrase attachment andafter thewh-wordhasbeen recognized
for relative prounoun disambiguation).
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To satisfy the second constraint, prepositional phrase attachment must be recast as
a classification problem: we must specify the features that will encode the context of
the ambiguity as well as what kind of “class” information should be associated with
each prepositional phrase attachment decision. This amounts to determining what the
“context” and “solution” parts of the cases should look like. In the Kenmore framework,
the representation of context depends more on the parser than on the ambiguity task —
it will be discussed in the next section. The structure of the class information depends on
the type of ambiguity being resolved. For lexical ambiguities, the class information is an
item(s) from the appropriate taxonomy (e.g., the concept taxonomy for concept tagging,
the semantic feature hierarchy for semantic feature tagging). For structural ambiguities
like prepositional phrase attachment, the class information specifies an attachment point.
In relative pronoun disambiguation, for example, the attachment point is the antecedent
of the relative pronoun, i.e., the phrase that the upcoming embedded clause modifies.
For each phrase in a conjunction (other than the first one), the attachment point is the
preceding phrase in the conjunction (e.g., in “I sawNelson andWinnie,” “Winnie” attaches
to “Nelson”). For some attachment decisions, we may also want to include additional
information as part of the class information. In compound noun analysis, for example, it
is also important to indicate the semantic relationship between nouns in the compound
as well as their attachment points. In “the Northampton sushi bar,” “Northampton” and
“sushi” modify “bar,” but it would be more informative to note that the “bar” is “in
Northampton” and “serves sushi.”

Given our experience with MayTag and WHirlpool, we can generalize as to how the
two constraints described above can be satisfied for new problems in sentence analysis.

It should be noted that specifying the nature of the class information to associate with
some parsing problems may be difficult. The problem arises not because it is difficult
to view the task as a classification problem, but because the problem involves a number
of decisions, some of which need to be modified as more of the sentence is uncovered.
Consider the following sentence:

I saw Mary Ford, the mayor of Northampton, and Bill Clinton, our president.

In this sentence, “Mary Ford” and “the mayor of Northampton” are in apposition to
one another and the conjunction joins two entities, “Mary Ford” and “Bill Clinton.”
Without the appropriate background knowledge, however, we might initially interpret
“themayorofNorthampton”as an element of the conjunction (rather thanas anappositive)
until we reach the phrase “our president.” Examples like this indicate that the class
information associated with an ambiguity sometimes may have to include adjustments to
prior decisions that are now deemed incorrect.

9.5 The Case Representation: Representing Context

The “context” portion of Kenmore cases encodes the state of the parser at the point
of an ambiguity. As discussed in earlier chapters, the success of the inductive learning



152

algorithm, and hence, the success of Kenmore, depends critically on using an appropriate
representation of context. Unfortunately, designing a good case representation is by far the
most difficult step in the instantiation of the Kenmore framework. It is time-consuming
and knowledge-intensive. Given the results from preceding chapters, we have established
a single overriding constraint on case representation design that must be satisfied for
the learning task to succeed: the baseline case representation must be one that is natural for
the sentence analyzer. This constraint is necessary because the sentence analyzer is solely
responsible for providing the context portion of the cases. This constraint also limits the
number of appropriate representations to consider. A purely syntactic sentence analyzer,
for example, will not be able to include semantic information the case representation. In
addition, the learning algorithm constrains case representation design because it limits the
structure of the cases. The inductive learning components used inMayTag andWHirlpool,
for example, require that cases be presented in attribute-value pair format.

9.5.1 Using a Uniform Case Representation

One question that was not addressed in the experiments of earlier chapters is the
degree to which a single case representation should be used across all parsing problems
within the Kenmore framework. Does each problem in sentence analysis require its own
representation of context or will a single representation of context suffice? Does the real
answer lie somewhere in between? MayTag was able to learn solutions to a number of
problems in lexical ambiguity using the same baseline case representation in conjunction
with a decision tree approach to feature set selection that located relevant features in the
baseline representation. This implies that Kenmore may be able to handlemany problems
in lexical ambiguity resolution using the same baseline case representation as long as
that baseline representation is tuned for each lexical ambiguity task using some feature
selection techniques. Because we tackled only one structural ambiguity task within the
Kenmore framework, it is impossible to know whether a single case representation will
also suffice for all structural ambiguities.

Still, given the results of experiments with MayTag and WHirlpool, it is not clear
whether Kenmore should use the same baseline case representation for lexical and struc-
tural ambiguities alike. MayTag and WHirpool used very similar, but not identical,
baseline case representations. For example, MayTag cases include information for each
word in afivewordwindowsurrounding theunknownword, butWHirlpool cases include
word-level information only for the word that precedes the relative pronoun. WHirlpool
cases, on the other hand, include an attribute-value pair for all major constituents and
low-level phrases in the current clause. MayTag cases include only information for the
major constituents of the current clause. Given these differences in case representation,
one might conclude that lexical ambiguity resolution and structural ambiguity resolution
require access to different sources of knowledge. In particular, it would appear that lexical
ambiguity resolution requires access to a finer-grained representation of local context than
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does structural ambiguity resolution, while structural ambiguity resolution requires a
more complete representation of global context.

While these hypotheses may be true, we still advocate the use of a uniform baseline
case representation for all problems to be solved within the Kenmore framework. In
addition, however, we advocate the use of automated approaches that tune the baseline
representation for each problem in sentence analysis by locating relevant parts of the
context and by modifying the representation in response to appropriate biases. Figure 9.1
explicitly indicates the use of such techniques in the Kenmore framework. This approach
separates ambiguity resolution into two distinct tasks: (1) the task of gathering together
all possible disambiguation cues, and (2) the task of deciding which of the available cues
are relevant to the current problem. In Kenmore, the sentence analyzer performs the first
task and the inductive learning component performs the second. One advantage of this
separation is that it simplifies the job of the parser—the parser supplies the same “context”
regardless of the type of ambiguity. In addition, it ensures that the learning component has
access to all available sources of information as it learns a solution to a particular problem
in sentence analysis.

Case 
Base

Case Retrieval

Retrieved Case(s)
context   solution

Probe Case
context         ?

context of ambiguitySentence
Analyzer

selected sentences

Inductive Learning Component

ambiguity solution

Corpus

Modified Probe Case
context         ?

Subsystem for 
Tuning Case Rep 

ambiguity type

Figure 9.1: Modified Kenmore Framework.

9.5.2 Righthand Context
Another issue in the representation of context for Kenmore that remains to be ad-

dressed is the role of righthand context. Sometimes the resolution of anambiguity problem
hinges on information that follows the ambiguity. As an example, consider the sentence:

I saw the daughter of the colonel, who fought in Vietnam.

Before seeing the embedded clause, it is impossible to know if the antecedent of “who” is
“the daughter” or “the colonel.” However, after the embedded clause has been processed,
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it appears fairly certain that “who” refers to “the colonel.” Kenmore cases, however,
include little or none of that righthand context. MayTag cases, for example, include
information for just the two words that follow the unknown word and WHirlpool cases
encode only the preceding context. We have chosen to ignore the succeeding context
because the parser has not processed that portion of the input in its left-to-right traversal
of the text. To handle circumstances where the righthand context is important, however,
the general procedure for ambiguity resolution in Kenmore could be modified as follows.
During training, when an ambiguity is encountered that cannot be resolved based on the
lefthand context (and possibly a very limited lookahead), the solution portion of the case
might note the need for righthand context as well as indicating the best guess for the
ambiguity resolution decision. If this case were retrieved during the application phase,
the parser would know to resolve the ambiguity initially based on the “best guess” and to
consider revising the decision as more of the sentence is processed. These modifications
complicate both the generation of the solution part of the case during training and the
processing of the solution part of the case during application.

9.5.3 Improving the Case Representation Automatically

In general, Kenmore needs to modify a baseline case representation in three ways in
order to learn solutions to problems in sentence analysis. It must:

1. Discard irrelevant attributes.

2. Determine the relative importance of relevant attributes.

3. Add new attributes when the existing ones are inadequate for the learning task.

Chapters 6 and 8.6 present two domain-independent methods for improving a case
representation. MayTag’s decision tree approach to feature set selection performs the
first task (and could be extended to perform the second by taking advantage of the
specific information gain value associated with each attribute). WHirlpool’s cognitive bias
approach to improvingabaseline case representation spans all three types ofmodifications.
When combined with the recency bias, the restricted memory bias discards irrelevant
features from the representation by setting their weights to zero. The recency weighting
and subject accessibility biases note the relative importance of features by modifying the
weights associated with them. The right-to-left labeling recency bias is a weak method for
adding new attributes the representation. In the experiments of Chapters 6 and 8.6, we
applied each of themethods for improving a case representation separately— the decision
tree approach was used for the lexical ambiguity task and the cognitive bias approach
was used with the structural ambiguity task. However, it is also possible to apply both
approaches to an ambiguity task if the combination improves performance.1

1To implement the combined approach, we first apply the decision tree approach to the baseline case
representation and then apply the cognitive bias approach to the resulting case representation. Alternatively,
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Because creating agood instance representation is crucial for the success of the learning
algorithm, and because the learning algorithm itself does not typically actively help in
choosing or tuning this representation2, additional methods for automatically improving
a baseline case representation should be explored. In particular, it will be important to
find methods that perform modifications of the third type — adding new features to
improve performance of the learning algorithm. The sections below describe two such
methods. Like the techniquesused inMayTag andWHirlpool, any newapproaches should
be automated.

9.5.3.1 Making Finer Distinctions
One method for adding features to a case representation is to expand an existing

attribute-value pair into two or more features so that each dimension of knowledge
represented by the original feature is encoded separately. As an example, we might
expand a constituent feature in WHirlpool into two features that represent syntactic and
semantic knowledge separately. Instead of encoding the phrase “in New York” as (pp1
location), we might represent it as (pp1 in) and (pp1-gen-sem location) or even (constit1 pp),
(constit1-prep in), and (constit1-gen-sem location). This type of modification allows the case
retrieval algorithm tomatch on each piece of knowledge separately and is especially useful
when retrieval of conflicting cases is a problem. (Two retrieved cases conflict when they
have the same similarity score, but different class information.) By using a more detailed
constituent representation, fewer such conflicts should occur.

9.5.3.2 Derived Features and the Issue of Transfer
A second method for adding features to an existing case representation is to use

derived features — higher level features that are derived from low-level ones. Some of
the features currently used in MayTag and WHirlpool cases can be considered derived
features. All of the features that represent major syntactic constituents, for example,
combine information from each of the words that comprise it and also incorporate a
decision by the sentence analyzer regarding the structure of the clause or sentence. There
are many more opportunities to incorporate derived features in Kenmore cases, however.
In particular, we might include features that allow Kenmore to benefit from its own
ambiguity resolution decisions. Currently, Kenmore’s cases represent a flattened view
of the structure of the current clause. However, as Kenmore is accessed to resolve various
structural ambiguities during sentence analysis, its decisions could be added to the existing
case representation dynamically as derived features. Consider the following sentence,

we can use the information gain measure to assign an initial set of weights to the features in the baseline case
representation and then apply the cognitive biases.

2There are exceptions, of course. E.g., the constructive induction systems of Callan and Utgoff [1991] and
Fawcett and Utgoff [1992].
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Police also spoke with the man beside the white Ford Bronco, who allegedly
drove the vehicle.

When WHirlpool encounters this sentence, it creates a case that contains constituent and
most-recent features and is based on the state of the parser when “who” is recognized.
If we assume that Kenmore will be used to make all attachment decisions, however,
then the prepositional phrase attachment decision for “beside the white Ford Bronco”
already would have been made. Because this decision may, in turn, inform the relative
pronoun disambiguation decision, we could let the sentence analyzer include it as part
of the context in the relative pronoun disambiguation case. This type of derived feature
allows a “transfer” of knowledge among disambiguation tasks. In the above example,
solving a prepositional phrase attachment ambiguity may help with relative pronoun
disambiguation.

9.6 The Inductive Learning Component

There are a number of constraints on Kenmore’s learning component. First, the
learning component must be inductive. This is a basic assumption of the Kenmore
framework. Second, the structure of the case representation used by the learning algorithm
should be general enough to accommodate naturally the representations employed by the
sentence analyzer. Although the attribute-valuepair representation appears to be adequate
for use with the CIRCUS parser, inductive learning algorithms that allow structured case
representations (e.g., FOIL [Quinlan, 1990]) would be worth exploring, especially for use
with sentence analyzers that create and maintain such structured representations. Finally,
it is best if the learning algorithm is incremental: the description of the concept being
learned is best updated after each training case without reprocessing all of the preceding
training cases. This allows the human-supervised training phase to become progressively
easier as more cases are acquired without slowing down the training process.

9.7 Training Issues

In order for Kenmore to learn solutions to problems in sentence analysis, the training
phase must meet the following constraints. First, training sentences should be selected
randomly from the corpus. In addition, because the work discussed here assumes the task
of domain-specific text processing, it may make sense to choose the majority of training
sentences from relevant rather than irrelevant texts for some, but not all, learning tasks.
For semantic feature and part-of-speech disambiguation, for example, it is best if the
training sentences are randomly chosen from sentences that contain information relevant
to the text-processing task because it will be performance on words from these sentences
that affects the overall performance of the NLP system. Irrelevant sentences effectively
should be ignored by the NLP system, making the assignment of correct semantic feature
and part-of-speech tags for lexical items in these sentences unimportant. However, there
are disambiguation tasks that can benefit from the presence of irrelevant sentences in the
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training corpus. One example is the activation of domain-specific concepts, which was
performed by MayTag. If a concept is activated, the entire sentence is considered relevant
by CIRCUS. Therefore, it will be important to include irrelevant sentences in the training
set so that the learning component can learn to distinguish relevant from irrelevant concept
activation contexts.

A second constraint on the training phase is that it continue long enough to gather an
adequate number of training cases. We saw in Chapter 5.5.2.1 that increasing the number of
training cases by 50% provided increases in the accuracy of general and specific semantic
feature tagging by 19%and 12%, respectively. Kenmore’s training phase can endwhen one
of two conditions is met: (1) overall classification accuracy is above some predetermined
value, or (2) when learning curves indicate that performance is no longer increasing or that
it is increasing at some very small rate. In training MayTag for the UMass-Hughes MUC-
5/TIPSTER system, we loosely adhered to the first condition and stopped training when
MayTag’s performance across all words in the training sentences (including the function
words) surpassed 85% accuracy level. In general, however, learning curve data will
provide an earlier indication of when the training phase should end. One training scenario
is to choose training sentences randomly until the learning curves indicate that learning
has slowed considerably. Then, we can examine the system’s performance on individual
classes and select additional training sentences to cover underrepresented classes.

Third, the training phase should be sensitive to the different types of knowledge being learned
because different types of training examples may be required to learn a particular concept
in sentence analysis. For example, the MayTag’s semantic feature set contains two types
of features — set list features that are used to tag a small, fixed set of words and open
list features that will be associated with a much broader set of lexical items. Virtually
any word can be tagged as a company-name or company-alias, for example, but generally
only a few expressions are used in the joint ventures domain to denote the president of a
company — approximately 99% of the 113 texts that refer to the president of a company
use either the word “president” or “head.” Therefore, company-name and company-alias
would be considered open list semantic features, while presidentwould be a set list feature.
Choosing training sentences randomly will be adequate for learning open list features,
but we may want to choose specific examples for the set list features to ensure adequate
representation in the case base since many of the set list features tend to appear less
frequently in the corpus.

Finally, Kenmore’s training phase should test a number of values for when a k-nearest
neighbors inductive learning component is being used. All of our experiments tested a
few values of , but additional research is required in order to generalize from current
results to determine when specific values of are appropriate.

9.8 Putting It All Together

Throughout the thesis we have assumed that Kenmore tackles each problem in sen-
tence analysis more or less in isolation: MayTag handled three kinds of lexical ambiguity
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simultaneously, but relative pronoun disambiguation heuristics were learned in a separate
instantiation of Kenmore. This section outlines how Kenmore might be used to learn
solutions to multiple parsing problems for a new natural language system.

1. Determine all problems in sentence analysis that must be tackled. These will
include both lexical and structural disambiguation problems and problems that
include syntactic as well as semantic decisions.

2. Choose the corpus, sentence analyzer, and inductive learning algorithm(s). These
shouldbe chosen subject to the constraintsdescribedabove in Sections 9.1, 9.2, and9.6.
If the inductive learning component is a case-based component, the case-indexing
method, similarity metric, and case selection methods should be chosen.

3. Set up taxonomies to be associated with each problem. In most cases, these will be
associated with lexical ambiguities. However, some structural ambiguities may have
associated taxonomies. Compound noun analysis, for example, may require a set of
semantic relations that indicate the ways in which two nouns can be related.

4. Determine how the class information associated with each problem will be sup-
plied by the human supervisor. For all lexical tagging problems tackled by MayTag,
for example, the user was presented with the associated taxonomy and then asked to
choose which item(s) should be used to tag the current word. For relative pronoun
disambiguation, theuserwas presentedwith all low level constituents from the clause
preceding the relative pronoun andwas asked to choosewhich phrase(s) represented
the antecedent of the relative pronoun. The same information could be presented to
the user for prepositional phrase attachment decisions, but the user would be asked
to choose the phrase that the current prepositional phrase modified.

5. Design the baseline case representation. This should be done subject to the con-
straints discussed in Section 9.5 above.

6. Choose the training sentences and train on all sentence analysis tasks simulta-
neously. The user proceeds through the training sentences, one by one, specifying
supervisory information for all ambiguity decisions in the same pass. Given our
results using MayTag, the lexical ambiguity decisions associated with each word can
be stored together in a single case and added to a lexical ambiguity decision case
base. Until additional experiments indicate otherwise, a separate case base should
be maintained for each structural ambiguity decision.

7. UseKenmore during training to suggest a solution to each ambiguity encountered.
As cases are gathered, they can be immediately accessed by Kenmore to show the
human supervisor the system’s best guess for each new ambiguity. In this way,
training becomes progressively easier.
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8. Monitor Kenmore’s performance during training. This amounts to running cross-
validation experiments in the background to determine when training on each sub-
problem in sentence analysis can terminate. As training progresses, the user need
not be asked to supply supervisory information for tasks for which enough training
cases have been gathered. Methods for improving the case representation also could
be explored in the background during training.
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CONCLUSIONS
This thesis presents a general framework for tackling the knowledge-engineering

bottleneck for natural language processing systems at the level of sentence analysis. The
Kenmore knowledge acquisition framework exploits an on-line corpus using a robust
parsing strategy and symbolic machine learning techniques, and requires minimal human
intervention. In Kenmore’s partially automated acquisition phase, the solution to a
particular problem in sentence analysis is learned. The object of the training phase is
to create a case base of ambiguity resolution episodes for a particular type of ambiguity.
This is accomplished by selecting a set of sentences from the corpus, presenting them
to a sentence analyzer for processing, and creating a case every time an instance of the
ambiguity occurs. Cases are created by the sentence analyzer and a human supervisor. In
Kenmore’s application phase, we use the case base without human intervention to resolve
ambiguities in novel sentences. Whenever the sentence analyzer encounters an ambiguity,
it creates a problem case, compares the problem case to each case in the case base, retrieves
the most similar training case, and sends the solution stored there back to the parser to be
used as the solution in the current situation.

Below we discuss the contributions of the work and describe a number of directions
for future work.

10.1 Contributions of the Research
The thesis makes two major contributions to the field of natural language process-

ing. First, it demonstrates that symbolic inductive machine learning and case-based
techniques can be used to learn solutions to significant problems in sentence analysis.
We instantiated Kenmore in systems that learn heuristics for handling relative pronoun
disambiguation, part-of-speech disambiguation, semantic feature disambiguation, and
domain-specific concept disambiguation. In addition, the solutions learned by Kenmore
have been incorporated into a working natural language processing system that has
demonstrated success in processing real-world text. As such, we have shown the feasibility
of truly trainable, portable, customized sentence analyzers.

Although symbolic machine learning algorithms are designed to find regularities in
data, it is still somewhat surprising that they can be used to learn solutions to problems in
sentence analysis within the context of real-world natural language processing tasks. The
natural language learning tasks present a number of challenges for the inductive learning
system:
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The training cases contain noise. Some of the noise is in the form of inconsistent and/or
incorrect class information provided by the human supervisor and some of the noise
is in the form of incorrect feature values provided by the sentence analyzer. Because
the concepts being learned are open-textured concepts that lack distinct boundaries,
some portion of the noise is unavoidable.

Kenmore cases contain missing features and irrelevant features.

There is no guarantee that the cases will include all features necessary for the learning task
to succeed. The case representation is limited by the information maintained by the
CIRCUS sentence analyzer.

Kenmore requires incremental learning of concepts.

The machine learning system must be able to learn concepts with many classes. The tasks
tackled within the MayTag and WHirlpool systems have a minimum of ten class
values.

As a second major contribution of the work, we have introduced a new approach
to ambiguity resolution in sentence analysis. By viewing all ambiguities as classification
problems, Kenmore is able to address uniformly a range of problems in sentence analysis
each of which traditionally had required a separate computational mechanism. We believe
that it is this uniform view of ambiguity resolution that allows Kenmore to learn solutions
to such awide variety of problems in sentence analysis. In particular Kenmore has handled
syntactic, semantic, lexical, and structural ambiguities, and has accommodated both the
acquisition and application of disambiguation heuristics within a single architecture.

Kenmore’s approach to knowledge acquisition for natural language processing sys-
tems has a number of advantages over traditional methods for acquiring the background
knowledge needed for sentence analysis. First, Kenmore entirely eliminates the need for
generating and maintaining explicit, hand-coded disambiguation heuristics because the
case base and case retrieval algorithm together implicitly define a set of disambiguation
heuristics. By encoding context as part of a lexical definition, for example, MayTag allows
themeaning of a word to change dynamically in response to surrounding phrases without
the need for explicit lexical disambiguation heuristics. Applying the framework to solve
newproblems in sentence analysis is also easy because the same case-basedmethod is used
to acquire solutions to syntactic and semantic problems at both the lexical and structural
levels. No hand-coded heuristics are required to drive the acquisition process. Builders
of traditional NLP systems, on the other hand, design separate methods for each class of
problem encountered during sentence analysis.

Compared to purely statistical approaches to knowledge acquisition for natural lan-
guage systems, Kenmore requires relatively little training. In the experiments described
described throughout the thesis, we obtain promising results after training on only a small
number of sentences. This makes the method especially appropriate for use with small
corpora where statistical approaches fail due to lack of data. In addition, Kenmore’s
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training phase does not require the expertise of computational linguists. With the possible
exception of part-of-speech tagging, supervisory information can be provided by anyone
who can understand texts from the training corpus. The main constraint for the human
supervisor is that the training remain consistent, i.e., the protocol for handling various
classes of decisions does not change as training progresses. Another advantage of Kenmore
is its incremental learning of disambiguation heuristics, which enables training to become
progressively easier for the human supervisor. Kenmore can access the existing case base
to suggest solutions to each ambiguity and rely on the supervisor only to override incorrect
predictions.

Finally, Kenmore’s case-based approach to knowledge acquisition provides a flexible
control structure for combining multiple sources of knowledge, making it easy to explore
the usefulness of different types of knowledge in solving problems in sentence analysis.
An interesting result of our experimentswithin this case-based framework is that solutions
to problems in sentence analysis invariably make only limited use of the available knowl-
edge sources. Without exception, we found that the ambiguity resolution task is better
performed when irrelevant pieces of knowledge in the case representation were ignored.

The thesis has also made a number of secondary contributions. We have shown that
a decision tree algorithm can be used to find the relevant features in a case representation.
A case retrieval algorithm that uses this decision tree approach to feature set selection
was shown to perform better than a pure decision tree algorithm, a pure case-based
algorithm, and an algorithm that relied on expert knowledge to discard irrelevant features.
In addition, we have shown that cognitive biases can improve the performance of the
learning algorithm by being automatically incorporated into the case representation.

10.2 Future Directions
The work presented in this thesis can be extended in many directions, some of which

have been discussed in earlier chapters, but are summarized again here.

10.2.1 Broader Domains
Kenmore has been presented as a framework for knowledge acquisitionwithin limited

domains. An obvious direction that must be explored is how to extend Kenmore to deal
with texts from broader, unrestricted domains and, ultimately, with entirely open-ended
text. We believe that the use of unrestricted domains will affect Kenmore’s ability to
perform lexical ambiguity tasks, but will not critically affect its performance on structural
ambiguity tasks. The problem is that the taxonomies that underlie lexical acquisition
grow tremendously as the domains become broader. In turn, the length of the training
phase must be extended in order to gather a representative set of training cases from
the corpus. Exceptions to this phenomenon might occur if the natural language task
associated with the unrestricted domain required only that high level distinctions bemade
among lexical items (e.g., if “soldier” and “president” could be tagged as “human” rather
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than “military” and “official”). Then, the taxonomy would not be expected to grow very
much and the current Kenmore framework would be adequate. Our experience with the
WHirlpool system, on the other hand, has shown that high level semantic distinctions
may be adequate for handling structural ambiguities and there will therefore be less of
a problem with an expanding semantic feature taxonomy. Unrestricted domains cause a
different problem for structural disambiguation — as the domain becomes broader, the
style of the texts becomes increasingly varied and, hence, more training examples will be
required. Although exploratory investigations in this area are clearly needed, we believe
that the increase in stylistic variations will not extend the training phase prohibitively
because they affect the global sentence structure more than local sentence structure and
most ambiguities can be resolved using a very limited local context.

One approach to using Kenmore for lexical acquisition with texts from unrestricted
domains is to build a collection of knowledge bases for specialized domains, e.g., business
joint ventures, terrorism. Then, to understand a text, the NLP system first determines the
domain of the text and then accesses the knowledge base associated with that domain.
A better approach to dealing with unrestricted domains in Kenmore was discussed in
Chapter 5.5.4. There we proposed that Kenmore begin with a general, on-line knowledge
base (e.g., an online dictionary or thesaurus) and use its case-based approach to decide
which of thedefinitions (e.g., parts of speech, semantic tags) listed for aword is appropriate
in a given context. Each case in the case base includes the usual context and solution
portions, but the context part could be expanded to include a description of the options
available for the current word in the on-line dictionary. The solution part of the case
specifies thedefinition that is correct in the current context or, if nonewere correct, describes
the novel definition. This approach allows system developers to start with a predefined
taxonomy of syntactic and semantic types rather than designing them from scratch.

10.2.2 Unsupervised Training Methods

The current major bottleneck in theKenmore system is the human-supervised training
phase and, as described above, this bottleneck will become even worse as Kenmore is
used in increasingly broad domains. As a result, future work will explore the use of
unsupervised inductive learning techniques rather than supervisedones. Ifweassume that
Kenmore has already been trained to handle problems in lexical ambiguity, (e.g., part-of-
speech ambiguity, semantic feature ambiguity), thenaminimally supervised approach that
may work well for problems in structural ambiguity is the following. During the training
phase, Kenmore should create cases that contain only their context portions. Because
the parser supplies all of the needed information automatically, no human supervisor is
needed. Next, the cases are clustered using any of a number of clustering techniques.
Finally, a human supervisor is consulted to provide supervisory information for one case
in each cluster and all cases in the cluster are assigned the same class. At this point,
all training cases have both context and solution portions and Kenmore can be run in
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application mode using the usual case retrieval methods to find the training case most
similar to the problem case.

The above approach will be less useful for lexical tagging tasks. The context portion
of each lexical disambiguation case will only be able to include the individual words that
precede and follow the current word. None of the higher level attributes like the part of
speech or semantic features of the preceding or following words or any constituent level
information will be available because that is the information that the system is trying to
learn. Without this higher level information as part of the context vector,manymore cases
will be needed to obtain reasonable clusters. As a result, there will be many more clusters
for the human supervisor to “seed” with supervisory information.

10.2.3 Smarter Supervised Training

We can also explore methods that reduce the amount of training required for purely
supervised learning methods. Lewis and Gale [1994] present one such approach that was
found to reduce the number of manually tagged training cases by 500-fold for a given level
of performance. The approach is based on results from computational learning theory
and involves making a better choice of training examples by training on the most difficult
examples. It could be incorporated into theKenmore framework as follows. First, generate
a (fairly large) base set of cases that containonly the context portionof the case. Wewill refer
to these as the “context-only cases.” Because no supervisory information is required, the
context-only cases can be generated automatically by the sentence analyzer — no human
intervention is required. Then set up a small case base with training cases for which the
human supervisor has provided class information. Apply the case retrieval algorithm to
the set of context-only cases and locate the case whose nearest-neighbor had the lowest
similarity score. This will be the context-only case for which the case retrieval algorithm is
least certain of its class. Next, let the human supervisor supply class information for this
case and add it to the case base. Continue this process until the cross-validation testing
indicates that an adequate level of performance has been attained or improvements in
performance have ceased.

Another way to improve Kenmore’s training phase is to make more direct use of
the errors made during training. Because Kenmore knows which training case(s) are
responsible for each of its decisions, we might explore automated approaches for using
this credit assignment information tomodify the similaritymetric or the case representation
(see Section 10.2.5 below), or to add and remove cases from the case base.

10.2.4 Problems That Cross Clause and Sentence Boundaries
In addition to applying Kenmore to additional structural and lexical problems within

a single clause, it will also be interesting to apply Kenmore to problems that span clauses or
even sentences. Some problems include pronoun resolution, general anaphora problems,
nounand verb phrase ellipsis, and understanding infinitive complements. Some problems
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may require very different case representations than we have seen thus far because their
scope is less local in nature. In addition, these problems may require different approaches
to improving the case representation.

10.2.5 Dynamic Modification of Case Representation

This thesis presented two approaches for improving a baseline case representation
automatically. However, additional machine learning methods for modifying a case
representation should be explored. As discussed in Chapter 9, it will be especially
important to devise methods that systematically add new features to a representation
by exploiting the structure andmeaning of the representations maintained and created by
the sentence analyzer.

10.2.6 Environment for Natural Language System Development

We also plan to continue to explore the use of symbolic inductive machine learning
techniques as tools for guiding natural language system development. This will include
extending Kenmore into an integrated environment in which natural language systems
can be designed, built, and evaluated, and in which the role that various knowledge
sources play in the conceptual analysis of text can be explored. All of the extensions and
modificationsdescribed in the sections above shouldbe incorporated into this environment
for system development.

10.2.7 Higher Level Knowledge Structures

The goal of this thesis is to address the knowledge engineering bottleneck for natural
language processing systems. We have presented Kenmore as a framework in which the
knowledge required by anNLP system can be systematically acquired. However, thework
described in this thesis just begins to explore the role that machine learning techniques
can play in the larger knowledge-bootstrapping process required for increasingly deeper
analysis of increasingly complex natural language understanding tasks. An important
research direction to pursue will be to test the ability of the framework for the acquisition
of some of the higher level knowledge structures that conceptual analysis of text requires.
These include the acquisition of scripts, plans, causal knowledge, and mental models. As
a side effect, we can begin to use Kenmore to acquire knowledge structures from text for
use by other AI systems and to gain insight into the possibility of using raw text directly
as a knowledge base.
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