Scheduling for Cache Affinity
in Parallelized
Communication Protocols

James D. SALEHI, James F. KUROSE
and Don TOWSLEY

CMPSCI Technical Report 94-75
October, 1994

Scheduling for cache affinity in parallelized communication protocols*

James D. Salehi James F. Kurose Don Towsley
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

October 15, 1994

Abstract

In this paper, we explore the benefits of processor cache affinity scheduling of parallelized network protocol
processing. We find that affinity scheduling, which has not previously been shown to be of significant benefit to
common applications, can provide large performance gain in the context of parallelized protocol processing.

We conduct a set of multiprocessor experiments designed to measure packet processing time in a UDP/IP/FDDI
protocol stack in the z-kernel on an SGI Challenge XL multiprocessor. These measurements are then used to
parameterize a combined simulation/analytic model of multiprocessor protocol processing. Our simulation results
show that affinity scheduling can significantly reduce message delay associated with protocol processing, allowing
a host to support a greater number of concurrent streams, to provide a higher maximum throughput to individual
streams, and to decrease the end-to-end latency seen by an application. We find the reduction in end-to-end latency
can be significant even when the fixed-overhead components of end-to-end delay are large with respect to message
processing time. In addition, we compare two implementation approaches to enabling protocol parallelism, and
find that the approach which maximizes cache affinity delivers much lower message latency, and enables much
higher message throughput capacity. Yet this approach exhibits limited intra-stream scalability and poor response
to intra-stream burstiness. Finally, we show that a “hybrid” approach performs best for a specific class of traffic
streams—yielding high message throughput, high intra-stream scalability, and robustness in the presence of bursty
arrivals.

*This work was supported by NSF under grant NCR-9206908 and by ARPA under ESD/AVS contract F-19628-92-C-0089. The authors
can be contacted at [salehi kurose. lowsley]@cs.umass.edu.

1 Introduction

In many modern computer architectures, there is a significant difference in the amount of time needed to reference
a memory location cached locally versus one held in main memory. For example, on the SGI Challenge XL
multiprocessor (the experimental platform used in this paper) a reference can be serviced by the first-level cache in one
processor cycle, whereas the fastest main memory access over the shared bus exceeds 100 cycles'. In multiprocessor
architectures, these vastly different memory access times have given rise to “affinity-based” scheduling—choosing
a processor to run a computation so that the generated memory references are likely to be found in that processor’s

cache, thus avoiding accesses to the slower main memory and resulting in faster execution times.

In this paper, we evaluate several different affinity-based scheduling policies for parallelized protocol processing,
an application which has recently generated considerable interest [4, 6, 8, 10, 13, 16, 17, 18, 19]. We consider protocol
parallelization paradigms in which each message, during the course of its processing, visits a single processor and
executes within the context of a single thread?. This captures the parallelization found in several multiprocessor
protocol implementations, including parallelizations of the z-kernel [2, 13], the STREAMS implementation in Plan
9 [17], and the ASX framework [19]. A related form of parallelism is found in the STREAMS implementations in

many commercial operating systems [18, 4, 6].

We present two sets of results. First, we show that affinity scheduling can significantly reduce message delay
associated with protocol processing, enabling the host to support a greater number of concurrent streams, to provide a
higher maximum throughput to individual streams, and to decrease the end-to-end latency seen by an application. We
find the reduction in end-to-end latency can be significant even when the fixed-overhead components of end-to-end

delay are large with respect to message processing time.

Second, we compare implementations of two approaches to parallelizing protocol processing, and find that the
approach which maximizes cache affinity delivers much lower message delay and much higher message throughput
capacity. However, this approach exhibits limited intra-stream scalability and poor response to intra-stream bursti-
ness. We thus propose a “hybrid” approach for a specific class of streams, and show that it offers the best overall

performance—yielding high message throughput, high intra-stream scalability, and robustness in the presence of

bursty arrivals.

We establish our results using experimental measurements in conjunction with simulation and analytic techniques.
Specifically, we measure message processing times of a UDP/IP/FDDI protocol stack running in a controlled
multiprocessor environment and under specific conditions of cache affinity. These measurements are then used to

parameterize the analytic component of a simulation model of multiprocessor protocol processing, under various

! As measured on our platform.
3We use the terms thread and process interchangeably.

affinity-based scheduling policies. The hardware platform serving as the basis for the experimental component of
our study is an 8-processor SGI Challenge XL running the IRIX 5.2 operating system. Protocols are implemented

using the z-kemel framework in user space [8, 14].

Previous work on affinity-based scheduling [3, 5, 22, 26] has not established a consensus on its efficacy, even
reaching seemingly conflicting conclusions (e.g., [26] vs. [22]). None of the work has found affinity-based scheduling
techniques to be of significant benefit to common applications. For affinity scheduling to be effective, the enabled
processing speedup must be large in comparison to the task’s per-visit processor execution time. We show that

multiprocessor protocol processing satisfies this criterion.

Several aspects of our methodology may facilitate research on affinity scheduling in other application domains.
First, we demonstrate a systematic decomposition of the task’s memory reference stream into disjoint classes, for
which distinct scheduling policies for specific resources can be identified. This allows us to evaluate the marginal
contributions of the individual policies, and assess their relative performance gains. Second, we present extensions
to an existing analytic model of the execution time of an affinity-scheduled task in a multitasking environment
[25, 22). The primary contribution here is to relax the requirement of having identified the task’s footprint—the set
of cache lines currently referenced by the executing task. In practice, it can be hard to determine a task’s footprint,
especially for large, multithreaded, multiprocessor applications. We show how to parameterize the analytic model
with experimental timing measurements, which are much easier to obtain. Finally, in the design of the experiments
formulated to yield these measurements, we illustrate an experimental method for isolating the individual components

of affinity-based overhead.

This paper is organized as follows. Section 2 presents the problem formulation. In section 3 we outline the
simulation model of multiprocessor protocol processing. Section 4 presents the analytic model of message execution
time, and section 5 discusses the implementation-based experiments performed to measure the parameters needed
by the analytic model. Performance results are presented in section 6. We discuss related work in section 7, and

summarize our work in section 8.

2 Problem formulation
2.1 Protocol processing

Let us begin by considering a simplified view of in-kernel, receive-side protocol processing. Figure 1 depicts a
multiprocessor with an FDDI network connection. Processors are labeled P;, kernel-level protocol threads T, and
application threads A;. In the figure, P; and P, are running protocol threads (i.e., threads executing a communication
protocol or protocol stack), and P, and P, are running non-protocol threads. For simplicity, we will assume

that processors are kept busy running non-protocol tasks when not executing protocol code, that protocol processing

2

Aq Az T R ToEmm

P, P, Py Py
system bus M Main
Y O . . . Memory
! (d)
" EDDI | T, T, T idle protocol thread pool
. FDDI V3 Ta Ts
interface '
packet :] packet queue
b (b) ! S TTIII
(@) R s - fL} L—! puffer pool
network B ~ available processor pool

Figure 1: Conceptual model of multiprocessor protocol processing

receives priority over non-protocol processing, and that when unblocked, a protocol thread is scheduled immediately.
Figure 1 also shows a pool of “available” processors (i.e., processors not performing protocol processing) and a pool

of idle protocol threads.

Now consider the actions taken upon arrival of a packet, generating a hardware interrupt at the FDDI interface
(a). The interrupt handler allocates a buffer from the buffer pool, and initiates DMA (b). A second interrupt is
generated when DMA is complete, and the buffer is added to the queue of packets awaiting protocol processing
(c). At this point, a scheduling decision must be made: either no additional protocol processing is initiated, or an
available processor and a thread are selected and protocol processing subsequently begins. (We will discuss the
specific protocol schedulability criterion in section 3). In the example in Figure 1, protocol thread T is scheduled to
run on P; (d).

The activity of the protocol thread is shown in Figure 2, which highlights certain aspects of the UDP/IP/FDDI
receive-side path through the z-kemel (version 3.2). This z-kernel implementation runs as user-space application
above the native IRIX 5.2 operating system. A simulated device driver emulates the protocol functionality asso-
ciated with managing an FDDI network interface attachment. The diagram does not reflect support for protocol

concurrency—it depicts an unparallelized z-kernel.

During protocol processing, the packet visits protocol modules (i.e., accesses and executes protocol code) and
references stream-specific data structures known as session objects. In the FDDI protocol layer, a lookup in the FDDI
active map (a data structure which records the protocol’s active sessions) enables demultiplexing of the packet to the
correct FDDI session. There, a session reference counter is incremented to register outstanding packet processing on
the session. The packet is then pushed up to VNET, a “virtual” protocol for managing multiple link-layer protocols
(such as FDDI). In the case of receive-side processing, VNET acts as a “pass-through”; the packet flows directly

to the VNET session and then up through IP and UDP. At the top of the stack, packet data is made available to the
3

packet data available
to application

-
| . v
increment | UDP sesssion decrement

counter (for stream S) counter
active map 1
UDP protocol lookup ;
b j
- v
increment | |P session decrement
counter (for stream S) | counter
IP protocol active map
lockup
-.

: - v
increment | VNET session | decrement
com‘lter (for stream S) counter

N \
increment | FDDI session decrement
counter (for stream S) | counter

L 4

FDDI protocol | active map
Iooliup

release memory

Device Driver acquire memory and
(simulated) build message structure

: Y
= packet from stream S processing complete

Figure 2: z-kemmel UDP/IP/FDDI receive-side protocol processing

application. The protocol thread then unwinds its runtime stack, decrementing the UDP, IP, VNET and FDDI session

reference counters along the way.

Each protocol active map is implemented as a hash table indexed by a key composed primarily of specific fields
from the packet header. To speed up demultiplexing in the anticipated case of subsequent arrivals which visit the
same session, each map maintains a history of the most recent map lookup. For a subsequent packet from the same
stream, the actual lookup is avoided. For a packet from another stream, a full lookup is performed, and a new history

value is written.

In the device driver, the protocol thread first builds an z-kernel “message structure” around the packet buffer
written by the device interface (Figure 2). A portion of this structure is dynamically allocated; this memory is
subsequently released when the packet’s processing is complete. We assume the protocol subsystem maintains its
own free-memory pool (implemented as an array of pointers to segments of available memory, with access serialized

by a software lock), so that this activity® can be affinity scheduled.

3Specifically, to acquire memory, the protocol thread acquires the pool’s synchronization lock. increments the array index. and retumns a
pointer to the available memory. This memory is subsequently written by the protocol thread. To release memory. the thread acquires the
lock, decrements the index, and stores the pointer to the memory being released.

4

2.2 Parallelization alternatives

To modify the protocol stack of Figure 2 to support concurrency, accesses to the protocol active maps during
demultiplexing and to the session reference counters during increment or decrement operations must be protected.

Consider the following two parallelization approaches.

e Locking. One approach is to add a software lock to each protocol active map and session object, and to
perform each access under the protection of the appropriate lock. In our implementation of Locking, we
use non-blocking IRIX spin locks. Since these user-space locks do not incur the overhead of crossing the
user/kernel boundary, they are light-weight. A single lock can be acquired and released in 0.7-0.8us—when
the underlying data structures are cache-resident. But when they must migrate (which can occur frequently
when multiple processors access an individual shared item), this overhead increases by a nearly a factor of
three, to around 2.5us. The inherent computing demand of about 50us to process a packet (section 5) implies
that each uncached lock adds about 5% overhead to the packet receive time. This suggests that a parallelization

approach which avoids software locks may yield higher performance.

¢ Independent Protocol Stacks (IPS). A second approach to parallelism is to implement multiple independent
protocol stacks. Each individual stack supports no protocol concurrency, and therefore does not require
software locks. The key idea is to identify the non-read-only protocol data structures in the unparalielized
stack, and to create N copies of each. Typically,’N would equal the number of processors, although this is not
a requirement. In Figure 2, each protocol layer would be expanded to contain N active maps. Taken together,
the data structures at index 7 (1 < 7 < N) constitute a complete protocol stack. A single software lock is added
to each stack to ensure serialization of its processing. Under IPS, session objects need not be duplicated: an

individual stream is associated with one of the N independent stacks.

The advantage of IPS is that it avoids the cache-related overheads associated with software locks. The
disadvantage is that it does not allow concurrent processing of packets from the same stream, or from streams

mapped to the same individual protocol stack. This raises the possibility of higher intra-stream delay. We will

investigate these tradeoffs in section 6.

We have implemented both Locking and IPS through modifications to the original multi-threaded, uniprocessor

z-kernel (Figure 2). These implementations form the basis of our experimental measurements in section 5.

2.3 Affinity scheduling

To clarify the notion of affinity scheduling in this context, consider the memory reference stream issued during
message processing. This stream consists of a mix of reads and writes to individual cache lines. Our approach is
5

to partition the stream into disjoint classes, and within each class to propose policies or organizations designed to

expose the endpoints of performance with respect to affinity scheduling.

Consider references to protocol code and read-only data, which for simplicity we collectively label “code”.
Achieving code affinity (i.e., avoiding cache misses on code references) is a processor scheduling issue? since
the cache coherence protocol allows read-only references to be replicated among processor caches. Intuitively,
scheduling protocol processing where it more recently executed should result in higher code affinity. Thus, we
consider MRU and LRU management of the available processor pool. That is, when selecting a processor, the

interrupt handler either selects the processor that most-recently or least-recently executed protocol code.

Code affinity does not encompass initial references by the protocol thread to the packet itself, even though these
references are read-only. Since the packet was DMA'd by the network interface to main memory (Figure 1), it
cannot be cache resident. Therefore we do not consider affinity scheduling of the references to the packet itself.

(Furthermore, we design our experiments in section 5 to ensure these references result in cache misses.)

For each write reference, the cache coherence protocol requires the processor to first gain exclusive ownership
of the underlying cache line. This operation invalidates copies of the line in all other processors’ caches. Thus
each write reference results in a cache miss when the line was most recently written by some other processor. We
achieve affinity for write references by ensuring that it is the same processor performing the write each time the line

is written.

The protocol thread writes into its stack area for each packet received. These write references generate cache
misses whenever the thread executes at a new processor. Achieving thread stack affinity (i.e., avoiding coherence-
based misses on initial writes to the thread stack area) is a thread scheduling issue® and is reflected in the organization
of the idle protocol thread pool. We consider global versus per-processor organizations. Under LRU or MRU
management of a global pool, threads tend to migrate among processors, resulting in coherence-based stack misses.

When thread pools are organized on a per-processor basis, these misses are eliminated.

The protocol thread performs writes when it acquires or releases memory. Whether we achieve free-memory
affinity (i.e., avoid coherence-based misses associated with these writes) depends on the organization of the free-
memory pool. We consider global versus per-processor organizations. When a global pool is managed LRU, the
overhead of migrating the underlying cache lines may be incurred, depending on which processor last accessed the
pool. Under a per-processor organization, these misses are eliminated.

Finally, the protocol thread writes stream-specific data—the four session reference counters, their locks under

Locking, and one element of IP state—for each packet received. We can achieve stream affinity by “wiring” streams

to processors. This in turn is a processor scheduling decision. Under “Wired-Streams” processor scheduling, the

“That is, relates to the choice of which processor to select to run a protocol thread when one is unblocked (see (d) in Figure 1).
5That is, relates to the choice of which protocol thread to unblock when one is unblocked.

6

Resource managed | Objective Policy

Processors schedule for code affinity MRU
schedule for stream affinity Wired-Streams
baseline LRU

Threads schedule for stack affinity per-processor pools
baseline global pool

Free-memory schedule for free-memory affinity | per-processor pools
baseline : global pool

Table 1: Scheduling protocol processing for cache affinity.

processor selected when scheduling a protocol thread is determined by the stream identifier of the packet about to
be processed. Under IPS but not Locking, Wired-Streams scheduling results in incidental affinity scheduling of the
protocol active map history writes and the write to the IPS concurrency lock. (Under Locking we do not consider
affinity scheduling of the history writes, nor of the writes performed in acquiring and releasing the active map locks).

This suggests that Wired-Streams scheduling may have a greater impact under IPS than under Locking.

We have now considered affinity scheduling of every reference in the memory reference stream issued during
message processing (with the two exceptions, as noted, of the initial references to the packet data, and the writes
associated with the active maps under Locking). Table 1 summarizes the resources which can be managed to achieve

affinity scheduling of the protocol reference stream, the scheduling objectives, and the scheduling policy considered.

3 Simulation model of multiprocessor protocol processing

We evaluate the benefits of affinity scheduling through a multiprocessor simulation model that closely follows the
behavior in Figure 1. Consider first the simulation of Locking, in which there are N processors and N protocol

threads.

The packet arrival process is batched Poisson®. We consider both deterministic and geometric batch size
distributions. Upon an arrival, the batch size is computed, a stream identifier is assigned (by sampling a uniform

distribution) and the arriving packet(s) are queued for protocol processing.

The protocol processing scheduling criterion is as follows. The simulation attempts to immediately schedule a
processor F; for the first packet of the batch. Under MRU or LRU processor scheduling, if the available processor
list is non-empty, a processor is selected. Under Wired-Streams processor scheduling, a lookup based on the packet’s

stream identifier indicates the destination processor, which is selected if it is available. Otherwise the packet waits.

Before a packet can go into service, a protocol thread must be selected. When scheduling for thread stack affinity,

the simulation maintains per-processor pools of available threads, and a thread is dequeued from the appropriate

®Batched arrivals are intended to model communication activity such as fragmented UDP/IP/FDDI, or multi-packet RPC [12. 9].

7

pool. Otherwise, the simulation maintains a global pool (implemented as a list), which is managed either MRU or

LRU to encourage thread stack migration.

The packet runtime (i.e., the amount of time taken to process the packet up through the layers of the protocol
stack) is then computed. The computation depends on whether the thread stack migrates, whether the written stream-
specific cache lines migrate, whether the protocol active map history locations are overwritten (and if so whether
they migrate), whether the lines written in accessing the free-memory pool must migrate, and finally, the length of

time since the processor last executed protocol processing. Details of this computation are provided in section 4.

The packet enters service with its computed runtime. Upon packet completion, whether the protocol thread
continues with another packet depends jointly on the processor scheduling policy and the state of the packet queue.
Under MRU and LRU processor scheduling, if any packet waits, the protocol thread continues. Under Wired-
Streams, the thread continues if any packet from the same stream is waiting. When the thread continues, a packet
is dequeued FIFO among eligible packets, and its runtime computed as above. For all policies, when no packet
can be selected by the thread, the processor is released to non-protocol processing. Note that protocol processing is

work-conserving under MRU and LRU processor scheduling, but not under Wired-Streams.

The simulation of IPS is similar to that of Locking, with the following three distinctions. First, after the stream
identifier is assigned to an incoming arrival, the identifier of the destination protocol stack is retrieved by lookup.
Before selecting a processor, the simulation checks whether this stack is busy; if so, the packet waits. Second, the
runtime computation involves a set of IPS-specific experimental measurements. Third, when a packet completes
processing at a given protocol stack, if any packets wait for the same stack, one is selected FIFO; else, the processor

is released. Note that protocol processing is non-work-conserving under all processor scheduling policies.

We now turn to the computation of the runtime of an individual packet.

4 Analytic model of packet execution time

Consider Figure 3, which presents a simplified view of the memory architecture of our SGI Challenge. Each 100MHz,
R4400 processor has separate on-chip 16KB instruction and data caches (L1), each with a 32-byte line size. Each
processor also has a private 1MB unified second-level cache (L2), with a 128-byte line size. All caches are direct
mapped. When a memory reference is issued, first L1 is checked (a); on a miss, L2 is checked (b). A miss in L2
generates a request sent over the shared bus (c), which is satisfied by the owner of the cache line—either another

processor’s cache, or main memory.

In this section, we incrementally develop a model of the execution time of protocol processing on this architecture.
The initial model reflects the impact of non-protocol processing on packet execution time, assuming a single-level

processor cache, and excluding potential migration overheads of caches lines written during protocol processing.

8

CPU °co0o
(a) "I D |- --Licache Main
(split instruction and Memory
b L2 cache data caches, each 16K)
() (unified, 1MB)
(c) system bus

Figure 3: A simplified view of the memory hierarchy of the SGI Challenge.

Next, we extend the model to reflect a second-level processor cache, with distinct size, organization, and miss service

time. Finally, we incorporate the migration overheads.

4.1 The initial model

We initially assume each processor has a single-level direct-mapped cache, organized into S lines each of size L
bytes.” Whenever a processor is not executing protocol code, it runs some other workload. This non-protocol code
displaces a fraction of the processor cache contents. When the protocol code revisits P; after time z;, its execution
time ¢; depends on (and is roughly an increasing function of) z;. The displaced protocol footprint must be reloaded
into the cache, and in general a larger fraction of the footprint is displaced when a greater length of time has passed

since the most recent execution of a protocol thread at the processor.

The initial model depends on two experimentally-measured parameters. tcold 1S the time required to process a
packet when the protocol footprint is entirely flushed from the cache (i.e., the cache is “cold”). This is the maximum
execution time. tp ., is the time required to process a packet immediately following the completion of a previous

packet (i.e., in the absence of intervening processing). This is the minimum execution time.

We formulate ¢; as a monotonically increasing function of z;, bounded below by ¢ hot and above by t, ;. To
do so, we rely on the work of Singh, Stone and Thiebaut [20]. Let m denote the average memory reference rate of
the intervening processing. We assume m is stationary. R(z;) = z;/m is the average number of references issued
during z;. Let u(R(z;), L) denote the footprint function, defined as the number of unique memory lines referenced
at the processor in R references, for a cache line size L bytes. In [20]), the authors show that this function is closely

modeled by an expression of the form

u(R(z‘_)’ L) = WLaRbdlongogR(z.-) (])

"The model can be easily extended to a set-associative cache.

where the constants W, a, b, and d relate to working set size, spatial locality, temporal locality, and interactions
between spatial and temporal locality, respectively, of the intervening processing. (The fact that u(R(=;), L) is
a power function of R(z;) for fixed L was observed independently by Thiebaut [23, 24], and Kobayashi and
MacDougall [11].)

In [20], the authors show equation (1) to be consistent with data given by Smith [21], and Agarwal, Horowitz
and Hennessy [1]. They also demonstrate its accuracy through detailed validation on segments of a 200-million-
reference trace of a multiprogrammed IBM/370 MVS workload, consisting of a representative workload of user
applications and operating system activity. We use the specific parameters derived by the authors for this workload
(W = 2.19827,a = 0.033233,b = 0.827457 and logd = —0.13025) to model the non-protocol activity in our

system.

Equation (1) enables us to accurately capture the behavior of the intervening processing, with the exception of a
small z;. As Singh et. al. point out, inaccuracy in this region is most likely due to the fact that most tasks generate
a higher number of misses when initially loaded. u(R(z;), L) grows at rate faster than (1) initially, then follows (1)
when the entire working set has been referenced. Thus for small z;, we underestimate the number of lines displaced

by the intervening processing, and therefore underestimate the benefit of affinity scheduling.

Let F(z;) denote the fraction of the cache which has been flushed by these u(R(z;), L) references. We compute
F(z;) by assuming the references map independently into cache sets (an assumption also made in [22] and [25]
in similar context). Let the random variable X denote the number of the u(R(z;), L) references that map to a
randomly chosen set. X has binomial distribution with parameters n = u(R(=;),L) and p = %. Since we are
modeling a direct-mapped cache (i.e., with set-associativity 1), we have P(X = 0) = (1 - 1)#(&(=::£), and therefore
F(z;)=1- P(X =0).

Figure 4 shows F(z;) for the L1 and L2 sizes and organizations of our SGI Challenge. F(z;) has been computed
for the 100-Mz clock rate of MIPS R4400, assuming an average of 5 clock cycles per memory reference (m = 5).

Note that the protocol footprint is flushed much more slowly from L2 than from L1, reflecting its much larger size.

Finally, we predict the protocol execution time as a linear interpolation® of (,,4,¢.14) based on F:

t‘- = (1 - F(z'))thot + F(a“)tcold. (2)

®Task execution time as the linear interpolation of the maximum “reload transient” is also the approach taken in [22]. In the authors’
formulation, the inherent computing demand of a task is denoted D, the average time to reload the entire footprint is C. and the fraction of

the footprint displaced is R. The task execution time is modeled as D + RC.

10

----- L1 (32KB) d 4
------- L2 (1MB) , / /

F (fraction of the cache flushed)
o o o o o o O o
N w H [3,] (=2 -~ @ 7=}
1 1 1 1 1 1 1 1

N
~
~
~
~
~
~
~
~
\

\
\

(=]

T T T
100 1000 10600 100000 1000000
Time (us)

-
=y
o

Figure 4: Impact of intervening processing on L; and L,.

4.2 Extension to multilevel cache hierarchy

To extend the model to include a per-processor second-level cache, we expand the measured times to thot, hot
(execution time in the absence of intervening processing), tcold, hot (execution time when L1 is cold, and the
footprint comes from L2), and ¢, d, cold (execution time when the protocol footprint is entirely flushed from both
caches).

Although each processor on the Challenge has separate 16K instruction and data caches at L1, we make the
simplifying assumption of a 32K unified cache at L1. This results in only a small change to F(z;) under the

assumption that the reference stream is split approximately between the two caches. Experimental measurements

support this assumption (see for example Table 1 of [7]).

We compute u(R(z;), L,) and u(R(z;), L;), where L, and L, are the line sizes of the L1 and L2 caches,

respectively. From these, Fi(z;) and F3(z;) (the fractions of L1 and L2 flushed) are computed. Finally, ¢; is
modeled as

ti(2:) = (1 = Fi(2:))epot, hot + F1(2:)((1 = Fa(=:))tcold, hot + Fal®:)teold, cold)- ©)

As in equation (2), the F”’s are used to scale the extremes of protocol execution time. Each term represents the
runtime when the entire protocol footprint is found at the corresponding level in the memory hierarchy, weighted by
the fraction of the footprint found at that level. For example, the second term represents the runtime contribution
made by the fraction Fy(2;)(1 — F3(:)) of the footprint retrieved from L2 at P;.

11

4.3 Incorporating migration overheads

The final step is to incorporate potential migration overhead associated with the cache lines written during protocol

processing, and to reflect the specific parallelization alternative.
The solution is to parameterize equation (3) with experimental measurements for ¢ hot, hot aMd teop d, hot specific
to (a) whether the parallelization approach is Locking or IPS, (b) whether the thread stack migrates, (c) whether

session-specific lines migrate, and (d) whether protocol active map history locations are overwritten, and if so

whether the underlying cache lines must migrate. Thus, there are 24 pairs of values for ¢ hot, hot and ¢, d, hot' In
addition, there are two experimental values for tcold, cold> since the entire footprint must migrate for ¢, 14 aol1d» it
depends only on the parallelization alternative.

The overheads of migrating the lines associated with the free-memory pool (when modeling a global pool) are
incorporated in a slightly different manner. The simulation tracks the most recent processor P, to access the global
pool. After equation (3) is used to compute the execution time of a packet at P;, a check is made whether P; = P,,;
if not, the execution time is inflated by overhead_acquire, a measured value reflecting the overhead of acquiring free
memory when the underlying cache lines must migrate. When protocol processing for the packet is complete (at
which time the protocol thread releases memory, as in Figure 2), if some other processor has accessed the global

pool in the interim, packet execution time is extended by overhead_release, another experimentally-measured value.

Section 5 discusses how these 28 measurements are obtained, and presents and discusses the experimental results.

4.4 Discussion

There are three points which warrant emphasis. First, our model does not capture the positive impact of affinity
scheduling toward reducing bus utilization and memory contention (as is done, e.g., in [22]). To some degree the

simulation therefore underestimates the benefits of affinity scheduling.

Second, while our model is similar to the model of task execution time developed in [22], there are several
important distinctions. First, our approach does not require identifying the footprint of the task being affinity
scheduled. In practice, it can be hard to acquire the memory reference trace, especially for large, multithreaded
multiprocessor applications. Instead, our approach is based on direct timing measurements, which are much easier
to obtain. Second, we have extended the model to address a multi-level cache hierarchy. Third, the simulation model
dynamically instantiates the analytic model with timings which reflect the relevant migration overheads. We show in
section 5 that these overheads account for a large variation in protocol execution time. We thus contend they should

be considered explicitly in evaluating the benefits of affinity-based scheduling techniques.

Third, the model does not reflect the impact of contention for software locks, which would inflate the protocol

12

execution time (e.g. [18]). However, UDP/IP has been shown to scale up nearly linearly (to about 20 processors) in
a multiprocessor parallelization of the z-kernel [2]. Moreover, this behavior was observed within a single UDP/IP
stream, whereas inter-stream scalability would be higher. Similar results are reported in [13]. These facts support
our decision to neglect lock contention in the range of processor parallelization that we consider, which generally

does not exceed 16.

5 Experimental measurements

To acquire the parameters needed by the runtime model, we measured the times to process a packet in a set of
experiments on our multiprocessor in which we varied the scheduling of protocol threads and explicitly manipulated
the processor caches. In each experiment, packets were constructed in-memory, simulating the arrival of a packets
at the FDDI interface; a hardware timer with microsecond accuracy was then used to time receive-side protocol

processing up the (suitably parallelized) UDP/IP/FDDI stack in the z-kernel.

The measurements reported here reflect protocol processing without software checksumming of the packet data.
Checksumming can be performed in the z-kernel on our SGI Challenge at the rate of 32 bytes per microsecond
[13]. We have verified experimentally that our measurements can be extended to reflect per-packet execution time
with software checksumming by adding the appropriate fixed overhead (i.e., the per-byte checksumming overhead

weighted by the number of bytes of data carried by the packet).

We start by demonstrating how we measure the six ¢ hot, hot values for a packet executing at processor F;, under

Locking when threads do not migrate. The session-specific cache lines, which are always written, were previously
written either (A) at F;, or (B) at P; # F;. The protocol-specific cache lines (i.e., the active-map history values)
are written if and only if the stream identifier changes from one packet to the next; thus, the lines are either (1) not
written, (2) written and last written at F;, or (3) written and last written at P; # P;. Let Al, A2, A3 and B1, B2, B3,

denote the six cases.

To measure the corresponding ¢ hot, hot values, experiments were designed with the general structure depicted

in Figure 5. Thread T, running on processor Py acts as a producer thread and constructs packets. Each packet is
from one of two streams, S, or S;, which are endpoints on distinct hosts. Protocol threads T, and T are wired to P,
and P, respectively, and act as consumer threads. In all tests, producer and consumer threads synchronize via IRIX
semaphores. The producer generates a packet from one of the endpoints, signals one of the waiting consumers, and
blocks on its semaphore. The consumer receives the signal, starts its timer, receives the packet, unwinds its stack,
stops the timer, signals the producer, and waits on its semaphore. A run is performed yielding the mean time over

1000 received packets. The ¢ hot, hot value is computed as the mean over sufficiently large number of independent

runs (100 in our experiments) to ensure that the 95% confidence interval half-width do not exceed 1% of the overall

13

Producer thread (on processor F,) Consumer threads (on P, and P;)

forever { forever (
construct packet await signal from producer
signal consumer start timer
await signal from consumer receive stack (FDDI/IP/UDP)
} unwind stack

stop timer
signal producer

Figure 5: Thread behavior in the experimental environment

mean.

By carefully choosing the pattern of 1600 {stream ID, consumer ID} pairs which constitute one run of an
individual experiment, we ensure the measured receive times include the appropriate migration overheads. The first
five packets of each experiment are shown in Figure 6. Consider experiment A1, which is required to measure
receive time when (i) the session-specific data was last written at P;, and (ii) the protocol-specific data is not written.

Requirement (i) is met since each packet is received by T, and (ii) is met since each packet is from stream S;.

As a second example consider experiment A3, which requires that (i) session-specific data was last written at
F,, (ii) protocol-specific data is written, and (iii) protocol-specific data was last written at P; # P;. In the figure, we
see that odd-numbered packets are from S; and are received by T}, and even-numbered packets are from S; and are
received by T;. The fact that streams do not migrate ensures (i), that stream identifier alternates between subsequent

packets ensures (ii), and that subsequent packets alternate between processors ensures (iii).

Finally, consider as a third example experiment B2, which requires that (i) session writes were last written on
P; # P, (ii) protocol-specific lines are written, and (iii) protocol-specific lines were last written on P;. In the
figure we see that packets numbered 45-2 and 4j-1 (j > 1) are received by T3, and all others are received by T;.
Furthermore, odd-numbered packets are from S;, even-numbered packets are from S;, and only packets S, are
timed. The fact that subsequent packets from S, alternate processors ensures (i), that subsequent packets are from
alternate streams ensures (ii), and that (untimed) packet immediately preceding a timed packet was received by the

same processor ensures (iii).
With a slight modification, each of the six experiments yields a companion tcold, hot timing. Prior to starting

its timer, the consumer issues sequential code and data references which exceed the size of the L1 cache. This ejects

the protocol footprint from L1 since the L1 cache of the R4400 is virtually-indexed.

With another slight modification, the six experiments yield thot, hot and tcold, hot timings when the thread

14

Experiment A1 Experiment A2 Experiment A3

1 [81] 1 [51] 1 [51]
2 [s1] 2 [s2] 2 [s2]
3 [s1] 3 3 [51]
4 [51] 4 [s2] 4 [s2]
s [s1] 5 5 [s1]
Experiment B1 Experiment B2 Experiment B3
1 1 [51] 1
2 [s1] 2 LS2] 2 [82]
3 [s1] 3 3 [s1]
4 [s1] 4 [82] 4 Ls2]
5 5 [s1] 5

(S2 packets untimed) (S2 packets untimed)
Figure 6: Design of micro-timing experiments. Each experiment consists of 1000 received packets. Each packet is

from session S; or S;, and is processed by the protocol thread on P, or P,. The pattern of {stream ID, processor
ID} pairs is chosen such that the measured receive time captures a particular combination of migration overheads.

15

Overhead Thread stack cached Thread stack migrates

(see text) thot, hot teold, hot thot, hot teold, hot
Exp. |1 |2 |3 [4 | Locking | IPS | Locking | IPS | Locking | IPS | Locking | IPS
Al 66.6 | 574 919 | 805 868 | 77.3 1102 | 98.5
A2 Vv 833 | 740 111.4 | 100.2 103.9 | 94.0 130.5 [118.4
A3 |/ VARV 103.0 | 87.5 131.2 | 113.8 124.6 | 108.4 148.9 | 130.7
Bl ||V 105.1 | 77.0 129.0 | 100.1 1258 | 974 146.9 | 117.0
B2 ViV 111.3 | 89.7 139.9 | 116.9 130.8 | 108.7 155.3 | 131.6
B3 |VIVIVIV 130.2 | 102.5 158.1 | 128.9 149.9 | 121.9 173.1 | 1439

Table 2: z-kernel UDP/IP/FDDI receive times (in ps), for a single packet without checksumming.

stack migrates. Prior to signaling the consumer, the producer zeros the consumer’s thread stack, migrating it to P,.

Each of the consumer’s timings then includes the overhead of migrating the thread stack.

Table 2 shows the results. (Since these are receive times for packets without software checksumming, the
timings are independent of packet size.) To help interpret the data, we have indicated the categories of execution-
time overhead which are incurred in each experiment. Category 1 indicates the overhead of migrating the locks

which enable protocol parallelization (under Locking, per-protocol active map locks; under IPS, a single per-stack

concurrency lock). Category 2 is the overhead of migrating session-specific cache lines (the session reference
counters, IP-specific data, and associated synchronization locks under Locking). Category 3 is the overhead of
active-map lookups and writing of each active map’s history location when it is cached. Category 4 is the overhead

of migrating the active map history locations.

Note in Table 2 that the best-case per-packet mean delays (experiment A1) are 57.4 and 66.6 ps under IPS
and Locking, respectively. Thus when all locks are cached, parallelization by Locking adds just 16% overhead to
packet delay. But when sessions migrate (experiment B1), the overhead grows to 37% (105.1us under Locking vs.
77.0ps under IPS). The large increase reflects the migration of the cache lines underlying the software locks. Thus
the overhead of Locking (over IPS) is dominated by the migration of locks when sessions migrate, not the lock
acquisition and release times. Also, note in the table that the overhead of migrating the thread stack is about 20us, a

significant fraction of packet execution time. Finally, the data indicate that code affinity is important: teold, hot is
20-40% larger than ¢ hot, hot 3CTOSS all measurements.

The two i, 14 old Measurements are obtained as follows. After some initialization activity in which consumer
?

threads T and T receive packets at P, T times the reception of 7 packets from S; received at P, through P;
respectively. Since each processor cache is completely flushed at the outset of the test, these measurements yield

(seven) {514 cold timings for the given parallelization alternative.

We find that tcold, cold = 284.3ps under Locking, and 232.2us under IPS. These times are 2-4 times larger

16

than t,,14 hot reflecting the relative slowness of main memory. This further suggests that processor scheduling
b}

is important, and that code affinity can have a potentially much higher impact on protocol execution time than the

other affinities.

Finally, to measure overhead_acquire, before signaling the consumer, the producer writes the free-memory pool
data structures which are accessed by the consumer in acquiring free memory. This ensures that overhead of their
migration will be incorporated into the consumer’s timing. Similarly, to measure overhead_release, the producer
writes the free-memory pool data structures which are accessed by the consumer in releasing free memory. The
results are 4.05us and 4.52us, respectively. Although these are relatively small in comparison to the measurements

of Table 2, keep in mind that at a high arrival rate both would be incurred on a per-packet basis.

Having discussed the experimental design and presented the timing measurements used to parameterize the

analytic component of the simulation model, we now turn our attention to the simulation results.

6 Results

In this section, we examine the impact that affinity scheduling has on performance under Locking, and then under IPS.
Next, we compare Locking with IPS, for both unbatched and batched arrivals. We show that a “hybrid” approach,
which can be utilized by a particular class of streams, gains the performance advantages of each. We also compare

each of the parallelization alternatives along the dimension of intra-stream scalability.

We focus on the case of packet processing without software checksumming. While this is advantageous from
the perspective of affinity scheduling, there are several mitigating considerations. Checksumming may be supported
in hardware, as is the case with the FDDI interface board on our SGI Challenge, obviating the need for software
checksumming. In addition, it has been shown that in many high-traffic environments, the majority of packets are
frequently small. Since a small packet can be checksummed relatively quickly (e.g., on our platform a 256-byte
packet can be checksummed in about 8us), for such common workloads our conclusions about affinity scheduling
would still hold. Finally, we illustrate explicitly in section 6.3 how our simulation results can be interpreted to reflect

the overhead of software checksumming.

We give results for a host with N = 8 processors. Results for N varying from 2 to 32 have been obtained, in
all cases exhibiting similar trends. For simplicity, the number of admitted UDP/IP/FDDI streams is held equal to
the number of processors across all tests. Under IPS, the number of independent stacks also matches the number of
processors, and streams are assigned one-to-one to independent stacks. Thus, unless otherwise stated, all graphs that

follow are for 8 processors, 8 streams, and (where applicable) 8 independent stacks.

17

6.1 Performance of affinity scheduling under Locking

Figures 7 and 8 explore the performance of affinity scheduling under Locking, plotting mean packet delay as
a function of packet arrival rate. To isolate the marginal performance contributions, we consider the impact of

processor scheduling (Figure 7(a)) independently from that of thread and free-memory scheduling (Figure 7(b)).

Figure 7(a) demonstrates that MRU outperforms LRU and Wired-Streams processor scheduling across the broad
range of packet arrival rates. MRU schedules for protocol code affinity because the processor most recently visited
by protocol processing is the one most likely to have the protocol footprint cache-resident. LRU, on the other hand,
selects the processor whose cache is least likely to contain the protocol footprint; Wired-Streams selects processors
randomly since an arrival’s stream identifier is assigned randomly. Thus, we see that in the lower arrival rates, MRU
does much better than LRU (decreasing packet delay by about 25%), with Wired-Streams falling in between. The
three curves rise as the arrival rate decreases because non-protocol processing flushes the processor caches. As the

packet arrival rate tends to O, the protocol receive time tends to tcold, cold (284.3ps), because protocol processing

more frequently finds a completely cold cache hierarchy at every processor. Toward the other extreme, as the arrival
rate becomes large, all three curves rise due to packet queueing. Note that the Wired-Streams curve rises much faster

than the LRU and MRU curves. This is because Wired-Streams management is non-work-conserving.

In general, the benefit of scheduling for code affinity diminishes with increasing packet arrival rate, because the
read-only protocol code, which can be replicated by the cache coherency protocol, is increasingly retained in the
processor caches (i.e., is less frequently displaced by non-protocol processing). Thus, the MRU and LRU curves

converge at high arrival rate.

In Figure 7(b), there are four curves, corresponding to whether or not threads and free-memory are affinity
scheduled. It is evident that thread scheduling yields a greater reduction in packet delay (10-15%) than free-memory

scheduling (5-10%); both yield significant delay reduction across the broad range of arrival rates.

In order to expose the influence of affinity scheduling on the host’s maximum supportable arrival rate, we focus
in Figure 8 on the high arrival rate regions in Figure 7. There are two items of note. First, in Figure 8(a), under
Wired-Streams processor scheduling the maximum supportable arrival rate is about 20% higher than under MRU and
LRU scheduling (which converge under high load, as previously noted). Wired-Streams yields a higher throughput
due to its lower per-packet processing time (103us) than MRU and LRU (125 us) at high load, which is due to
the fact that the stream-specific cache lines do not migrate under Wired-Streams scheduling, but do under the other
policies. Second, in Figure 8(b), we see that free-memory pool scheduling increases the maximum supportable
throughput by about 5%, reflecting the fact that the cache lines associated with the free-memory pool migrate with
every packet at high arrival rate. In contrast, thread scheduling does not impact the maximum supportable arrival

rate, since threads rarely release processors under high arrival rate.

18

6.2 Performance of affinity scheduling under IPS

To examine the benefits of affinity scheduling under IPS, consider Figures 9 and 10, which are the analogs of Figures

7 and 8, respectively.

Figure 9(a) shows that the processor scheduling policies behave differently under IPS than under Locking.
Across the broad range of arrival rates, Wired-Streams performs best. This is because under IPS, all policies are
work-conserving (which is not the case under Locking), and Wired-Streams performs best since it minimizes cache
misses at high load. In further constrast to the behavior under Locking, Figure 10(a) illustrates that under IPS, the
processor scheduling policies are undifferentiable with respect to the hosts’s maximum supportable arrival rate. This
is because under IPS, maximum affinity is achieved at high arrival rates regardless of processor scheduling policy
(which is not the case under Locking). Under IPS, streams are statically assigned to independent stacks, and stacks

rarely migrate under high load since processors are infrequently released by protocol threads.

Figure 9(b) (in conjunction with Figure 7(b)) demonstrates that the general behavior of thread and free-memory
scheduling is independent of parallelization alternative. Note however that under IPS, the increase in the host’s
maximum supportable arrival rate enabled by affinity-scheduling free-memory is significantly higher (15%, Figure
10(b)) than it is under Locking (5%, Figure 8(b)). This is due to the lower per-packet processing time under IPS
(57.4us) than under Locking (125us).

6.3 Decreased latency in end-to-end communication

Low-latency request/response communication, as measured from the perspective of a client application, necessitates
an end-to-end metric capturing the total time spent in client protocol processing, network access and propagation
delay, server protocol processing, server computation, and the return trip. Because affinity scheduling only impacts
the protocol processing component of this communication path, its benefit is necessarily diminished in the context of
an end-to-end metric. Furthermore, in the common case of a uniprocessor client communicating with a multiprocessor

server, the benefits of affinity scheduling are limited to the decrease in protocol processing time at the server.

To formalize the end-to-end metric, let p. denote client protocol processing time, T denote the propagation time,
P, denote server protocol processing time, and C denote the server computation time. The end-to-end communication
latency, E, is the sum of the components along the end-to-end path: E = 2p, + 27 + 2p, + C. We compute E with
p, computed under affinity scheduling (call this E,), and with p, when not affinity scheduling (call this E,). The
fractional reduction in end-to-end latency enabled by affinity scheduling is given by (E, — E,)/E..

Figures 11(a) and 11(b) graph this metric under Locking and IPS, respectively. In the figures, the fixed-overhead
components of end-to-end latency (2p. + 27 + C) have been aggregated and expressed as a multiple V' of the

overall best-case receive time (57.4us). The figures show the maximum fractional reduction in end-to-end latency

19

(En — E,)/E, when the fixed overhead components are V =0,5, 10, and 20 times larger than the minimum packet
receive time. The V = 0 curve is in fact an upper bound, since it models infinitely fast propagation and server

response time.

The figure shows that affinity scheduling can result in a significant reduction in end-to-end latency, even when
the fixed overhead components of communication are large with respect to message processing time. The reduction
is greater under IPS than Locking, reflecting the lower per-packet protocol processing cost under IPS. The upper

bound on the reduction (as given by the V' = 0 curves) is around 40-50%.

Figures 11(a,b) can be used to discern the impact of software checksumming on the benefits of affinity scheduling.
Checksumming represents a fixed, per-packet overhead of about 1us for every 32 bytes of packet data (section 5).
Consider the worst case (from the perspective of affinity scheduling) of a stream transmitting the largest possible
FDDI packets, each with 4432 bytes of data. The fixed overhead would be 139us per packet. Although the
corresponding value of V = 2.4 is not plotted in Figures 11(a,b), we can see from the V' = 5 curves that affinity

scheduling would still yield significant reduction in packet delay.

6.4 Comparing parallelization alternatives

We now turn to a comparison of Locking with IPS. Figure 12 shows the performance of both MRU and Wired-Streams
processor scheduling under both Locking and IPS. For all curves, threads and free-memory are affinity-managed. The
figure demonstrates that mean packet delay under IPS is about 50% lower than under Locking (which is advantageous
from the perspective of an individual stream). In addition, the host’s maximum supportable arrival rate is 79-118%
higher under IPS than under Locking (which is advantageous from the perspective of the host). For unbatched
arrivals, theh, we conclude that IPS offers significantly better performance than Locking, from both the perspective

of an individual stream, and the perspective of the host.

Figure 12 does not emphasize that MRU processor scheduling under Locking is work-conserving, whereas
Wired-Streams under Locking and both policies under IPS are not. To highlight this distinction, we examine the

behavior of Locking and IPS under batched arrivals.

Figures 13(a,b) compare Locking and IPS for batched arrivals under MRU processor scheduling, where the
batch size distribution is either deterministic (Figure 13(a)) or geometric (Figure 13(b)) with mean b. In each figure,
curves for b =2,4,8 are plotted. Figure 13(a) shows that Locking is much more robust to batched arrivals than IPS,
providing lower mean packet delay for all 5. Note however that for all b, IPS supports a much higher maximum
arrival rate. Figure 13(b) shows further deterioration of the performance under IPS when the batch size distribution
is geometric. This is due to the increased burstiness of the arrival process under the geometric batch size distribution.

Under batched arrivals, then, we conclude that Locking performs better from the perspective of an individual stream,

20

but IPS performs better from the perspective of the host.

6.5 A hybrid approach

An intriguing question is whether there exists a hybrid approach exhibiting simultaneously robustness under bursty
arrivals (4 la Locking) and high-capacity maximum supportable arrival rate at the host (4 la IPS). We can identify
such an approach under a particﬁlar workload constraint. Under IPS, we have assumed that each incoming stream is
assigned to one independent stack. This is a necessary restriction for streams which have inter-packet dependencies
in terms of the data structures that must be referenced during packet processing. For example, the packets sent on a
TCP stream must visit the same independent stack, since TCP ensures reliable, in-order delivery. The same holds for
fragmented IP, for which incoming fragments must visit the same independent stack for reassembly. However, for a
stream without inter-packet dependencies (such as an unfragmented UDP/IP/FDDI stream) the assumption is overly
restrictive. Instead, the receiver might perform “multiple open’s” on the independent stacks, thereby enabling any
incoming packet to be routed to any protocol stack. We refer to such streams as multiple-open streams. Intuitively,
multiple-open streams under IPS should exhibit robustness in the presence of bursty arrivals (since there can be a
single global packet queue), while simultaneously enabling high throughput capacity at the host (since processing is
IPS-based).

Figure 14 shows the performance of this “Hybrid” approach, along with that of Locking and single-open streams.
under IPS, for geometric batch size distribution with mean batch sizes b=1,4. For all curves, processor scheduling
is MRU and threads and free-memory are organized for maximum affinity. The figure demonstrates that the host’s
maximum supportable arrival rate under the Hybrid is close to that of single-open streams IPS. In addition, it is
evident that the Hybrid exhibits response to intra-stream burstiness which is similar to that of Locking. This suggests
that for streams transmitting packets that can be processed independently (such as unfragmented datagram traffic),

performing multiple-open’s on the independent stacks under IPS may offer the best overall performance.

6.6 Intra-stream scalability

Finally, we compare the parallelization alternatives (Locking, IPS under single-open streams, and the Hybrid
approach) along the dimension of intra-stream scalability. Figure 15 shows the host’s maximum supportable arrival
rate for each parallelization alternative, when receiving a single incoming stream, as a function of number of available
processors. The slopes of the curves are computed as follows. For the Hybrid curve, under Wired-Streams processor
scheduling, the slope derives from the 57.4us packet receive time of IPS experiment A1 (Table 2). For the Locking
curve, the slope derives from the 105.1us packet receive time of Locking experiment B1. Finally, the slope of

the IPS single-open curve is zero, since intra-stream parallelism is not permitted. The figure demonstrates that for

21

multiple-open streams, the Hybrid approach provides the best intra-stream scalability. For single-open streams,

however, Locking outperforms IPS when more than two processors are available for protocol processing.

7 Related Work

Vaswani and Zajorian [26] show experimentally that affinity scheduling within kernel-level processor space-sharing
scheduling policies provides little benefit. Their workload is a mix of three types of parallel applications executing
on a Sequent Symmetry multiprocessor. The measured reduction in task response time enabled by affinity scheduling
does not exceed 1%. The explanation lies in the fact that among these applications, the upper bound on the time to
completely reload the processor cache (about 1-2ms) is small in comparison to the processor reallocation interval
(about 200-500ms). In contrast, we demonstrate (on our platform) that protocol cache reload times are large in

comparison to protocol execution times—and that affinity scheduling is effective.

Squillante and Lazowska [22] conduct a modeling study designed to gain insight into the general class of
scheduling policies which consider the state of processor caches. The study examines the performance of a range
of in-kernel affinity scheduling policies on a multiprocessor system running multiple independent single-threaded
processes. This work motivated our own by demonstrating that when the cache reload time is large with respect to
the task’s inherent computing demands, affinity scheduling can have a significant impact. The authors use a variety
of queueing-theoretic techniques and employ an analytic cache model developed by Thiebaut and Stone [25]. We
rely on the same model—with the distinctions noted in section 4.4—coupled with additional analytic results from
Singh, Stone and Thiebaut [20]. However, Squillante and Lazowska do not identify specific applications which stand

to benefit from affinity scheduling. We have shown that parallelized protocol processing is one such application.

In [3], Devarakonda and Mukherjee explore implementation issues in affinity scheduling, both in-kernel and
within a user-level thread scheduler, on an 8-processor Encore Multimax running Mach 2.5. A schedulable task
is defined to have affinity strictly for the processor it most recently visited. They consider two real parallel
applications and a synthetic application designed explicitly to benefit from affinity scheduling. Although experimental
measurements do not support in-kernel affinity scheduling, within the user-level thread scheduler the authors find
affinity scheduling yields a a 12% reduction in execution time for one of the two real applications. The authors
conclude that affinity scheduling may be beneficial within user-level thread scheduler for some multithreaded parallel
applications.v

In a trace-driven simulation study, Gupta, Tucker and Urushibara [5] consider in-kernel affinity scheduling of
parallelized applications on a shared memory platform. Their approach is to simulate a multiprocessor system by
interleaving the process execution traces obtained from a set of parallel scientific applications. The simulation

assumes a simple architectural model: each of 12 processors has a private 64KB unified cache which can service a

22

request in a single cycle on a cache hit, and in 20 cycles on a cache miss. Otherwise, instruction execution time is one
cycle; overhead due to bus contention or cache coherence is not captured. The simulation results show that affinity
scheduling yields a small but consistently positive impact across all applications, increasing processor utilization by

an average of about 3% overall.

8 Summary

High-performance protocol processing is in-demand as high-speed networks and large-scale servers gain prevalence.
We have presented evidence that affinity scheduling can reduce packet delay by a substantial margin, in turn enabling
the host to concurrently support a higher number of streams and offer higher throughput capacity to individual
streams. The delay reduction can translate to a large fractional decrease in a client’s end-to-end latency, even
when the fixed-overhead components of communication delay are large with respect to message processing time. A
broad class of applications stand to benefit, e.g. those which perform IPC or RPC in a distributed multiprocessor

environment.

We have implemented two approaches to parallelizing protocol processing in our experimental environment
and measured their performance. Locking achieves parallelism by protecting access to shared data structures with
software locks. IPS achieves parallelism through muitiple independent protocol stacks. The key ideas are that (i)
cache misses are unavoidable when multiple processors access a shared item protected by a software lock; (ii) a
single cache miss adds a relatively large overhead (around 5%) to packet processing time; and (iii) IPS avoids these
cache misses by parallelizing without software locks. We find IPS generally delivers much lower latency to the
client and enables a much higher throughput capacity at the server. Yet because IPS does not parallelize processing
on individual streams, it offers limited intra-stream scalability and is sensitive to intra-stream burstiness. These
observations lead us to propose a hybrid approach for a particular class of streams, which we show exhibits the best

overall performance.

We have demonstrated that affinity scheduling in this domain involves concurrent management of multiple
distinctresources. Importantly, we have restricted ourselves to relatively simple scheduling algorithms with relatively
straightforward implementations. For high performance, protocol threads and free-memory pools should be organized
on a per-processor basis. Under Locking, processors should be managed MRU—except under high arrival rate, when
Wired-Streams scheduling performs better. Under IPS, independent stacks should be wired to processors—except

under low arrival rate, when MRU processor scheduling performs better.

There are several possible extensions to the work presented in this paper. First, we plan to examine the
performance of affinity scheduling for send-side protocol processing. We conjecture a higher performance gain

since the send-side execution path is shorter (e.g., there is no packet demultiplexing). Second, recent work indicates

23

that while some classes of network traffic are well-modeled as Poisson, others are not [15]. We plan to investigate
how alternative models of packet arrivals ([9, 15]) impact our results. Third, it will be interesting to assess the
performance of affinity scheduling as a function of recent architectural trends. We plan to perform affinity-based
measurements across the evolution of SGI multiprocessor platforms, including the older Power Series (with 33-
MHz R3000 processors and single-level processor caches), Challenges with higher processor clock rates (e.g., the
150-MHz R4400), and the new Power Challenge (with R8000 processors).- Fourth, it will be interesting to consider
the performance of affinity scheduling of protocol code with greater complexity, such as IP with fragmentation or
a more complex transport protocol such as TCP. Finally, it may prove interesting to more carefully examine the
packet queueing discipline. At low arrival rates it may be advantageous for a packet to wait for a executing protocol
thread, instead of going immediately into service on a “cold” processor. A simple heuristic may perform well, e.g.,

given N executing protocol threads, to unblock an idle protocol thread when the length of the packet queue exceeds

N teold, cold/ thot, hot-

Our conclusions contrast with those of several earlier studies [3, 5, 26] and support the contention [22] that there
are platforms and common workloads for which affinity scheduling is worthwhile. We hope to have demonstrated
techniques and a methodology which will facilitate further research in this area. In light of current architectural trends
in which processor speedups outpace those of main memory, we anticipate affinity scheduling to be of increasing

interest.
Acknowledgments

Erich Nahum and David Yates are credited with the uniprocessor port of the z-kernel (version 3.2) to the IRIX

platform, which was the starting point of the experimental component of this research.

References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An analytical cache model. ACM Transactions on Computer Systenis,
7(2):184-215, May 1989.

[2] Mats Bjorkman and Per Gunningberg. Locking effects in multiprocessor implementations of protocols. In Proceedings
of the ACM SIGCOMM Conference on Communications, Architectures, Protocols and Applications, pages 74-83, San
Francisco, CA, September 1993.

(31 Murthy Devarakonda and Arup Mukherjee. Issues in implementation of cache-affinity scheduling. In Proceedings of the
Winter 1992 USENIX Conference, pages 345-357, San Francicso, CA, January 1992.

[4] Arun Garg. Parallel STREAMS: A multi-processor implementation. In Proceedings of the Winter 1990 USENIX
Conference, pages 163-176, Washington, D.C., January 1990.

(5] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating system scheduling policies and synchro-
nization methods on the performance of parallel applications. In Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 120-132, May 1991.

[6] Ian Heavens. Experiences in parallelisation of streams-based communications drivers. OpenForum Conference on
Distributed Systems, November 1992.

24

[7] Mark D. Hill and Alan J. Smith. Evaluating associativity in CPU caches. IEEE Transactions on Computers, 38(12):1612-
1630, December 1989.

{8] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An architecture for implementing network protocols. /EEE
Transactions on Software Engineering, 17(1):64-76, January 1991.

[9] RajJain and Shawn Routhier. Packet trains: Measurements and a new model for computer network traffic. /EEE Journal
on Selected Areas in Communications, SAC-4(6):986-995, September 1986.

[10] Steve Kleinman. Symmetric multiprocessing in Solaris 2.0. In /IEEE Spring COMPCON, San Francisco, CA, 1992.

[11] M. Kobayashi and M. MacDougall. The stack growth function: Cache line reference models. /EEE Transactions on
Computers, 38(6):798-805, June 1989.

[12] Jeffrey C. Mogul. Network locality at the scale of processes. In Proceedings of the ACM SIGCOMM Conference on
Communications, Architectures, Protocols and Applications, pages 273-284, Ziirich, Switzerland, September 1991.

(13] Erich M. Nahum, DavidJ. Yates, James F. Kurose, and Don Towsley. Performance issues in parallelized network protocols.
In Proceedings of the First USENIX Symposium on Operating Systems Design and Implementation (OSDI), Monterey,
CA, November 1994.

(14] Sean W. O’Malley and Larry L. Peterson. A dynamic network architecture. ACM Transactions on Computer Systems,
10(2):110-143,May 1992.

[15] Vern Paxson and Sally Floyd. Wide area traffic: The failure of Poisson modeling. In Proceedings of the ACM SIGCOMM
Conference on Communications, Architectures, Protocols and Applications, pages 257-268, London, UK, August 1994.

(16] J. Kent Peacock, Sunil Saxena, Dean Thomas, Fred Yang, and Wilfred Yu. Experiences from multithreading System V
Release 4. In Proceedings of the Third USENIX Symposium on Experiences with Distributed and Multiprocessor Systems
(SEDMS 111}, pages 77-91, Newport Beach, CA, March 1992.

[17] David Presotto. Multiprocessor STREAMS for Plan 9. In UKUUG, January 1993,

(18] Sunil Saxena, J. Kent Peacock, Fred Yang, Vijaya Verma, and Mohan Krishnan. Pitfalls in multithreading SVR4
STREAMS and other weightless processes. In Proceedings of the Winter 1993 USENIX Conference, pages 85-96, San
Diego, CA, January 1993.

[19] DouglasC. Schmidt and Tatsuya Suda. Measuring the impact of alternative parallel process architectures on communication
subsystem performance. In Proceedings of the 4** International Workshop on Protocols for High-Speed Nerworks,
Vancouver, British Columbia, August 1994. IFIP.

[20] Jaswinder Pal Singh, Harold S. Stone, and Dominique F. Thiebaut. A model of workloads and its use in miss-rate prediction
for fully associative caches. IEEE Transactions on Computers, 41(7):811-825, July 1992.

(21] A.J. Smith. Line (block) size choice for CPU cache memories. IEEE Transactions on Computers, C-36(9):1063-1075,
September 1987.

(22] Mark S. Squillante and Edward D. Lazowska. Using processor cache affinity information in shared-memory multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems, 4(2):131-143, February 1993.

(23] Dominique F. Thiebaut. /nfluence of program transients in computer cache-memories. PhD thesis, Univ. Massachusetts,
1989.

(24] Dominique F. Thiebaut. On the fractal dimension of computer programs and its application to the prediction of the cache
miss ratio. /[EEE Transactions on Computers, 38(7):1012-1026, July 1989.

[25] Dominique F. Thiebaut and Harold S. Stone. Footprints in the cache. ACM Transactions on Computer Systems, 5(4):305-
329, November 1987.

(26] Raj Vaswani and John Zahorjan. The implications of cache affinity on processor scheduling for multiprogrammed, shared
memory multiprocessors. In Proceedings of the Thirteenth Symposium on Operating Systems Principles, pages 2640,
Pacific Grove, CA, October 1991. ACM.

25

195

1g9]. Processor scheduling: /
......... —LRU /
18540 e Wired-Streams

1804| —————MRU /
175 \ /

2 170 /

120 - Per-processor thread pools
5 Per-processor free memory pools
1 1]]] L) L) T
0 10000 20000 30000 40000 50000 60000
Arrival rate (packets/s)
(a) Impact of processor scheduling policy
185 1T
______ global thread and frea-memory pools
1804 global thread, per-processor free-memory pools I/
185 == 1mrmeme per-processor thread, global free-memory pools I .
per-pracessor thread and free-memory pools / / .
180 .
/.
— 175 - {.
g /0
= 170 1 / /
2 465 - impact of managing
o free-memory for affinity/ / h
T 180 impact of managing Pd ra
155 threads for affinity . _ . — — =~ : ,/"

MRU processor schaduling

10000 20000 30000 40000 50000 60000
Arrival rate (packets/s)

(b) Impact of thread pool and free-memory pool organization

Figure 7: Components of affinity scheduling under Locking.

26

1400 | Processor schoduting ' 3 ‘R
1------ LRU, MRU g 'S
Wired-Streams |; 8 ‘g
. -]
1200 - Per-processor thread pools ' § R
Per-processor free memory pools '3 =
0 :
< 1000 - I
> :
= E
[:
T 8004 B
[:
x f :
Q :
S 600 |
c .
<
(-]
= 400
200 -
0

40000 45600 50600 55600 60000 65000 70000 75000 80000
Arrival rate (packets/s)

(a) Impact of processor scheduling policy

Free-memory: lﬁ]
R globel pool g 8
per-processor pools -
Global/psr-processor thread pools E: :g
1200 - . g Ig
MRU processor schaduling {o. S
—~ e |3
@ 2 :
31000- [
> <
K1 l:
[} :
E 800 - ,
Q :
-3 |:
=4 M
S 600 E
c
©
Q
= 400
200
0

40000 45600 50600 55600 GO(IJOO 65600 70600 75600 80000
Arrival rate (packets/s)

(b) Impact of thread pool and free-memory pool organization

Figure 8: Influence of affinity scheduling on maximum supportable arrival rate under Locking.

27

Mean packet delay (us)

Mean packet delay (us)

180

Processor scheduling: /
1704 = =r=i=i=- LRU /
—————— Wired-Streams /
160 - MRU
/
150 /
140
130
120
110
100
90
80 1 Par-processor thread pools
— Per-processor frae-memory pools
70 T T T L 1
0 20000 40000 60000 80000 100000 120000
Arrival rate (packets/s)
(a) Impact of processor scheduling policy
180 7
______ global thread and free-memory pools /
170 e glebal thread, per-processor free-memory pools /:
——————— per-processor thread, global free-memaory pools /
160 per-processor thread and free-memory poois /
150 / ./
/]
140 /)
/
130
s 7/
1204
110
100
go - . T e et ")
80
Wired-Streams processor scheduling
70 T T T T T
0 20000 40000 60000 80000 100000 120000

Arrival rate (packets/s)

(b) Impact of thread pool and free-memory pool organization

Figure 9: Components of affinity scheduling under IPS.

28

Processor scheduling: »
woo 2T LRU g
—————— Wired-Streams 5!
MRU Q!
1200 S
200 Per-processor thread pools g. :
w Per-processor free-memory poals ©:
2 1000 :
>
K]
Q
E 800 -
Q
X
%}
S 600-
=
[5:}
(]
= 4004
200
0 1 L T 1 1] T T -
100000 105000 110000 115000 120000 125000 130000 135000 140000
Arrival rate (packets/s)
(a) Impact of processor scheduling policy
Fi Lo 8
| Free-memory: &
14001 - global poo! I i g
per-pracessor pools | § 3
1200 Globaliper-processor thread pools | § 5
Wired-Streams processor scheduli7g & R
— - A
() :
2 1000 - /
>
K /
()]
E 800
[0]
™4
Q
8 600
c
«
()]
= 400
200
0

T T 1l l- 1 T T :
100000 105000 110000 115000 120000 125000 130000 135000 140000
Arrival rate (packets/s)

(b) Impact of thread pool and frze-memory pool organization

Figure 10: Influence of affinity scheduling on maximum supportable arrival rate under IPS.

Fixed-overhead components of communication = V*57 4us

65% 1 Cmmee v=0 J
e V=5
S80%d T vato
© 50% l+
2 45% 4 _-—-1
& 40% - Upper m""d\ R
s

T 1 1)] 1 i
0 10000 20000 30000 40000 50000 60000
Arrival rate (packets/s)

(a) Locking

70%
65%4 o .. V=0

R
Fixed-overhead compenents of communication = V*57 4us / 'l

............... v=5 L
go%d Vet j N

s5%] —— V=20 R

- Upper bound ‘/ [
S0%q —~-- ’

fae
-~

end latency
&
®
/

$ 40%
e}
2 35% -
[]
= 30% 4

0 20000 40000 60000 80000 100000 120000
Arrival rate (packets/s)

(b) Independent Protocol Stacks

Figure 11: Maximum fractional reduction in end-to-end latency enabled by affinity scheduling. Fixed-overhead
components of communication—client networking, propagation delay, and server computation time—have been
expressed as a multiple V' of the best-case packet receive time.

30

Mean packet delay (us)

600
Processor scheduling: 4 a
------ MRU k] e
5501 Wired-Streams é é
[=% Q
500 Per-processor thread pools o -
Per-processor free-memory pools = <
=~ 3
450 -
400
350 -
300
250
200
150
S NG
50 T) 1) v 1 N i i
0 20000 40000 60000 80000 100000 120000 140000

Arrival rate (packets/s)

Figure 12: Comparing parallelization alternatives for unbatched arrivals.

31

Packet batch size, b:

Locking |

|

\“‘.““"""--

_____ i Per-processor thread pools
Per-processor free-memory pools
MRU processor scheduling

T T]) 1]
0 20000 40000 60000 80000 100000 120000 140000

Arrival rate (packets/s)

(a) Deterministic batch size distribution

Packet batch size, b: /'

Per-processor thread pools
Per-processor fres-memory pools
MRU processor scheduling

1] T M] 1]
0 20000 40000 60000 80000 100000 120000 140000
Arrival rate (packets/s)

(b) Geometric batch size distribution

Figure 13: Comparing parallelization alternatives for batched arrivals.

32

2000 . T -
Packet batch size, b: : Hybrid | |
....... —b=4 | (PS/multiple-open | .
—_—_—b=1 : streams) [
| Geometric batchsize distribution I

| Per-processor thread pools | ./
1500 { Per-processor free-memory pools . /
] MRU processor scheduling | .
/

IPS

/ (single-open
" streams)

1000 Locking ’

Mean packet delay (us)

500 4

1 I I 1 I 1
0 20000 40000 60000 80000 100000 120000 140000
Arrival rate (packets/s)

Figure 14: Performance of the Hybrid approach.

33

140000

120000

100000 -

80000 -

60000 -

40000

Maximum supported arrival rate (packets/s)

200004, -

Unbatched arrivals Hybrid P d
Best-case affinity scheduling (IPS/multiple-open streams) -
- / ’
v
N
7
R
R
v
Ve 1
ya Locking .~ =
e —~ -
R) -~ -
. / / /
R ~
g -~
R P IPS

7 - (single-open streams)

F e o e e T e e e e e e e e e e e e e e s e e et et e e e eee et
-
4
¥ I I 1 I 1

1 2 3 4 5 6 7 8

Figure 15: Comparing parallelization alternatives with respect to intra-stream scalability (1 stream).

Number of available processors

34

	TR 94-75-1
	TR 94-75-2.pdf

