
FLEXIBILITY IN A KNOWLEDGE-BASED
SYSTEM FOR SOLVING

DYNAMIC RESOURCE-CONSTRAINED
SCHEDULING PROBLEMS

David W. Hildum

UMass CMPSCI Technical Report 94-77
September 1994

Department of Computer Science
University of Massachusetts
Amherst MA 01003-4610

EMAIL: hildum@cs.umass.edu

This research was sponsored, in part, by gifts from Texas Instruments, Inc., the National Science Foundation,
under CER Grant DCR-8500332 and contracts CDA-8922572 and IRI-9208920, and the Office of Naval
Research, under a Defense Advanced Research Projects Agency Grant (contract N00014-92-J-1698). Machine
resources were supported by the Office of Naval Research, under a University Research Initiative Grant (contract
N00014-86-K-0764). The content of this dissertation does not necessarily reflect the position or the policy of
the Government and no official endorsement should be inferred.

FLEXIBILITY IN A KNOWLEDGE-BASED SYSTEM FOR SOLVING
DYNAMIC RESOURCE-CONSTRAINED SCHEDULING PROBLEMS

A Dissertation Presented

by

DAVID WALDAU HILDUM

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1994

Department of Computer Science

c Copyright by David Waldau Hildum 1994

All Rights Reserved

To my parents, Donald C. and Priscilla A. Hildum.

iv

ACKNOWLEDGMENTS

Well, Pooh was a Bear of Enormous Brain
(Just say it again!)
Of enormous brain—
(Of enormous what?)
Well, he ate a lot

A.A. Milne, Winnie-the-Pooh

In the process of becoming one of those graduate students who took longer to finish than
everybody else, I have benefited from the friendship and support of a large number of people.

Quite simply, none of this would have been possible without the support and guidance of
my advisor, Dan Corkill. His ability to grasp and articulate ideas, his insights into the research
process, his continuing faith in my abilities, and his friendship and sense of humor enabled me
to complete this work. I am extremely fortunate to have been his student.

My thesis committee was very helpful throughout the course of my research, especially
in encouraging me to address OR work on scheduling, which has enhanced the scope of this
otherwise AI-centered dissertation. Individually, I want to thank Victor Lesser for having
supported me financially for most of my years here, and providing many helpful suggestions
throughout this project. His interests in various applications of this work have helped to
identify a number of important directions for future research. Robbie Moll read (and reread) a
number of chapters, helping me to clarify my ideas and clean up many an awkward grammatical
phrase. Jim Smith was a great help in exposing me to past and present OR techniques and
approaches for solving resource-constrained scheduling problems. I thank my entire committee
for their assistance and their endless patience in guiding me through this project.

I am grateful to Texas Instruments, Inc., for their initial support of this work. Additional
funding came from the National Science Foundation and the Office of Naval Research.

My thanks also to Steve Smith at Carnegie Mellon University for providing the OPIS

benchmarking data and many hard-to-find papers.
A number of my friends warrant very special thanks for their extreme generosity over the

years. David and Teri (and Brian and Joshua) Westbrook (the Westy’s), Alice Julier and Zack
Rubinstein (Keepers of the Vortex), Alan and Ruth Kaplan, Keith Decker, and Alan “Bart”
Garvey, provided the vast bulk of my social existence, and fed me more times in the past ten
years than I’ve fed myself. For their continual (and largely successful) attempts to drag me out
of my office and preserve my sanity (often times against my will), I am eternally grateful.

Certain non-local friends, specifically Rick and Joanne Noel, Roger Segal and Sarah Kroloff,
and Lewin and Sharon Wright, deserve my special thanks for their endless patience, in light of
my frequent habit of holing up in my office and obsessing about my work for years at a time.

A great deal of programming accompanied this dissertation, and the help of certain people
was invaluable throughout. I cannot thank Kevin Gallagher enough for his tireless assistance

v

over the years on an amazingly wide range of problems. David Westbrook and Zack Rubinstein
provided valuable coding support for numerous parts of this project, and allowed me to bounce
ideas off of them on many occasions. Keith Decker and Alan Kaplan provided assistance on
problems ranging from the printing of Postscript files to the operation of my Macintosh.

A number of people in and around the Computer Science department at UMass, going way
back, have been valuable sources of information, advice, inspiration, and friendship, specifically:
Christy Anderson, Scott Anderson, Malini Bhandaru, Carol Broverman, Claire Cardie, Jody
Daniels, Bruce Draper, Ed Durfee, Joe Hernandez, Eva Hudlická, Marty Humphrey, Philip
Johnson, Sue Lander, Kathy McAdoo-Whitehair, Dorothy Mammen, Dan Neiman (who
provided the headlines for Figure 6.1), Ed Pattison, Anil Rewari, Rob St. Amant, Tuomas
Sandholm, Brian Stucky, Bob Whitehair, Jack Wileden, and the Alimonos family at Andy’s
Pizza (proud sponsors of Amalgams softball).

Within the CS department, I am forever indebted and eternally grateful to Renee Kumar
and Sharon Mallory, who processed mountains of administrative paperwork for me during my
long tenure in the department (and right up to the last minute). In addition, Priscilla Coe
and Nancy Stewart helped to make this department a more enjoyable place to work. Glenn
Loud and Judy Ruot of the RCF staff deserve thanks for their many efforts to keep my various
machines running over the years. (And my special thanks to Barbara Gould for maintaining
the candy jar in the RCF office!)

As an undergraduate computer science major at Brandeis University, I was part of an
exciting educational environment that helped spawn my interest in the field of computer
science and led me to pursue graduate study. My thanks to Jacques Cohen and Mitch Model
for their initial help in preparing and supporting me in this endeavor.

Over the years, my family has provided safe havens for me to escape the endless daily grind
of graduate school. Their continued patience and support over the years has been a great help
to me. My very special thanks to Nan, Nikki and Stephen, Sue and Tilford (and Adam), Alan
and Chris (and Benjamin), Tim and Sarah, Steve, Ted and Syd (and Nathan), Rob and Debi,
Bob, and Grandma.

And finally, most of all, I want to thank my parents for their financial, intellectual, and
emotional support throughout this long process. I could not have done this without them.

vi

ABSTRACT

FLEXIBILITY IN A KNOWLEDGE-BASED SYSTEM FOR SOLVING

DYNAMIC RESOURCE-CONSTRAINED SCHEDULING PROBLEMS

SEPTEMBER 1994

DAVID WALDAU HILDUM

B.A., BRANDEIS UNIVERSITY

M.S., Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel D. Corkill

The resource-constrained scheduling problem (RCSP) involves the assignment of a limited
set of resources to a collection of tasks, with the intent of satisfying some particular qualitative
objective, under a variety of technological and temporal constraints. Real-world environments,
however, introduce a variety of complications to the standard RCSP. The dynamic resource-
constrained scheduling problem describes a class of real-world RCSPs that exist within the
context of dynamic and unpredictable environments, where the details of the problem are often
incomplete, and subject to change over time, without notice.

Previous approaches to solving resource-constrained scheduling problems failed to focus
on the dynamic nature of real-world environments. The scheduling process occurs away from
the environment in which the resulting schedule is executed. Complete prior knowledge of the
order set is assumed, and reaction to changes in the environment, if at all, is limited.

We have developed a generic, multi-faceted, knowledge-based approach to solving dynamic
resource-constrained scheduling problems, which focuses on issues of flexibility during the
solution process to enable effective reaction to dynamic environments. Our approach is
characterized by a highly opportunistic control scheme that provides the ability to adapt
quickly to changes in the environment, a least-commitment scheduling procedure that preserves
maneuverability by explicitly incorporating slack time into the developing schedule, and the
systematic consultation of a range of relevant scheduling perspectives at key decision-making
points that provides an informed view of the current state of problem-solving at all times.

The Dynamic Scheduling System (DSS) is a working implementation of our scheduling
approach, capable of representing a wide range of dynamic RCSPs, and producing quality
schedules under a variety of real-world conditions. It handles a number of additional domain
complexities, such as inter-order tasks and mobile resources with significant travel requirements.
We discuss our scheduling approach and its application to two different RCSP domains, and
evaluate its effectiveness in each, using special application systems built with DSS.

vii

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS v

ABSTRACT vii

LIST OF TABLES xv

LIST OF FIGURES xvi

CHAPTERS

1. OVERVIEW 1

1.1 Introduction 1
1.2 Resource-Constrained Scheduling Problems 2

1.2.1 Definition of Terminology 2
1.2.2 Basic Assumptions 4
1.2.3 The Complexity of the Solution Process 5
1.2.4 Relaxed Assumptions 7

1.3 Dynamic Resource-Constrained Scheduling Problem Instances 8

1.3.1 The Airport Ground Service Scheduling Problem 8
1.3.2 The Job-Shop Scheduling Problem 9
1.3.3 The Transportation Planning Problem 10

1.4 Research Issues 11

1.4.1 A Sample Problem 11
1.4.2 Dynamic Environments 13

1.4.2.1 Order Behavior 14
1.4.2.2 Resource Behavior 15

1.4.3 The Importance of Flexibility 15

1.4.3.1 Fine-Grained Opportunism 16
1.4.3.2 Maintained Slack Time 18

1.4.3.2.1 Least-Commitment Decision Making 19
1.4.3.2.2 Worst-Case Mobile Resource Reservations 20

1.4.3.3 Detecting Change in a Dynamic Environment 21

1.4.3.3.1 Consulting Multiple Scheduling Perspectives 22
1.4.3.3.2 Variable-Ordering and Value-Ordering Heuristics 24

ix

1.5 Research Overview 27

1.5.1 Important Architectural Features and Functionality 30
1.5.2 Evaluating The Applicability of Our Approach 33

1.5.2.1 The Airport Ground Service Scheduling Domain 33
1.5.2.2 A Simplified Job-Shop Scheduling Domain 34
1.5.2.3 A Large-Scale Transportation Scheduling Domain 34

1.6 Contributions 35
1.7 Navigational Aids 37

2. RELATED WORK 39

2.1 Operations Research Approaches 39

2.1.1 An Integer Linear Programming Formulation 40

2.1.1.1 Assumptions 40
2.1.1.2 Definitions 41
2.1.1.3 The Model 42
2.1.1.4 The Objective Function 42
2.1.1.5 Constraint Equations 44

2.1.1.5.1 Task Finishing Constraints 44
2.1.1.5.2 Job Completion Constraints 44
2.1.1.5.3 Temporal Sequencing Constraints 44
2.1.1.5.4 Task Aggregation Constraints 45
2.1.1.5.5 Resource Usage Constraints 45
2.1.1.5.6 Resource Substitutability Constraints 45

2.1.2 Optimal Solution Approaches 46

2.1.2.1 Branch and Bound Approaches 46
2.1.2.2 Enumeration Approaches 48
2.1.2.3 Dynamic Programming Approaches 48
2.1.2.4 AGSS Domain Applications 49

2.1.3 Near-Optimal Heuristic Approaches 49

2.1.3.1 Single Heuristic Approaches 51
2.1.3.2 Multiple Heuristic Approaches 52
2.1.3.3 AGSS Domain Applications 52

2.1.4 Multiple Objective Approaches 54
2.1.5 Other Operations Research Approaches 55
2.1.6 A Summary 56

2.2 Artificial Intelligence Approaches 56

2.2.1 Expert System Approaches 57
2.2.2 Knowledge-Based Approaches 58

x

2.2.2.1 Scheduling as Constraint-Directed Search 59
2.2.2.2 Exploitation of Multiple Scheduling Perspectives 60
2.2.2.3 Micro-Opportunistic Activity-Based Scheduling 61

2.2.3 A Summary 63

3. THE DSS REPRESENTATION SCHEME 65

3.1 Some General Assumptions 65
3.2 Resources and Shop Locations 65

3.2.1 Stationary and Mobile Resources 66
3.2.2 Shop Locations 66
3.2.3 Resource Behavior and Performance 66

3.3 Products 67
3.4 Tasks 67

3.4.1 Resource Tasks 68
3.4.2 Product Tasks 71

3.4.2.1 Shift Preferences 71
3.4.2.2 Aggregate Tasks 71
3.4.2.3 Inter-Order Tasks 72

3.4.3 Task-Processing Durations 73

3.5 Constraints 73

3.5.1 Hard Constraints 73

3.5.1.1 Technological Constraints 74
3.5.1.2 Temporal-Sequencing Constraints 74
3.5.1.3 Task-Aggregation Constraints 75
3.5.1.4 Time-Bounds Constraints 77
3.5.1.5 Task-Processing-Duration Constraints 78
3.5.1.6 Contextual Constraints 80

3.5.1.6.1 Equipment-Compatibility Constraints 80
3.5.1.6.2 Movement Constraints 80

3.5.2 Soft Constraints 83

4. THE DSS SCHEDULING PROCESS 85

4.1 Implementation Details 86

4.1.1 The DSS Blackboard Hierarchy 87
4.1.2 Agenda-Based Control 90
4.1.3 Event-Based Processing 90
4.1.4 Generic Problem-Solving Knowledge Sources 91

4.2 The Scheduling Process 91

xi

4.2.1 From Order Reception to Subproblem Instantiation 93

4.2.1.1 Task Network Instantiation 94
4.2.1.2 Service Goal Creation 98
4.2.1.3 Inter-Order Task Instantiation 99

4.2.2 Service Goal Urgency 102

4.2.2.1 Service Goal Urgency Determination 104

4.2.2.1.1 Step 1–A: Resource Contention 105
4.2.2.1.2 Step 1–B: Resource Availability 105
4.2.2.1.3 Step 1–C: Available Slack 106
4.2.2.1.4 Step 2–A: Temporal Urgency 106
4.2.2.1.5 Step 2–B: Order Priority 107
4.2.2.1.6 Step 2–C: Inter-Order Task Consideration 107

4.2.2.2 The Frequency of Service Goal Urgency Determination 107

4.2.3 Selecting Reservation-Securing Knowledge Sources 110
4.2.4 Securing Resource Reservations 111

4.2.4.1 Special Considerations for Securing Mobile Resources 113
4.2.4.2 The Assignment Knowledge Source 116
4.2.4.3 The Preemption Knowledge Source 119
4.2.4.4 The Right Shift Knowledge Source 122
4.2.4.5 Relaxed Reservation-Securing Knowledge Sources 123

4.2.5 Re-Securing Resource Reservations 126
4.2.6 Reservation Refinement 127
4.2.7 Processing Resource Failures 129

4.3 A Summary 131

5. EXPERIMENTAL EVALUATION OF DSS 133

5.1 Primary Objectives 133

5.1.1 Minimizing Tardiness 134
5.1.2 Maximizing Computational Efficiency 134

5.2 Problem-Solving Metrics for Evaluating DSS 135
5.3 Classical Scheduling Heuristics Implemented in DSS 136
5.4 The TCP System 138
5.5 The ARM System 139
5.6 Experiments and Evaluation 144

5.6.1 Comparison with Common Benchmarks 145

5.6.1.1 Average Tardiness Cost per Order 145
5.6.1.2 Average Work-in-Process Time per Order 147
5.6.1.3 Total Number of Machine Setups 147

xii

5.6.2 Reactive Analysis 149

5.6.2.1 Dispatch Scheduling 149

5.6.2.1.1 TCP Experiments 150
5.6.2.1.2 ARM Experiments 154

5.6.2.2 Coping with Resource Failures 160

5.6.3 Accommodating Unexpected Order Sets 164

5.7 A Summary 169

6. CONCLUSIONS 173

6.1 Research Issues Revisited 173
6.2 Contributions Revisited 174

6.2.1 Developing A Multi-Faceted Approach to Solving Dynamic Resource-
Constrained Scheduling Problems 174

6.2.1.1 Use of Slack Time to Preserve Flexibility and Limit Sched-
ule Disruption 174

6.2.1.2 Quick and Effective Reaction to Dynamic Environments 174
6.2.1.3 Consultation of Multiple Perspectives in All Scheduling

and Control Decisions 175
6.2.1.4 Accommodation of Additional Domain Complexities 175

6.2.2 Demonstrating the Generic Capabilities of DSS 175

6.3 Directions for Future Research 176

6.3.1 Improving the Management and Utilization of Slack Time 176
6.3.2 Developing an Adaptive Scheduling Strategy 177
6.3.3 Accommodating Resource-Based Schedule Quality Objectives 178
6.3.4 Avoiding Worst-Case Mobile Resource Reservations 179
6.3.5 Enhancing the Least-Commitment Decision-Making Process 179
6.3.6 Introducing Planning Issues 180
6.3.7 Enhancing the Urgency-Determination Mechanism 180
6.3.8 Extending the Problem Definition 181
6.3.9 Distributing the Flexible Scheduling Approach 181
6.3.10 Evaluating DSS in Real-World Scheduling Environments 182

6.4 Closing Remarks 182

APPENDICES

A. SCHEDULING APPLICATION SYSTEMS BUILT WITH DSS 183

A.1 ARM: The Airport Resource Management System 183

A.1.1 The Airport Ground Service Scheduling Domain 183
A.1.2 Domain Assumptions 185

xiii

A.1.3 Resources and Shop Locations 186
A.1.4 Products 188
A.1.5 Operations 188

A.1.5.1 Docking Support Activities for Arrival, Departure, and
Turnaround Flights 189

A.1.5.2 LOAD BAGGAGE 190
A.1.5.3 UNLOAD BAGGAGE 191
A.1.5.4 BAGGAGE TRANSFER 192
A.1.5.5 CLEAN 194
A.1.5.6 SERVICE 197
A.1.5.7 RESTOCK 197
A.1.5.8 REFUEL 200
A.1.5.9 PASSENGER TRANSFER 202
A.1.5.10 POWER IN, SHUTDOWN, DEPLANE, ENPLANE, POWER

OUT, and STARTUP 202

A.1.6 Orders and Process Plans 206

A.1.6.1 Arrival Flights 207
A.1.6.2 Departure Flights 209
A.1.6.3 Turnaround Flights 211

A.2 TCP: The Turbine Component Plant Job-Shop Scheduling System 214

A.2.1 The Turbine Component Plant Job-Shop Scheduling Domain 214
A.2.2 Domain Assumptions 214
A.2.3 Resources 214
A.2.4 Products 214
A.2.5 Operations 214
A.2.6 Orders 217
A.2.7 Process Plans 217

A.2.7.1 CSE Blade Family 217
A.2.7.2 SSE Blade Family 217
A.2.7.3 T Blade Family 219

B. ANNOTATED DSS EXECUTION TRACE 221

REFERENCES 239

xiv

LIST OF TABLES

1.1 Perspectives on the Variable-Ordering Process 26

1.2 Perspectives on the Value-Ordering Process 28

4.1 Generic Problem-Solving Knowledge Sources Defined in DSS. 92

5.1 ARM Minimum Supply Layouts 143

5.2 Summary of the Dispatch Scheduling Experimental Results (via TCP and ARM)
Showing the Average Ranking (Lower Number is Better) and Total Number
of Best Finishes (Higher is Better) per Metric Achieved by the Assorted DSS

Heuristics. 169

5.3 Summary of Coping with Resource Failures Experimental Results (via TCP) Showing
Average Ranking (Lower Number is Better) and Total Number of Best Finishes
(Higher is Better) per Metric by the Assorted DSS Heuristics. 170

5.4 Summary of Accommodating Unexpected Order Sets Experimental Results (via ARM)
Showing Average Ranking (Lower Number is Better) and Total Number of
Best Finishes (Higher is Better) per Metric by the Assorted DSS Heuristics. 171

xv

LIST OF FIGURES

1.1 Resource-Constrained Scheduling Problem Legend. 3

1.2 Resource-Constrained Scheduling Problem Terminology. 4

1.3 General Assumptions for Classical Resource-Constrained Scheduling Problems 5

1.4 Relaxed Assumptions for Dynamic Resource-Constrained Scheduling Problems 7

1.5 Aircraft Servicing Requirements for a Simplified AGSS Problem. 12

1.6 Scheduler Inputs, Domain Definitions, and Basic System Components of DSS. 29

2.1 Definitions for an RCSP Integer Linear Programming Formulation 41

2.2 Visual Representation of an RCSP Solution Produced from an Integer Linear
Programming Formulation. 43

3.1 DSS Activity Class and Generic Resource Task Hierarchy. 69

3.2 DSS Resource Plan Grammar. 70

3.3 Serial Temporal Sequencing in DSS. 75

3.4 Parallel Temporal Sequencing in DSS. 76

3.5 Task Aggregation in DSS. 77

4.1 DSS Blackboard Hierarchy 87

4.2 An Overview of the DSS Scheduling Process. 93

4.3 Task Network Component Legend. 95

4.4 Determining ESTs within a Task Network. 96

4.5 Determining LFTs within a Task Network. 97

4.6 Aggregate and Non-Aggregate Service Goal Initialization. 99

4.7 Execution Trace Showing the Triggering and Partial Execution of the Instantiate
Task Network KS. 101

xvi

4.8 A Sample Initial Task Network. 102

4.9 Execution Trace Showing the Service Goal Rating Activity Triggered by the
Instantiate Task Network KS. 109

4.10 Execution Trace Showing the Triggering and Execution of the Select Reservation-
Securing Method KS. 112

4.11 A Sample Feasible Completed Task Network. 113

4.12 Inclusion of Unrefined Travel Time Allocation in a Mobile Resource Reservation. 114

4.13 Inclusion of Refined Travel Time Allocation in a Mobile Resource Reservation. 115

4.14 Assignment Knowledge Source Value Orderings. 117

4.15 Execution Trace Showing the Execution of the Assignment KS. 118

4.16 Execution Trace Showing the Execution of the Preemption KS. 121

4.17 Execution Trace Showing the Execution of the Right Shift KS. 124

4.18 A Situation Requiring the Use of Relaxation Techniques to Secure a Stationary
Resource Reservation 125

4.19 Execution Trace Showing the Execution of the Reservation Refinement KS. 129

4.20 Execution Trace Showing the Execution of the Process Resource Failure KS. 130

5.1 TCP Process Routings and Factory Layout 140

5.2 (Simplified) Detroit Metropolitan Wayne County Airport Showing All Defined
Stationary Gate Resources and Shop Locations. 142

5.3 ARM Experimental Flight Timetables. 143

5.4 Comparison (via TCP) of the Average Tardiness Cost per Order Between DSS(MPH)
and the OPIS 0, ISIS, and COVERT Systems (Lower is Better). 146

5.5 Comparison (via TCP) of the Average Work-in-Process Time per Order Between
DSS(MPH) and the OPIS 0, ISIS, and COVERT Systems (Lower is Better, Below
Target is Acceptable). 147

5.6 Comparison (via TCP) of the Total Number of Machine Setups Required by
DSS(MPH) and the OPIS 0, ISIS, and COVERT Systems (Lower is Better). 148

xvii

5.7 Comparison (via TCP) of the Total Number of Bottleneck Machine Setups Re-
quired by DSS(MPH) and the OPIS 0, ISIS, and COVERT Systems (Lower is
Better). 149

5.8 Comparison (via TCP) of the Average Tardiness Cost per Order Among the Assorted
DSS Heuristics in Dispatch Scheduling Mode (Lower is Better). 150

5.9 Comparison (via TCP) of the Percentage of Tardy Orders Among the Assorted DSS

Heuristics in Dispatch Scheduling Mode (Lower is Better). 151

5.10 Comparison (via TCP) of the Average Work-in-Process Time per Order Among
the Assorted DSS Heuristics in Dispatch Scheduling Mode (Lower is Better,
Below Target is Acceptable). 152

5.11 Comparison (via TCP) of the Total Number of KSA Invocations Among the
Assorted DSS Heuristics in Dispatch Scheduling Mode (Lower is Better). 152

5.12 Comparison (via TCP) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics in Dispatch Scheduling Mode (Higher is
Better). 153

5.13 Comparison (via TCP) of the Elapsed Processing Time Among the Assorted DSS

Heuristics in Dispatch Scheduling Mode (Lower is Better). 154

5.14 Comparison (via ARM) of the Average Tardiness Cost per Order Among the As-
sorted DSS Heuristics Using Minimum Supply Layouts in Dispatch Scheduling
Mode (Lower is Better). 156

5.15 Comparison (via ARM) of the Percentage of Tardy Orders Among the Assorted
DSS Heuristics Using Minimum Supply Layouts in Dispatch Scheduling Mode
(Lower is Better). 156

5.16 Comparison (via ARM) of the Total Number of KSA Invocations Among the As-
sorted DSS Heuristics Using Minimum Supply Layouts in Dispatch Scheduling
Mode (Lower is Better). 157

5.17 Comparison (via ARM) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics Using Minimum Supply Layouts in Dis-
patch Scheduling Mode (Higher is Better). 158

5.18 Comparison (via ARM) of the Elapsed Processing Time Among the Assorted DSS

Heuristics Using Minimum Supply Layouts in Dispatch Scheduling Mode
(Lower is Better). 159

5.19 Comparison (via TCP) of the Average Tardiness Cost per Order Among the Assorted
DSS Heuristics With Five Resource Failures in Dispatch Scheduling Mode
(Lower is Better). 160

xviii

5.20 Comparison (via TCP) of the Percentage of Tardy Orders Among the Assorted DSS

Heuristics With Five Resource Failures in Dispatch Scheduling Mode (Lower
is Better). 161

5.21 Comparison (via TCP) of the Average Work-in-Process Time per Order Among the
Assorted DSS Heuristics With Five Resource Failures in Dispatch Scheduling
Mode (Lower is Better, Below Target is Acceptable). 162

5.22 Comparison (via TCP) of the Total Number of KSA Invocations Among the
Assorted DSS Heuristics With Five Resource Failures in Dispatch Scheduling
Mode (Lower is Better). 162

5.23 Comparison (via TCP) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics With Five Resource Failures in Dispatch
Scheduling Mode (Higher is Better). 163

5.24 Comparison (via TCP) of the Elapsed Processing Time Among the Assorted DSS

Heuristics With Five Resource Failures in Dispatch Scheduling Mode (Lower
is Better). 164

5.25 Comparison (via ARM) of the Average Tardiness Cost per Order Among the
Assorted DSS Heuristics Using Two Order Groups in Batch Scheduling Mode
(Lower is Better). 165

5.26 Comparison (via ARM) of the Percentage of Tardy Orders Among the Assorted
DSS Heuristics Using Two Order Groups in Batch Scheduling Mode (Lower is
Better). 166

5.27 Comparison (via ARM) of the Total Number of KSA Invocations Among the
Assorted DSS Heuristics Using Two Order Groups in Batch Scheduling Mode
(Lower is Better). 166

5.28 Comparison (via ARM) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics Using Two Order Groups in Batch
Scheduling Mode (Higher is Better). 167

5.29 Comparison (via ARM) of Average Tardiness Cost per Order Among the Assorted
DSS Heuristics Using Three Order Groups in Batch Scheduling Mode (Lower
is Better). 168

5.30 Comparison (via ARM) of the Percentage of Tardy Orders Among the Assorted DSS

Heuristics Using Three Order Groups in Batch Scheduling Mode (Lower is
Better). 168

6.1 Miscellaneous Newspaper Headlines (Seemingly) Unrelated to the Dynamic Sched-
uling System. 176

xix

A.1 Key to Resource and Process Plan Figures. 184

A.2 Common Resource Plan for the ARRIVAL ACTIVITY, DEPARTURE ACTIVITY and
TURNAROUND ACTIVITY Product Tasks. 189

A.3 Resource Task Specifications for Gate-Related Operations. 190

A.4 Resource Plan for the LOAD BAGGAGE Product Task. 191

A.5 Task Specifications for the LOAD BAGGAGE Operation. 192

A.6 Resource Plan for the UNLOAD BAGGAGE Product Task. 193

A.7 Task Specifications for the UNLOAD BAGGAGE Operation. 194

A.8 Resource Plan for the BAGGAGE TRANSFER Product Task. 195

A.9 Task Specifications for the BAGGAGE TRANSFER Operation. 196

A.10 Resource Plan for the CLEAN Product Task. 197

A.11 Task Specifications for the CLEAN Operation. 198

A.12 Resource Plan for the SERVICE Product Task. 198

A.13 Task Specifications for the SERVICE Operation. 199

A.14 Resource Plan for the RESTOCK Product Task. 199

A.15 Task Specifications for the RESTOCK Operation. 200

A.16 Both Resource Plans for the REFUEL Product Task. 201

A.17 Task Specifications for the REFUEL Operation. 203

A.18 Constraints Imposed by the PASSENGER TRANSFER Product Task. 203

A.19 Task Specification for the PASSENGER TRANSFER Operation. 204

A.20 Task Specifications for the POWER IN, SHUTDOWN, DEPLANE, ENPLANE, POWER
OUT, and STARTUP Operations. 205

A.21 Process Plan for the ARRIVAL FLIGHT PROCESSING Service Type. 208

A.22 Specifications for the ARRIVAL FLIGHT PROCESSING Service Type. 209

A.23 Process Plan for the DEPARTURE FLIGHT PROCESSING Service Type. 210

A.24 Specifications for the DEPARTURE FLIGHT PROCESSING Service Type. 211

xx

A.25 Process Plan for the TURNAROUND FLIGHT PROCESSING Service Type. 212

A.26 Specifications for the TURNAROUND FLIGHT PROCESSING Service Type. 213

A.27 TCP Job-Shop Model 215

A.28 Basic Resource Plan for all TCP Product Tasks. 216

A.29 Basic Task Specifications for all TCP Operations. 216

A.30 Process Plans for the PRODUCE PBLADE1 & PRODUCE PBLADE4 Service Types. 217

A.31 Specifications for the PRODUCE PBLADE1 & PRODUCE PBLADE4 Service Types. 218

A.32 Process Plans for the PRODUCE PBLADE2 & PRODUCE PBLADE5 Service Types. 218

A.33 Specifications for the PRODUCE PBLADE2 & PRODUCE PBLADE5 Service Types. 219

A.34 Process Plans for the PRODUCE PBLADE3 & PRODUCE PBLADE6 Service Types. 219

A.35 Specifications for the PRODUCE PBLADE3 & PRODUCE PBLADE6 Service Types. 220

xxi

xxii

C H A P T E R 1

OVERVIEW

This research describes a knowledge-based approach for solving the important class of
dynamic resource-constrained scheduling problems. We have implemented our approach in
a system called DSS: the Dynamic Scheduling System. DSS may be easily configured for
solving a wide variety of resource-constrained scheduling problems within dynamic real-world
environments, and we have performed an extensive evaluation of its effectiveness within a
number of significantly different scheduling domains.

1.1 Introduction

The class of problems we address represents a real-world extension to the standard class
of resource-constrained scheduling problems (RCSPs) [Davis, 1973]. The generic RCSP may
be described in the following manner. Given a set of operation descriptions, a collection of
requests to perform sequences of these operations using a finite set of resources, and a network
of constraints governing the sequencing of the operations and the use of the resources, the
goal is to produce, for each request, a schedule of specific operation sequences that includes
explicit starting and finishing times for each activity and satisfies the entire set of relevant
constraints. The quality of a completed schedule may be evaluated according to a variety of
factors, including the degree to which the due dates of the orders are met, the total amount
of time required to complete the operation sequences, and the utilization of the resources.
The set of RCSPs subsumes the standard classes of job-shop, project and factory scheduling
problems [Bellman et al., 1982, French, 1982].

The class of dynamic RCSPs differs from the class of standard RCSPs in that the problem-
solving activity involved in solving dynamic RCSPs is undertaken within, and therefore in
reaction to, an unpredictably changing real-world environment. Solving dynamic RCSPs is
therefore necessarily a reactive process, because the initial conditions within an environment
are not guaranteed to hold throughout the scheduling process nor the execution of the schedule.
Real-world environments generate such unpredictable events as resource failures, varying task
completion times, and delayed, canceled, modified, or unexpected orders. These events
have a substantial impact on the scheduling process. Owing to the changing nature of the
environment, decisions made prior to the actual execution of the schedule frequently become
obsolete and must then be subjected to later modification.

Because scheduling decisions must be made in response to changes within a dynamic
environment, computational time is therefore at a premium, precluding a scheduler from
pausing to reevaluate the entire current situation, throw out its existing schedule, modify its
original assumptions, and start all over again from the beginning, every time an unexpected
difficulty is encountered. A scheduler must instead be capable of adapting to the changing
environment by first isolating the impact of unexpected events on its existing schedule, and

2

then efficiently modifying the schedule in response. Great importance is therefore placed on
the ability of the scheduler to understand fully the nature and impact of environmental events,
react quickly to them, and develop its schedules in such a way as to maintain sufficient flexibility
for responding to future difficulties.

The goal of our research has been to implement an intelligent scheduling system that is
capable of solving dynamic RCSPs within realistic, broadly constrained, dynamic, and uncertain
environments. In the process, we have developed a flexible, domain-independent scheduling
approach that combines a well-informed, highly opportunistic control strategy with a least-
commitment decision-making process. The opportunism in our approach allows the scheduler
to adapt quickly to the changing environment, by focusing on the most tightly constrained sub-
problems at any point during the scheduling process. The least-commitment decision-making
strategy helps to preserve flexibility within the developing schedule to preserve scheduling op-
tions for unsolved subproblems, and accommodate anticipated future difficulties [Stefik, 1980,
Rickel, 1988]. A frequent, multiple-perspective analysis of the current state of problem
solving helps to determine the proper focus of attention and inform the decision-making
process [Rickel, 1988].

A secondary objective of this research has been to gain a better understanding of the
domain-independent information common to real-world, dynamic RCSP domains, and explore
how intelligent methods for representing and manipulating this information may be developed
and utilized throughout the scheduling process.

In the following section, we provide a detailed description of the class of RCSPs, intro-
ducing some basic terminology, outlining some basic assumptions, and identifying the various
computational difficulties presented by this particular class of problems. In Section 1.3, we
discuss the special features of the class of dynamic RCSPs. Section 1.4 presents a discussion
of the major themes of this research, and Section 1.5 provides an overview of our approach.
The contributions of this research are highlighted in Section 1.6. Finally, Section 1.7 provides
some useful aids for navigating the rest of the dissertation.

1.2 Resource-Constrained Scheduling Problems

The class of RCSPs (sometimes also called constrained-resource project scheduling) has been
studied extensively in the field of operations research (OR) since the mid 1950’s, and has begun
to attract attention from the field of artificial intelligence over the past decade.

RCSPs represent an important class of problems owing to the broad range of real-world
scheduling problems they encompass, coupled with the inherent complexity of the solution
process. The benefits of an automated scheduling system for solving RCSPs center on the
efficient production of high-quality schedules. Early approaches to solving small instances of
the RCSP using mathematical programming techniques recorded savings in manufacturing
costs resulting from shorter schedule makespans and the maximization of rewards from more
on-time project deliveries. A generic scheduling approach designed to handle dynamic RCSPs
would provide these same benefits to an even larger range of real-world problems.

1.2.1 Definition of Terminology

We begin with a description of the terms used to discuss RCSPs at a more detailed level.
An order represents a request for the production or servicing of a particular product, which is

3

accomplished through the execution of a sequence of activities called operations or tasks.1 The
sequence of operations designated for an order is called a job, and is instantiated according to
the specifications of a process plan template which defines a partial ordering for all of the required
tasks in the order. A resource is a machine or tool used to perform an operation.2 A resource plan
specifies a linear sequence of steps that must be taken by a resource to perform an operation.
Figure 1.1 presents a visual summary of some of these definitions. We refer to a particular
configuration of resources as a layout. Such a configuration includes information about the
names, types, and locations of all available resources. Figure 1.2 provides some additional

Order

Product

Task 1

Task 2

Task 3

Task 4

Process Plan
Template

Setup

Setup

Service

Service

Service

Service

Reset

Reset

Resource PlansResources Job

Task 1
Task 2
Task 3
Task 4

Figure 1.1. Resource-Constrained Scheduling Problem Legend.

scheduling terminology (partially from [French, 1982]) that will be useful throughout the rest
of this document.

The notion of slack (sometimes also called float) plays an important role throughout this
research. For the purposes of this document, and because the term is widely interpreted within
the field of knowledge-based scheduling, we now formally describe our use of the term. By
performing a Critical Path Analysis [Kelley and Walker, 1959] upon the directed graph task
sequence that comprises the job for an order Oi , and considering any additional relevant time
bound constraints, we can determine, for each task Tij in Oi , its earliest possible starting time
(ESTij) and latest possible finishing time (LFTij). These times define the lower and upper
bounds for the region (or allowance) within which each product task may be scheduled. Note
that this allowance is defined only in terms of the main servicing activity that is to be executed

1We will use these two terms interchangeably.

2Note that some operations may not require the services of a resource.

4

Processing Time
 The amount of time required to perform an operation.
Allowance
 The period of time within which an operation is intended to be performed.
Setup Time
 The time during which a resource is set up to perform an operation.
Reset Time
 The time during which a resource is reset after performing an operation.
Travel Time
 The time during which a mobile resource moves between locations.
Idle Time
 The time during which a resource is not used.
Ready Time
 The desired time at which a job will become available for processing.
Due Date
 The desired time at which a job will complete its processing.
Lead Time
 The amount of time between the ready time and the due date.
Release Time
 The actual time at which a job becomes available for processing.
Completion Time
 The actual time at which a job completes its processing.
Flow Time
 The amount of time between the release time and the completion time.
Make-Span
 The maximum completion time for a set of jobs.
Delay
 The difference between the release time and the ready time for a job.
Lateness
 The difference between the completion time and the due date for a job.
Tardiness
 Equals lateness when lateness is positive, 0 otherwise.
Earliness
 Equals lateness when lateness is negative, 0 otherwise.

Figure 1.2. Resource-Constrained Scheduling Problem Terminology.

on a product. It does not include any other supporting resource activity (such as ancillary
setup, travel or reset operations) that may be required as part of the resource plan for a resource
to perform a particular task.

We assume, for each Tij , the availability of the average expected processing duration dij for
the main servicing activity component. We are now able to define the term SLACKij for a task
Tij as:

LFTij ESTij dij

Slack is an explicit entity that resides within order schedules. It is distinguishable from the idle
time that may exist within resource schedules as a byproduct of external fragmentation. Note
that as the EST and LFT values for a task are modified, the value of SLACK for that task and
possibly others will also change.

1.2.2 Basic Assumptions

The classical formulation of the RCSP makes a number of strict assumptions about
operations, resources, and processing times. These assumptions tightly constrain the problem
to facilitate its solution. In general, all required information is assumed to be available
from the outset, and to remain fixed throughout the entire scheduling process. The order
set and the levels of resource availability are static, and all jobs are released on time (as

5

expected). Figure 1.3 presents a collection of standard RCSP assumptions that are appli-
cable to our work, assembled from [Bellman et al., 1982, Coffman, 1976, French, 1982,
Niland, 1970].

1. Assumptions on Jobs and Operations
 1.1. The complete set of jobs is fixed and known at the outset.
 1.2. The time at which each job is released is fixed and known at the outset.
 1.3. A definite due date can be assigned to each job. A job must be completed
 by the beginning of the due date time period.
 1.4. Job arrivals occur at the beginning of a time period, and may begin executing
 in that time period.
 1.5. There may be precedence relations between operations within a job.
 1.6. There is no preemption. Operations may not be interrupted while executing.
 1.7. There is no cancellation. Each job must be processed to completion.
 1.8. Completed operations meet all specifications. Operations need never be repeated.
 1.9. In-process inventory is allowed. Jobs may wait for their next resource to be free.

2. Assumptions on Resources
 2.1. The complete set of resources is fixed and known at the outset.
 2.2. All resources are non-consumable.
 2.3. Resources never break down and are available throughout the scheduling period.
 2.4. Each resource can process at most one operation at the same time.
 2.5. All resources complete their operations satisfactorily. There is no notion of quality.
 2.6. Resources may be idle.

3. Assumptions on Processing Times
 3.1. The processing duration for each operation is deterministic and known at the outset.
 3.2. The processing speeds of the resources in a class are identical.
 3.3. Processing time includes setup time.
 3.4. Setup time is job sequence-independent. The time taken to adjust a resource
 for a job is independent of the job last processed.

Figure 1.3. General Assumptions for Classical Resource-Constrained Scheduling Problems

Increasingly constrictive assumptions are often used to constrain an RCSP to a more
manageable, but also less practical, degree. For example, the sequencing of operations within
jobs may be strictly controlled (to preclude simultaneous operations). In addition, each job
may require servicing by every resource, and there may be only one of each type of resource
available.

1.2.3 The Complexity of the Solution Process

Regardless of the strict assumptions about standard RCSPs, they remain a very difficult
class of problems to solve. With the exception of some tightly constrained subclasses, the
standard RCSP is NP-hard [Garey and Johnson, 1979].

To illustrate the large number of possible sequences (that is, resource assignments without
starting and finishing times) that satisfy the constraints of a very basic RCSP, consider a problem
consisting of n jobs, each requiring the services of a single machine in each of r resource classes.
The total number of possible sequences for this situation is n! r (there are n! orderings of the
jobs on each resource class, and the orderings per resource class are independent of one another,
hence the n!1 n!2 n!r total). With even moderate values for n and r , this number is
large, and it grows quickly. If we provide m specific machines for each resource class, thereby

6

allowing a choice among m machines to perform each operation, the total number of feasible
schedules becomes mn n! r (there are mn ways to assign one of the m machines to each of
the n! job orderings per resource class). Again, even with moderate values for n and r , this
number is quite large, and it grows quicker still. For example, given n 4 jobs and r 5
resource classes, and only m 1 machines for each operation, there are 7 962 624 possible
sequences. Given a choice between two machines for each operation, that number rises to
8 349 416 423 424. The process of assigning starting and finishing times to each reservation
in a sequence adds still more significant factors into the equation.

These large sets of possible sequences do include a significant number of sequences that
are impractical, such as those that use only one of the m machines from each of the r different
resource classes to service all of the jobs. The imposition of temporal sequencing (and other
kinds of) constraints serves to limit the number of sequences that may be used to produce
feasible schedules. Nevertheless, the total number of feasible schedules for any moderately sized
RCSP is still large enough to preclude the use of any kind of scheduling approach that attempts
to exhaustively generate all feasible schedules (or even a significant portion of them), and then
select the best from amongst them.

A significant difficulty brought about by a dynamic environment is the fact that the
constraints on the problem, and the bounds produced by these constraints, are subject to change
throughout the scheduling process, to the point where the actual set of feasible schedules changes
during the course of producing a final schedule. Both the search space and the solution space
are modified throughout the scheduling process, as new constraints are introduced and existing
constraints are relaxed. Any reasonable approach to scheduling within dynamic environments
must therefore adopt a method of progressively exploring the set of possible schedules by
extending a feasible developing schedule in promising directions, thereby avoiding decisions
that would lead to the development of infeasible or less desirable (low quality) schedules.

An important source of computational complexity involved in the process of solving RCSPs
arises from the problem of trying to determine an optimal solution for a particular problem [Fox
and Kempf, 1985]. Given the wide variety of metrics that exist for measuring the quality of
a schedule, be it the degree to which order due dates are met, the lengths of the processing
duration for jobs, or the degree of resource utilization, it is difficult to combine these individual
metrics into a single value for determining overall schedule quality. A standard mathematical
programming approach requires the definition of a single objective (or a functional combination
of single objectives) to be either maximized or minimized. A goal programming approach ranks
a collection of single objectives by priority and then invokes a multiple step process of satisfying
each objective, in order of priority, using the previous solutions to constrain the continuing
solution process, and thus giving each objective complete priority over the next.

The dynamic real world also presents a major obstacle to the problem of assessing schedule
optimality [Fox and Kempf, 1985]. The real world does not behave predictably. Decisions
based upon assumptions about real-world behavior are therefore not entirely reliable. A schedule
that is determined to be optimal prior to its execution in the real world is optimal only to the
degree that the real world behaves as expected during the schedule’s execution. As a result, it
is not practical to devote major effort towards achieving optimality in a schedule, because the
true quality of a schedule may only be ascertained in conjunction with its execution in the real
world. An apparently optimal schedule may be based on an unreasonable set of expectations
about the real world, and may therefore be significantly less optimal when executed. Similarly,

7

a schedule that is originally of less than optimal quality, but which contains some degree of
built-in flexibility for dealing with unexpected world events, may actually turn out to be quite
good upon its execution.

Simon uses the term satisficing to describe solutions that are “good enough” for approximate
models of the the real world. Optimal solutions, on the other hand, are generally attainable
only within simplified or imaginary domains [Simon, 1981]. The basis of heuristic search
is to satisfactorily solve combinatorial problems while requiring less structure in the problem
representation. The issue of producing optimal versus satisficing results in the solution of
RCSPs is a common topic in OR, while most AI techniques tend to focus on the use of
heuristic techniques for finding satisfactory or quality solutions.

In discussing past and current approaches to solving the RCSP, McKay claims that the
dynamic characteristics of real-world scheduling environments render the bulk of existing
solution approaches useless when applied to practical problems [McKay et al., 1988]. The
shop floor is inherently unstable, and its state changes very quickly. As a result, long-range
scheduling tends to be kept to a minimum, because scheduling decisions so frequently become
obsolete in a short period of time. In addition, shop floor dispatchers tend to make use of a
wide range of (often unspecific) information and intuition, making the formalization of their
decision-making processes essentially impossible.

1.2.4 Relaxed Assumptions

In our attempt to work with more realistic RCSPs, we have altered the standard definition
of the problem to include the kinds of real-world details that contribute to the complexity of
the solution process. Figure 1.4 presents the relaxed assumptions upon which our model of
dynamic RCSPs is based.

1. Relaxed Assumptions on Jobs
 1.1. The complete set of jobs is variable and may not be known at the outset.
 1.2. Jobs may arrive ahead of, or behind schedule.
 1.3. The ready time and due date for a job are variable.
 1.4. Jobs may be cancelled at any time.

2. Relaxed Assumptions on Resources
 2.1. The complete set of resources is variable and may not be known at the outset.
 2.2. Resources may break down at any time and may not be available during the
 entire scheduling period.

3. Relaxed Assumptions on Processing Times
 3.1. An approximate processing duration for each operation is known at the outset.
 3.2. Resources in a class may have different processing speeds.
 3.3. Processing time does not include setup time.
 3.4. Setup time is job sequence-dependent. The time taken to adjust a resource for
 a job depends on the job last processed.
 3.5. Mobile resource travel time may represent a significant portion of processing
 duration.

Figure 1.4. Relaxed Assumptions for Dynamic Resource-Constrained Scheduling Problems

8

1.3 Dynamic Resource-Constrained Scheduling Problem Instances

Our research has focused on a number of different instances of the dynamic RCSP. In this
section we formally describe three of these particular problem instances. The airport ground
service scheduling problem (AGSS) makes heavy use of mobile resources, and includes a great
deal of interconnection among the tasks to be scheduled. Some of this interconnectivity derives
from the need to schedule significant amounts of travel time as part of the mobile resource
reservations. Another source comes from compatibility constraints introduced by technological
and travel-related requirements, which affect the pairing of resources, products and orders.

The job-shop scheduling problem represents a more generic RCSP that more closely resembles
the classical RCSP formulation. While the AGSS problem must deal with significant complexity
arising from the interconnectivity of the tasks, the job-shop scheduling problem is faced with
a more compartmentalized problem consisting of mostly independent tasks, which helps to
reduce the complexity of the solution process by allowing a scheduler to solve each task-specific
subproblem without having a substantial impact on the remaining subproblems.

1.3.1 The Airport Ground Service Scheduling Problem

The airport ground service scheduling problem is defined as follows. We are given a master
timetable of flights : F1 F2 FI , and a collection of resources : R1 R2 RR .
Each of the flights requires the execution of some sequence of ground-servicing tasks from the
task set : T1 T2 TT , depending on the particular type of ground service requested.
Note that may experience unexpected additions and cancellations during the course of
scheduling. That is, the entire set of flights is not guaranteed to remain stable. A job comprised
of the appropriate sequence of Ti ’s, Ti1 Ti2 TiS , is instantiated for each flight Fi in .
All flights have a desired ready time and due date (generally corresponding to flight arrival and
departure times), and need not be serviced by every resource. The underlying goal in solving
this problem is to produce a schedule of assignments of both processing times and resources to
all of the tasks required by the Fi in , while satisfying all relevant constraints.

Each task Tij entails a particular processing duration dij , often dependent on the particular
product (aircraft) and resource involved. A task may or may not require the use of a resource,
and there may be a choice of resource classes to perform a particular task. Each task consists
of a SERVICE activity, and possibly some form of additional SETUP, RESET or EN ROUTE
(travel) activity, depending on the selected resource. Inter-order tasks (such as the transfer of
baggage or passengers between connecting flight aircraft) are used to connect individual flights.
An inter-order task originates within a flight Fi and completes within another flight Fj i j .

A set of technological constraints controls the pairing of the Tij ’s with the Rl ’s. A set of
temporal sequencing constraints controls the order in which the Tij may be sequenced within a
job. Tasks may be executed serially or in parallel. Additional grouping constraints may require
that certain Tij ’s be executed within the processing time bounds for some other Tik j k .
The upper and lower processing time bounds for a task Tij may be further constrained to be
within a certain amount of time from either the ready time or the due date for Fi , or any flight
Fj to which Fi is connected. Finally, certain pairings of tasks and resources may introduce
further constraints on other pairings of tasks and resources.

Some of the airport resources are defined to be mobile, with each such resource class having
a fixed traveling speed at which its members are able to move through the airport environment.

9

Travel times are dependent on the context within which a resource is used, as determined by
the specific locations to and from which the resource must travel. Task processing durations
are therefore not independent of the schedule. Mobile resource travel routes are unrestricted
throughout the airport environment. All resources are subject to permanent failure, and may
be periodically and temporarily shut down. Each resource may service only one aircraft at a
time, and may not be preempted while executing an assigned task. Both resources and jobs
may experience idle time during the course of a schedule.

The primary qualitative objective in the solution of the airport ground service scheduling
problem is to limit tardiness across the entire set of flights , by minimizing the average
tardiness cost per flight, and the percentage of tardy flights. That is, the due date for each
flight should be met as often as possible. Let Di be the due date for flight Fi , and let Ci be
its scheduled completion time. Let Pi be the numerical (0) priority of Fi .3 The average
tardiness cost can be calculated using the following equation:

I
i 1 Pi max 0 Ci Di

I
Note that there is no benefit to be derived from earliness. The percentage of tardy orders can
be (partially) calculated by determining for how many flights in the equation Ci Di holds
true. Other qualitative objectives may include the minimization of the total amount of setup
activity scheduled for all resources in , and the minimization of the total amount of travel
time scheduled for all mobile resources in . Maximizing the degree of resource utilization
(by minimizing idle time) may also be desired.

As an example of the issues involved in the AGSS domain, consider the problem of servicing
a turnaround flight at an airport. A gate must be secured to establish the location at which
all of the other necessary servicing activities will occur. Various servicing vehicles must be
secured to perform baggage loading and unloading, refueling, cleaning and restocking of the
aircraft prior to its departure. These mobile resources must report from their previous locations
to the location provided by the gate at which the aircraft is to be serviced. Time must be
allocated for passenger deplaning and enplaning, to ensure that certain servicing activities are
performed without passenger interference. Certain tasks must wait for others to finish before
they may begin: arriving baggage should be unloaded before departure baggage is loaded.
Furthermore, the loading of the departure baggage must not be initiated too much prior to
the flight departure time, to allow for all such baggage to be assembled. Finally, some baggage,
cargo and passengers may have to be transferred to other connecting flight aircraft. In this
environment, due dates are targets that are intended to be exactly met, to achieve the smooth
flow of passengers to flights. Flights that leave early result in missed flights, and late departures
increase the discontent of those passengers forced to wait, and possibly miss other connections.
A scheduler thus has more flexibility in scheduling the required servicing activities, because
compaction of the schedule is not an option.

1.3.2 The Job-Shop Scheduling Problem

Another kind of real-world problem that we address in this work is the job-shop scheduling
problem. In this case we are given a collection of orders : O1 O2 OI , a set of tasks

3In our implementation of the airport ground service scheduling problem, all flights are given a uniform
priority of 1.

10

, and a collection of resources . The ready time indicates the time at which an order Oi is
released to the shop for processing. The due date indicates the time at which the processing of
the order is to be completed.

The assumptions and constraints described above for the more complicated airport ground
service scheduling problem also apply here, with the following exceptions. In a job-shop, the
resources are generally stationary, or else their travel times are insignificant. The product is
maneuvered through the factory environment from machine to machine. Each task requires
the services of a resource, and consists of a SERVICE activity and possibly a SETUP activity,
depending on the prior use of the selected resource.

The qualitative objectives in solving the job-shop scheduling problem include those
described above for the airport ground service scheduling problem. In addition, they may
also include the minimization of the makespan for the entire schedule and the minimization
of the flow (or work-in-process) times for the Fi .

As an example, consider a manufacturing environment where various products are produced
via particular routings through the factory. Work areas containing groups of machines are
spaced throughout the factory environment, at which the product, or parts of the product,
are assembled or processed. Setup operations are required for tasks performed on machines
whose prior use involved different kinds of activities. Orders received by the factory often have
immediate due dates coupled with high priorities, allowing little or no slack time with which to
provide flexibility for the scheduler, and resulting in substantial tardiness penalties. The earlier
a job may be completed, the better.

1.3.3 The Transportation Planning Problem

The transportation planning problem covers a broad range of problems. In this case, we focus
on the particular problem of moving cargo between geographically distributed locations with
the help of a collection of mobile resources. We are given a set of cargo movement requirements

: M1 M2 MI , a set of tasks , and a collection of resources . Each Mi specifies
a request to move a particular piece of cargo (the product) from one location to another
(possibly via some number of intermediate locations). The ready time indicates the time at
which the cargo for a movement requirement is available for shipment from its originating
location. A number of different transportation routings may be available, depending on the
(bounded) number of intermediate locations that may be visited during shipment by the mobile
cargo-transporting resources.

The assumptions and constraints described above for the job-shop scheduling problem
apply here as well, with the following exceptions. A significant portion of the resources are
mobile, cargo-transporting resources (such as boats, airplanes, trucks, or trains). The travel
requirements for these resources are significant, and their traveling speeds are an important
consideration in the scheduling process, because they may be sparsely distributed throughout
the environment, and some of them are (significantly) faster-moving than others.4 A shipment
task consists of an EN ROUTE activity to allow the transporting resource to report to the
originating location of the cargo, and a SERVICE activity representing the actual shipping

4Note that a more realistic model of this problem would allow fuel, crew, and other equipment costs to be
associated with the various cargo-transporting resources to augment the reservation-selection process.

11

phase. Upon completion of a shipment task, the product will be located at its destination
location.

The underlying objective in the transportation planning problem is to deliver each piece
of cargo to its required destination by its desired due date. A penalty may be incurred for tardy
shipments. There may also however, be a limit on how early a shipment may be delivered, and
an earliness penalty may be applicable under such circumstances. Strict compaction is therefore
not a desired feature of the schedule.

As an example, consider the problem of transporting cargo, such as food, from the east
coast of the United States to various locations in Africa. Food cargo becomes ready for shipment
at the various originating ports at various times. At each port, the food must be loaded onto
either a boat or an airplane for shipment across the Atlantic. Shipments delivered by air arrive
faster than those delivered by boat. The decision of which mode to use depends not only
on the various compatibility constraints involving resource capacity and the due date for the
shipment, but also the availability of boats and airplanes at each originating port. Note also
that some shipments may require intermediate stopovers on their way over. Finally, there is
clearly a penalty for tardiness in delivering food at the destination ports, but there is also a
penalty for delivering food at a time that is too early for the food to be properly stored until
it can be put to its intended use. A quality solution to this problem will result in the delivery
of each food shipment to its assigned destination port no later than the desired due date and
no earlier than some constant time prior to that date (probably depending on the type of food
being shipped).

1.4 Research Issues

A number of important issues must be considered in the process of developing a method for
solving dynamic RCSPs. The inherent unpredictability of real-world scheduling environments
requires a problem-solver to be capable of operating under a significant degree of uncertainty.
This existence of uncertainty requires the problem-solver to address the issue of flexibility
throughout the entire decision-making process to accommodate unexpected developments. In
this section, we will discuss both of these topics in greater detail.

1.4.1 A Sample Problem

To illustrate the degree of interconnectivity among the tasks, and the impact of uncertainty
and the value of preserved flexibility on the scheduling process, we first present a simplified
problem description from the previously described AGSS problem. For the purposes of this
discussion, we will focus on a limited model of the AGSS domain, in which the required
ground servicing is quite minimal. We will assume that each aircraft requires the same type
of (turnaround) servicing, specifically the use of an assigned gate for docking purposes, the
removal of all arriving passenger baggage, the transfer of all connecting flight baggage, and the
loading of all departing passenger baggage.

Each separate baggage transfer, unloading, and loading operation requires the use of a
single baggage truck, and a separate baggage transfer operation is required for each connecting
flight. The baggage unloading operation involves the removal of the arriving passenger baggage
from the aircraft, the movement of that baggage to the nearest airport baggage outlet, and the
unloading of that baggage from the baggage truck. The baggage loading operation involves

12

the loading of the departing passenger baggage onto the baggage truck at the baggage outlet
nearest to the gate assigned to the departing flight, the movement of that baggage to the gate,
and the loading of that baggage onto the departing flight aircraft. The inter-order baggage
transfer operation involves the removal of all of the baggage for a particular connecting flight,
the transferal of that baggage to the gate at which a connecting flight aircraft is docked, and
finally the loading of that baggage onto the connecting flight aircraft.

In this simplified AGSS problem formulation, each arriving aircraft reports to its assigned
gate shortly after landing at the airport. At the point of arrival, the unloading of all arriving
passenger and transfer baggage may begin. After the unloading of all arriving passenger baggage
has been completed, but no earlier than fifteen minutes prior to the departure time, the loading
of all departing flight baggage may begin. After all of the baggage has been loaded, the aircraft
may depart from its gate and proceed to a runway for takeoff. All transfer baggage must be
unloaded from an aircraft before it departs from its assigned gate, and no transfer baggage may
be loaded onto an aircraft until that aircraft has arrived at its assigned gate. Figure 1.5 provides
a visual representation of this problem, showing the gate usage and baggage operations for a
series of interconnected flights.

A
R

R
IV

A
L

T
IM

E D
E

P
A

R
T

U
R

E
 T

IM
E

AIRCRAFT DOCKING

gate

baggage truck

LOAD
BAGGAGE

baggage truck

UNLOAD
BAGGAGE

D
E

P
A

R
T

U
R

E
 T

IM
E

A
R

R
IV

A
L

T
IM

E

AIRCRAFT DOCKING

gate

baggage truck

LOAD
BAGGAGE

baggage truck

UNLOAD
BAGGAGE

AIRCRAF

baggage truck

UNLOAD
BAGGAGEA

R
R

IV
A

L
T

IM
E

BAGGAGE TRANSFER

baggage truck

UNLOAD TRANSFER LOAD
BAGGAGE TRANSFER

baggage truck

UNLOAD TRANSFER LOAD

Turnaround Flight 1 Turnaround Flight 2 Turnarou

BAGGAGE TRANSFER

baggage truck

UNLOAD TRANSFER LOAD

BAGGAGE TRANSFER

baggage truck

UNLOAD TRANSFER LOAD

BAGGAGE TRANSFER

baggage truck

UNLOAD TRANSFER LOAD

BAGGAGE TRANSFER

baggage truck

UNLOAD TRANSFER LOAD

E TRANSFER

age truck

NSFER LOAD

Figure 1.5. Aircraft Servicing Requirements for a Simplified AGSS Problem.

Note that each turnaround flight may be connected to any number of other turnaround
flights, and that only a single baggage transfer task may connect the same two flights. The
unloading of transfer baggage may begin at any time following the arrival of an aircraft at
its assigned gate, as long as the process is completed before the aircraft departs. Similarly,

13

the loading of transfer baggage may be completed at any time prior to the departure of the
destination aircraft, so long as it is begun after the aircraft has arrived at its assigned gate.

We now discuss some of the features of real-world dynamic RCSPs that contribute to the
difficulty involved in their solution.

1.4.2 Dynamic Environments

Dynamic RCSPs are real-time problems. Unlike the static classical domains where
scheduling takes place as an essentially predictive batch process, dynamic and unpredictable
domains force a scheduler to monitor and assess the impact of concurrent real-world events
throughout the development of an initial schedule and during its execution. A scheduler
designed for solving dynamic RCSPs must be able to make decisions about the future at
the same time that its previous decisions are being enforced. It must be prepared to repair
any previously made decisions that fail during execution. To further complicate matters, the
scheduler may not be immediately informed about changes occurring within the environment,
and the implementation of its repair actions may also be delayed. Finally, whenever the system
pauses to think, the real world situation continues to deteriorate.

In the AGSS domain, we assume that a scheduler receives some degree of advance notice
concerning the flights that are scheduled to arrive at an airport during a particular period of
time, and that a complete schedule of activities may be produced prior to the arrival of any
flights. Airport timetables, however, are subject to fluctuation, as flights are canceled, delayed,
or otherwise modified in the course of execution. In a job-shop scheduling domain, factory
orders are frequently submitted in batches, often with very little advance notice, precluding the
complete production of a schedule before operations on the shop floor begin. Schedulers in
these real-world situations are therefore frequently required to perform their scheduling duties
in the midst of the on-going execution of a developing schedule, requiring them to incorporate
the scheduling of new orders or the modification of previous decisions into their existing queue
of scheduling tasks, whenever such developments are finally encountered.

Re-scheduling in a static domain is straightforward. The failure is noted, the problem is
reformulated and re-solved using the original methods. In the real world, however, there is
often not enough time to stop, think, and then start over again. Every moment of indecision
complicates the problem at hand. Time acts as a continuously tightening constraint that limits
scheduling options by preventing previous decisions from being reconsidered, and precluding
other possible actions from being taken. It forces the scheduler to continuously reevaluate
its queue of pending activities to ensure that urgent problems are addressed in time to avoid
the delays that would result from last-minute decision making. A scheduler that is aware
of a pending shortage of a certain kind of resource should take steps to accommodate the
scheduling of the operations that may require that kind of resource, before the desired time for
their execution appears.

The dynamic nature of the scheduling environment implies that initial expectations should
not be heavily relied upon as a basis for making scheduling decisions. They should only be used
to provide information to guide the scheduler until newer information is received from the
environment. A scheduler must be able to react to new developments quickly and effectively
so that its internal model of the world remains sufficiently informed and its decisions continue
to reflect the actual state of the environment. It must also be able to incorporate responses to
unexpected world events by determining the nature of each event, and its impact on the current

14

decision-making strategy. It must then formulate an appropriate response to each event and
insert the necessary resolution task(s) onto its queue of pending scheduling activities, based on
the relative urgency of the response.

Although a scheduler may initially be provided with a set of expected orders, some of these
orders may arrive either ahead of, or behind schedule. Anticipated orders may be canceled.
New orders may be introduced without advanced notice. Ready times and due dates may
be unexpectedly modified. Bottleneck conditions resulting from a high demand for specific
resources at specific times may be anticipated based on a preliminary analysis of the expected
orders, but the results are not sufficiently reliable owing to the possibility that the order set will
not develop as expected, and resources may unexpectedly fail or vary in the amount of time
they require to perform their scheduled tasks. This uncertainty complicates the overall process
of understanding the current state of problem solving, by continually forcing a scheduler to
reconsider the urgency of its pending scheduling tasks and adjust its present focus of attention.

The following two sections highlight two significant sources of environmental uncertainty,
and describe their various manifestations.

1.4.2.1 Order Behavior

Whenever an order is received, the scheduler must determine the kind of service required,
and the allowances within which the required tasks are to be performed. In our simplified AGSS
problem, this involves the determination that basic turnaround ground servicing is required,
and that given the flight’s arrival and departure times, the gate and various baggage tasks (with
consideration of the earliest starting time constraint for loading baggage) must be scheduled
within specific time windows.

The scheduler must then determine the availability of the resources required for these
tasks, evaluate the anticipated difficulty of securing these resources, and rearrange its current
decision-making strategy according to this change in the previous demand for resources. Each
flight in our simplified AGSS problem will require a single gate, two separate baggage trucks
to perform the unloading and loading of baggage, and an additional baggage truck for each
connecting flight. The availability of gates and baggage trucks, coupled with the times at which
this new flight will require their services, provides valuable information to the scheduler about
which of the new tasks to schedule first.

Whenever the ready time or due date for an order is modified, the relevant task allowances
must be updated, using the sequence of steps described above. Each new order or change to
an existing order thus has an impact on the current decision-making strategy employed by the
scheduler in terms of introducing a new set of unsolved subproblems or altering some number
of existing subproblems. The same situation occurs with order cancellations. In this case,
the resulting change in resource demand requires the reevaluation of all unsolved subproblems
currently requesting reservations for the same resources (during overlapping times) that were
required by the tasks in the canceled order. If part of the schedule for a flight in our simplified
AGSS problem has already been constructed at the point that a change in arrival time or
outright cancellation notification is received, then an existing gate reservation is sure to require
some form of modification. If a flight’s arrival time is modified enough, then some of the
existing baggage truck reservations may also be nullified owing to changes in the allowances
within which they must be scheduled.

15

1.4.2.2 Resource Behavior

An unexpected resource failure affects both the existing schedule and the set of pending
operations that still require resources of the class to which the failed resource belongs. The
scheduler must first determine the set of all existing reservations that are invalidated by the
failure, and then reactivate their previously satisfied subproblems to find replacement resources
for the voided reservations. In addition, the scheduler must assess the impact of the resource
failure on all subproblems for which the failed resource could have been secured. Resource
failures have the potential to quickly and severely alter the bottleneck status for a resource class,
thereby seriously affecting the current focus of attention for the scheduler.

In our simplified AGSS problem, the notification of a gate failure forces the scheduler to
begin looking for new gate reservations for all of the flights previously assigned to the failed gate,
and increase the current level of urgency assigned to each outstanding gate request to reflect
the decrease in gate availability. The cancellation and subsequent re-satisfaction of nullified
reservations may introduce tardiness into the schedule if flights whose gate reservations were
canceled are now forced to wait for those other gates to become available. Such changes to new
gates may also cause previously established baggage truck reservations to require modification
owing to changes in their allowances or the locations where they are to be used.

Processing time is inherently dynamic and unpredictable in the real world. Different
resources require different amounts of time to perform identical operations. A difference in
operators, or even the particular time of day during which an operation is performed, may
affect processing duration. (In the AGSS domain, weather conditions have a significant impact
on the processing durations of the ground-servicing activities.) A delay in the performance of
a task by a resource, for whatever reason, requires the scheduler to assemble the entire set of
downstream tasks scheduled to use the delayed resource, and check each one to see whether the
expected delay will cause that task to increase the flow time of its order. In the case where the
completion times for an order will be increased, the scheduler may attempt to find alternate
reservations for the tasks involved.

Upon notification of the delayed completion of a task by a particular baggage truck in our
simplified AGSS problem, the scheduler will have to determine how many of the downstream
reservations for that truck are affected by the delay. Some of the downstream reservations
may be able to be shifted within their allowances without incurring any delay to their orders.
Others may incur delay, requiring only that an existing gate reservation be extended to include
the amount of delay. If such an existing gate reservation is not modifiable, then one of
either the offending baggage truck reservation or the unextendable gate reservation will have
to be canceled. And, of course, any extension to an existing gate reservation may require the
modification of the baggage loading task reservation to ensure that it does not start any earlier
than fifteen minutes prior to the newly delayed departure time.

1.4.3 The Importance of Flexibility

We now turn our attention to the actual mechanics of the scheduling process, specifically
the issue of flexibility. Flexibility plays multiple and extremely important roles in providing
the ability to handle the difficulties presented by dynamic real-world environments. Flexibility
describes the ease with which a system is able to adapt to the current state of problem solving,
as represented by the accumulated results of its previous decisions, its queue of remaining

16

activities to perform, and the present conditions within the environment. In this section, we
describe three different ways in which flexibility is involved in the process of solving dynamic
RCSPs.

Flexibility in the control of a problem-solver allows it to react quickly to newly received
external information and internal events triggered by previous decisions. Frequent
evaluation of current environmental conditions may be used to continually re-focus
the attention of the system towards the most urgent subproblem at hand. Rigidity in the
control of a system prevents it from adapting quickly to a changing environment.

Flexibility may be built into, and preserved within, the developing solution by explicitly
representing and reasoning about the slack available for each task to provide a wide range
options for dealing with anticipated future difficulties. The lack of such flexibility acts
to constrain the decision-making process and force a system to devote more effort to
backtracking and other constraint relaxation activities when faced with future conflicts.

Finally, flexibility in the decision-making process allows a problem-solver to be completely
informed about the current state of the changing environment, and therefore better able
to detect a wider variety of internal and external—and often subtle—developments that
contribute to the identification of the most pressing subproblems to be addressed. This
flexibility also provides the means to select the best-informed solutions to its subproblems.
Rigidity in the decision-making process prohibits a system from considering the widest
possible source of inputs at key decision-making points, relating to the control of the
system and the actual solution-building process.

We now discuss each of these sources of flexibility in greater detail.

1.4.3.1 Fine-Grained Opportunism

The state of a problem-solving environment is altered, to some degree, by every external
real-world event and every internal decision made by a problem-solver. The flexibility of a
problem-solving system may be measured by the frequency with which it is able to pause,
analyze, and adapt to the internal and external changes that occur during the course of problem
solving.

An opportunity is a favorable circumstance that arises at just the right moment. Its
occurrence is not predictable. In problem-solving situations, an opportunity presents an
unanticipated chance to make progress towards a goal. To take advantage of opportunities as
quickly as they develop, a problem-solver must have the ability to change course rapidly during
its exploration of the developing search space. Sufficiently flexible systems pay close attention
to the world and to the effects of their own decisions to facilitate quick reaction to both
expected and unexpected developments. These systems are generally described as exhibiting
opportunism in their control strategies, by continually redirecting their attention to the most
urgent or promising issues at hand [Erman et al., 1980, Smith et al., 1990, Sadeh, 1991,
Carver and Lesser, 1992]. Less flexible systems tend to wait until a previously determined and
possibly extensive course of action has completed before they pause to update their current
focus of attention. The impact of their own scheduling decisions may only then be detected as

17

the result of a complete, and only periodically undertaken analysis of the present condition of
the problem-solving environment.

At its lowest level, a RCSP may be viewed as a richly connected network of small individual
subproblems, each representing a request for a resource to perform some operation within a
particular period of time. In dynamic environments, where the changing conditions strongly
influence the urgency of the various subproblems, it becomes extremely important for a
scheduler to be able to modify its network quickly in response to unforeseen developments.
For example, the reception of new orders leads to an increase in resource demand. The
introduction of new reservations and the notification of resource failures both act to reduce
resource availability and increase resource contention. The cancellation of existing reservations
leads to an increase in resource availability. Finally, modifications to existing reservations
brought about by the propagation of timing constraints imposed by various scheduling decisions
cause the patterns of demand for resources (such as bottleneck conditions) to shift over time.
All of these changes have a potentially substantial impact on the current focus of attention
employed by the scheduler.

In most problem-solving systems, an overall problem is divided into separate subproblems
to be handled atomically, in sequence. We use the term granularity to describe the extent of the
subproblems handled by a system, and hence the level at which significant decisions are made
in a problem-solving process. The granularity of the subproblems determines the frequency
with which a problem-solver is able to modify its current state and reevaluate its focus of
attention. The granularity of a subproblem is distinct from the granularity of its solution. Any
subproblem, regardless of its extent, may be solved in either full detail or not.

A distinction is made between large-grained and fine-grained approaches. A large-grained
scheduling approach might divide the overall scheduling problem into individual order-
scheduling subproblems, so that each order is addressed as a single scheduling activity. The
solution of each of these order-scheduling subproblems would result in the assignment of both
processing times and resources to all of the Tij ’s in a job for an Oi . A large-grained approach
thus reduces the degree of reactivity that may be achieved by a system by forcing it to wait to
complete an entire order schedule before moving on to the next scheduling activity.

Returning to our simplified AGSS problem, we may quickly define two large-grained
approaches for its solution. An order-based process would, as mentioned above, address the
overall problem in terms of the individual flights. For each flight, the scheduler would produce a
complete schedule of gate and baggage truck usage satisfying the timing constraints as controlled
by the arrival and departure times (and assorted processing durations). The opportunity to
shift the focus of attention to a different flight must wait until all of the tasks for a previous
flight have been completely scheduled. On the other hand, consider a resource-based process
that would address the overall problem in terms of the individual resource classes. In this case,
all of the requests for a particular resource class would be scheduled before the requests for
other resources. For example, we might choose to secure all of the gates first, and then proceed
to secure all of the necessary baggage trucks. The opportunity to adjust the focus of attention
to a different resource class must wait until all of the requests for the previous resource class
have been satisfied. The resource-based approach results in a generally larger-grained approach
than an order-based approach, considering that the number of orders is generally larger than
the number of resource classes.

At the other end of the spectrum, a fine-grained approach, as is often exhibited by heuristic-
based scheduling systems, might divide the overall scheduling problem into individual task-

18

scheduling subproblems, such that each problem-solving step would involve the assignment of
both processing times and a resource to a single task. Only a single task would thus have to
be completely scheduled before the scheduler would be able to reconsider its present course of
action. The finer the granularity, as indicated by the scope of the subproblems, the quicker
the scheduler is able to react to the changing environment. A fine-grained representation of
the subproblems thus produces more frequent opportunities for re-adjustment of the current
scheduling strategy [Sadeh, 1991].

A fine-grained approach to handling our simplified AGSS problem would address each
individual ground-servicing operation as a separate subproblem, thereby breaking up all flights
into their individual resource-requesting components. Each flight therefore produces three or
more task-level subproblems, namely a gate request for docking the aircraft, a baggage truck
request for unloading baggage, another baggage truck request for loading baggage, and as many
more baggage trucks for transferring baggage as there are connecting flights. This fine-grained
approach allows a scheduler to select the most urgent task-level subproblem, solve it, and then
quickly look for the next scheduling activity. Because of the fine granularity, the impact on
the current state of problem solving that results from the solution of a task-level subproblem
is quite limited, thereby minimizing the need for major adjustments in the current focus of
attention. While the assignment of a gate and two or more baggage trucks to a flight in a
single decision-making step introduces a large number of constraints into the developing search
space, the impact of assigning a single baggage truck to a ground-servicing task is considerably
smaller.

Knowledge-based scheduling systems have run the range of granularity, from large-grained
order-based approaches, to fine-grained, task- or activity-based approaches. The issue of
granularity plays an important role in the problem-solving process, by defining the scope of the
decisions that are made by a problem-solver. In large-grained situations, such decisions may
be far-reaching, thereby introducing significant additional constraints into the search space, or
otherwise affecting a large portion of the overall problem. This issue is of particular importance
in the context of reactive scheduling, where the responsiveness of a system depends on the speed
with which it is able to change its current focus of attention and adapt to new information. In
large-grained systems, the chance to move to other, more important subproblems is hampered
by the need to finish working on the current, and potentially substantial subproblem, while in
fine-grained systems, the small size of the individual subproblems permits a problem-solver to
quickly move from one portion of the search space to another.

When coupled with a fine-grained decision-making process, an opportunistic problem-
solver is able to quickly change its course of exploration through the developing search space,
thereby making itself more effective in handling the inherent uncertainty of complex real-world
problems, and thus more flexible in dealing with unexpected events.

1.4.3.2 Maintained Slack Time

Our second measure of flexibility involves the degree to which a problem-solving system
organizes its decision-making process to avoid over-constraining unsolved subproblems. Suc-
cessful reactive problem solving in dynamic environments requires flexibility for dealing with
unexpected events. As conflicts arise, there must be room for maneuvering to adapt existing
plans without greatly affecting the entire developing solution. Problem-solvers that preserve the
means of satisfying unsolved subproblems provide future flexibility that may help prevent the

19

difficulties that can arise when attempting to resolve increasingly tighter-constrained situations.
Those systems that do not are more likely to have to perform expensive backtracking or costly
constraint relaxations to solve increasingly difficult problems.5

In this section, we will discuss two different ways that flexibility can be maintained within
a developing solution for adapting to unexpected events. The first is a least-commitment
approach to problem solving that attempts to minimize the introduction of constraints at
every decision-making step [Stefik, 1980]. The second is an equally conservative, worst-
case reservation policy for handling the assignment of mobile resources under conditions of
uncertainty. A least-commitment approach can be implemented within a scheduling process
by incorporating flexibility, in the form of slack time, into the developing order schedules. In
the latter case, flexibility is incorporated within the developing order schedules, but it comes
from increased processing durations built into mobile resource reservations. In both cases,
the preserved flexibility provides maneuverability for satisfying future reservation requests and
assorted conflicts without overly constraining the decision-making process.

We now discuss both of these methods for preserving scheduling flexibility.

1.4.3.2.1 Least-Commitment Decision Making

The least-commitment decision-making approach is similar to the lazy evaluation technique
employed in some programming languages [Field and Harrison, 1988]. A lazy evaluation
approach allows the evaluation of certain expressions to be postponed until absolutely necessary,
thereby putting off potentially time-intensive tasks until later to focus instead on more
important or immediate work. The least-commitment approach may be thought of as putting
off certain decisions that are expected to be easy to make until after other, more difficult (highly
constrained), subproblems have been solved.

In many scheduling environments, there is no benefit to completing an order ahead of its
desired due date. In fact, there may be a penalty associated with early orders, in the form of
additional storage costs. It therefore makes sense to use any existing slack time within an order
to help implement a least-commitment decision-making approach that improves the ability
of the scheduler to react effectively to a dynamic environment. The incorporation of slack
time into the developing schedule preserves the options for resolving future conflicts while also
localizing their extent.

A least-commitment scheduling approach for exploiting slack time may operate by avoiding
the opportunity to compact the developing order schedule at every decision-making point.
Consider the introduction of a resource reservation into the developing schedule. While some
constraint propagation is surely required, any remaining slack can be left with the task for which
a resource has been secured. The new resource reservation has thus avoided introducing all but
the absolutely necessary constraints on the remaining subproblems. The degree of difficulty
associated with any related, unsolved subproblems remains relatively unchanged. In addition,
this slack may now be used to absorb schedule modifications warranted by future conflicts,
possibly without seriously impacting the rest of the schedule.

One particular difficulty presented by this approach involves the detection of conflicts.
Because of the increased flexibility represented by the slack time, it becomes harder to determine
the true level of resource contention that exists at any point. As a result, enhanced mechanisms

5The cost of constraint relaxation consists of a computational expense and a decrease in schedule quality.

20

are needed for reasoning about the current and anticipated states of resource demand and
allocation.

Finally, there is a tradeoff associated with this particular type of least-commitment approach,
and it involves the sacrifice of shorter work-in-process (WIP) times to preserve flexibility in the
scheduling process. There are certainly RCSPs that have the minimization of WIP times as an
important scheduling objective. In such cases, the preservation of slack time may be less helpful
towards this end. But reactive processing in dynamic environments depends on the existence
of flexibility for adapting to unexpected events and other conflicts, and if slack is available for
this purpose, its utilization is certainly warranted.

1.4.3.2.2 Worst-Case Mobile Resource Reservations

Introducing further constraints onto unsolved subproblems limits the number of candidate
resources that may be used for their satisfaction, and makes their satisfaction increasingly
difficult to achieve, thereby limiting scheduling flexibility. In this section, we describe a
situation where the ability to reason with incomplete information and incorporate explicit
flexibility into the developing schedule allows a scheduler to solve its subproblems in the order
dictated by current environmental conditions, instead of according to some predefined rigid
task ordering.

Not all factory resources are stationary machines to and from which products are ma-
neuvered in the course of being serviced or produced. In many factories, a portion of the
resources are mobile vehicles that must report to the location of the product they are assigned
to service. Such locations are often work areas provided by stationary resources. The movement
requirements of mobile resources are an important consideration in the scheduling process,
owing to either the magnitude of the distances involved, the traveling speed of the mobile
resource, or a combination of the two. Regardless, it is necessary to know the location where
a resource is required to perform a particular operation, and from what location it will come.
This information, coupled with the individual travel speed for the resource, helps to indicate
how much time should be allocated to the resource to perform a servicing task that requires
movement through the environment. The selection of a work area constrains the selection of
all mobile resources that must report to it, just as the selection of a mobile resource constrains
the selection of its required work area. To preserve scheduling flexibility, it is important that the
reservation of mobile resources be made in a way that avoids over-constraining future attempts
to find work areas for them to use.

Consider the situation where the entire context for an individual subproblem has not been
established at the time that a decision involving it must be made. For example, suppose the
request for a mobile resource is addressed before the location at which it is to be used has been
determined. This situation can be illustrated by returning to our simplified AGSS problem
and the process of securing baggage trucks to work at the gates.

If a gate is assigned to a flight before any of the flight’s required baggage trucks have been
secured, then the reservations for these baggage trucks (which must report to the gate) can be
constructed to include exactly enough time to get from their previous locations to the location
of the secured gate. But suppose that the scheduler desires to secure the baggage trucks first,
owing to their relatively short supply. In this case, a worst-case mobile resource reservation
approach results in the construction of baggage truck reservations that include enough time to
get from wherever a particular baggage truck may currently reside within the airport, to any of

21

the gates that could be assigned in the future. The process of selecting the gate is therefore left
unaffected by the decision, because no additional constraints have been imposed as a result of
the introduction of a baggage truck reservation.

The decision-making process for such situations could be orchestrated to ensure that all
scheduling decisions are made under conditions of complete certainty. For the AGSS example
above, this would require all gates to be secured prior to the assignment of any mobile resources
(baggage trucks). This approach presents a problem, however, when the mobile resources are
in shorter supply than the stationary resources. In this case, a top-down reservation process
introduces significant constraints on the mobile resource subproblems that makes them even
more difficult to solve.6 Such an approach clearly violates the principle of maintaining flexibility
in the opportunistic control of the system as described in Section 1.4.3.1. The focus of attention
should depend on the nature of the scheduling environment, instead of the task hierarchy for
the domain.

The issue of flexibility comes into play when mobile resources are allowed to be secured
before their required locations have been determined, to permit a greater degree of flexibility in
the control of the scheduler. In this case, the inclusion of sufficient maneuvering room as part
of all mobile resource reservations made under uncertain conditions preserves the scheduling
options for all related unsolved stationary resources. Returning to the AGSS domain, if all
baggage truck reservations made prior to any gate assignments include enough time to get to any
possible gate candidate, then the process of securing the gates in the future remains unaffected
by the baggage truck assignments. An important additional mechanism associated with this
process is responsible for handling the refinement of these worst-case allocations as their contexts
are further established. The DSS refinement mechanism is described in Section 4.2.6.

While this approach does not explicitly violate the principle of least-commitment from the
perspective of the developing order schedules, it does over-constrain the developing resource
schedules by allocating more than enough travel time for uncertain mobile resource reservations
in a worst-case fashion. But in dynamic environments, the ability to adapt to unexpected
developments without severely disrupting the existing schedule warrants the conservatism
exhibited by this approach.

1.4.3.3 Detecting Change in a Dynamic Environment

Our third measure of flexibility derives from the range of perspectives used by a problem-
solving system to inform its decision-making process at both the control and domain levels. A
problem-solver finds a solution by exploring a search space of partial solutions. The efficiency
with which it explores this space directly impacts the amount of effort involved in finding
a feasible solution. If it fails to fully understand the texture of the search space and instead
depends on an uninformed decision-making process to guide its exploration of the space, then
it runs the risk of making frequent misdirected moves within the space that will require it to
backtrack in the future or relax constraints to correct itself. This backtracking will impede the
progress towards finding a feasible solution.

6When the mobile resources are in greater supply, the scheduler can make a decision about a stationary resource
and accept the introduction of constraints on any related unsolved mobile resource subproblems, because of the
lower urgency for the mobile resource tasks as evidenced by the current and anticipated levels of resource demand.

22

The wider the range of perspectives on the search space that are considered by a problem-
solver, the better it is able to detect important and possibly subtle aspects of the current state of
problem solving, and the greater the degree of flexibility it may exhibit in terms of reacting to
those developments at the appropriate times. Systems with this ability are described as making
use of multiple perspectives in their decision-making process. If the perspectives brought to bear
on the current state of problem solving supply only a limited view of the state of the world,
then a system is forced to act on the basis of an incomplete understanding of the world, and
will tend not to detect the appearance of important developments that should be addressed as
quickly as possible to avoid turning them into more difficult future conflicts.

Determining task sequences and securing resources in any kind of scheduling problem
requires a scheduler to reason about the conflicts that arise in the attempt to satisfy the various
constraints among the resources, tasks and orders in the domain [Smith et al., 1986b]. These
conflicts arise when the satisfaction of a particular constraint or constraints affects the ability
to satisfy other constraints.

1.4.3.3.1 Consulting Multiple Scheduling Perspectives

The process of solving an RCSP comprises two separate planning and scheduling phases.
The planning phase is responsible for selecting and ordering a collection of activities to perform
some service or produce some product. The scheduling phase combines the classical OR
problems of sequencing and timetabling, that is, determining an ordering for a collection of
activities, and assigning specific start and finish times to each activity in a sequence [French,
1982, Noronha and Sarma, 1991]. The planning phase is often treated as a lookup process where
the sequences of required activities for different classes of jobs are prescribed by the domain.
A lookup approach limits the overall generation of conflicts, because the scheduler does not
have to generate a feasible process plan for each different order from a basic set of constraints.7

The scheduling phase involves the solution of both the sequencing and timetabling problems
together, thereby permitting conflicts to arise from the interaction between the separate sets of
sequencing and timetabling constraints.

The sequencing problem is concerned with the ordering of activities on the available
machines. The relevant constraints in this problem involve the assorted operational require-
ments of the individual machines. Activities may be sequenced in such a way as to avoid the
need for costly machine setup or retooling operations, to help increase resource utilization.
The satisfaction of these constraints impacts the degree to which the final schedule satisfies
a machine-centered perspective. The timetabling problem, on the other hand, is concerned
with the assignment of specific starting and finishing times to activities. The constraints
relevant to this problem involve the time bound requirements imposed on each activity by
its corresponding order. The satisfaction of these constraints helps to produce a schedule
that reflects an order-centered perspective. Conflicts between sequencing and timetabling
constraints occur when the desired sequencing of a particular activity violates the time bounds
imposed by the relevant timetabling constraints. Early recognition of such conflicts by a
scheduler reduces the need for future backtracking. For a scheduler to reason intelligently
about such conflicts and develop the appropriate means for their resolution, it must consider

7Note, however, that a lookup approach does limit the ability of a scheduler to adapt to dynamic environments
where the response to unexpected events may require the alteration of existing process plans.

23

the entire set of constraints that enter into each conflict, and understand the full context of the
constraints involved.

At any decision-making point, the extent of the information brought to bear on the
analysis of the problem and the formulation of its solution defines a particular perspective on
the problem that may be used to solve it [Smith et al., 1986a, Smith et al., 1986b]. This degree
of perspective provides an indication of how well a problem may be expected to be solved, based
on the nature of the information considered in the solution process. If the degree of perspective
is fully appropriate to the problem at hand, then a well-informed, and therefore higher quality
solution should be expected. If, however, an inappropriate perspective is brought to bear, it
should be expected that any solution will be misinformed, and therefore of lower quality. When
the degree of perspective used is insufficient for the problem at hand, important aspects of the
problem are not considered, and inevitable conflicts may therefore not be prevented.

In RCSPs, both resources and operations have constraints that govern their use and
interaction. Resources may require periodic shutdown for maintenance purposes, or prefer that
their usage be balanced, or that costly setup activities be minimized. Some operations must be
completed before other operations may begin, and some operations may have preferences for
particular resources. If a problem is organized in such a way as to focus on satisfying only a
limited set of constraints at an important decision-making point, then the ability of a scheduler
to address properly the problems that arise out of conflicts with other constraints is lessened.

For example, if the assignment of resources to tasks is performed solely from the viewpoint
of the orders involved, then the constraints on the orders are implicitly given priority over the
constraints on the resources. The result is sub-optimal resource allocation. Constraints such
as balancing resource usage and minimizing resource setup costs are sacrificed to increase the
quality of the individual order schedules. If, however, the assignment of resources is performed
from the viewpoint of the resources themselves, then it is the constraints on the resources that
receive priority instead. The result is that while the utilization of the resources is maximized,
orders may miss their due dates or spend excessive amounts of time waiting for the use of
particular resources. The proper consideration of all relevant constraints allows the scheduling
process to more fully understand the nature of the conflicts that will inevitably occur, make
more informed scheduling decisions, and produce better quality schedules.

In our simplified AGSS problem, the reliance on a solely order-based perspective would
tend to produce schedules that would unload arriving baggage as close as possible to flight
arrival times, and load departing baggage as close as possible to flight departure times, baggage
truck supply permitting. An additional result of such an approach, however, would be that the
baggage truck schedules would be skewed to favor the orders, thereby producing potentially
fragmented usage that would make further order-centered scheduling gradually more difficult,
because of the reduced availability of large blocks of available resource time. Reliance on a
solely resource-based perspective would minimize such fragmentation by carefully scheduling
baggage truck activities in such a way as to increase their utilization, but the effect on the
scheduling of the assorted baggage maneuvering tasks would be seen in the failure to get these
tasks scheduled as early or late as would be preferred by the flights.

Dynamic RCSPs introduce another dimension of scheduling perspective that involves
real-world timing constraints on the subproblems that must be solved by a scheduler. As
real-world events occur, and scheduling decisions are executed, time steadily marches on,
continuously affecting the urgency of all pending scheduling tasks. The decision-making

24

process must therefore consider, not only the various sets of time-independent scheduling
perspectives involved in each particular situation, but also the relative urgency of the situation
as defined by the current real-world time.

Highly constrained subproblems involving requests for bottlenecked resources are urgent,
as are conflicts related to unexpected resource failures. A scheduler working within a dynamic
environment must exhibit a broad understanding of urgency through consideration of a variety
of perspectives on the state of problem solving to manage the smooth integration of all
scheduling tasks. It should be capable of assessing quickly the urgency of each new scheduling
task, and determining the importance of attempting to handle that task ahead of all others. This
determination requires an evaluation of the relevant portions of the current state of problem
solving. Such careful consideration of all important scheduling perspectives enables a scheduler
to integrate effectively the performance of both predictive and reactive tasks.

For example, consider a reactive scheduling situation involving the failure of a resource
in high contention, which voids a number of existing reservations. The already high level
of contention for the affected resource class will increase as a result of the failure, thereby
increasing the difficulty that may be expected in the process of re-satisfying all of the reactivated
subproblems. Under ordinary predictive circumstances, these newly reactivated subproblems
would increase in urgency owing to the greater contention resulting from the resource failure.
A resource-based perspective on the state of problem solving would strongly contribute to this
increase. Now, consider the sudden reception, immediately following the notification of the
resource failure, of a batch of new orders with very early due dates. Even if these new orders
require resources that are in abundant supply, the various subproblems they create may warrant
a higher level of urgency than some of the failure-reactivated subproblems because of their
more rapidly impending due dates, regardless of the levels of contention for their required
resources. The existence of the real-world clock in this situation, a factor of the reactive
operation of the scheduler, may force the scheduler to address the problem of satisfying the
newly created subproblems ahead of the reactivated subproblems, because of the potential for
substantial delays to be incurred by the new orders if their subproblems are not immediately
addressed. The real-world clock perspective may therefore occasionally take precedence over
other resource- and order-based scheduling perspectives, depending on the current state of
problem solving.

1.4.3.3.2 Variable-Ordering and Value-Ordering Heuristics

Previous work in solving constraint-satisfaction problems has represented constraint net-
works using graph structures, where the nodes represent the variables in the problem, and
the arcs connect these variables to the sets of possible values that may be used for their
satisfaction [Dechter and Pearl, 1988]. The solution process proceeds by alternately selecting
a variable to initialize, assigning it a value, and propagating the constraints imposed by the
assignment. When a dead end is encountered, because of the lack of a feasible value for a
variable, some form of backtracking must be invoked. The solution process completes when
all variables have been assigned values, or an infeasible situation is recognized. The heuristics
designed for informing variable and value selection phases are called variable-ordering and
value-ordering heuristics [Sadeh and Fox, 1990].

The amount of backtracking required as part of the solution process may be lessened by
means of an informed ordering of the variable and value selection phases. This ordering, which

25

is achieved through a periodic analysis of the search space, organizes the solution process so that
the variables that are most heavily constrained, that is, the variables with the fewest possible
satisfying values, are handled as early as possible in the scheduling process [Haralick and Elliott,
1980]. Each value-to-variable assignment acts to further constrain the remaining satisfaction
possibilities for the outstanding (uninitialized) variables. By making assignments as early as
possible to those variables having the fewest possibilities for satisfaction, the need for costly
backtracking is lessened.

The AGSS domain illustrates a number of variable-ordering perspectives that can be used
to determine the relative urgency of scheduling subproblems. If gates are in greater supply than
baggage trucks, given the number of outstanding requests for each, then the process of finding
a gate should be expected to involve less difficulty than finding a baggage truck. Resource
supply is determined by a number of factors. An airport provides a certain number of baggage
trucks and gates, but the occurrence of resource failures modifies this supply. In addition, some
resources cannot be used for certain tasks owing to compatibility issues, so the pool of resources
that can satisfy a request may be further constrained. The amount of slack time accompanying
a resource request influences its urgency by providing an idea of how many possible reservation
times may be considered for a particular resource. If one baggage task has more slack than
another, the one with less slack should receive greater priority because there are fewer times at
which its request may be satisfied. The size of the expected processing duration for a task plays a
role in that shorter reservations have less of an impact on the resource schedules. If one baggage
task is expected to take more time than another, the larger of the two should be handled first,
to take advantage of whatever large blocks of available resource time still exist. The role of time
in the determination of subproblem urgency gives priority to tasks with lower time bounds
on their allowances (earlier start times), such that baggage trucks for baggage unloading tasks
should be secured prior to securing baggage trucks for the following baggage loading tasks.
Finally, it is often the case in dynamic environments that some kinds of scheduling tasks may
take temporary precedence over others. For example, when a sudden resource failure voids
a number of existing reservations, the need to re-satisfy those canceled reservations may be
more important than satisfying other downstream scheduling tasks. These variable-ordering
perspectives are summarized in Table 1.1.

The AGSS domain also illustrates a number of value-ordering perspectives that can be used
to inform the domain-level decision-making process. In our simplified AGSS problem, baggage
trucks are in demand because each flight includes at least two baggage maneuvering tasks as
part of its required ground-servicing activities. If the supply of baggage trucks is sufficient
to handle such demand, then the scheduler need not take special care in the assignment of
baggage trucks to explicitly compact their schedules to preserve large blocks of available time
(as with a resource-based approach). In such cases, the scheduler may decide to concentrate
on the satisfaction of the order preferences instead (using an order-based approach). If the
demand for baggage trucks gets too high, the scheduler may begin attempting to produce
baggage truck reservations that avoid introducing fragmentation into their resource schedules,
and force the baggage operations to be scheduled at times that are not optimal for the flights.
Reservations should be introduced in such a way as to minimize the upset to the existing
schedule. Preemption and right shifting of existing reservations should be avoided until
absolutely necessary, as should any introduction of tardiness into a flight’s ground-servicing
schedule. Ideally, once a scheduling decision has been made, it should remain unchanged

26

Table 1.1. Perspectives on the Variable-Ordering Process

Tightness of
Constraints

The complete set of constraints currently imposed on a subproblem as
the result of previous scheduling decisions provides a strong indication
of how difficult its solution is expected to be. Information provided by
these constraints indicates the current demand for and availability of the
resource classes involved, the size of the pool of candidate resources, and
a particular locality within which a successful reservation may be found.
Constraints on subproblems limit the options that are available for
their satisfaction. As a result, subproblems should be addressed before
becoming too heavily constrained so that their means of satisfaction are
as abundant as possible.

Temporal
Urgency

The proximity of a subproblem’s allowance to the actual current world
time strongly affects the urgency with which that subproblem should
be addressed by the scheduler. Subproblems should be solved in time
for their required operations to be performed within their desired
allowances.

Type of
Subproblem

The specific nature of a subproblem, within the context of the current
state of problem solving, plays an important role in determining
its urgency. Some problems are more serious than others. For
example, it may be more important to satisfy outstanding requests
for bottleneck resources than to go back and refine previous scheduling
decisions made under uncertain conditions (an activity described in
Section 4.2.6). Note that these priority relationships among different
kinds of subproblems tend to vary over time with the state of problem
solving. In situations where refinement involves reservations for
bottlenecked resources, the process of refining those task-nodes and
freeing up valuable time within those resource schedules to satisfy
remaining demand may become the most urgent scheduling task on
the queue.

27

by future decisions. Changing gate assignments may be problematic if the existing mobile
resource reservations for the baggage trucks that must report to a gate include only enough
time to get to that particular gate location. Because the AGSS domain contains a large number
of mobile ground-servicing vehicles (such as baggage trucks), it is also desirable to minimize
the amount of time that these vehicles spend moving throughout the environment, to provide
more time for performing servicing tasks. Finally, the nature of a flight also contributes to the
reservation-selection process. The priority of a flight may dictate that it receive the best possible
reservations available, so that it departs on time and has all of its required ground-servicing
operations completed according to its specific operation preferences. These value-ordering
perspectives are summarized in Table 1.2.

1.5 Research Overview

Our approach to solving dynamic RCSPs is based on providing four important capabilities,
described as follows:

Address the dynamic nature of the problem using a fine-grained, opportunistic decision-
making process.

Use slack time and least-commitment decision making to preserve flexibility throughout
the scheduling process.

Use multiple, relevant perspectives to inform all control and scheduling decisions.

Provide generic applicability for a variety of RCSP domains.

Additionally, we have sought to deal with the additional complexity that arises from handling
RCSPs that involve mobile resources with significant travel requirements, and common activities
that are shared among separate orders.

To test our approach, we have designed and implemented a generic reactive knowledge-
based scheduling system called DSS (the Dynamic Scheduling System) which implements our
approach. DSS provides a foundation for representing a wide variety of real-world RCSPs.
Its flexible scheduling approach is capable of reactively producing quality schedules within
dynamic environments exhibiting unpredictable resource and order behavior.

DSS attempts to satisfy the following scheduling objectives:

Minimization of the average tardiness cost per order

Minimization of the number of tardy orders

Maximization of scheduling efficiency

Minimization of the total duration of all resource setup activities (including mobile
resource travel time)

While DSS does not specifically attempt to minimize order flow times, our experiments have
indicated that the resulting flow times are not substantially worse than some other scheduling
systems that do attempt to satisfy this objective. The objective of minimizing the amount of

28

Table 1.2. Perspectives on the Value-Ordering Process

Resource
Contention

The current level of contention for a particular class of resource
provides important information to the scheduler about the impact of
its value-ordering decisions on future attempts to secure resources of
the same class. In situations where the contention for a resource class
is sufficiently high, it is desirable to compact the resource schedules
by minimizing the introduction of external fragmentation, to leave as
much contiguous free time available for satisfying the many outstanding
reservation requests. When contention values are lower, the compaction
of the resource schedules is less important, owing to the decreased
value of the free time for the resource class. Decisions made without
consideration of the current level of contention are liable to contribute
to the creation of future conflicts that will be increasingly difficult to
solve, or to produce schedules of lesser quality.

Schedule
Disruption

The potential for the disruption of other areas within the developing
schedule weighs heavily on the value-ordering process. Preemption of
existing reservations requires consideration of the impact of reactivating
previously satisfied subproblems. The introduction of delays requires
consideration of the impact of having to shift other existing reservations
and increase the tardiness of one or more jobs. The impact of these
decisions extends to both the variable-ordering and value-ordering
processes. Disruption may alter the queue of pending scheduling
activities, and significantly affect the quality of the developing schedule.

Preferences
and Objectives

It is important to consider the particular preferences of resource classes,
orders and operations, as part of the value-ordering process. It may
be desirable, perhaps globally, to minimize the amount of time that
resources spend traveling within the factory environment, or the
number and processing duration of the setup operations required to
be performed by a resource. The satisfaction of the shift preferences
of individual operations and the completion times of orders are similar
concerns that are affected by a scheduler’s reservation-securing process.

29

computational effort that goes into the scheduling process is achieved by exploiting different
areas of flexibility within both the developing schedules and the scheduling process itself.

Figure 1.6 provides an overview of the basic components of DSS, as well as the various
domain-specific information that is required for describing a particular RCSP. DSS is imple-
mented as an agenda-based blackboard system [Erman et al., 1980]. It maintains a blackboard
structure upon which the developing schedule is constructed and the sets of orders and resources
are stored. A set of generic domain-independent knowledge sources is provided for making the
assorted variable-ordering and value-ordering scheduling decisions. These knowledge sources
are triggered as the result of developments on the blackboard, and by an event processor that
receives (simulated) world events and activates the appropriate knowledge sources for handling
their response. Triggered knowledge sources are placed onto an agenda and executed in order
of priority.

Scheduler Inputs and
Domain Description

BLACKBOARD EVENT
PROCESSOR

Dynamic Scheduling System

S I M U L AT O R

SCHEDULER
COMMAND
EXECUTOR

WORLD
EVENT

GENERATOR

KNOWLEDGE SOURCESAGENDA

S C H E D U L E R

KSA1
KSA2
KSA3
KSA4
KSA5

order
order

order
order

order

order
order

order
order

order

ORDER SET

LAYOUT

OPERATIONS
RESOURCES
PRODUCTS

ORDERS
PROCESS PLANS

CONSTRAINTS

DOMAIN DESCRIPTION

Instant ia te Task Network
Select Reservat ion-Secur ing Method
Reserva t ion -Secur ing KSs
 Ass ignment
 Preempt ion
 R ight Shi f t
 Re laxed Assignment
 Re laxed Preempt ion
 Re laxed Right Shi f t
Reservat ion Ref inement
Process Resource Fa i lure

Figure 1.6. Scheduler Inputs, Domain Definitions, and Basic System Components of DSS.

30

DSS is also equipped with a simulator that implements a real-world, dynamic scheduling
environment. The simulator executes the commands issued by the scheduler and generates
occasional unexpected events. It also serves as a means of checking the integrity of the schedules
produced by DSS, by ensuring that they can be successfully executed.

The domain-specific information required by DSS includes a knowledge base that describes
the operations, resources, products, orders, process plans and constraints involved in a particular
RCSP. An order set and layout define an instance of an actual RCSP for which DSS may produce
a schedule.

1.5.1 Important Architectural Features and Functionality

DSS is distinguishable from other scheduling systems in a number of ways that provide im-
portant functionality throughout the entire scheduling process. We describe these architectural
features below.

Explicit Representation of Slack Time

We have designed and implemented a scheduling approach that maintains flexibility
within the developing schedule in the form of explicitly represented slack time. Such
flexibility acts to preserve the options available to the scheduler for resolving future
scheduling conflicts. Our least-commitment approach contributes to the production of
quality schedules in dynamic environments where unexpected conflicts develop frequently.
This capability has not been addressed by other scheduling systems.

The slack time associated with a task-level subproblem represents a localized decision-
making area for scheduling decisions to be made without seriously impacting other
subproblems. These areas help to indicate the range of scheduling options that are
available to an individual subproblem at any time during the scheduling process. This
information is extremely valuable in helping to determine subproblem urgency.

As the amount of slack incorporated within the developing schedule is affected by
scheduling decisions, the sizes of all related slack nodes are modified, and the urgency of
each unsolved subproblem with which they overlap (in time and resource class) is updated
in response. Changes (often subtle) in the supply of slack within the developing schedule
are thus immediately detected by the scheduler.

The slack time that is available to the individual scheduling subproblems is explicitly
represented within DSS by special slack node units built into the developing order schedule.
These units are indexed onto a particular blackboard space according to the subproblem’s
allowance and the resource class(es) desired by the operation.

Explicit representation of slack time allows DSS to maintain a well-informed understanding
of the relative urgency of its subproblems, thereby providing it with the means to react
quickly and properly to unforeseen developments in dynamic environments, and improve
its path of exploration through the search space using least-commitment techniques. The
existence of such explicit slack time also broadens the range of perspectives that may be
consulted throughout the decision-making process.

Fine-Grained, Multiple-Perspective, Reactive Problem Solving

31

The breakdown of the RCSP into finely grained, individual subproblems provides the
basis for implementing a reactive, operation-based scheduling approach that provides
maximum flexibility for responding to dynamic environments The power of such a
representation has been previously demonstrated, in terms of minimizing the number of
search states generated in the course of problem solving [Sadeh, 1991]. But the power of
this approach in the context of reactive scheduling has not been explored.

Coupled with a multiple-perspective analysis of the problem-state that considers fully the
relevant scheduling perspectives on the current state of problem solving at key decision-
making points, the ability to adapt both quickly and effectively to a dynamic environment
has been achieved. The urgency of each individual subproblem, inherently dependent
on the current state of problem solving, is used to organize the queue of scheduling tasks
that must be executed by DSS at any time. DSS is therefore able to shift its focus of
attention quickly from subproblem to subproblem as the changing conditions within the
environment warrant.

Maintaining an Informed View of Resource Contention Levels

Each subproblem requiring a resource for an operation is matched with a service goal that
becomes responsible for managing its solution. By linking these service goals together
according to overlaps in their allowances and sets of potentially satisfying resources, DSS

is able to construct a high-level view of the current level of resource contention that exists
within the environment at any particular time [Corkill et al., 1982].

As scheduling decisions are made, the allowances and sets of potentially satisfying resources
for these service goals change, which impacts the degree to which they are linked to
each other. Changes in these link sets are then used to modify the urgency of their
corresponding subproblems.

The high-level view of problem solving created by this interconnected service goal network
provides DSS with a valuable understanding of the topology of the developing search space,
which is then applied to the process of determining subproblem urgency. The ability of
DSS to react to a rapidly changing environment is therefore significantly enhanced.

Refining Previous Uncertain Decisions

The ability of DSS to refine previous scheduling decisions in response to new information
is achieved by means of a special reservation refinement process controlled by refinement
goals that are triggered for previously solved but currently unrefined subproblems whose
contexts have been further defined as the result of subsequent scheduling decisions. The
ratings of these refinement goals are determined by the current level of contention and
anticipated demand for the class of resource involved, across the entire processing duration
for the existing reservation.

The network of refinement goals provides further information about the kinds of tasks
remaining to be processed by the scheduler, and indicates areas within the developing
schedule that have the potential for producing resource availability to help satisfy other
outstanding resource requests.

The reservation-refinement process provides the clean-up mechanism required by a
decision-making strategy that seeks to build flexibility into its schedules. When DSS

32

makes a scheduling decision under conditions of uncertainty, it relies on the fact that
at some later date, after more complete information regarding such a decision has been
obtained, it may go back and refine that decision to account for its newly enhanced
view of the world. Without such a refinement mechanism, DSS would be forced to
accept lower-quality, worst-case schedules as the price of its attempt to explicitly maintain
scheduling flexibility.

Anticipating the Impact of the Decision-Making Process

The projection technique utilized by the various knowledge sources to determine the
complete impact of their potential scheduling decisions on the current state of problem
solving allows DSS to organize its decision-making process to help prevent future conflicts
from developing.

Special projector units that mimic the defined resources are provided for this technique. At
particular points during the scheduling process, these projector units may be manipulated
by the DSS knowledge sources to determine the various effects of possible scheduling
decisions. The effects of these projected scheduling decisions are simulated by the KSs in
the course of their invocation.

For example, in the course of attempting to preempt an existing reservation to satisfy
some other subproblem, the actual preemption of each relevant existing reservation is
simulated using the corresponding projector units. The KS considering the preemption
is therefore able to understand completely the impact of each potential preemption case,
and make its eventual scheduling decision based on that information.

Scheduling Mobile Resources with Significant Travel Requirements

In an attempt to handle a wider range of real-world RCSPs, we have extended the RCSP
model to include mobile resources with significant travel requirements. Quite often,
the amount of travel required of a particular resource to service a product represents a
significant portion of the overall processing duration for the assigned operation. Required
travel time based on location thus provides an important distinguishing factor among
otherwise similar resources, and has a considerable impact on the decision-making process.

This extension to our RCSP model warrants additional attention from our scheduling
approach. It must be possible to make scheduling decisions under conditions of uncer-
tainty, when relevant locations are undetermined. Additional mechanisms are required
for refining previous decisions as more contextual information becomes available.

Existing scheduling systems have avoided this situation by assuming that mobile resource
travel durations are insignificant, thereby precluding their use in many real-world sched-
uling domains (such as transportation planning).

Accommodation of Inter-Order Tasks

We have further extended the class of RCSPs that we are able to handle to include the
sharing of common inter-order tasks among otherwise independent jobs. This capability
allows us to represent more realistic scheduling problems, and forces the scheduler to
consider a broader range of perspectives at certain decision-making points.

33

The interaction between subproblems within the same order, and among separate orders,
is achieved by linking together individual subproblems according to their preceding and
succeeding tasks, possibly across orders. Sets of orders defined by inter-order tasks are
therefore represented as composite connected graphs containing the subproblems for a
number of orders.

1.5.2 Evaluating The Applicability of Our Approach

DSS has been used successfully as the base system upon which a number of applications
have been built to solve interesting RCSPs. These applications include: an airport ground
service scheduling domain, a simplified turbine component production plant, and a large-scale
transportation planning environment. Each of these domains and applications are described
in greater detail in Appendix A.

1.5.2.1 The Airport Ground Service Scheduling Domain

A significant portion of our work has focused on the airport ground service scheduling
domain. The AGSS domain differs from the standard job-shop environment in that the
minimization of order flow times, as represented by the interval between the gate arrival and
departure times for an aircraft, is not an objective for the scheduler. The goal instead is to
develop a schedule of ground-servicing activity for each aircraft that allows it to meet exactly
its targeted arrival and departure times.

The AGSS domain has provided us with the opportunity to better understand the important
role that slack time plays throughout the scheduling process. Furthermore, it has given us
experience in scheduling a greater variety of activities, many of which can be performed
simultaneously. Mobile resources may have significant travel requirements, forcing them to
report to various locations in the course of performing their assigned duties. Quite often, these
locations may not be known at the time that the mobile resources are being secured. In addition,
some AGSS tasks have a preference for being scheduled later in the process plan, instead of
being shifted as early as possible. Finally, the AGSS domain domain involves inter-order tasks
(in the form of baggage and passenger transfer operations) that connect otherwise independent
jobs, requiring a scheduler to be able to represent and propagate constraint information across
separate orders.

The airport ground service scheduling RCSP presents an interesting scheduling problem,
owing to the tendency for airport timetables to pack a great deal of activity into a number
of short time periods throughout an entire day. These surges (also called banks or pushes)
constitute groups of flights that either arrive or depart together, in such a way as to maximize the
connections met by passengers that pass through the airport on their way to other destinations.
An arrival push is generally followed by a corresponding departure push within 30–45 minutes.
At large hub airports, where one or more airline companies routes a significant portion of its
flights, the degree of activity occurring within a single push becomes even higher. In addition,
the AGSS domain involves a highly dynamic environment. Weather conditions, both local and
remote, have a severe impact on airport activities. Many ground-servicing tasks take longer to
complete under difficult weather conditions, and additional servicing is often required in such
situations. Delays in anticipated timetables resulting from problems at other airports tend to
complicate the local scheduling problem by rendering previous scheduling decisions obsolete.

Our experiences with this particular domain are discussed further in Section 5.6.

34

1.5.2.2 A Simplified Job-Shop Scheduling Domain

The job-shop scheduling domain that we have implemented is a test domain described
in [Chiang et al., 1990] which was used for evaluating the OPIS system [Smith et al., 1986a,
Ow, 1986, Ow and Smith, 1988]. The (simplified) shop produces three kinds of turbine
propeller blades (two of each kind). The production of a propeller blade consists of either
three or six sequential machining operations, performed on a variety of stationary resources.
Notable in this shop model is the fact that the factory operates for only five days at a time, often
requiring jobs to remain idle during the time that the factory is shut down. Setup operations
are required at any time a resource must shift from working on one kind (family) of propeller
blade and shift to another. The processing durations of these setup operations are constant for
each type of resource.

The most important feature about this domain is the fact that one of the scheduling
objectives is to deliver each job as quickly as possible, that is, to minimize its flow time through
the shop. Such a requirement presents a challenge for DSS in that it is not designed to specifically
contract its schedules in an attempt to deliver jobs as early as possible.

In addition, this turbine component plant, simplified though it is, presents a realistic RCSP
for use in evaluating the applicability and performance of DSSin common job-shop domains.
While the process models for the blade families are rather flat, the processing durations and the
shop model are based on features of a real-world domain.

Our experiences with this particular domain are discussed further in Section 5.6.

1.5.2.3 A Large-Scale Transportation Scheduling Domain

Our third domain for evaluating applicability is a large-scale transportation scheduling
problem. In this domain, the main activity is the transfer of cargo between ports by boat.
Bundles of cargo are delivered at different times to various ports around the globe. Each
bundle of cargo must first be loaded onto a ship, transferred to a destination port (possibly via a
sequence of intermediary ports), and finally unloaded. The domain model uses dock resources
(equipped with cranes) to perform the loading and unloading of the cargo.

A collection of ship types is defined, each with varying travel speeds and cargo capacities.
Each port provides some number of docks, each constrained in the size and type of ship it may
service. An important simplification in our implementation of this domain is the requirement
that the capacity of each ship is limited to a single job, that is, a single ship cannot be used to
transport the cargo of more than one job between ports.8

This particular transportation environment represents a practical, real-world RCSP that
involves mobile resources with significant travel requirements. Because of the distances
involved, the duration of any transfer operation represents a major portion of the entire project
duration for each job. The speed of each individual ship therefore can play an important role
in the reservation-securing process. In addition, there are a number of important time bound
constraints on the various activities, in that penalties may be incurred as the result of jobs being
delivered ahead of (in addition to behind) schedule.

Our experimentation with this particular RCSP was basically limited to the evaluation
of the applicability of the DSS representation schemes and the problem-solving approach. All

8This constraint is imposed by the current implementation of DSS.

35

indications were that DSS was entirely capable of representing the features of this domain and
producing quality schedules for realistic order sets.

1.6 Contributions

This work represents a significant advancement in the development of reactive, knowledge-
based systems for solving dynamic RCSPs. We have implemented a working system, DSS, which
is able to generate feasible, quality schedules for a variety of (often complex) domains under a
broad range of unexpected environmental conditions.

The specific contributions of this work relate to the development of a generic, multi-
faceted and flexible approach to solving dynamic RCSPs, and the extensive evaluation of the
performance of this approach in a number of different scheduling domains. The specific
contributions are highlighted below.

Development of a Multi-Faceted Approach to Solving Dynamic Resource-Constrained
Scheduling Problems

The reactive scheduling approach implemented within DSS manages to preserve and
exploit flexibility throughout the scheduling process while achieving the following simul-
taneous objectives:

– Use of Slack Time to Preserve Flexibility and Limit Schedule Disruption
By maintaining slack time within developing schedules, our least-commitment
decision-making process helps preserve options for solving outstanding subprob-
lems. This explicit slack time also provides the means for adapting to unexpected
developments in a way that avoids severely disrupting the existing schedule. The
degree of pliancy exhibited by a scheduler in reacting to unforeseen events is a
measure of flexibility that is increasingly important when operating within dynamic
environments. Unlike other systems that intentionally compact their develop-
ing schedules throughout the scheduling process [Fox, 1983, Smith et al., 1990,
Sadeh, 1991], leaving very little room for dealing easily with future conflicts, DSS

provides for such contingencies while still managing to produce quality schedules.

– Quick and Effective Reaction to Dynamic Environments
Effective problem solving in dynamic environments requires the ability to choose
between working on predictive tasks and reacting to unexpected events. Our focus on
the kinds of problems that arise in these environments has guided the development
of a fine-grained, opportunistic scheduling approach that interleaves the execution
of predictive scheduling tasks with the resolution of conflicts and other unexpected
developments. By avoiding the common tendency to rigidly alternate between
predictive and reactive scheduling modes [Smith, 1987, Ow et al., 1988, Sadeh et
al., 1993], we provide DSS with the ability to put each scheduling task in its proper
perspective within the overall scheduling process, and explore the developing search
space as conditions within the environment warrant.

– Consultation of Multiple Perspectives in All Scheduling and Control Decisions
The ability to understand the impact of changes brought about by internal and
external events is considerably important in the process of reacting to a changing

36

environment. To inform the decision-making process under these circumstances,
we have equipped the control (variable-ordering) and scheduling (value-ordering)
heuristics in DSS with the ability to consider, at their individual decision-making
points, a comprehensive range of appropriate perspectives on both the current state
of problem solving and any relevant, anticipated or pending scheduling activities.
This capability is absolutely necessary within dynamic scheduling environments to
guide the scheduler and minimize the need for backtracking and constraint relaxation.
Existing systems tend to rely on a narrow consultation of perspectives on the current
problem [Fox, 1983, Smith et al., 1990, Sadeh, 1991], thus limiting their ability to
fully comprehend the current state of problem solving and react accordingly.

– Accommodation of Additional Domain Complexities
Many real-world scheduling problems introduce additional complexities to the
class of canonical RCSPs. Our experience with the AGSS domain has led to the
development of mechanisms to deal with the following two such features:

Inter-Order Tasks
Tasks that extend across otherwise separate orders effectively broaden the extent
of their corresponding subproblems. The decision-making process involving
such inter-order tasks at any time must therefore consider a wider range of
information to avoid settling for lesser-informed decisions. DSS is capable of
representing inter-order tasks and understanding their implications at all key
decision-making points throughout the scheduling process.
Mobile Resources with Significant Travel Requirements
Standard RCSPs tend to downplay the issue of significant travel requirements for
mobile resources. Movements required of mobile resources are generally treated
as insignificant, in comparison with the processing durations of their main
servicing tasks. Many RCSP domains, however, require a scheduler to honor
the (often significant) travel requirements of mobile resources in the process of
developing a schedule. Large-scale transportation problems, for example, require
a great deal of mobile resource movement. Schedulers unable to accommodate
such requirements are of little use in such domains. DSS is capable of not only
managing such situations, but also devotes its efforts to the minimization of the
total amount of mobile resource travel costs incurred by a particular schedule.

Implementation of Our Approach in a Knowledge-Based Scheduling System

We have implemented our scheduling approach in a knowledge-based scheduling system
called DSS (the Dynamic Scheduling System). DSS is capable of representing and solving
a broad range of real-world RCSPs.

Extensive Evaluation of the DSS Scheduling Approach

We have undertaken an extensive evaluation of the DSS scheduling approach, organized
into two important sets of experiments.

– Comparisons with Common Benchmarks

37

Using a set of benchmark data designed for testing the OPIS system [Ow, 1986,
Ow and Smith, 1988, Chiang et al., 1990], we have been able to compare (favorably)
the scheduling performance of DSS with results from a version of OPIS (OPIS 0) [Smith
et al., 1986a], ISIS [Fox, 1983], and a modified version of the COVERT dispatch
rule [Vepsaleinen, 1984] in a simplified job-shop domain. These experiments
confirm the improvements in reduced tardiness that are achieved by the scheduling
approach implemented in DSS.

– Execution under a Range of Reactive Conditions
Using our own AGSS domain implementation, and the simplified job-shop domain
described above, we have also evaluated the performance of DSS in a range of dynamic
scheduling situations that include unexpected resource failures and surprise order
receptions. These experiments further confirm the success of the DSS scheduling
approach in reacting to uncertain environmental conditions.

Demonstration of the Generic Capabilities of DSS

The final contribution of this work is the development of a generic decision-making frame-
work for solving dynamic RCSPs that manages to preserve and exploit simultaneously
the various sources of flexibility inherent in the problem while providing a foundation
for representing a broad range of real-world RCSP domains. The generality of our
approach has been confirmed by our experiences in successfully implementing, on top of
the DSS framework, individual scheduling systems for solving dynamic RCSPs in three
substantially different domains.

1.7 Navigational Aids

Chapter 2 provides the background for our work, beginning with a formal description of
the class of RCSPs that are solved by DSS, and proceeding with a discussion of classical OR
approaches to solving RCSPs. The latter half of Chapter 2 describes the field of knowledge-based
scheduling, presenting the state-of-the-art in the field, and presenting three important systems
with which DSS can be compared. A number of additional AI approaches to solving this class
of problems are also discussed.

Chapter 3 is the first of two chapters devoted to the full description of DSS. We begin by
presenting our general assumptions about the class of dynamic RCSPs, followed by a description
of the basic entities for their representation in DSS. Finally, we discuss the various types of
constraints that are handled by DSS. Issues related to our extension of the class of RCSPs to
include inter-order tasks and mobile resources with significant travel requirements are discussed
here as well. Chapter 3 illustrates the generic capabilities exhibited by DSS in terms of the broad
range of problems that it is capable of handling.

In Chapter 4, we provide a complete description of the implementation of our reactive,
opportunistic, operation-based scheduling approach in DSS. We begin with the blackboard
hierarchy upon which the approach is built and then explain in detail the complete scheduling
process, including the mechanisms for preserving and exploiting available slack time, our
multiple-perspective consultation techniques, and our least-commitment decision-making
process.

38

The evaluation of DSS and its scheduling approach appears in Chapter 5. One set of
experiments involving a common benchmark demonstrates the improved results achieved by
DSS in comparison to some existing scheduling systems. The second set of experiments involves
the operation of DSS within a number of dynamic environments to test its reactive capabilities.
This chapter demonstrates the success of our scheduling approach in reacting to a range of
unexpected environmental events and producing quality schedules under such conditions. It
also demonstrates the generic capabilities of DSS in representing a number of significantly
different RCSPs.

Finally, in Chapter 6, we review the contributions of our work with DSS, and discuss a
number of possible directions for future work.

We also provide two appendices that offer a more detailed look at DSS. Appendix A
presents the complete definitions of two application systems built on top of DSS to implement
the various RCSPs referred to in this document, and Appendix B presents an annotated DSS

execution trace.

C H A P T E R 2

RELATED WORK

We begin our discussion of the important related work in the field of resource-constrained
scheduling with a focus on classical operations research (OR) approaches. We continue with
a description of some relevant rule-based expert system approaches. In both of these sections
we include specific examples in which these solution techniques are applied to various kinds of
specific resource-assignment problems that occur within the airport ground service scheduling
(AGSS) domain. Finally, we survey some other relevant artificial intelligence (AI) approaches,
focusing on three important knowledge-based scheduling systems that have helped influence
the design and development of DSS.

General surveys of the issues involved in the solution of RCSPs can be found in [Davis,
1973, Graves, 1981, Willis, 1985]. Discussions of a number of different AI approaches to
solving the problem can be found in [Noronha and Sarma, 1991, Smith, 1991].

2.1 Operations Research Approaches

As mentioned in Chapter 1, the class of RCSPs has been extensively studied within the
field of operations research. It is, therefore, a relatively well-understood class of problems. In
this section we will discuss the progression of standard OR approaches for solving RCSPs. We
follow the presentation of our ILP formulation with a description of the standard optimal and
non-optimal methods that have been developed for the solution of RCSPs. For each of these
methods, we discuss the range of established solution approaches.

The progression of OR approaches to solving the RCSP moves along two dimensions, both
having to do with the nature of the desired solution. Early OR work focused on the production
of optimal solutions, according to singular objective functions. But the difficulties involved with
finding optimal solutions for large-scale problems led to a shift of effort towards developing
methods for producing near-optimal solutions, which would approximate optimality while
incurring significantly less computational expense. Again, however, when such approaches
were applied to real-world problems with often complex solution criteria, another change in
approach was warranted. At this point, the shift was toward the development of approaches
that could produce solutions that satisfied objective functions comprising multiple scheduling
objectives, which brings us to the state of the art in terms of methods for solving RCSPs in the
OR field. Throughout the rest of this section, we will discuss each of the phases mentioned
above, concluding with a discussion of some other recent OR solution approaches and a
summary of the differences between the state of the art in OR and the approach taken in the
design of DSS.

40

2.1.1 An Integer Linear Programming Formulation

We begin by presenting an integer linear programming (ILP) formulation to describe
explicitly the various kinds of RCSPs that are handled by DSS. Our formulation is based on
a similar model presented in [Pritsker et al., 1969]. It also refers back to our discussion of
dynamic RCSPs in Section 1.3. Another formulation for a tighter-constrained version of the
RCSP can be found in [Papadimitriou and Steiglitz, 1982].

Integer linear programming is a classical technique for finding optimal solutions to sets of
multiple-variable, integer-constrained, linear equations, of which the RCSP is a typical example.
An ILP formulation comprises a collection of variables, constraints on their possible values, and
an objective function to be either minimized or maximized in the process of assigning values
to the variables. An objective function may encode either a singular scheduling objective, such
as the minimization of order tardiness or required setup activity, or it may attempt to satisfy a
collection of multiple objectives.

In the standard scheduling problem, where a set of jobs must be serviced by a collection
of resources, variables can be defined to indicate which particular resource is assigned to which
particular job, and to record the specific times during which an operation is to be performed
by a resource. Additional constraints, such as those for controlling temporal sequencing, can
be formulated using equations that specify that the operation starting times for succeeding
tasks must be greater than the operation finishing times of their predecessors. Additional
variables store the expected durations of the tasks. The objective function for an RCSP may
be an equation whose value is intended to be either minimized (such as schedule makespan,
tardiness cost, or total resource setup time) or maximized (such as the degree of resource
utilization). Formulations of practical problems can easily require a large number of variables
and constraints.1

We begin by restating the goal of the basic RCSP, which is to determine for a set of jobs
(orders, projects), machine assignments for all tasks (within each job) that require the services
of a resource. Each machine assignment consists of a particular machine and the starting and
finishing times for the execution of the task. Our objective in this problem is to minimize both
the average tardiness cost (lateness penalty) per order, and the percentage of tardy jobs over the
set of all jobs.

2.1.1.1 Assumptions

The basic relevant assumptions for our problem formulation are reiterated from Fig-
ures 1.3 and 1.4.

The set of available resources is limited.

Tasks may have precedence relations within and among jobs.

Each job has a ready time and due date.

There may be a choice among resource types to perform a task.

Each task requires at most one ‘unit’ of any resource type.

1Our formulation makes no attempt to minimize the total number of variables or constraint equations required.

41

Tasks are atomic entities. They may not be split.

Tasks cannot be preempted during execution.

Note that because our model assumes the availability of deterministic task processing time
durations, we calculate the duration of each task by including the maximum possible amount
of time required to perform all necessary setup, reset, or travel activities.

A preliminary analysis of the process plans for a set of jobs can be used to determine relevant
time bound information for a particular problem, such as the earliest and latest starting and
finishing times for tasks, and the earliest and latest completion times for jobs.

2.1.1.2 Definitions

Figure 2.1 provides some important definitions for our formulation. The earliest possible

i job number, i 1 2 I ; I number of products (one job per product).
j task number, j 1 2 Ni ; Ni number of tasks in job i.
t time period, t 1 2 LCT ; LCT absolute due date.
k resource class, k 1 2 R ; R number of different resource classes.
Tij task j of job i.
dij processing duration (in time periods) for task Tij . If task Tij starts

executing in period sij , it finishes executing in period sij dij 1.
Ai ready time for job i.
Di desired due date for job i. All tasks in job i must be finished in a time

period t Di . Job i is late if it is completed in a time period t Di .
Pi lateness penalty for completing job i in period t Di .
ECTi earliest possible completion time for job i.
LCTi latest possible completion time for job i. LCT max LCTi .
ESTij earliest possible starting time for task Tij .
EFTij earliest possible finishing time for task Tij .
LFTij latest possible finishing time for task Tij .
rijk the amount of resource type k required by task Tij .
Rkt amount of resource type k available in period t .
xijt a binary variable indicating whether or not task Tij finishes in period t

(1 for yes, 0 for no). xijt 0 for t ESTij and t LFTij .
xit a binary variable indicating whether or not job i is complete in period t

(1 for yes, 0 for no). xij 0 for t ECTi and t LCT .

Figure 2.1. Definitions for an RCSP Integer Linear Programming Formulation

finishing time (EFTij) and latest possible finishing time (LFTij) define a range during which
each task Tij must finish processing. The exact time period during which a task finishes is

42

represented by a value of 1 for the corresponding xijt variable (where t indicates the finishing
time period). Finishing times are dependent on resource availability, and additional sequencing
and processing duration constraints. The earliest possible completion time (ECTi) and latest
possible completion time (LCTi) define a range during which project i must be completed.
For each time period within this range that a project has been completed, the corresponding xit

variable receives the value of 1. A complete schedule is effectively represented by the collection
of non-zero valued xijt variables.

2.1.1.3 The Model

In Figure 2.2 we present a visual representation of a schedule constructed by our model for
a simple RCSP consisting of two projects, each consisting of three operations. The process plan
for project 1 contains three tasks: T11, T12, and T13, and a sequencing constraint that requires
task T11 to precede task T13. The process plan for project 2 contains tasks T21, T22, and T23,
and defines task T21 as an aggregate task that encompasses the remaining two tasks, T22 and
T23. In addition, task T22 may be performed by one of two different kinds of resources (type
1 or 2). (In Figure 2.2, we define the variables x1

22t and x2
22t to represent the finishing status for

task T22 using either of the two possible resource classes.)
Figure 2.2 shows, for each task, the finishing time range EFTij LFTij , and the required

processing duration and actual scheduled assignment (indicated by the heavy black line). The
shaded completion time range ECTi LCTi for each project is also shown. The ready time
period, that is, the time period in which the processing of a project’s tasks may begin, is 1 for
the first project, and 6 for the second project. The due date time period, that is, the time period
by which the processing on all of a project’s tasks must be completed, is 16 for both projects
(requiring all task processing to finish no later than time period 15). Figure 2.2 shows the values
of the binary xijt and xit variables for both scheduled projects (for example, the value of x114 is
1, indicating that task T11 finishes executing in time period 4). All values not explicitly stated
for the xijt and xit variables default to 0. In the completed schedule represented in Figure 2.2
project 1 is completed by its due date, while project 2 is completed 5 time periods late. Note
also that task T22 is performed using a resource of class 1. Additional details of this figure are
discussed throughout the rest of this section.

2.1.1.4 The Objective Function

Our primary objective in solving DRCSPs is to minimize the average tardiness cost per
order. This is equivalent to minimizing the total tardiness cost.

Minimizing the value of the following equation minimizes the un-weighted tardiness sum
for a set of jobs. Each non-zero value for xit within the time range of Di LCT indicates a
time period at which point job i has been completed.

I

i 1

LCT 1

t Di

xit 2 1

Referring back to Figure 2.2, note that the larger the result of the above equation, the earlier
job i is completed, and hence, the lower its tardiness. For example, the x1t variables for project
1 produce an un-weighted tardiness sum of 5 (across all values of t). The x2t variables likewise

43

x11

x12

x13

x1

x21

x122

x2

Pr
oj

ec
t 2

Pr
oj

ec
t 1

0 0 0 0 0 0 0 0 0 0 1
ECT LCT

1 0 0 0 0 0 0 0 0 0 0 0 0
LFTEFT

0 0 0 0 1 1 1 1 1 1
ECT LCT

10 0 0 0 0
LFTEFT

10 0 0 0
LFTEFT

1 0 0 0 0 0
LFTEFT

10 0 0 0 0 0 0 0 0 0
LFTEFT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 0 0 1
LFTEFT

0 0 0 0 0 0 0 0 0
LFTEFT

x222

x23

DueDate2

DueDate1ReadyTime1

ReadyTime2

This figure is based on Figure 1 (page 95) from "Multiproject Scheduling with Limited Resources:
A Zero-One Programming Approach," Management Science, v.15, no.1, pp.93-108, September
1969, by Alan B. Pritsker, Lawrence J. Watters, and Philip M. Wolfe.

21

21

NOTE: Task T11 must precede task T13.
Task T21 is an aggregate, encompassing tasks T22 and T23.
Task T22 may be serviced by a resource of class 1 or 2.

Figure 2.2. Visual Representation of an RCSP Solution Produced from an Integer Linear
Programming Formulation.

44

produce a sum of 0. If Equation 2.1 evaluates to 0, the job is late (as is project 2 in this case).
Note that we can therefore minimize total tardiness by maximizing the value of the equation.

By factoring in the lateness penalty Pi for each time period during which job i is complete,
our final objective function (to be maximized) becomes:

I

i 1

LCT 1

t Di

Pi xit 2 2

2.1.1.5 Constraint Equations

In this section we present the constraint equations that define the bulk of our RCSP model.

2.1.1.5.1 Task Finishing Constraints

Each task finishes exactly once. This constraint is achieved by the following equation
which ensures that for each task Tij , only one xijt variable may be assigned the value 1 during
the time range of EFTij LFTij .

LFTij

t EFTij

xijt 1 i 1 2 I ; j 1 2 Ni 2 3

2.1.1.5.2 Job Completion Constraints

A job may not be completed until all of its tasks have finished executing. The following
equation enforces this constraint by requiring the binary xit variable for job i at any time t to be
no greater than the ratio of the number of finished tasks in job i in the immediately preceding
time period to the total number of tasks in job i (Ni).

xit
1

Ni

Ni

j 1

t 1

q EFTij

xijq i 1 2 I ; t ECTi ECTij 1 LCT 2 4

2.1.1.5.3 Temporal Sequencing Constraints

Our model allows temporal sequencing relations to exist between any two tasks. Tasks
related by sequencing constraints may or may not reside within the same job. Temporal
sequencing constraints require that all preceding tasks finish executing prior to the start of
execution for any succeeding tasks. The finishing time fij for each task Tij may be defined
by the following equation which simply converts the single non-zero value for the binary xijt

variable into a time period.

fij
LFTij

t EFTij

t xijt

For any two sequential tasks m and n in jobs i and j respectively (possibly i j), the temporal
sequencing constraint forces the succeeding task n to start its execution at a time later than the
finishing time for the preceding task m, by requiring the finishing time for task n to be offset
by at least dij (the processing duration for task n) time periods past the finishing time for task
m.

LFTim

t EFTim

t ximt din

LFTjn

t EFTjn

t xjnt 2 5

45

2.1.1.5.4 Task Aggregation Constraints

Aggregate tasks describe operations that provide work sites or areas where other tasks may
be executed (and are described further in Section 3.4.2.2). Because aggregate tasks encompass
other tasks, their processing durations depend on the individual processing durations of their
various child subtasks. Execution of an aggregate task begins as soon as its earliest child subtask
begins executing, and finishes when its latest child subtask finishes.

Aggregate task processing durations can be determined as part of the preliminary analysis
of the job set that determines values for the ESTij , EFTij , LFTij , ECTi , and LCTi variables.

2.1.1.5.5 Resource Usage Constraints

Unlike some other formulations of this problem, we limit (to one) the number (or quantity)
of resources that may service a task (though there may be a choice among alternative resource
types).2

A task Tij is executing at time t if it finishes at a time q : t q t dij 1. During its
execution, a task uses rijk ‘units’ of resource class k. The resource-limiting constraint presented
below ensures that the amount of each resource class k available at every time period t in the
feasible scheduling period is no less than the total amount of that resource in use by all of the
tasks executing during time period t .

I

i 1

Ni

j 1

fij dij 1

q fij

rijk xijq Rkt t min Aij LCT ; k 1 2 R 2 6

2.1.1.5.6 Resource Substitutability Constraints

The ability to allow a task to be performed by any one of a number of resource classes
requires some modification of the existing formulation. Each task Tij that permits a choice
among alternate resource classes is replaced by a set of exclusive tasks T k

ij k k : rijk 0 .
The processing duration for each of these new tasks depends on its corresponding resource class.
The necessary changes to the current formulation affect the task finishing and job completion
constraints. The alteration of the Task Finishing Constraint (2.3) forces each Tij to execute
only one of its T k

ij tasks, by requiring a single non-zero value among the appropriate binary xk
ijq

variables during the time range of min EFT k
ij LFTij and across the set of alternate resource

classes for Tij . The new task finishing constraint for each Tij thus becomes:

k k:rijk 0

LFTij

q min EFT k
ij

xk
ijq 1 2 7

2Note, however, that multiple resource requirements for a single task could be modeled using a hierarchy of
resource-requiring aggregate parent tasks.

46

The second alteration involves a similar modification of the Job Completion Constraint (2.4)
to handle the new task finishing requirements for Tij tasks. The new job completion constraint
(for all jobs) thus becomes:

xit
1

Ni

Ni
j 1

t 1
q EFTij

xijq if k : rijk 0 1

k k:rijk 0
t 1
q min EFT k

ij
xk

ijq otherwise

i 1 2 I ; t ECTi ECTi 1 LCT

2 8

The formulation presented in [Pritsker et al., 1969] is efficient in terms of limiting the
number of variables and constraints it requires for a given RCSP. It reportedly further
benefits from increased sequencing constraints, longer task durations, and the closeness of
the scheduling horizon (LCT) to the optimal schedule completion time. But while this
formulation demonstrates success in finding optimal solutions for certain (limited) instances
of the RCSP, its suitability to large-scale problems having many jobs and operations, extended
scheduling horizons, and abundant slack time, is questionable.

2.1.2 Optimal Solution Approaches

Much of the early work on solving ILP formulations of the RCSP focused on the
development of optimal solutions according to singular objective functions. A number of
different optimal solution methods have been developed for producing optimal solutions within
reasonable time frames, although the success in applying these approaches to practical-sized
problems has not been widespread. In this section, we describe a number of these optimizing
solution methods.

2.1.2.1 Branch and Bound Approaches

The branch-and-bound method for solving constrained optimization problems, such as
RCSPs, is based on the idea of intelligently traversing a developing search space. These
methods work by starting with a solution of some kind (often a satisficing solution or an
optimal solution to a simplified version of the same problem), and then progressively developing,
through the tightening of constraints, the best existing solution, until a solution to the desired
problem is achieved. This progression towards the optimal solution involves the generation
of a tree structure rooted with the original solution, with links representing the introduction
of constraints, or some other kind of decision on each parent problem, to connect it to all
of its feasible, tighter, or more complete, partial solutions. The search is bounded using the
process of pruning, where all partial solutions that are provably unable to lead to better quality
solutions than the best existing solution are removed from further consideration. The pruning
process guarantees that the final solution to the original constrained optimization problem will
be optimal.

The branch-and-bound tree can be extended in two different ways, based on the style
of search undertaken. A backtracking approach performs a depth-first traversal of the tree,
extending the deepest nodes in the tree by applying a candidate-selection rule that favors more
complete partial solutions. Whenever a complete solution is obtained, or a dead end is reached,
the procedure backtracks to the best remaining candidate and continues. Once all nodes have

47

either been visited or pruned, the best existing solution is therefore guaranteed to be optimal.
The other method of traversal is called a skiptracking approach, wherein a breadth-first traversal
of the tree is performed by extending those candidates that are the farthest from completion.

The main differences between these approaches are the number of search states (nodes in
the tree) that must be stored during the process, the ability to generate effective lower bounds,
and the effectiveness of the pruning heuristics. A backtracking approach requires less storage of
candidates and its quick progression towards complete solutions generates frequent new lower
bounds, but its pruning capabilities are not as strong because so many of the other existing
candidates have not been developed enough to be proven non-optimal, so that it tends to
execute more slowly. On the other hand, the skiptracking approach requires significantly more
storage, and while the generation of powerful new lower bounds is less frequent, because the
bulk of its nodes are at roughly the same level of development, the pruning heuristics are often
more effective, and the process therefore executes more quickly.

Apart from the storage and efficiency concerns, the effectiveness of a branch-and-bound
approach depends on a number of factors, namely the quality of the original root solution,
the method used to determine a new lower bound in the process of pruning all non-optimal
solutions, and the method used to determine which solution subproblem to expand at any
point. A general survey of branch-and-bound approaches is provided in [Lawler and Wood,
1966].

The branch-and-bound approach described in [Stinson et al., 1978] generates the tree
by progressively scheduling activities forward from the start of the schedule. Each node is
expanded by creating a new node for each possible combination of activities that could be
scheduled according to both the precedence and resource constraints. At each point, the start
time is incremented by the duration of the shortest currently executing activity. When no more
activities remain to be scheduled, a complete schedule is obtained. The process of determining
the lower bound uses three methods, namely a bound based on completion time that ignores
resource constraints, a bound based on the completion time that ignores precedence constraints
(by dividing the total remaining resource requirements by the number of available resources),
and a bound based on consideration of both resource and precedence constraints. The lower
bound and a dominance relation involving the relations between partial schedule nodes is
used to prune the tree. The candidate-expansion heuristic uses a vector of six measures that
essentially implements a skiptracking approach.

An important conclusion of this work is that the consultation of a variety of measures
in the process of selecting the next node to expand resulted in a more efficient exploration
of the search space. In addition, the common problem associated with branch-and-bounds
approaches, that is, of large, unpredictable variances in the processing time for similar problems
was observed. While extensive computational results were obtained, the problem sets were still
limited in comparison with practical-sized real-world problems.

Another branch-and-bound approach is presented in [Christofides et al., 1987]. Each node
in the tree represents a partial precedence-feasible and resource-feasible schedule that includes
the initial activities, and their successors, up to a certain point in time. The candidate node
expanded at any point is the one with the longest path to the end of the project (the shortest
partial feasible schedule). A candidate is expanded by scheduling the next possible activity that
satisfies both the precedence and resource constraints. If unscheduled activities remain, but
none can be added, then the candidate is expanded by instead delaying the execution of an

48

already-scheduled activity (or the one that led to the conflict). Backtracking is used to avoid
the need for generating multiple branches, and four different lower bounds were considered
for pruning the developing tree. Computational results indicated success in solving small
problems, especially those with loose resource constraints.

2.1.2.2 Enumeration Approaches

The bounded enumeration approach described in [Davis and Heidorn, 1971] shares some
similarities with standard branch-and-bound methods. In this case, an RCSP (permitting
activities to have multiple resource requirements) is transformed into a directed graph with
each activity divided into individual unit-duration subtasks (the number of subtasks equaling
the expected processing duration of the activity). Precedence constraints control the linking
of the activities, and immediate precedence constraints force each sequence of subtasks to be
performed together to prevent task splitting. The next step is to produce a table of feasible
subset schedules representing the set of unit-duration subtasks that can execute at each time
period in the schedule. Resource constraints are ignored at this stage. This table is used
to construct another directed graph (called an A-network) representing the progression of
precedence-feasible and resource-feasible schedules across time periods. The A-network can
then be used as the basis for solving a shortest route problem because the minimal completion
time for the schedule is represented by the shortest path through the A-network.

Note that the construction of the feasible subset schedules will be expensive for large
problems. As a result, two subset elimination procedures are used to minimize the number
of subset schedules that are generated by the procedure. The first considers the resource
constraints and eliminates any feasible subset schedule whose combined resource requirements
exceed the total amount of available resources. The second technique makes use of the latest
allowable finishing time for each task, and eliminates any feasible subset schedule that has any
task finishing later than that time.

Using this approach, optimal results were achieved for a good portion of a set of small
problems (permitting as many as 220 tasks and 5 required resource types per job). The
procedure can still result in the creation of a very large number of feasible subset schedules.
Again, the applicability of this approach to large scale, practical-sized problems remains
questionable. A comparison of three specific enumeration-based optimizing approaches
(including the work of Davis and Heidorn) can be found in [Patterson, 1984].

2.1.2.3 Dynamic Programming Approaches

Dynamic programming approaches to solving RCSPs make use of the fact that an optimal
solution can be incrementally developed by first constructing an optimal schedule for any two
jobs, and then optimally extending that schedule to include another job, until all of the jobs
have been scheduled. Scheduling for a set of jobs is thus achieved by first developing an
optimal schedule for a set of 1 jobs, and then optimally scheduling the remaining job.

An early dynamic programming algorithm for solving simple sequencing problems is
described in [Held and Karp, 1962]. While such dynamic programming approaches can
significantly reduce computational effort, the chief concern is with the large amount of space
required to store the intermediate results calculated by these algorithms.

49

2.1.2.4 AGSS Domain Applications

The application of ILP techniques to the problem of optimally scheduling various airport
ground-servicing activities is explored in a number of projects. Systems of this kind tend
to focus on more constrained versions of the overall RCSP, such as the problem of assigning
resources of a particular class to a set of tasks. Two such systems are described below.

Mangoubi and Mathaisel’s Gate Assignment Optimization Formulation
Mangoubi and Mathaisel have developed an ILP formulation for assigning aircraft to

gates that is optimal in terms of minimizing the required passenger travel distance to and
from gates [Mangoubi and Mathaisel, 1985].3 In studies using the actual flight schedule for
an average day at Canada’s Toronto International Airport, the existing assignment policy was
shown to produce travel distances that were 32% higher than the minimum distances produced
by the integer program formulation.

It is worth noting that an optimal solution produces a schedule of gate assignments where
half of the aircraft are serviced by less than a third of the gates, meaning that the balancing
of gate assignments suffers from being ignored by the objective function. In order to better
balance the gate usage, additional constraints would have to be added to the formulation.

Babić’s Fuel Truck Optimization Formulation
The focus in Babić’s work is to determine both the minimal number of fuel trucks required

to perform the required refueling operations for a set of aircraft, and the minimal travel distance
for those fuel trucks such that no flight is delayed by the refueling process [Babić, 1987]. An
ILP formulation with a bi-criterial objective function is defined, and a branch-and-bound
technique is used to produce an optimal solution. This technique first finds the minimum
number of refueling trucks required by the set of flights and then determines the assignments
that produce the minimum amount of travel time for those trucks.

2.1.3 Near-Optimal Heuristic Approaches

While ILP represents a well-understood and established problem-solving method, many of
the formulations and algorithms for solving such programs optimally can be extremely opaque,
and the formulations themselves can be difficult to specify, modify, and understand. In addition,
the amount of computational effort required to solve an RCSP can fluctuate widely across a set
of similar RCSPs, meaning that the same approach may incur reasonable computational effort
for one problem and exponential effort for another. Finally, the introduction of real-world
dynamic complications into large-scale RCSPs greatly increases the difficulty involved in their
solution. It appears that a more appropriate use for optimal schedules (assuming that they
are available) is for gauging the quality of non-optimal schedules and scheduling approaches,
instead of attempting their execution in the real world.

Recognition of the problems of trying to achieve optimal solutions led to a shift in focus
towards other methods for finding near-optimal, or approximate solutions to RCSPs at less
computational expense, in terms of both time and space. An heuristic approach represents
just such a method. A heuristic is a rule that specifies how to make a decision in a particular
situation. It can be thought of as a rule of thumb. Within the context of the RCSP, a typical

3Mangoubi and Mathaisel also developed a heuristic solution approach that is described in Section 2.1.3.1.

50

heuristic is to schedule those tasks having the earliest possible starting times, or the least
available amount of slack time. An heuristic approach to solving an RCSP operates by applying
a heuristic (or collection of heuristics) to the set of unsolved subproblems comprising the RCSP
to determine the relative priority of each individual subproblem. In this sense, the heuristic
serves as a rating function for determining the order in which activities are to be scheduled.
The standard heuristic approach first orders the set of activities and then proceeds by assigning
resources to each activity in sequence. In some cases, near optimal results can be achieved, and
the approach incurs less computational expense. It is therefore more applicable to practical
real-world problems having extremely large search spaces.

A single-attribute heuristic is distinguishable from a multiple-attribute heuristic in terms of
the degree of analysis undertaken. Examples of single-attribute scheduling heuristics are the
MINEST and MINLFT rules, which assign priority to those activities having the earliest starting
times, and latest finishing times, respectively. Another common single-attribute rule is SOF,
which assigns priority to the activity having the shortest expected processing duration. The
main drawback to single heuristics is the lack of analysis performed. A narrow evaluation of the
state of problem solving can allow important developments to go unnoticed and permit serious
problems to develop in the future. A multiple-attribute heuristic performs a more extensive
analysis of the current state of problem solving, and can therefore act to prevent such problems
from developing. A survey of scheduling rules, ranging from simple priority rules to more
complex heuristics, is presented in [Panwalkar and Iskander, 1977]. Upper bounds (assuming a
minimizing objective) on the quality of a number of approximate heuristic solutions to RCSPs
are presented in [Garey et al., 1978].

Returning to the AGSS domain as an example, an heuristic approach to scheduling gate
assignments for flights that attempts to minimize required passenger walking distance might
work by ordering the flights according to the size of their aircraft, and then assigning gates
that incur the shortest walking distance to the largest flights. Gates that are farther away are
thus saved for future smaller aircraft. While such a heuristic does not guarantee an optimal
assignment of gates (in terms of minimizing walking distance), it does make a reasonable and
efficient attempt to do so. This heuristic serves as a simple means of encoding a bit of scheduling
knowledge about how to minimize walking distance with an individual gate assignment. It
can be used in any situation where the minimization of walking distances is one of the overall
scheduling objectives.

The terminology regarding heuristics can get quite specific, depending on whether priority
is determined according to one simple aspect of an activity, or whether it is based on the
combination of a number of perspectives. Throughout our discussion of heuristics, we make
no distinction between the various definitions. We use the terms scheduling rule, dispatch rule,
and heuristic to refer to the same thing. A distinction is made, however, between fixed variable
ordering heuristics (also called a serial application) and dynamic variable ordering heuristics
(likewise, a parallel application). A fixed approach performs the ordering at the beginning of the
problem-solving process only, while a dynamic approach performs a reordering of all unsolved
subproblems following every decision. (The majority of the classical heuristics described and
tested in Chapter 5 make use of a dynamic variable ordering approach, as does DSS itself.)

A great deal of work has been directed towards the development of heuristics that
produce near-optimal solutions, and the determination of the best heuristics to use in certain
circumstances. For the most part, however, with the exception of a few specific cases, it has not

51

proven possible to establish a definitive classification for matching a particular class of RCSP
with a particular scheduling heuristic.

2.1.3.1 Single Heuristic Approaches

A comparison of some standard heuristics for solving RCSPs was undertaken in [Davis
and Patterson, 1975]. In this work, eight single heuristics were applied to a set of single-
project, multiple-resource problems, and the results (based on minimized project duration)
were compared to optimal schedules produced using the bounded enumeration approach
presented in [Davis and Heidorn, 1971]. The results of this comparison indicated that three
heuristics, MINSLK (which assigns priority to those tasks having the least amount of slack time),
MINLFT, and another, performed the best in terms of achieving the optimal schedule, or coming
the closest in percentage to the optimal. The results also showed, however, that the performance
of all heuristics suffered when resource contention was high. While this study was applied to
small problems, it suggests that heuristics that consider various kinds of time, and the degree
of resource usage, generally produce better (near-optimal) results.

An attempt to classify individual RCSPs for the purpose of identifying appropriate
scheduling heuristics for their solution is described in [Kurtulus and Davis, 1982]. Two
metrics were defined for characterizing RCSPs according to average resource load (ARLF) and
average resource utilization (AUF). A collection of heuristics was tested on a set of sample
problems, and the performance of each heuristic was plotted according to a range of values for
the two metrics. The results suggested that two heuristics were generally the best performers.
The first heuristic, SASP, favored the shortest activity in the shortest project (job), while
the second, MAXTWK, favored the activity with the highest combined required resource load
(obtained by multiplying the activity resource requirement by the activity processing duration)
and cumulative project resource load (obtained by summing the required resource loads for all
activities already scheduled within the same project). Interestingly enough, the MINSLK rule
produced generally better results in situations where average resource utilization levels were
lower, that is, the ratio of requested resource load to supply was in the range 0 6 0 8 .

The results of Kurtulus and Davis were later tested in a heuristic scheduling system designed
to solve RCSPs in the Japanese housing construction industry [Tsubakitani and Deckro, 1990].
The analysis described in [Kurtulus and Davis, 1982] suggested the use of the SASP heuristic for
solving the housing construction RCSPs. The SASP heuristic and the scheduler within which
it was implemented (MPM) were tested against two other heuristic scheduling systems. MPM

produced schedules containing shorter makespans in both comparisons. MPM also features a
re-scheduling mechanism that can modify a schedule in response to the notification of events
resulting from its real-world execution. It is designed to handle as many as fifty simultaneous
projects, each containing as many as 100 activities over a 400-day planning horizon. Each
activity can require up to fifty resources. Experimental results suggest that MPM “can produce
‘good’ solutions” for multi-project scheduling problems.

Recent work presented in [Lawrence and Morton, 1993] describes a single-heuristic
approach to solving RCSPs that attempts to minimize weighted tardiness through the use
of a combination of project-related, activity-related, and resource-related metrics. A general
priority heuristic is defined that weighs the tradeoff between the cost of delaying an activity
on a resource, and the benefit obtained by using that period of delay to assign the resource to
some other activity. The benefit of freeing up time on a resource is based on a resource price

52

that provides an indication of the urgency of each particular type of resource. Finally, the cost
of delaying an activity can be determined by using either the resource demand exhibited by
the activity (partially based on the price of required resources), or by the collective resource
demand exhibited by all unscheduled activities within the same project. Finally, an iterative
schedule-refinement mechanism helps to periodically improve the developing schedule.

The results of this approach were compared against the results from twenty standard
scheduling heuristics on a set of some 14,400 individual RCSPs that ranged in size from 125
to 250 activities distributed among five projects, and varied in tardiness penalty, activity
duration, and resource requirements. The heuristic described above produced schedules
with “significantly” lower average tardiness costs (and weighted delay) than did the standard
heuristics, further supporting the notion that consideration of multiple perspectives leads to a
more informed decision-making capability.

2.1.3.2 Multiple Heuristic Approaches

The application of multiple heuristics in solving the RCSP represents an extension to the
standard single heuristic approach. The goal is to exploit the strengths of a number of different
scheduling heuristics in an attempt to increase the chances of producing near-optimal (and
occasionally optimal) schedules according to the particular scheduling objective. Additionally, a
multiple heuristic approach can be seen as a formal application of the idea of consulting multiple
scheduling perspectives. One heuristic might evaluate urgency based on a simple analysis of
the time bound constraints on an activity (MINEST, MINLFT). Another might consider the
expected activity duration (SOF), while yet another might consider some combination of the
two (MINSLK). A scheduler equipped with a variety of such heuristics is better able to react to
the developing multi-dimensional topology of the search space.

Multiple heuristic approaches run into the same problems as simple heuristic approaches
when it comes to trying to characterize the best heuristic combination to use for solving
a given RCSP. The experiments in [Boctor, 1990] do show, however, that the inclusion of
certain heuristics can result in the more frequent development of near-optimal, and occasionally
optimal, schedules. Notable in these results is the fact that the MINSLK heuristic (which placed
at the top in single heuristic comparisons) proved to be the most important of the single
heuristics included in any combination. In addition, the MINLFT heuristic (runner-up in the
single heuristic comparison) proved to be a valuable companion to MINSLK. Another important
result from these experiments is that larger combinations of heuristics demonstrated increased
ability to produce higher quality schedules, suggesting that there is a clear benefit to applying
a wide range of scheduling perspectives in the process of determining the urgency of each
individual activity.

2.1.3.3 AGSS Domain Applications

Schröder’s Heuristic Approach to Gate Assignment
An early heuristic approach for producing gate assignments for aircraft is presented

in [Schröder, 1972]. Schröder describes a gate-assignment program developed by Lufthansa in
1972 for use at the (then newly constructed) Frankfurt Airport. The objective is to produce
near-optimal gate assignments for a set of flights by attempting to minimize the flow of
passengers through hardstands (gates that require the use of buses to transfer passengers to

53

and from the aircraft), and attempting to maximize the use of pier gates (those gates directly
reachable by passengers).

The system makes use of a set of scheduling heuristics that contribute to the development of
a near-optimal schedule by first assigning priority to each flight based on various characteristics,
such as aircraft type and size and the nature of the servicing required. The list of flights to be
assigned to gates is then sorted by arrival time, with individual flight priorities used to order
flights arriving at identical times. Finally, a near-optimal schedule is produced by assigning
gates to the ordered set of flights in such a way as to satisfy all relevant constraints while also
maximizing the use of pier gates, and minimizing the use of hardstands.

The focus of this work is the production of near-optimal gate assignment schedules for an
existing flight set and airport layout. As a result, a feasible schedule is guaranteed to exist. The
original impetus for this work was the need to evaluate the impact of a newly proposed airport
terminal layout on an airline’s ability to process all of its flights. The system was not intended
to assign gates in real time, nor to update an existing schedule in response to an unexpectedly
changing environment. It does, however, demonstrate how a set of scheduling heuristics can be
used to produce near-optimal resource assignments while avoiding the need for an exhaustive
search.

Mangoubi and Mathaisel’s Heuristic for Optimizing Gate Assignments
Mangoubi and Mathaisel’s heuristic approach for constructing near-optimal gate assign-

ments involves the application of a single heuristic to a set of flights [Mangoubi and Mathaisel,
1985]. The objective is to minimize the total walking distance required by the gate assignments
for a set of flights. A single gate-assignment heuristic assigns whichever available gate introduces
the shortest amount of walking distance for the passengers on a flight. The heuristic is applied
to the list of flights, sorted in order of decreasing passenger volume. Mangoubi and Mathaisel
were able to closely approximate the behavior of their optimal ILP formulation (described
earlier in Section 2.1.2.4). In the context of this earlier work, the heuristic method is presented
as a means of quickly producing near-optimal solutions for larger-scale problems.

Martin-Martin and Mary’s CARPPA Model for Gate Assignment
The CARPPA Model implements an heuristic approach for producing gate assignments for

Air Inter at France’s Orly-West Airport [Martin-Martin and Mary, 1986]. The CARPPA Model
operates by assigning gates to a set of flights prioritized by arrival time and aircraft size. The
primary objective is to produce feasible gate assignments for all flights. Secondary objectives
include the achievement of a balanced load across all gates, satisfaction of any existing gate
preferences, and the minimization of the required passenger travel distance between gates and
airport entry or exit points.

When a gate cannot be found during the time period required by a flight, a series of
bounded permutations on the existing schedule is performed, in an attempt to find a relaxed
gate assignment for the problem flight that will incur the least amount of passenger travel time.
Further permutations can be performed on the completed schedule to achieve the desired load
balancing and satisfy gate preferences.

Hamzawi’s Gate Assignment Program
Hamzawi describes a computer program for assigning gates to flights that has been

successfully tested at a number of Canadian airports [Hamzawi, 1986]. Flights are processed
in order of their arrival time, with preference among identical arrivals given to those flights

54

using larger aircraft. The model handles standard airport constraints such as technological
compatibility between gate and aircraft, access to government inspection services provided
by individual gates (for servicing international flights), and the assignment strategy for each
gate adopted by the airport (exclusivity or preferences granted to certain airlines). The main
scheduling objective is to maximize the use of specific gates, and minimize both passenger and
aircraft delays. The program has been designed to produce schedules for feasible sets of flights
and constraints.

An interactive feature is included for allowing specific aspects of the problem to be altered
or overridden by the user. The program can be re-run in response to such modification to
produce a new schedule. While the system can be used as an operational scheduler, its ability
to handle over-constrained problems produced by unexpected events is limited by the fact that
the heuristics are tailored to feasible situations.

2.1.4 Multiple Objective Approaches

Many approaches to solving RCSPs have focused on the optimization of one specific
scheduling objective. It is more often the case, however, that a range of objectives exists, and
that the quality of a schedule must be evaluated according to how well it satisfies a set of
such objectives. For example, a single-objective scheduling system might attempt to minimize
work-in-process (WIP) times while ignoring the makespan and the level of resource utilization in
the resulting schedule. A multi-objective approach would instead engineer its decision-making
process to construct a schedule while simultaneously attempting to minimize WIP times and
schedule makespan, and maximize resource utilization.

A multiple-objective approach relates to the notion of multiple scheduling perspectives, in
that each objective generally corresponds to a particular perspective on the scheduling problem,
which must be considered in the process of producing a quality schedule. If certain scheduling
perspectives are ignored by the decision-making process, any potential solution will fail to
address those concerns, and as a result, the objectives corresponding to those perspectives will
not be met.

A goal programming approach can be used in cases where the set of multiple objectives can
be arranged according to a strict priority scheme. In this case, each objective is represented by
a separate equation. The solution process begins by finding a solution that optimizes the first
(and highest priority) objective. After this initial solution is found, any constraints imposed by
it are incorporated into the problem formulation, whereupon the solution process continues by
focusing on the optimization of the second objective. This approach continues until all of the
objectives have been met. Goal programming is useful for problems where each objective has
a distinct priority, and cannot be combined effectively into a single objective function. When
the objectives are closer-related and less stratified, a goal programming approach will tend to
sacrifice the lower-ranked objectives, and thereby lower the degree to which all objectives are
met.

Much of the recent work on solving RCSPs using standard OR techniques centers on
multi-objective approaches. The work described in [Norbis and Smith, 1988], for example,
involves an heuristic method for developing near-optimal schedules that satisfy a set of specific
scheduling objectives. A series of levels is defined for representing consecutive orderings of
the set of all task-level subproblems for a particular RCSP. As the collection of subproblems
moves up through the various levels, it is progressively subdivided according to the objectives

55

defined for each level. Priority rules at each level are invoked to order the subproblems within
each group. An interactive feature allows for input from the user to be factored into the
problem-solving process through a rearrangement of the subproblem sequence. At the highest
level, the subproblems can then be solved in sequence to construct the schedule.

The approach of Norbis and Smith also accommodates dynamic events such as surprise
orders, order time bound changes, and changes in resource availability. These developments
force specific alterations to the existing schedule and constraints, whereupon the multi-level
problem-solving mechanism is re-invoked to repair the schedule. Schedule repair time is kept
to a reasonable fraction of the original schedule generation time.

A more recent multiple-objective hierarchical approach is described in [Speranza and
Vercellis, 1993]. Here the goal is to model the multiple objectives of the planning and
scheduling portions of real-world RCSPs. A tactical (planning) level concerning net present
value costs (inventory, tardiness), and an operational (service) level concerning the assignment
of resources and execution times to activities are established. This two-stage hierarchy is
implemented using three ILP models. The multi-project model, partially responsible for
implementing the tactical level concerns, is responsible for organizing the timing of the various
projects and the distribution of the available resources among the projects. The shrinking
model provides information to the multi-project model for use in distributing the resources, by
highlighting the collective resource requirements of each project. These two models together
solve the tactical level planning decisions. The final detailed project model takes responsibility
for the operational level by assigning resources and execution times to the activities according
to the constraints imposed at the tactical level.

A branch-and-bound algorithm is used to solve the ILP formulations corresponding to
the three models. The approach has been applied to real-world data from a construction
project, consisting of problem sets containing from five to ten projects, with ten to twenty
activities per project. While specific experimental results were not included, the running time
for the approach applied to the individual problem sets was reported to be “on the order of
minutes.” Further work involving the introduction of another level into the hierarchy to take
responsibility for the dependability and reliability of schedules during execution is planned.

2.1.5 Other Operations Research Approaches

An interesting alternative approach for solving RCSPs is presented in [Adams et al., 1988],
where the RCSP is divided into individual resource subproblems, instead of job or activity
subproblems. A schedule is produced by sequentially solving a single-machine scheduling
subproblem for each resource, and interleaving a re-optimization process after each machine is
scheduled. The re-optimization process allows for any conflicts that develop between previously
scheduled resources and newly scheduled resources to be resolved before continuing. After the
final resource is scheduled, the RCSP has been solved. The priority of the resources (for the
purpose of determining scheduling order) is calculated using a bottleneck status check that
solves a relaxed single-machine scheduling problem to determine which of the resources is
expected to incur the most delay given its demand.

The results of this approach are quite good for a set of problems containing up to ten
resources and as many as 500 operations. In fact, this work suggests that the number of
operations has only a moderate impact on the computational expense of the approach. But the
key factor, of course, is the number of resources. The procedure was also tested against a set

56

of ten standard heuristics, and it produced the best results in 38 of the 40 test problems, while
incurring the similar computational expense. The resource-centered perspective taken by this
approach shows a great deal of promise as a means of improving other methods for solving
RCSPs.

2.1.6 A Summary

With standard OR approaches, an RCSP is generally treated statically. A problem is
encoded into a particular representation, an algorithm is applied to it, and a solution of some
kind, be it optimal or approximate, is returned. Little attention is given to the dynamic nature
of many real-world problems. Aside from discounting the value of optimal solutions, real-world
problems also present difficulties for static approaches, in that certain aspects of the problem
are subject to change during the process of problem solving. The objective itself becomes a
moving target, to which a problem solver must adapt. Only recently has the dynamic nature of
the problem-solving process been addressed within the field of OR [Norbis and Smith, 1988].

The approach implemented in DSS accounts for the dynamic nature of the problem by
allowing the environment to force changes in the state of problem solving throughout the entire
decision-making process. Environmental conditions which affect the problem can therefore be
considered at the appropriate times to influence properly the behavior of the system. As the
target of the problem-solving process changes with the environment, the problem solver adapts
quickly to these changes and alters its existing decision-making strategy in response.

Computational expense plays an important role in the process of solving RCSPs. In
situations involving large-scale problems, the performance of many OR algorithms can become
unpredictable, and sometimes prohibitively expensive. Given a sufficiently large RCSP, it is
not always clear that a standard OR solution approach will be completed in reasonable time.
Finally, the opaqueness of many problem representations can make it hard to understand the
solution process and alter a problem formulation in response to unexpected developments. By
contrast, the amount of required computational effort for DSS is dependent on the number of
individual tasks to be scheduled, the number of available resources, and the nature of the order
sets (notably the amount of resulting contention for resources), so that its behavior is more
predictable.

In terms of knowledge representation, there is much similarity between the ILP formula-
tions used by classical OR approaches and the various resource and task models employed by
DSS. Furthermore, the basic DSS problem-solving method is essentially a multiple-attribute,
dynamic heuristic approach that focuses on the most urgent unsolved subproblem at any point
in time. Moreover, DSS endeavors to solve dynamic RCSPs completely on its own, without
relying on input from an outside user.

2.2 Artificial Intelligence Approaches

In this section, we discuss two kinds of AI approaches for solving RCSPs. We first describe
the class of expert systems, in which an heuristic approach produces a near-optimal result by
systematically applying both generic and domain-specific scheduling knowledge to the RCSP.
Knowledge-based scheduling, a more recent AI approach, combines domain-independent
scheduling knowledge with meta-level control knowledge to produce a more flexible and
sophisticated control scheme for solving potentially dynamic RCSPs.

57

2.2.1 Expert System Approaches

Expert systems implement a formal problem-solving approach characterized by multiple-
heuristic decision making. An expert system is comprised of three important entities. The
rule or knowledge base contains a set of situation–action, or if-then rules codifying the heuristics
for solving a particular class of problems. The working or short-term memory stores all of the
initial information about a particular problem as well as the developing solution. Finally, an
inference engine controls the process of incrementally selecting and applying the most promising
applicable rules from the rule base. The cyclical actions of the inference engine serve to augment
the working memory throughout the decision-making process. Updates to the knowledge base
reflect the particular actions specified by the rule. The process finishes successfully when the
working memory contains a solution to the overall problem. Considerable work has been
devoted to the development of expert systems [Weiss and Kulikowski, 1984], but for the
purposes of this discussion, we classify them simply as structured heuristic problem solvers.

In the past few years there has been a significant amount of work done on the development
of expert systems for solving specific RCSPs in the airport ground-service scheduling domain.
Pan American World Airways uses an heuristic-based system to assist in the scheduling of gate
assignments at New York’s John F. Kennedy Airport [Riccio and Ron, 1985]. Texas Instruments
has developed the Gate Assignment Display System (GADS), an expert system which has been
used by United Airlines to assign gates to flights at O’Hare Airport in Chicago and Stapleton
Airport in Denver [Shifrin, 1988]. Texas Air produces gate assignments for all Eastern and
Continental Airlines flights at Houston and Miami International Airports using a system called
GATEKEEPER [Fisher, 1988].

We discuss below two additional expert systems that have been developed for solving the
gate-assignment problem.

GAP: Gosling’s Gate Assignment Program
Gosling’s Gate Assignment Program (GAP) is an expert system designed to assign an

airport’s arriving and departing flight aircraft to the set of available gates [Gosling, 1990,
Gosling, 1982]. The process of assigning a flight to a gate is constrained by the kinds of
aircraft the gate can accommodate, the existing assignments of aircraft to neighboring gates,
and considerations involving the time required for transferring both passengers and baggage
between gates.

GAP is an event-driven expert system equipped with a rule base that contains rules for
initially selecting candidate gates for flights, and also for reassigning flights to other gates in
response to late arrivals, delayed departures, or equipment changes. In response to unexpected
events of the kind listed above, GAP propagates the necessary changes throughout the developing
schedule, by preempting previous gate assignments and introducing delays to selected flights.

The focus of GAP is on the actual gate-selection process. Given a flight, and a collection
of variously constrained gates and existing gate assignments, the goal is to modify the current
schedule in such a way as to provide a gate assignment for the new flight (possibly accompanied
by some modifications to the schedule) that maintains its feasibility without overly deteriorating
the quality of the existing schedule.

As opposed to other systems designed to produce gate assignments, GAP is capable of
handling the contention that can arise in over-constrained problems. Its rule base encodes
extensive scheduling knowledge that can be applied to resolve conflict situations through
modification of the existing schedule. Other systems that merely order the flights and then

58

assigns under the assumption that the problem will not be over-constrained, are more susceptible
to encountering difficulties that result in lower-quality solutions.

GATES: Brazile and Swigger’s Gate Assignment Program

The GATES program is an expert system designed to perform the airport gate assignment
task [Brazile and Swigger, 1988]. It has been used successfully to produce gate assignments for
Trans World Airlines (TWA) at New York’s John F. Kennedy Airport.

GATES is able to generate initial gate-assignment schedules from aircraft flight timetables,
and modify those schedules as changes within the environment are encountered, such as flight
delays, weather changes, and equipment failures. It handles a variety of constraints, including
physical constraints involving equipment compatibility, policy constraints involving matching
government inspection services to particular types of flights, and timing constraints involving
service durations. It also attempts to minimize airport congestion through some degree of load
balancing across the set of gates.

Priority is given to flights that are the most heavily constrained. For example, gates are first
assigned to flights using large aircraft such as Boeing 747’s, because fewer gates are equipped
to handle larger aircraft. The rule base is designed to favor the choice of gates that do not
violate any of the hard constraints or preferences, such as providing a sufficient amount of time
between successive assignments at the same gate for aircraft to get in and out of the apron area.
When no gate can be found for a flight, GATES can either delete optional constraints, reduce
non-critical preferences in an attempt to find another possible gate, or go into a backtracking
mode that can preempt previous gate assignments. As a last resort, a complete re-scheduling
process can also be initiated.

Reactive scheduling in response to unexpected environmental changes is handled by first
determining the conflicts that result from such changes, and then initiating the backtracking
process. The extent of any backtracking can be regulated by the user to limit the amount of
time spent modifying an existing schedule.

The GATES program implements an advanced heuristic approach to handling the airport
gate assignment problem in two important ways. First, an attempt is made to focus the
attention of the system towards those subproblems that are most highly constrained, and thus
expected to be more difficult to solve. The hard choices that potentially require a great deal of
modification to the schedule are therefore made earlier, minimizing the impact of any required
backtracking. The less constrained subproblems are only solved when there is nothing more
important left to handle. Second, the rule base is designed with the intention of being able
to address over-constrained situations that may result from unexpected events such as resource
failures and flight delays.

2.2.2 Knowledge-Based Approaches

Despite the widespread importance of the RCSP for so many different fields, few generic
scheduling systems have been designed and implemented for solving such problems, be they
dynamic or not. In this section, we describe the state of the art in knowledge-based scheduling,
and present a history of the important developments within the field of AI for solving RCSPs
that have led to the design of DSS.

The major developments in the field of knowledge-based scheduling can be organized into
three stages. Initial work by Mark Fox on the ISIS (Intelligent Scheduling and Information System)

59

treated the scheduling process as a constraint-directed search, and resulted in the first significant
knowledge-based program designed to solve job-shop RCSPs [Fox et al., 1982, Fox, 1983,
Fox and Smith, 1984]. Later work by Stephen Smith on the OPIS (Opportunistic Intelligent
Scheduler) introduced the idea of considering multiple perspectives in the scheduling process, to
apply the appropriate information to particular decision-making points [Smith and Ow, 1985,
Ow and Smith, 1986, Smith et al., 1986b].4 Finally, Norman Sadeh’s MICRO-BOSS (Micro-
Bottleneck Scheduling System) exhibited an opportunistic, activity-based scheduling approach
that helped achieve a finer degree of opportunism, thereby allowing for the rapid shifting of
attention from one location to another within a developing schedule, thereby allowing potential
conflicts to be resolved as early as possible [Sadeh, 1991].

In the following sections, we describe the development of these three approaches in greater
detail, and discuss their major contributions to the field of knowledge-based scheduling.

2.2.2.1 Scheduling as Constraint-Directed Search

ISIS was the first generic, knowledge-based system for solving RCSPs. By viewing the
scheduling process as a constraint-directed search of the space of possible schedules, ISIS

emphasized the importance of representing a wide range of constraints and exploiting them
throughout the scheduling process. The focus of ISIS is therefore directed to the representation
and manipulation of constraints that narrow the search space of potential schedules for solving
RCSPs.

ISIS implements a four-phase hierarchical scheduling approach. In the first phase, it selects
the order with the highest priority from among the set of all orders, and in the second phase,
analyzes the resource requirements for that order to constrain later searching during subsequent
phases. Using a beam search, the third phase constructs a sequence of both operations and
resources for the order’s developing process routing. Existing constraints on the order and its
operations are used during this phase to generate legal extensions to the best existing process
routing, and help the beam search rate and prune the set of all candidate routings. The result
of the first three phases is a process and resource routing for an order that lacks only the
specific machine reservation times for each operation. Individual machine reservation times
are determined in the fourth (and final) phase.

ISIS instantiates a process plan for an order (in the third phase) by sequentially allocating
resources to operations by extending either forward from the first operation, or backward from
the last. As a process routing is constructed, no amount of slack time is maintained within
the developing schedule, unless an unavoidable wait for a resource must be accommodated.
Service times for operations are compacted to minimize work-in-process time for the order.
When conflicts are detected, the relevant constraints are identified and relaxed, and the process
routing involved in the conflict is corrected.

ISIS operates under a single, order-centered scheduling perspective. Orders are selected one
by one to have their operations scheduled according to their priority. Decisions regarding the
selection of resources and reservations simply attempt to satisfy the constraints relating to the
order (to properly sequence the operations and meet the due date). Potential constraints on the
resources (minimizing set and travel times), and among operations (the availability of required

4See [Smith et al., 1986a] for a discussion of issues concerning both the ISIS and OPIS systems.

60

resources), are (at best) only partially addressed by the heuristics used to select resources and
reservations.

The major advantages of this work are its contributions in the area of constraint formula-
tion, and the use of constraints to narrow an enormous search space. The disadvantages center
on the static nature of the control of the system and its lack of flexibility, namely in its use of a
beam search that cannot anticipate future scheduling problems. Furthermore, its sole focus on
an order-based scheduling perspective limits its ability to deal with important resource-based
conflicts or inter-order concerns. It is therefore susceptible to the problem of not recognizing
potential problem situations until after a substantial amount of problem-solving work has
already been done, and producing schedules with a heavy backup at bottlenecked resources.

2.2.2.2 Exploitation of Multiple Scheduling Perspectives

The OPIS system represented a major step forward in the development of knowledge-based
scheduling systems by identifying and demonstrating the utility of viewing the RCSP from
multiple perspectives. Smith, et al, have defined and experimented with what they call order-
based and resource-based perspectives [Smith and Ow, 1985]. Within the process plan template
for a job, sequencing constraints provide an order-based perspective used by the scheduler to
ensure that the sequencing of tasks within a process plan of that type is legal. Such a perspective,
however, provides only a limited view of the overall scheduling problem. A resource-based
perspective presents a view of the scheduling problem that highlights the contention that
exists among tasks requiring the same resources during similar times. The consultation of a
resource-based perspective, in addition to an order-based perspective, has proven to be useful
in providing an informed view of the overall problem that allows the scheduler to consider the
current contention for resources and the proper sequencing of tasks in the process of making
important scheduling decisions.

The opportunistic nature of the scheduling approach used by OPIS derives from its ability
to shift its focus of attention according to conditions within the changing environment, which
are highlighted by its consideration of resource-based and order-based scheduling perspectives.
Upon receiving a new order to schedule, OPIS performs a capacity analysis based on the
updated demand for resources. If a sufficient level of contention for any particular resource
class results from the introduction of the resource requests for the new order, a resource-based
scheduling strategy is invoked to satisfy all outstanding requests for the resources now exhibiting
bottlenecked status. A Resource Scheduler performs the task of extending completely the
schedule for any resource class that reaches the sufficient level of bottleneck status at any
time during the scheduling process. When the resource-based strategy is not required by the
changes in resource demand introduced by a new order, an order-based scheduling strategy
(the ISIS scheduler) is invoked to secure all of the required resources for the order. Any
adjustment to the current decision-making strategy can therefore only occur between the
complete scheduling of either an order or a newly bottlenecked resource. The Order Scheduler
handles the scheduling of all operations requesting non-bottlenecked resource classes, by either
scheduling them in their entirety, or extending existing order schedules forward or backward
from previous resource-based scheduling decisions. When a conflict is encountered, the affected
order and resource schedules are repaired by the appropriate schedulers.

While OPIS is capable of tailoring its problem-solving approach depending on certain
conditions existing within the current state of problem solving, it over-applies its response to

61

these situations. Once it selects a particular response, it employs a specific decision-making
strategy to make a series of important scheduling decisions before it considers its next step. The
Order Scheduler either finishes or completely generates the scheduler for an order. The Resource
Scheduler either extends or completely generates the schedule for a resource class. It is therefore
unable to react immediately to the implications of each of the many decisions made by both the
order and resource schedulers, until they are finished executing, and the entire state of problem
solving has been reevaluated. Much can happen as the result of the many individual actions
taken by the order and resource schedulers, or as the result of environmental developments that
occur in the meantime. These developments, potentially leading to more difficult problems
in the future, cannot be addressed by OPIS as soon as they should be, especially when working
within a dynamic environment.

Furthermore, while OPIS makes use of two different scheduling perspectives, it uses only
one of these perspectives at any time, depending solely on the current level of contention for
the resource classes required by the orders to be scheduled. The individual scheduling decisions
in OPIS thus rely on a single perspective on the problem, either resource-based or order-based,
and the decision as to which scheduling perspective to apply in a given situation is determined
solely from a resource-centered perspective based on resource contention. Other concerns about
the state of problem solving are ignored. When the resource-based approach is applied to a
bottlenecked resource class, reservations are selected to optimize a particular resource schedule,
thereby ignoring the concerns of the order involved (such as the minimization of flow time).
Similarly, when the order-based approach is applied to an order, the optimization of resource
schedules is ignored (such as the minimization of fragmentation and setup time), in favor of
increasing the quality of the order schedule.

Finally, because the OPIS Order Scheduler is just the basic ISIS scheduler, the only potential
for slack to be introduced is when an unsecured resource of a low enough contention level is
not immediately available, or when a bottlenecked resource has been secured by the Resource
Scheduler, with no consideration of any adverse effect on the order’s schedule. Otherwise, there
is little room made intentionally available for maneuvering when the current problem-solving
situation unexpectedly changes.

OPIS succeeded in demonstrating the utility of exploiting multiple perspectives on the
RCSP, but it falls short of making fully effective use of them. The level of opportunism remains
at too low a level, making its applicability to dynamic environments questionable.

2.2.2.3 Micro-Opportunistic Activity-Based Scheduling

The activity-based approach employed by MICRO-BOSS is based on the idea that the
granularity of opportunism exhibited by a system, that is, the lowest level at which problem-
solving decisions are made, has a major impact on the ability of a system to respond to the
effects of its own internal decision-making process, as well as any unexpected external events. A
distinction is made between macro and micro opportunism. Problem solvers that periodically
pause at certain points throughout the decision-making process to analyze the current state of
problem solving and determine a particular strategy to impose until the next analysis point,
exhibit a higher degree, or macro level, of opportunism. If a problem solver is able to shift
its focus of attention immediately after every decision, then it exhibits a finer degree, or micro
level, of opportunism.

62

MICRO-BOSS employs a micro-opportunistic decision-making approach, which allows it to
follow more closely the developing state of problem solving, by viewing the entire scheduling
problem as a collection of individual subproblems, each representing a single resource request.
Each pending subproblem is rated according to the demand on the particular class of resource it
requires. The heuristic for selecting which subproblem to address at any point first determines
the resource class experiencing the highest degree of contention at any time, and then chooses
the subproblem whose task depends the most on a resource of that class during the period
of contention. The queue of pending subproblems is adjusted after each resource assignment
so that the implications of each new reservation can be incorporated into the scheduler’s view
of the current state of problem solving. This activity-based approach achieves a fine level of
opportunistic granularity, and prevents the possibility that the system will inappropriately boost
the urgency of any related, but less important subproblems, merely because they also require
the same bottlenecked resource class. MICRO-BOSS is thus able to direct its attention within the
developing schedule to focus quickly on the most urgent remaining subproblem at any time.

A micro-opportunistic approach allows the scheduler to react immediately to developments
within a changing environment. This tends to limit the amount of processing that results from
each decision, because each atomic problem-solving activity produces only a quick, minor
adjustment to the current strategy. It also avoids the need for major periodic analyses of the state
of problem solving coupled with possibly drastic redirections of effort. The macro-opportunistic
approach, as exhibited by OPIS, spreads out the strategic decision-making points, thereby
minimizing the frequency with which it pauses to reevaluate its current decision-making
strategy. The problem with the macro-opportunistic approach, especially within the context of
a dynamic environment, is the potential for the problem solver’s focus of attention to diverge
more easily from the current state of the environment, thereby leading to situations where
significant amounts of processing may be required to get the problem solver back on track
within the changed environment.

As it turns out, MICRO-BOSS actually employs a rather narrow view of the state of problem
solving within its set of variable-ordering and value-ordering heuristics. Despite the operation-
centered (activity-based) granularity of its subproblems, MICRO-BOSS relies solely on an order-
based perspective when selecting resource reservations for individual operations, and solely
on a resource-based perspective when determining the urgency of the outstanding operations.
The lack of consideration for the concerns of the resources when selecting reservations means
that the quality of the resource schedules is sacrificed for the quality of the order schedules.
While the degree of resource contention is useful in estimating subproblem urgency, there is no
consideration of the orders involved, meaning that such concerns as order schedule flexibility
and temporal urgency are completely disregarded. The drawback to this approach is that while
the scheduler can quickly respond to changes in the state of problem solving brought about by
its own decision-making process, these decisions are actually based on a very limited scope of
information.

Like ISIS and OPIS, MICRO-BOSS also attempts to eliminate any existing slack time from
within its developing order schedules to help minimize flow time (and inventory costs). The
higher cost of backtracking can be accepted in return for a minimization of inventory costs and
flow time. But the flexibility that is lost cannot then be used to alleviate the severity of any
necessary future backtracking.

Work on MICRO-BOSS demonstrated that improvements in the performance of a scheduler
could be obtained by using a micro-opportunistic, activity-based problem-solving approach.

63

By not adhering to a rigid, prearranged control strategy, and instead shifting attention from
one serious localized bottleneck situation to another, MICRO-BOSS is able to produce schedules
more efficiently than the macro-opportunistic OPIS system. It is not, however, equipped with
the mechanisms necessary for understanding the full implications of unexpected real-world
events that violate its initial assumptions about the problem.

2.2.3 A Summary

The constraint-directed search implemented within ISIS provides a valuable starting point
for any knowledge-based scheduling system. It highlights the importance of considering the
impact of the various constraints on the problem-solving process, and demonstrates that an
enormous search space can be managed by using the constraints to bound the search process.
Despite its reliance on a single scheduling perspective throughout the scheduling process, ISIS

represents an important first step in the development of efficient knowledge-based scheduling
systems.

The development of the multiple-perspective decision-making capabilities in the OPIS

system identified the value of viewing the RCSP from both order-centered and resource-centered
perspectives. These perspectives highlight the various conflicts between orders, operations and
resources, which are often ignored at key decision-making points. OPIS also demonstrated the
benefits of applying opportunistic problem-solving techniques to the scheduling problem, to
enable a scheduler to react to the dynamic nature of the RCSP, where the state of problem
solving can change with every scheduling decision.

MICRO-BOSS represents the move towards a highly opportunistic, activity-based problem-
solving approach that enables a scheduler to respond immediately to changes in the state of
problem solving. What is missing from this approach, however, is the full consideration of a
broad range of relevant scheduling perspectives at all key decision-making points. The system
responds quickly and directly to the changing state of problem solving, but it does so based on
a limited view of the environment.

In terms of their ability to handle dynamic, real-world environments that generate a variety
of unexpected events, each of the three systems described above fails to treat the conflicts that
are created by such events in a truly reactive fashion. Conflicts caused by resource failures
and order receptions are processed by special conflict-resolution mechanisms that immediately
perform some form of backtracking or re-scheduling without first placing the conflict within
the context of all currently outstanding problem-solving activities. To perform successfully in
a dynamic environment, a scheduler must be able to determine accurately the relative urgency
of every scheduling task, whether it is predictive or reactive in nature.

Another feature of ISIS, OPIS, and MICRO-BOSS, is their consistent attempt to minimize
order flow times by compacting their developing schedules by removing all accrued slack
time. The flexibility that is removed by this action is then unavailable to help resolve future
conflicts, causing such activities to require greater computational effort in backtracking and
re-scheduling.

With the design of DSS, we have incorporated the consideration of a broad range of
perspectives throughout the scheduling process, to facilitate a broad understanding of the state
of problem solving at all times. In addition, we maintain flexibility within developing schedules
by including available slack time, to provide flexibility for dealing with unforeseeable events.

64

DSS thus represents a continuing step forward in the development of reactive knowledge-based
scheduling systems.

In the following two chapters, we describe the various generic structures provided by DSS

for representing a broad range of real-world RCSPs, and then present in detail the entire DSS

scheduling approach.

C H A P T E R 3

THE DSS REPRESENTATION SCHEME

In this chapter, we describe the generic entities provided by DSS for representing resource-
constrained scheduling problems. We first discuss some additional assumptions about DRCSPs
as implemented in DSS, followed by an explanation of the resource and product class specifica-
tions and the various aspects of the DSS task structure. Finally, we describe the range of hard
and soft constraints supported by DSS. The purpose of this chapter is to emphasize the generic
qualities of these representational mechanisms.

3.1 Some General Assumptions

In addition to the assumptions about dynamic resource-constrained scheduling problems
provided in Figures 1.3 and 1.4, we first present some further assumptions about the DRCSP
model implemented within DSS.

Servicing operations can require at most one kind of resource class.

All resources are non-consumable. DSS supports resources that represent machines or
equipment used to perform specific tasks on a product. Consumable raw-material
resources are not supported.

The performance attributes of a resource do not change over time. The same tasks will
always take the same amount of time to execute on the same resource.1

3.2 Resources and Shop Locations

DSS provides for the definition of both securable non-consumable resources and non-
securable shop locations. While resources are of limited supply and must be reserved for the
operations that use them, shop locations are available in effectively unlimited supply. There are
no constraints on the use of shop locations, and they need not be reserved by the operations
that use them. Shop locations serve as place holders for representing the behavior of resources
as they interact with the factory environment.

We now discuss both of these entities in further detail.

1Note that a logical and interesting enhancement to our current domain model would be to allow for various
resource performance attributes to change over time, thereby allowing for the representation of more real-world
situations, such as the impact of weather and machine operator variances on resource behavior.

66

3.2.1 Stationary and Mobile Resources

Many real-world RCSPs involve both stationary and mobile resources, distinguishable by
their ability to move about the factory environment. The servicing of a product may be
performed by a mixture of both stationary and mobile resources. When a stationary resource
is used, the product is moved from its current location within the factory environment to
the location of the assigned resource, at which point the product is serviced by the resource.
With a mobile resource, on the other hand, the product remains at a particular location,
while the mobile resource moves from its current location to the location where the product
currently resides. The process of determining the required locations is controlled by the various
contextual constraints discussed in Section 3.5.1.6.

3.2.2 Shop Locations

In addition to stationary and mobile resources, a layout may include instances of a class of
stationary, infinite capacity non-schedulable resources that we call shop locations. Shop locations
play an important role in the behavior of mobile resources. They provide special locations
within the factory environment for resources to be setup or reset, or for products to be serviced.
The important distinction between a stationary resource and a shop location is that there is no
queue for the shop location. A shop location may be used by any number of resources at any
time, and need not be reserved by the resources for that use. Furthermore, a shop location may
provide an infinite supply of materials for use by the resources and products.

Consider the following two examples from the airport ground service scheduling (AGSS)
domain (introduced in Section 1.3.1 and described fully in Appendix A.1.1). Baggage trucks
are used in the process of loading and unloading baggage from an aircraft. The resource plans
for these tasks include the filling or emptying (respectively) of the baggage truck at a particular
location within the airport, specifically an outlet point for the airport (or possibly an airline)
baggage claim area. These outlet points are shop locations. A second example (from the
same domain) involves the fuel trucks that must be refilled periodically (prior to each refueling
operation) to be able to refuel their assigned aircraft. A fuel tank used to refill the fuel trucks
is also a shop location.

3.2.3 Resource Behavior and Performance

Dynamic RCSP environments allow a wide variety of behavior to occur in the process of
executing a schedule. Certain behaviors may have a substantial impact on the decision-making
strategy employed by a scheduler. An important class of behavior involves the actions of the
resources. Their behavior strongly affects the ability of a scheduler to satisfy its resource-
reservation requests. We identify a number of important kinds of behavior that may be
exhibited by the resources in a dynamic factory environment. These behaviors are classified
into specific states that are maintained during explicit and discrete time periods. We now
present these behavior states and describe their various implications to the scheduler.

UNUSED: indicates that a resource is available to perform a product task.

SERVICING: indicates that a resource is performing a generic SERVICING activity that
corresponds to a particular product task.

67

SETUP: indicates that a resource is performing a generic SETUP activity associated with
a particular product task. The duration of such activity may depend on the previous use
of the resource.

RESET: indicates that a resource is performing a generic RESET activity associated with
a particular product task.

EN ROUTE: indicates that a resource is performing a generic EN ROUTE activity associated
with a particular product task. The duration of such activity may be modified in the
process of refining a reservation.

OFF LINE: indicates that a resource is unavailable due to a work shift or periodic
maintenance constraint.

DOWN: indicates that a resource is permanently unavailable until the end of time.

PRE BREAKDOWN: indicates the time spent in the process of performing the tasks
associated with a reservation by a resource that fails in the course of performing its
servicing duties. It is conceptually identical to the DOWN classification.

As was mentioned in Figure 1.3, we assume that all tasks are completed satisfactorily,
barring resource failure. Our model does not allow for the rejection of an order due to quality
concerns.

In the event of a resource failure, a special knowledge source is immediately triggered
(a byproduct of the official notification of the scheduler), with the purpose of canceling all
outstanding reservations for the failed resource and updating the various system metrics that
are based on current levels of resource availability. Any task currently being performed at the
time of a resource failure notification is treated as incomplete, and must be rescheduled on
some other resource. Therefore, a resource failure in the middle of a task execution is the only
reason a task may not be satisfactorily performed by a resource.

For the purpose of checking the feasibility of a schedule, DSS is able to analyze the state
transitions of its resources upon the completion of their servicing activities to ensure that all
relevant hard constraints were met in the process.

3.3 Products

The product is basically a place holder and indirect address for the storage of domain
information used by DSS throughout the scheduling process. Products constrain the selection
of resources that can be used for their servicing or production; they also inform the methods
responsible for determining task-processing durations.

3.4 Tasks

DSS provides two kinds of tasks for representing the operations performed in the course
of servicing or producing a product. The first, called a product task, describes a specific
operation performed directly on a product. It is important to note that some product tasks
do not require the services of a resource. These non-resource-requiring product tasks represent
scheduled activities that are part of the overall servicing or production of a product that are

68

achieved without using any resources. In the AGSS domain, the deplaning and enplaning
of the passengers on an aircraft may not require any equipment apart from the jetway that is
provided by a gate. In this case, the deplaning and enplaning tasks are indicated by product
tasks that occur as part of the overall servicing of a flight, but do not require the reservation
of any specific resources. Similarly, in factory-scheduling environments, certain products may
require periods of cooling or settling prior to moving on to the next stage of production. These
tasks also do not require any specific resources to be reserved. For the most part, our discussion
of product tasks will always refer to both resource-requiring and non-resource-requiring tasks.
Where there is a specific need to differentiate between the two kinds of tasks, we will do so.

The second kind of task, called a resource task, describes the specific ancillary operations
associated with the execution of a product task. Any setup or reset activity required by a
machine to prepare for a particular type of service is represented as a resource task, as is the
process of moving a mobile resource through the factory environment. Each resource-requiring
product task has a corresponding resource task representing the actual servicing activity to be
carried out by a resource. Product tasks provides am order-based view of operational activity,
while resource tasks provide a more detailed resource-based view.

In the rest of this section, we discuss how these kinds of tasks are used to help represent
real-world resource-constrained scheduling problems.

3.4.1 Resource Tasks

In DSS, every resource task is an instance of one of four generic resource activity classes.
These classes provide the basis upon which a set of six higher level domain-independent resource
tasks have been defined. These generic resource tasks in turn provide the basis upon which
domain-specific resource tasks may be defined for a particular application. We present below
the four generic resource activity classes and the six domain-independent resource classes built
upon them.

EN ROUTE: used by mobile resources for traveling through the factory environment

SETUP: represents all of the work required to prepare a resource to perform its main
servicing task

SERVICE: indicates the main servicing task performed on a product

RESET: represents all of the work required to reset a resource following the performance
of its main servicing task

The six generic resource tasks provided by DSS are described as follows:

GOTO-SETUP-LOCATION: an instance of the EN ROUTE activity class used for moving
a resource to its designated setup location

SETUP-RESOURCE: the single generic instance of the SETUP activity class

GOTO-SERVICE-LOCATION: an instance of the EN ROUTE activity class used for
moving a resource or product to its designated servicing location

SERVICE-PRODUCT: the single generic instance of the SERVICE activity class

69

GOTO-RESET-LOCATION: an instance of the EN ROUTE activity class used for moving
a resource to its designated reset location

RESET-RESOURCE: the single generic instance of the RESET activity class

Each resource task defined for a specific domain must be an instance of one of the preceding
generic resource tasks. Figure 3.1 presents the entire activity class inheritance hierarchy for DSS.

GOTO SETUP
LOCATION

SETUP
RESOURCE

GOTO SERVICE
LOCATION

SERVICE
PRODUCT

GOTO RESET
LOCATION

RESET
RESOURCE

SETUP SERVICE RESET

EN ROUTE

Generic Resource Tasks

Basic Activity Classes

Figure 3.1. DSS Activity Class and Generic Resource Task Hierarchy.

Resource tasks are performed in purely sequential order, with no idle time in between.
Figure 3.2 demonstrates the possible ways in which the generic resource tasks may be combined
to define legal resource plans. When a particular resource plan instantiated as part of a
reservation, starting and finishing times are assigned to each resource task in the plan. If the
performance of some resource task within the plan is not required, its starting and finishing
times are left empty within the resource plan instantiated for that reservation. In domains
involving the use of mobile resources, it is possible that travel time will not be necessary in
some situations, for example when a resource is already positioned at its required location.
Similarly, a setup operation may not be required if the current state of a resource is such that it
is able to immediately service another product without having to alter its current settings.

Domain-specific instances of the generic resource tasks are grouped into resource plan
sequences and associated with product tasks by their resource class, so that different resource
plans may be used to perform the same product tasks, depending on the kind of resource that
is secured. For example, in the AGSS domain, it is possible to refuel an aircraft by using either
a pump truck or a fuel truck, depending on the kind of equipment provided by the gate where
the refueling is to be performed. The resource activities performed by the pump truck and the
fuel truck are not the same. The pump truck simply reports to its designated gate and then
refuels the aircraft by pumping fuel from an underground tank directly into the aircraft. A fuel
truck, on the other hand, must initially report to a fuel tank and take on enough fuel to refuel
the aircraft before reporting to its designated gate and to refuel the aircraft.2 Each product task

2Note that this approach to refueling using fuel trucks is a simplification of the actual AGSS domain. In the
real world, the trip to the fuel tank is a periodic task that is scheduled as needed, depending on the number of
sequential refueling activities undertaken by a particular fuel truck.

70

SERVICE
PRODUCT
SERVICE

GOTO RESET
LOCATION
EN ROUTE

RESET
RESOURCE

RESET

RESET
RESOURCE

RESET

GOTO SERVICE
LOCATION
EN ROUTE

SETUP
RESOURCE

SETUP

SETUP
RESOURCE

SETUP

GOTO SERVICE
LOCATION
EN ROUTE

GOTO SERVICE
LOCATION
EN ROUTE

GOTO SERVICE
LOCATION
EN ROUTE

SETUP
RESOURCE

SETUP

GOTO SETUP
LOCATION
EN ROUTE

SETUP
RESOURCE

SETUP

GENERIC
RESOURCE TASK
ACTIVITY CLASS

Temporal
Sequencing
Constraints

L E G E N D

DOMAIN
RESOURCE

TASK

PRODUCT
TASK

resource class

Figure 3.2. DSS Resource Plan Grammar.

71

that requires a resource must provide a resource plan for each type of resource that may be used
to perform the task.

3.4.2 Product Tasks

A product task corresponds directly to a generic SERVICE-PRODUCT resource task, and
provides the means for viewing an operation from the viewpoint of an order or product. From
that perspective, the performance of a task by a resource is achieved in a single step, while from
the resource perspective, and more importantly, to the scheduler, it may actually consist of a
sequence of steps. Product tasks that do not require resources place constraints on the starting
and finishing times for neighboring tasks, and the release and completion times for related task
networks. These product tasks have no associated resource tasks.

In this section we describe certain product task attributes that have an important impact
on the scheduling process.

3.4.2.1 Shift Preferences

An important requirement for many scheduling domains is the need to represent shift
preferences for product tasks. These preferences indicate the desired point at which to schedule
a task within its current allowance. For some kinds of tasks, it is better, from the perspective of
the order to which they belong, for them to be scheduled as early as possible. For other tasks,
later scheduling is preferred. DSS is equipped with the means of representing both early and
late shift preferences, to broaden the range of scheduling problems it can handle. The shift
preference for a product task is used by the reservation-securing knowledge sources responsible
for securing the resource required for performing the task. These knowledge sources attempt
to find reservations that are as early as possible for early-shifted tasks, and as late as possible for
late-shifted tasks.

Considering again the AGSS domain, the product task responsible for unloading baggage
from an aircraft should be scheduled to occur as soon after the arrival of a flight as possible,
thereby allowing the arriving passengers to quickly claim their checked baggage after deplaning.
The baggage-loading product task, however, should be scheduled as close to the departure of
a flight as possible, to give departing passengers as much time as possible to get their checked
baggage loaded onto the flight.3

3.4.2.2 Aggregate Tasks

An important issue in factory-scheduling environments is the relationship between a work
area and the activities that must be performed there. In the AGSS domain, the gates at which
aircraft are docked serve as work areas for the collection of mobile resources that assemble to
help service the aircraft. The gate must therefore be secured for a block of time that encompasses
the earliest time that any of the mobile resources may be scheduled to begin their tasks, and the
latest time that any of them may be scheduled to finish. In this way, it is guaranteed that all of

3Figures A.6 and A.7 present the resource plan and task specifications (respectively) for the baggage-unloading
task defined in our implementation of the AGSS domain. Figures A.4 and A.5 provide the same information for
the late-shifted baggage-loading task.

72

the various tasks to be performed by the mobile resources will be executed during the block of
time for which the gate is secured.

A similar relationship exists when a single resource must be used to perform a series of
different product tasks on the same product. Again, each of the tasks must be performed
during the block of time for which the resource has been secured. If these tasks are represented
as individual product tasks each requiring the same kind of resource, then the scheduler may
secure different resources to perform each product task, thus violating the constraint that the
same resource be used for all tasks.

To handle the situations described above, we have developed a special kind of product task
that we call an aggregate. An aggregate task is a product task that encompasses a collection of
‘child’ product tasks, each of which may or may not require their own resources, and may be
aggregate tasks themselves. An aggregate task need not require its own resource. The aggregate
task structure provides a hierarchical organization of resource availability that may be used to
represent a wide variety of interesting and complex scheduling problems.

For our implementation of the AGSS domain, three product tasks are defined as aggregate
tasks that provide work areas, in the form of airport gates, where the execution of a variety of
required ground servicing product tasks takes place. Similarly, the product task responsible for
transferring baggage between connected flights is represented as an aggregate task that requires
the use of a single baggage truck to perform the sequence of product tasks involved in carrying
out the transfer process.4

The process of representing the various temporal-sequencing constraints involved with
aggregate tasks is discussed further in Section 3.5.1.3.

3.4.2.3 Inter-Order Tasks

The mention of aggregate AGSS baggage-transfer task leads directly to the issue of
representing inter-order tasks within RCSP domains. As we have mentioned earlier, the
ability to represent inter-connection among orders is an important capability for a scheduling
system. We define an inter-order task as a single product task that begins within one order and
ends within another. It may or may not be an aggregate task, and it may or may not require
a resource. From the viewpoint of the scheduler, all inter-order tasks are associated with the
orders from which they originate. When inter-order tasks are joined into the task networks
of their inter-connected orders, they add to the timing constraints within that order that are
already implied by the temporal sequencing of the tasks within the order, and its scheduled
ready time and due date. Further constraints may be imposed between inter-connected orders
as the result of particular scheduling decisions.

In the AGSS domain, the servicing required by connecting flights includes the separate
transfer of both passengers and their baggage between the connected flights. Each of these flights
is represented by a separate order, with its own timing constraints. In our implementation of

4Figures A.21 and A.22 present the process plan and various specifications (respectively) for the Arrival
flight service type and its corresponding aggregate task defined in our implementation of the AGSS domain.
Figures A.23 and A.24, and A.25 and A.26, provide the same information (respectively) for Departure and
Turnaround flights. Figures A.8 and A.9 present the resource plan and task specifications (respectively) for the
aggregate baggage-transfer task.

73

the AGSS domain, the baggage-transfer task is an aggregate task that requires a single baggage
truck. The passenger-transfer task does not require any resources.5

A full discussion of these kinds of contextual constraints is provided in Section 3.5.1.6.

3.4.3 Task-Processing Durations

Each individual resource task must be equipped with the means to inform the scheduler
of the expected amount of time required for performing the task, given the particular resource
being considered, the order and product involved, and the time at which the task is expected
to be initiated or completed. In addition, each task must be able to provide the scheduler with
an estimate of how much time will be required to perform the task on any resource, given only
the product and order involved. These estimates are used by the scheduler in the process of
constructing and maintaining the task network for an order. They assist the scheduler when
making decisions under conditions of uncertainty, and are intended to provide upper bounds
on a task’s duration so that the overall duration for a reservation will only decrease as more
complete information is obtained. Tasks that do not require the services of a resource are
expected to provide stable processing durations to the scheduler at all times.

Setup operations introduce an interesting twist to the class of RCSPs. In many domains,
setup operations are not always required for resources, for example, when the previous use of a
machine is identical to its succeeding assignment. In such situations, the processing duration
of the setup operation, being dependent on the context within which the resource is used,
is subject to change as the schedule develops.6 This situation is a constant concern with
mobile resources, where the amount of required travel time required by a resource can change
frequently during the course of scheduling.

3.5 Constraints

In this section, we provide a description of the kinds of constraints that may be specified
on the resources and tasks involved in the production or servicing of a product.

3.5.1 Hard Constraints

We begin our discussion with descriptions of the various rigid, or non-relaxable constraints
that must be fully and consistently satisfied throughout the scheduling process. These
constraints provide initial information that is used by the scheduler to assess the nature of
a particular scheduling problem.

5Figure A.19 presents the task specification for the passenger-transfer task defined in our implementation of
the AGSS domain. Figures A.8 and A.9 present the resource plan and task specifications (respectively) for the
baggage-transfer task.

6Variable setup operations are indicated by a non-nil value for the VARIABLE-SETUP-DURATION
flag in the definition of a SETUP activity class resource task.

74

3.5.1.1 Technological Constraints

Technological constraints govern the matching of resources with product tasks, given the
particular resource, product and order involved. They are the first in a series of constraints
considered in the process of securing a resource reservation for a particular product task.

Technological constraints may consider a variety of factors, such as the physical compati-
bility between a product and a resource. In the AGSS domain, some airport gates are limited
in the types of aircraft they may handle. Abnormally large or small aircraft may therefore find
the pool of potential gate resources able to process their flights somewhat limited, thus placing
them at a greater disadvantage in finding gates than other flights with normal sized aircraft.

The compatibility between a product and the order to which a task belongs may also
constrain the selection of a particular resource reservation for a product task. In the AGSS
domain, international flights require specific governmental inspection services to be performed
as part of the processing of the flight at a gate. Gates that are not equipped to provide the
appropriate inspection services thus may not be used to service the aircraft used for international
flights. DSS uses these technological constraints to filter out any incompatible resources from
consideration to satisfy a particular service goal for a product task. Resources that are determined
to be incompatible with a service goal (upon its creation), are forever ignored in the process
of both determining the urgency of the subproblem representing the goal, and attempting to
secure a satisfying resource reservation for the goal. Technological constraints are specified in
the form of domain-specific methods that specialize on a resource class, product and order.

3.5.1.2 Temporal-Sequencing Constraints

Temporal-sequencing constraints control the order in which the various operations that
comprise a job may be executed. These constraints are specified as part of the definition of the
process plan template for producing or servicing a product. They are used in the process of
initially determining, and periodically updating, the size of the allowance of each product task,
by providing the bounds on its earliest starting time and latest finishing time.

The temporal-sequencing constraints themselves do not change during the course of the
scheduling process. Instead, the values they control (the earliest starting times and latest
finishing times for each subproblem), are changed through the propagation of the impact of
timing changes that are imposed by the introduction of resource reservations for neighboring
tasks, and by changes in the ready times and due dates for orders.

A serial relationship between two tasks indicates that the first task must be completed
before the second task may begin.7 A parallel relationship between separate groups of tasks
indicates that the execution of each group of tasks may be undertaken during the same time
period.

Figure 3.3 shows a sequence of serially grouped tasks, and illustrates the way in which
the earliest starting times and latest finishing times for these tasks are determined. Figure 3.4
provides the same information for parallel task groupings.

In Figure 3.3, moving from left to right at the top, a critical path analysis takes the earliest
starting time for TASK 1 and increments it by TASK 1’s expected processing duration to produce

7Note that this constraint applies only to the execution of the actual product tasks. The execution of the resource
tasks required to perform consecutive product tasks may legally overlap (except the SERVICE-PRODUCT
resource tasks, and assuming that each product task uses a different resource).

75

TASK 1

resource class

TASK 2

resource class

TASK 3

resource class

LFT
TASK 3LFT

TASK 2LFT
TASK 1

EST
TASK 1

EST
TASK 2

EST
TASK 3

expected
duration
TASK 1

LFT
immediately

preceding tasks

expected
duration
TASK 2

expected
duration
TASK 3

expected
duration
TASK 1

expected
duration
TASK 2

expected
duration
TASK 3

EST
immediately
succeeding tasks

Figure 3.3. Serial Temporal Sequencing in DSS.

the EST for TASK 2, and so on. A corresponding movement from right to left at the bottom
produces the LFTs for each task. Note that the allowances created for each task by their ESTs
and LFTs overlap with each other, thereby providing maximum flexibility for the scheduler to
use in securing resource reservations. Remember also that if a resource is not required by a
task, the processing duration for that task can be used in these calculations, and the size of the
allowance for such a task will be equal to that duration.8

In Figure 3.4, the EST for TASK 1 and TASK 3 are identical, and the EST passed on to any
task(s) immediately following the split is determined by the maximum of the ESTs returned
at the end of each parallel branch (from TASK 2 in this case). The same goes for the LFT
calculation from the other direction. The LFT passed on to any task(s) immediately preceding
the split is determined by the minimum of the LFTs returned at the beginning of each parallel
branch (from TASK 1 in this case). The effect in both cases is to allocate extra slack time to
TASK 3 owing to its requirement of simultaneous operation with TASK 1 and TASK 2.9

3.5.1.3 Task-Aggregation Constraints

A task-aggregation constraint defines the hierarchical grouping relationship (introduced in
Section 3.4.2.2) that may exist between a parent task and a collection of child tasks, to ensure
that the execution of the parent (aggregate) task must completely encompass the execution
times for the child tasks. In these relationships, the child subtasks may not begin executing

8Examples of serial temporal-sequencing constraint specifications can be found in Figures A.31, A.33, and A.35,
which present the process plan definitions for the three different service types used in the TCP application system
described in Section A.2.

9Examples of parallel temporal-sequencing constraint specifications can be found in Figures A.22, A.24,
and A.26, which present the aggregate task definitions corresponding to the three flight types used in our
implementation of the AGSS domain.

76

TASK 1

resource class

TASK 2

resource class

TASK 3

resource class

LFT
TASK 3

LFT
TASK 2LFT

TASK 1

EST
TASK 1

EST
TASK 2

EST
TASK 3

expected
duration
TASK 1

LFT
immediately

preceding tasks

expected
duration
TASK 2

expected
duration
TASK 3

expected
duration
TASK 1

expected
duration
TASK 2

expected
duration
TASK 3

EST
immediately
succeeding tasks

Figure 3.4. Parallel Temporal Sequencing in DSS.

77

until the parent itself has begun executing, and the subtasks must have finished executing by
the time the parent finishes.

Figure 3.5 shows how aggregate tasks and their child tasks are grouped, and how their
earliest starting times and latest finishing times are determined. The process of determining

TASK C1

resource class

TASK C2

resource class

LFT

LFT
TASK C2LFT

TASK C1

EST
TASK C1

EST
TASK C2

EST

expected
duration
TASK C1

LFT
immediately

preceding tasks

expected
duration
TASK C2

expected
duration
TASK C1

expected
duration
TASK C2

expected
duration

AGGREGATE TASK

AGGREGATE TASK

resource class

EST
immediately
succeeding tasks

Figure 3.5. Task Aggregation in DSS.

ESTs and LFTs begins at the level of the child subtasks. After determining the EST for the
initial child subtask(s) and the LFT for the final child subtask(s), these times are passed up to
the parent task and used to set its EST and LFT. It is important to note here that the expected
processing duration for an aggregate task is based on the EST and LFT it inherits from its
child subtask(s). Aggregate tasks therefore do not need the domain-supplied methods that are
ordinarily required to provide processing duration information for product tasks.10

3.5.1.4 Time-Bounds Constraints

Temporal-sequencing constraints provide the means for the scheduler to determine the
earliest starting times and latest finishing times for the tasks that comprise a job, based on the

10The reader is again referred to Figures A.22, A.24, and A.26, for examples of the task-aggregation constraint
specifications used in our implementation of the AGSS domain.

78

current ready time and due date for the order, and the expected processing duration for each
task. There may be, however, additional constraints that serve to further refine these time
bounds. Earliest starting time, latest starting time (LST), earliest finishing time (EFT), and
latest finishing time constraints are defined in terms of time intervals from either the ready time
or due date of a task’s own order, or one of its inter-connected orders.

In the AGSS domain, for example, the task representing the process of enplaning the
departing passengers may not begin any earlier than 15 minutes prior to the aircraft’s departure
time (due date). The EST constraint that enforces this requirement ensures that the enplaning
task will always begin within 15 minutes of the aircraft’s departure time, and no earlier.

An interesting example from the AGSS domain involving inter-order aggregate tasks
serves to demonstrate the importance of handling inter-order time-bound constraints. The
baggage-transfer process is represented as an inter-order aggregate task, with child subtasks
responsible for unloading all of the baggage to be transferred to a particular departing flight,
transferring it, and finally loading it onto the departing flight aircraft. It is therefore necessary
that the unloading of all transfer baggage be completed while the originating flight aircraft is
still docked at its assigned gate, and that the loading of all transfer baggage onto a departing
flight aircraft begin no earlier than a fixed time after that aircraft has been docked at its own
assigned gate. These constraints are specified using LFT and EST constraints.

The LFT for each baggage-transfer unloading task (one for each connected flight) are
constrained by the due date for the originating flight aircraft, while the earliest starting times
for each of the baggage-transfer loading tasks are constrained by the ready time for the (transfer)
destination flight aircraft.

These constraints help to refine the current allowance for a task whenever the ready time
or due date for its order, or any relevant inter-connected orders, is modified. Note, however,
that the time bounds for a task may not be altered to the point of violating the limits already
established by the temporal-sequencing constraints. That is, these new constraints may allow
a task to start later than previously allowed, but not any earlier. Similarly, they may force a
task to be finished earlier than previously allowed, but not any later. LST and LFT constraints
lower the upper limit on the allowance for a task, while EFT and EST constraints raise the
lower limit.

3.5.1.5 Task-Processing-Duration Constraints

The total amount of time required to perform a particular resource task is determined by a
number of constraints, including the actual task to be performed, the resource or type of resource
being considered to perform the task, the product or type of product on which the task will be
performed, and the order or type of order to which the task belongs. Task-processing-duration
constraints are implemented by methods defined for each task that specialize on the resource
and the product involved, and determine the expected amount of time required to perform any
individual task.

The major factor in the calculation of task durations for SERVICE activity class resource
tasks is the nature of the task itself, although it is rarely the only factor involved. Most often,
the processing duration of a particular task is further affected by the type of product being
serviced or produced. For example, the size of the product may have a significant impact on
the processing duration. Servicing tasks performed on larger products generally take longer to
perform. The type of resource performing the task may also affect the processing duration,

79

because different kinds of resources may perform the same task in different ways, and therefore
at different speeds. Finally, the type of the order to which a task belongs may also affect the
processing duration. Some orders require more from a particular task than do other orders,
thereby increasing the task’s duration in that particular situation.

For SETUP and RESET activity class resource tasks, the durations are also affected by the
resource, product and order involved. In the case of SETUP tasks, however, the duration may
be further constrained by the previous type of usage for the resource, in that some sequence
of actions may have to be performed to shift the resource from its previous type of usage and
prepare for its next assignment. Such setup operations must be specifically declared as part of
a task’s definition.

The EN ROUTE activity class resource tasks for mobile resources are generally constrained
by the type of resource doing the traveling, and the amount of distance to be traveled. The
amount of time required for traveling depends on the exact current location of the resource, its
exact required destination, and the speed with which it is expected to be able to get from the
former to the latter.

To help determine the expected travel time durations for EN ROUTE activity class
resource tasks, DSS provides two kinds of constraints that specify the initial and final lo-
cations to be inhabited by a mobile resource in the process of performing a particular
servicing task. These constraints are called BEGINNING-LOCATION-CONSTRAINTs and
ENDING-LOCATION-CONSTRAINTs (BLCs and ELCs, respectively). They record (respec-
tively), the initial destination required for a mobile resource performing a particular task
sequence, and its final location upon the completion of its duties. BLCs and ELCs may vary
in the degree to which they specify exact locations within the factory environment. A location
may be specified explicitly, such as a particular stationary resource or shop location that provides
a work area for other resources, or indirectly, by means of a function of a particular object, such
as the closest location to a particular stationary resource or shop location.

These constraints are imposed by the first and last resource tasks in a sequence of tasks
performed by a mobile resource. They are considered in the process of securing a mobile
resource to perform the task sequence, and also in the case where the previous ending location
of a mobile resource is changed, in which case DSS must ensure that there is still enough time
for the resource to get from its new ending location to the initial destination of its succeeding
reservation. Similarly, any potential change in the beginning location of a mobile resource,
often brought about by a change in work areas, must also ensure that there is still enough
time for the resource to get from the final destination of its preceding reservation to the
new beginning location. BLCs and ELCs are defined as part of the task-processing-duration
calculation methods.

The SETUP, SERVICE and RESET activity class resource task-processing durations vary
over the range of products, resources and types of service, but remain constant over time.
Similarly, the traveling time duration for EN ROUTE tasks varies over the range of potential
resources. Finally, mobile resource traveling speed varies over resource class, but remains
constant over time.

The modification of previously determined processing durations for EN ROUTE activity
class resource tasks is achieved through the resource reservation refinement mechanism discussed
in Section 4.2.6.

80

3.5.1.6 Contextual Constraints

Contextual constraints are hard constraints that are imposed on product task subproblems
as the result of previous scheduling decisions. They primarily serve to further limit the options
available for satisfying future subproblems, by forcing future decisions to conform to the
restrictions introduced by decisions made earlier in the scheduling process. DSS identifies two
classes of contextual constraints, one for ensuring compatibility among the various types of
equipment used to service a job, and the other for ensuring the proper allocation of travel time
to mobile resources moving through the factory environment in the course of reporting to their
designated locations and performing their assigned servicing tasks. These constraints are only
in effect as long as the previous scheduling decisions that introduced them are maintained. We
now discuss these two classes of contextual constraints in further detail.

3.5.1.6.1 Equipment-Compatibility Constraints

Equipment-compatibility constraints are technological constraints that are introduced
whenever the selection of a particular resource for performing a particular servicing task serves
to constrain the choice of potential resources for performing a related servicing task. The
choice of a specific resource or class of resource to perform a particular task often requires that
a certain other resource or class of resource be used to perform a related task.

For example, in the AGSS domain, the refueling operation may be performed by either
a fuel truck or a pump truck, depending on the kind of refueling equipment provided by the
particular gate at which an aircraft is to be serviced. Fuel trucks have their own mobile fuel
tanks that are refilled at a central fuel tank at the start of each refueling operation. Pump trucks,
on the other hand, work in conjunction with an underground fuel tank that may be provided
by a gate. The selection of a pump truck to perform the refueling operation thus introduces
a contextual equipment-compatibility constraint on the subproblem responsible for securing
the gate, thereby forcing it to consider only those gates that are equipped with underground
fuel storage tanks. If a fuel truck is used instead, then there is no constraint imposed on the
gate-selection process. Any gate may be used, assuming it satisfies all other constraints. If a
gate is secured before the refueling subproblem has been solved, then the refueling subproblem
is only constrained if the gate is not equipped with its own underground fuel storage system,
at which point a pump truck may no longer be used to perform the refueling operation.

The introduction of a contextual equipment-compatibility constraint as the result of solving
a particular scheduling subproblem requires DSS to update the urgency of any affected and still
unsatisfied subproblems whose ability to secure a resource reservation has just been further
limited by the new constraint. Such a restriction may further decrease the number of resources
or kinds of resources that may be used to satisfy the constrained subproblem, thus increasing
its urgency.

3.5.1.6.2 Movement Constraints

As we have alluded to earlier, the inclusion of mobile resources into the scheduling problem
requires that an important kind of contextual constraint regarding the movement of resources
throughout the factory environment be incorporated into the scheduling process. In this case,
the notion of equipment compatibility is extended to cover the problem of limiting the required
travel distances among the pool of candidate resources considered for servicing a product.

81

The speed at which a mobile resource is able to travel acts as a contextual constraint on
any related subproblems providing work areas for that mobile resource. This type of constraint
acts to limit the choice of the possible stationary resources that may be selected to provide work
areas, based on how much time has been allocated to the mobile resources to report to their
designated work areas. The amount of travel time allocated to a mobile resource to get from
one location to another constrains both of the subproblems providing (or determining) those
locations. If the reservation of a stationary resource responsible for one of those locations has
not been made before any of the mobile resources that depend on that stationary resource have
been secured, then the set of stationary resources that may be used to satisfy the stationary
resource subproblem is limited to those resources that are within the travel distances allowed by
the travel times already allocated to the previously secured mobile resources. Such a situation
happens frequently when a strict ordering is not imposed on the process of satisfying the
scheduling subproblems that forces all necessary stationary resources to be secured before any
of the mobile resource subproblems are solved. To allow complete flexibility in the scheduling
decision-making process, DSS is capable of satisfying these contextual-movement constraints so
that the order in which the scheduling subproblems are solved is not dependent on whether a
required resource is mobile or stationary.

The issue of flexibility with regard to contextual-movement constraints also arises in the
process of determining how much time to allocate to a mobile resource reservation to allow
for travel between as yet undetermined locations. The amount of time allocated for this
movement depends on the present state of problem solving, specifically how much information
the scheduler has about a mobile resource’s present location, and the location to which it
must report. Given this information, the scheduler has to decide how much time should be
allocated for the required movement. Upon making this decision, the scheduler introduces
a contextual-movement constraint on the subproblems responsible for the resource’s previous
and required locations. The decisions about each affected subproblem must now be made
in such a way as to satisfy the new contextual-movement constraint imposed by the specific
allocation of time for traveling between the two undetermined locations.

If anything less than an appropriate maximum amount of time is allocated for travel between
undetermined locations, then the contextual-movement constraint becomes restrictive, making
the process of securing later movement-constrained subproblems more difficult. To maintain
flexibility within the developing schedule for use in handling future problems and avoiding
difficulties related to over-constrained subproblems, DSS operates under a policy of allocating
the maximal amount of time necessary to get from one location to another when either of those
locations has yet to be determined. In this way, flexibility is maintained so that the process of
securing the resources that provide those undetermined locations is not so tightly constrained
as to severely limit the set of possibly satisfying resources, and create the need for substantially
more computational effort on the part of the scheduler.

The domain provides either exact or maximal estimates of the amount of time required for
any particular mobile resource movement. A maximal estimate provides enough time for the
resource to get from any location where it may reside, to any location to which it may have to
report. The travel time duration is determined using the values specified by the relevant BLCs
and ELCs for each potential mobile resource. The scheduler may therefore make travel time
allocations that do not introduce further constraints on the overall scheduling problem, and
may be refined whenever more information about the context within which a mobile resource
will be used becomes known.

82

DSS provides three types of contextual-movement constraints for constraining the resource
selection process. Each of these forms is described below:

Anchored-Distance Constraint

An ANCHORED-DISTANCE-CONSTRAINT is used to constrain the selection of a sta-
tionary resource to those resources within range of a particular location specified by the
reservation for a previously secured mobile resource. For example, suppose that a mobile
resource must first report to a designated loading area within the factory before reporting
to an assigned work area to perform its required product servicing task. This travel activity
becomes part of the resource plan for the task, and thereby limits the set of possible work
areas to those that may be reached by the mobile resource when traveling from the loading
area, within the amount of time previously allocated for that travel activity.

An extension of this constraint allows for indirect specification of the anchored location,
in the case where the exact location from which the mobile resource will be required to
travel is dependent on the location of the selected stationary resource. Taking our previous
example further, consider the case where a factory is equipped with several loading areas,
and the mobile resources are required to perform their initial loading activities at the
loading area associated with the selected work area. In this case, the actual loading area
to be used will not be determined until the stationary resource providing the work area is
selected, so the constraint must refer to a location that is specifically determined for each
candidate stationary resource being considered. The travel time previously allocated to
the travel activity for the mobile resource thus specifies how much time is available for
getting the mobile resource between the work area and its appropriate loading area.

It is important to note that these contextual-movement constraints need not be limited
to situations involving the use of mobile resources. Distance constraints may be imposed
by non-resource-requiring tasks, with the necessary ranges being determined according to
specific flow rates instead of resource class traveling speeds.

Inter-Order-Distance Constraints

The INTER-ORDER-DISTANCE-CONSTRAINT is used to constrain the selection of
stationary resources for inter-connected orders. Inter-connected orders frequently require
that various materials be transported between them using mobile resources. As a result,
the selection of the stationary resources involved with the servicing of the inter-connected
orders may be constrained by the amounts of time allocated to the travel activities involved
in the various transportation tasks.

In these situations, the selection of a stationary resource for either order constrains the
selection of other stationary resources within the immediate order and any inter-connected
orders.

It is again important to note that the tasks through which these inter-order-distance con-
straints are imposed need not involve the use of a mobile resource. In our implementation
of the AGSS domain, any two connecting flights are linked by both a baggage-transfer
task, as well as a passenger-transfer task. The former uses the traveling speed of a baggage
truck to determine the maximum allowable distance between the gates used to service the

83

two connecting flight aircraft. The latter uses an estimate of the standard walking speed
of the transferring passengers.

Initial-Travel-Distance Constraints

The INITIAL-TRAVEL-DISTANCE-CONSTRAINT controls the choice of stationary
resources to ensure that enough time is provided for any involved mobile resources to
get from their previous locations, as specified by the ending locations of any immediately
preceding reservations, to wherever they will be needed.

For example, consider a supply truck that must report to a series of work areas (one work
area per reservation). The selection of each work area must allow the truck to get from
the immediately preceding work area to the work area being considered, and from the
work area being considered to the immediately succeeding work area.

The process of selecting a stationary work area resource is thus constrained by all of the
reservations for the mobile resources that must use the work area. These mobile resources
must be able to get to the work area from where they were previously used, and they must
also be able to get to their next assignments.

3.5.2 Soft Constraints

The previously described constraints are all hard constraints that may not be relaxed
during the scheduling decision-making process, unless, in the case of contextual constraints,
the reservations responsible for their introduction are themselves canceled. This leaves a lot
of constraints for the scheduler to satisfy, with little apparent room for flexibility. In even
slightly constrained situations, the scheduler must be able to relax some constraints in order to
construct a feasible schedule. The constraints that DSS is able to relax are the ready times and,
primarily, the due dates of the orders it receives.

Note that ready times may not be moved any earlier—they may only be moved later. The
assumption is that orders may be released only when they are ready, and no earlier, and the
scheduler has no control on when orders are ready. Due dates, on the other hand, may be
moved either forward or backward, depending on the process plan for the order. In fact, in
many factory-scheduling domains, it is always desirable to move due dates earlier if the schedule
allows. DSS uses such an approach if the process plan for an order requests that its schedule be
compacted as much as possible. Otherwise, the due date will only be pushed later as conditions
(generally relating to high levels of resource contention) warrant.

Due dates are important constraints that must be met to satisfy the demands of the orders.
For lower priority orders, missing the due date is a minor infraction that may result in a slight
increase in overall penalties. For more important orders, however, a delay may have a major
impact on the quality of the final schedule, and result in significantly higher penalties. The
penalties for such delays vary among order types, order priorities, and scheduling domains.

In the long run, the meeting of due dates for all orders is a primary goal for any scheduling
system. Regardless, real world situations frequently present scheduling systems with no other
options but to sacrifice on-time production for the sake of schedule feasibility. DSS is no
different. If a reservation may not be secured, by any means, within the allowance provided
to a product task, then the due date for the job containing the task will be sacrificed to find a

84

reservation at the next best time. In situations involving inter-connected orders, the shifting
of an inter-order task may force the ready time for an inter-connected order to be moved
downstream, thus forcing the order to wait past its desired ready time before it may be released
to the factory.

Whenever a decision involving the introduction of lateness or tardiness into an order’s
developing schedule is made, the penalty to be incurred, weighted according to the specific
priority of the order, is always considered, in an attempt to minimize the cost of all such
relaxation.

C H A P T E R 4

THE DSS SCHEDULING PROCESS

The Dynamic Scheduling System is an event-driven, operation-based scheduling system.
At the most basic level, DSS works by solving a series of localized and independent scheduling
subproblems, each requiring either the securing of a resource to perform some task, or the
refinement of an existing reservation. The intermittent occurrence of certain real-world events
triggers other scheduling activities, such as the instantiation of new task networks consisting
of interrelated subproblems in response to order receptions, and the cancellation of existing
resource reservations in response to the notification of resource failures.

The main control mechanism of DSS comprises an agenda-based process that selects and
executes the top-rated subproblem on the agenda at the beginning of each problem-solving
cycle. During each cycle, new subproblems may be instantiated and added to the agenda, and
existing subproblems may be modified, and their positions on the agenda updated, as the result
of internal actions taken, or external events having occurred during the cycle. DSS is finished
with the overall scheduling process when the agenda is finally emptied. At this point it will
either have produced a feasible schedule for the set of orders it received, or indicated that no
feasible schedule could be produced under the current environmental conditions.

As discussed earlier, a domain description supplies DSS with information about the types
of orders, products, resources, tasks, constraints, and process plans that comprise a particular
RCSP. Prior to the initiation of the scheduling process, DSS is provided with the description of
a particular layout indicating all of the available resources and their initial locations within the
environment. The complete set of orders to be scheduled, also provided by the domain, may
be presented to DSS either periodically or in a single batch, or using a combination of the two,
as specified by the user.

Before discussing the specifics of our opportunistic, least-commitment scheduling approach
as implemented within DSS, we first highlight the important aspects of the implementation
that help achieve the contributions of this work.

Handling Inter-Connections Among Orders

Inter-order tasks serve to connect otherwise independent orders. This introduction of
dependency impacts on a number of decisions that involve the affected orders. The
mechanisms responsible for securing resource reservations and determining the urgency
of the scheduling subproblems are both designed to consider the effects of these inter-order
connections on the decision-making process.

Explicitly Represented Slack Time

The explicit representation of the slack time that is available within the developing order
schedules helps to inform DSS in the process of selecting appropriate methods for securing
resource reservations. This order slack provides localized areas within which selected
reservations for operations may be introduced with the guarantee that other areas of
the schedule will not be affected, thus limiting the ramifications of such decisions and
reducing the amount of constraint propagation required.

86

Consultation of Multiple Perspectives

The job of determining the urgency of the subproblems requiring the attention of the
scheduler is handled by a rating mechanism that considers a wide variety of factors in
the process of evaluating each specific subproblem. When combined with the highly
opportunistic control mechanism, this allows for quick and effective reaction to the
changing environment, by providing timely and accurate assessments of subproblem
urgency as the environment evolves.

Maintaining Flexibility Through Least-Commitment Decision-Making

Flexibility within the developing schedule is maintained through the use of a least-
commitment decision-making process that attempts to limit the number of constraints
introduced by any particular scheduling decision by preserving slack time. The mainte-
nance of flexibility helps to preserve the range of options available in the future for dealing
with outstanding, and often highly constrained, subproblems.

Fine-Grained Opportunistic Processing

The operation-level granularity of the overall scheduling problem combined with an
agenda-based control scheme provides the means for implementing a fully opportunistic
scheduling approach. The scheduler is not forced to adhere to any previously established
strategic scheduling policy, and is instead able to shift its focus of attention as necessary,
according to the current state of problem-solving as indicated by the urgency of the
unsolved subproblems remaining to be satisfied.

We begin our discussion of the DSS scheduling approach with a description of the
blackboard hierarchy used to represent all of the necessary decision-making structures. Our
description of the actual scheduling process explains the sequence of activities triggered
by each order reception, including the methods for determining subproblem urgency and
selecting the potential methods for subproblem solution. We then describe the various
resource reservation-securing knowledge sources implemented within DSS. The remaining
sections describe the processes of re-securing a reservation (following a cancellation), refining a
reservation, and processing a resource failure.

4.1 Implementation Details

DSS is a blackboard system [Erman et al., 1980], implemented in Common Lisp [Steele,
1990] and the Common Lisp Object System (CLOS) [Keene, 1989], and using the Generic
Blackboard System (GBBTM) [Blackboard Technology Group, 1992].1

The blackboard architecture provides an effective means for representing, organizing, and
manipulating the various components that constitute a knowledge-based scheduling system.
Multi-dimensional structured blackboard spaces are used to store the various units manipulated
by a problem-solving process. In DSS, these units include the orders that require production or
servicing, the resources used to perform the necessary scheduling tasks, and the networks of task
nodes that collectively represent the developing schedule for a set of orders. The scheduling

1The primary development platform has been the Texas Instruments Explorer II Lisp machine.

87

knowledge is encoded within knowledge sources (KSs) that are triggered either explicitly or
through interaction with the units stored on the blackboard spaces. The execution of these
KSs contributes to the generation of a schedule by modifying existing units and creating new
ones as the result of specific scheduling decisions.

4.1.1 The DSS Blackboard Hierarchy

GBB provides the means for defining blackboard hierarchies made up of nested blackboards
and spaces. These hierarchies form trees whose leaves are the spaces on which the various
blackboard units are stored. Figure 4.1 provides a view of the entire blackboard hierarchy
defined for DSS.

Order

Scheduler Simulator

Service Goal
Refinement Goal

Goal

Model Resource
Resource Projector
Resource Manager

Resource

Task Node
Resource Task Node
Slack Node
Task Network

Schedule

Pending
Executed

Events

Application Data

Product
L E G E N D

Space Name

Blackboard Name

Resource
Product
Defined Location
Undefined Location

World

Figure 4.1. DSS Blackboard Hierarchy

The SCHEDULER blackboard is used to store those units directly manipulated by DSS

in the course of constructing a schedule for a particular RCSP. It is comprised of three
sub-blackboards and two additional spaces. These constituents are described below.

Schedule Blackboard

The SCHEDULE blackboard is used to maintain the actual developing order and resource
schedules for a particular scheduling problem. It contains four spaces for storing task

88

nodes, resource task nodes, slack nodes, and task networks. The TASK NODE space
represents the schedule from the perspective of the individual tasks comprising the jobs,
while the RESOURCE TASK NODE space represents the schedule from the more detailed
perspective of the resources. The TASK NODE and RESOURCE TASK NODE spaces provide
dimensions for indexing their respective units by time and type of task. The SLACK NODE
space represents the order slack that is incorporated into the developing schedule and used
to distinguish existing areas of flexibility residing within the order schedules. The slack
nodes stored on this space are indexed by time and the type of the task with which they
are associated. The TASK NETWORK space stores the task networks that group together
the individual task-nodes for each order and maintain their current starting and finishing
times. The task network space provides dimensions for indexing task network units by
time, and feasibility (to indicate order schedule completion).

Resource Blackboard

The RESOURCE blackboard is used to store the various resource representations that
are used by DSS to construct a schedule. It contains three spaces. The resource units
that correspond to the actual resources provided in a layout are stored on the MODEL
RESOURCE space. These model-resource units are secured and released by DSS throughout
the scheduling process. They are indexed by transitional time and state pairs that represent
their expected behavior at any point in time. DSS model-resource units are similar
to the resource models used in ACS.1 [Pease, 1978], a knowledge-based planning and
scheduling system designed to assist in the development and execution of operational
plans. Additionally, the time and state pairs used to represent the scheduled activities for
model resources in DSS are similar to the scroll tables employed by ACS.1.

Projection is performed by some of the reservation-securing KSs to aid with some of the
more complicated scheduling computations. Special copies of the model resources, called
model-resource projector units, are defined for this purpose. In the case of attempting to
preempt or right shift existing resource reservations, projection units for the resources
involved are manipulated (instead of the actual model resources) to determine the effects
of certain actions without having to specifically execute them. These projector units are
stored on the RESOURCE PROJECTOR space, and are indexed identically as the model
resources. A projector unit is created for every model-resource unit stored on the MODEL
RESOURCE space.

Finally, the RESOURCE MANAGER space stores the resource manager units that maintain
information about the current levels of usage, demand and availability for each resource
class, and manage the securing and releasing of the resources selected by the reservation-
securing KSs. The resource manager units are indexed by time and status pairs that
represent the levels of resource usage, demand and availability at any point in time.

Goal Blackboard

The GOAL blackboard contains two spaces. The SERVICE GOAL space provides an
overview of the current demand for resources by storing the service goals for the sub-
problems that correspond to the resource-requiring product tasks. The SERVICE GOAL
space is heavily structured. Service goals are indexed by time, type of task and type

89

of resource. They are also indexed by satisfaction (indicating whether or not their
corresponding subproblems have been solved), and activation (indicating whether DSS

may begin attempting their solution). Finally, they may be indexed by the histories of
their ratings and allowances over time. The REFINEMENT GOAL space stores the goals that
guide the reservation refinement mechanism. Refinement goals are activated whenever
new information is obtained that helps to further establish the context for previous
decisions made under uncertain conditions. Their activation leads to the triggering of the
reservation refinement process described in Section 4.2.6. Refinement goals are indexed
by time, type of task, type of resource, satisfaction and activation.

Order Space

The ORDER space stores all of the order units received by DSS. Placement of an order
onto this space triggers the task network instantiation process described in Section 4.2.1.
Order units are indexed by ready time, due date time, number and service type.

Product Space

The PRODUCT space stores the product units that correspond to the actual products that
require servicing. These model-product units are indexed by order number and service
type.

The SIMULATOR blackboard provides the connection between the (simulated) real world
and the internal representation of that world manipulated by DSS in the process of producing a
schedule. DSS uses the simulator for two purposes. First, as an event-driven scheduling system,
DSS operates by processing a queue of world events. For example, it is notified of incoming
orders by the reception and processing of RECEIVED-ORDER events that are taken off of a
pending queue of world events. All communication between the “real world” and DSS occurs
via this queue.

The more intensive use of the SIMULATOR blackboard involves running DSS in a full
simulation mode, where the execution of its scheduling decisions may be fully simulated.
This mechanism provides the means for further ensuring the feasibility of DSS’s scheduling
decisions, and introducing unexpected real-world developments, such as resource failures and
task execution delays into the scheduling process.2

The SIMULATOR component blackboards and their spaces are described below.

World Blackboard

Whether running in full simulation mode or not, the WORLD blackboard is always used
to store the units representing the actual physical resources that are provided by a layout
loaded into the DSS environment to be used for producing schedules. These physical
resource units are initially placed in two different areas, namely the RESOURCE space and
the DEFINED LOCATION space. The RESOURCE space stores all of the physical resource
units. The DEFINED LOCATION space is used for keeping track of the exact current location
of the resources within the factory environment during the execution of a schedule. The
UNDEFINED LOCATION space is used as a temporary storage area for mobile resources that

2The ability to introduce and react to task execution delays has not yet been implemented in DSS.

90

are currently moving within the factory environment such that their exact location may
not be determined. The PRODUCT space is used to store the product units representing
the actual physical products that require the servicing or production requested by the
orders. These physical product units are also moved between the DEFINED LOCATION
and UNDEFINED LOCATION spaces as their locations change during the execution of a
schedule.

Events Blackboard

The EVENTS blackboard is used to implement the simulated world event queue. The
PENDING space maintains the queue of pending world events, all of which must be
processed by DSS in order for it to complete its overall scheduling task. Once events
have been taken off of the pending queue and executed, they are placed onto the queue
maintained on the EXECUTED space.

Application Data

The final blackboard hierarchy provided by DSS is rooted by the APPLICATION DATA black-
board, within which a particular scheduling domain may define additional blackboards
and spaces for use in implementing a specific dynamic RCSP.

4.1.2 Agenda-Based Control

GBB provides an agenda-based control shell for managing the execution of DSS. Each
problem-solving cycle is defined by the execution of a single KS, in the form of a knowledge source
activation (KSA). An agenda containing all pending KSAs is maintained by the GBB-provided
control shell. At the beginning of each problem-solving cycle, the highest rated KSA is removed
from the agenda and executed. During the execution of a KSA, all internally triggered events
are collected, for processing at the end of the cycle. The processing of these events generally
results in the activation of additional KSs, which are then rated and placed onto the agenda.
Execution completes when the agenda is emptied.

4.1.3 Event-Based Processing

As mentioned earlier, the DSS scheduling process works by reacting to both internal and
external events. Internal events are triggered as the result of blackboard space updates and
unit modifications caused by the various scheduling KSs. Their processing is handled by
GBB, as part of the agenda-based control mechanism described above. DSS also manages to
process some internal events of its own, specifically the re-rating of any service goals, and
their stimulated reservation-securing KSAs, that are affected by the actions taken during the
execution of another KSA.

External events are generated by the simulator as the result of the scheduling decisions
made by DSS. DSS is notified of resource failures through user-inserted resource failure events.3

At the end of each problem-solving cycle, the queue of pending external events is processed by
DSS. Each processed event is moved to the executed event queue following its execution.

3The periodic introduction of resource-servicing-completion delays has not yet been implemented in DSS.

91

4.1.4 Generic Problem-Solving Knowledge Sources

The collection of generic problem-solving KSs defined to perform the required scheduling
activities in DSS is displayed in Table 4.1. Included are six reservation-securing KSs (comprised
of standard and relaxed versions of three different reservation methods), a meta-level KS for
selecting from among these KSs, and a KS for refining existing reservations. The collection is
rounded out by a problem-instantiation KS, and a resource-failure-processing KS. Each of the
ten KSs is either triggered directly by another KS, or as the result of the modification of some
blackboard space or unit instance. Detailed discussions of each of these KSs appear later in this
chapter.

4.2 The Scheduling Process

We begin our discussion of the DSS scheduling process with a description of the sequence of
scheduling activities that is set into motion following the reception of an order, and continuing
through the process of assigning specific resources to tasks. As part of this discussion, we
include some portions of DSS execution trace output. Figure 4.2 provides a general view of the
scheduling process implemented within DSS, illustrating the standard flows of control employed
for scheduling orders and reacting to the events triggered by certain DSS scheduling actions.

Following the reception of an order, DSS instantiates a network of task-level subproblems
according to the process plan template for the particular type of service required. This step
is described in Section 4.2.1. The subproblem-instantiation process leads to the allocation of
slack time and the creation of service goals that correspond to each resource-requiring task.
The urgency of a service goal is determined by the multiple-perspective goal-rating mechanism
presented in Section 4.2.2. Finally, the reservation-selection process takes responsibility for
finding resource reservations to satisfy each service goal. The KS that manages this process
for each service goal is described in Section 4.2.3. The six reservation-securing KSs provided
in DSS are presented in Section 4.2.4. Many of these basic steps trigger additional activity for
the scheduler in maintaining an up-to-date view of the current state of problem-solving. For
example, the allocation of slack time to newly instantiated subproblems requires the urgency
ratings of related (existing) subproblems to be recalculated. In addition, the actions taken by
the various reservation-securing KSs can have a variety of direct and indirect effects on related
subproblems, leading to alteration of their allowances, recalculation of their urgency ratings,
and re-securing of their reservations.

In each problem-solving cycle, DSS invokes the highest rated KSA from the agenda by
executing the appropriate KS on the KSA’s stimulus data. The various scheduling decisions
made during a problem-solving cycle may cause certain KSAs residing on the agenda to have
their ratings, and thus their positions on the agenda, adjusted. Two of the most frequent
methods of modifying the agenda arise from the cancellation of existing reservations, and the
modification of unsatisfied service goal allowances. The actions forced by these events are
discussed in Sections 4.2.5 and 4.2.2, respectively.

In addition to the reservation-securing KSs, there is also a Reservation Refinement KS that
is responsible for taking an existing reservation that was made under uncertain conditions, and
re-assessing its requirements whenever newer, relevant information is obtained. The reservation
refinement process is discussed in Section 4.2.6. Finally, the response to unexpected resource
failures is described in Section 4.2.7.

92

Table 4.1. Generic Problem-Solving Knowledge Sources Defined in DSS.

Instantiate
Task Network

Responsible for instantiating all necessary problem-solving entities
for a particular order (or set of inter-connected orders). Initiates the
scheduling process for each order received.

Select
Reservation-Securing

Method

Controls the sequence in which reservation-securing KSs are trig-
gered to solve a particular subproblem.

Assignment Attempts to produce a resource reservation within the allowance of
a subproblem.

Preemption Attempts to produce a resource reservation within the allowance of
a subproblem, by preempting existing reservations as necessary.

Right Shift

Attempts to produce a resource reservation, either exceeding, or
outside of, the allowance of a subproblem, by waiting for the next
available resource, delaying any affected downstream reservations,
and extending any affected parent reservations, as necessary.

Relaxed
Assignment

Attempts to perform a standard Assignment for an over-constrained
subproblem, relaxing offending reservations as necessary.

Relaxed
Preemption

Attempts to perform a standard Preemption for an over-constrained
subproblem, relaxing offending reservations as necessary.

Relaxed
Right Shift

Attempts to perform a standard Right Shift for an over-constrained
subproblem, either relaxing, or canceling, offending reservations as
necessary. Will not fail to secure a reservation (if a resource of the
proper class exists).

Reservation
Refinement

Performs the refinement of previously uncertain resource reserva-
tions following the establishment of additional contextual informa-
tion.

Process
Resource
Failure

Determines the impact of a resource failure. Cancels all obviated
reservations and reactivates their corresponding subproblems.

93

Direct
Constraint
Propagation

Indirect
Constraint
Propagation

Method Failure,
Preemption,
Cancellation

Indirect
Constraint

Propagation

Standard Order-Scheduling Flow

Reactive Scheduling Flow

Order
Reception

Subproblem
Instantiation

Slack
Allocation

Urgency
Determination

Reservation
Selection

Figure 4.2. An Overview of the DSS Scheduling Process.

4.2.1 From Order Reception to Subproblem Instantiation

The operation-level granularity of the DSS scheduling approach is achieved through a
process of instantiating a collection of individual product task subproblems for each order
received by the system. The solution of all of the subproblems for a particular order results in a
schedule of resource activity whose execution will complete the production or servicing of the
product as requested by the order. The basic sequence of steps involved in the processing of a
newly received order and the generation of its corresponding subproblems is engineered by the
Instantiate Task Network KS. Additional actions are performed as the result of internal events
that are automatically triggered by the execution of these steps. We first present an overview of
this sequence, and then discuss each step in greater detail.

1. Determine the type of servicing requested by the order and assess the appropriate process
plan to implement that service.

2. Instantiate a task node for each task specified in the process plan.

3. Determine the earliest starting time and latest finishing time bounds for all of the new
task nodes that require resources, and allocate the necessary time for all tasks that do not.

94

4. Create, initialize, and activate a service goal for each resource-requiring task node.

4.2.1.1 Task Network Instantiation

The Instantiate Task Network KS is triggered immediately following the reception of a
RECEIVED-ORDER event and given the highest possible execution rating, under the assumption
that it is preferable for the scheduler to react as quickly as possible to each order that it receives.

To define a particular type of servicing for a product, a process plan template is specified,
indicating the required product tasks and the sequence in which they must be performed.4

We use the term task network to refer to the instantiated sequence of operations specified by
a process plan template. A task network is a directed graph (containing no cycles) of product
tasks that are connected by arcs indicating temporal sequencing constraints (see Section 3.5.1.2)
and task aggregation constraints (see Section 3.5.1.3). A single task network is instantiated for
each order received by the scheduler. It represents the developing process plan for an order, and
maintains the expected starting and finishing times for the plan, corresponding to the order’s
desired ready time and due date.

After determining the type of servicing required by an order, the Instantiate Task Network
KS instantiates the necessary scheduling units according to the relevant process plan template.
It then begins a top down instantiation process that creates all of the necessary task nodes to
represent the required product tasks. This instantiation process continues down through the
required resource tasks for each product task, until all of the necessary task units have been
created and linked into the final task network.

Once the task network and all of its task nodes have been fully instantiated, the Instantiate
Task Network KS must analyze the task network to determine the earliest starting time and latest
finishing time for each resource-requiring task node. The allowance for a resource-requiring
task defines the total amount of time that is available to perform the task. Any secured resource
reservation that is within the bounds of the allowance is guaranteed not to introduce any
conflicts with the rest of the schedule or incur any delay for its order. The calculation of these
time bounds is performed using a Critical Path Analysis [Kelley and Walker, 1959], which
involves a forward pass through the network to determine the absolute earliest starting time
for each resource-requiring task, and a backward pass to determine the absolute latest finishing
time, again, for each resource-requiring task. Figures 4.4 and 4.5 illustrate the results obtained
by each of these steps for a typical newly instantiated task network. The task network in
presented in these figures is taken from our implementation of the ARM system described in
Appendix A.1. Detailed presentations of the ground servicing activities required to service
Turnaround (and other) flights are provided in Sections A.1.6 and A.1.5.) Figure 4.3 provides
a legend for both of these figures.

The forward pass starts with the initial set of non-aggregate task nodes and the ready time for
the order, and moves forward through the network, calculating the earliest possible starting time
for each task based on the earliest EFT among all immediately preceding tasks, and considering
any further constraints on its starting time. The EFT for a task is determined by adding its
expected duration to its EST. The second pass starts with the final set of non-aggregate task
nodes and the due date, and moves backward through the network, calculating the latest possible

4The DSS process plan template is similar to the ACS.1 process model [Pease, 1978].

95

Task Node Annotations:

Early and Late
Task Shift
Preference
Indicators

EST, LST, EFT, LFT Constraints

Temporal
Sequencing
Constraint

Slack Nodes
Two (left and right) per
Resource-Requiring

Non-Aggregate
Task Node

Resource
Reservation
Allowance

Bounds

EST LFT

Non
Resource-
Requiring

Resource-
Requiring Aggregate

PRODUCT
TASK NAME

required resources

PRODUCT TASK NAMEPRODUCT
TASK NAME

required resources

Task Nodes

Aggregate task nodes appear at the
top of the shaded region that contains
their sub-tasks.

Notes:

Expected
Task

Duration

Non Resource-
Requiring Task

Starting and
Finishing Times

start
time

end
time

Figure 4.3. Task Network Component Legend.

finishing time for each task based on the latest LST among all immediately succeeding tasks,
and considering any further constraints on its finishing time. The LST for a task is determined
by subtracting its expected duration from its LFT. For non-aggregate resource-requiring tasks,
the expected task duration is determined by averaging the minimum and maximum expected
durations over all of the resource classes that may possibly be used to perform the task. For
resource-requiring aggregate tasks, their expected durations are inherited from the time bounds
of their outermost children. For non-resource-requiring tasks, the exact expected duration
is readily determined. Non-resource-requiring tasks are not provided with slack during this
process. Any slack that they might have accrued is passed on to their neighboring tasks,
depending on their shift preference.

In Figure 4.4, the ready time for the order is 1 (specified in generic time units, in this
case minutes), and the initial non-aggregate task is SHUTDOWN. This task does not have any
constraints on its starting time, so its starting time is assigned the value 1, which is in turn
inherited by its parent TURNAROUND ACTIVITY aggregate task. The expected duration of
the SHUTDOWN task is 4. Additionally, because SHUTDOWN is a non-resource-requiring task
with an early shift preference, its finishing time may be assigned the value of 4 at this time as
well.5 The immediately following tasks, namely RESTOCK, SERVICE, UNLOAD BAGGAGE and

5Time ranges in DSS are represented as non-overlapping intervals, so that a range of 10 time units starting at
time 1 and finishing at time 11 is expressed as 1 10 . The time range values appearing in Figures 4.4 and 4.5,
and the trace segments in this chapter and Appendix B, reflect this feature of the implementation.

96

catering truck

RESTOCK

service truck

SERVICE

UNLOAD
BAGGAGE

baggage truck

CLEAN

cleaning truck

SHUTDOWN DEPLANE ENPLANE STARTUP

TURNAROUND
ACTIVITY

gate

REFUEL

pump or fuel truck

LOAD
BAGGAGE

baggage truck

EST: 14 (DD-30)

7

10

10

10

10

9

4 46 8

1

1

5

5

5

5 11

11

14

29 37

EST: 29 (DD-15)

D
U

E
 D

A
T

E
 =

 44

R
E

A
D

Y
 T

IM
E

 =
 1

4 10

Figure 4.4. Determining ESTs within a Task Network.

97

ENPLANE

catering truck

RESTOCK

service truck

SERVICE

UNLOAD
BAGGAGE

baggage truck

CLEAN

cleaning truck

SHUTDOWN DEPLANE STARTUP

TURNAROUND
ACTIVITY

gate

REFUEL

pump or fuel truck

LOAD
BAGGAGE

baggage truck

EST: 14 (DD-30)

7

10

10

10

10

9

4 46

1

1

5

5

5

5 11

11

14

32 40

EST: 29 (DD-15)

D
U

E
 D

A
T

E
 =

 44

43

433931

31

104

39

39

39

29

8

R
E

A
D

Y
 T

IM
E

 =
 1

Figure 4.5. Determining LFTs within a Task Network.

98

DEPLANE, are then all assigned ESTs of 5. Because of the similarity between DEPLANE and
SHUTDOWN, the finishing time for DEPLANE is set to 10, which leads to an EST of 11 for the
REFUEL and CLEAN tasks that follow it. For the LOAD BAGGAGE task, the EST of 14 that is
carried forward from the UNLOAD BAGGAGE task is equal to the EST constraint value of 14
based on the order’s due date of 44 (the LOAD BAGGAGE task may not begin any earlier than
30 minutes prior to the departure time). For the ENPLANE task, while the preceding REFUEL
and CLEAN tasks suggest an starting time of 21, the EST constraint on ENPLANE (requiring
that it not begin any earlier than 15 minutes prior to the departure time), forces a starting
time of 29 instead. Finally, the STARTUP task is assigned a starting time of 37. Because the
last two non-resource-requiring tasks have a late shift preference, their finishing times are left
uninitialized.

In Figure 4.5, the due date for the order is 44, and the final non-aggregate task is STARTUP.
This task does not have any constraints on its finishing time, so its finishing time is assigned
the value 43, which is in turn inherited by its parent TURNAROUND ACTIVITY aggregate
task. The expected duration of the STARTUP task is 4, and because the STARTUP task is a
non-resource-requiring task with a late shift preference, its starting time is reset to 40 (from
37), thereby maximizing the amount of slack that will be available to the preceding LOAD
BAGGAGE task. The preceding RESTOCK, SERVICE, LOAD BAGGAGE and ENPLANE tasks are
then assigned LFTs of 39. The ENPLANE task, also a late shift preference non-resource-requiring
task, has its starting time reset to 32 (from 29). The preceding REFUEL and CLEAN tasks are
then assigned LFTs of 31. The UNLOAD BAGGAGE task receives a LFT of 29 from LOAD
BAGGAGE, and at this point, the allowance time bounds determination process is complete.

4.2.1.2 Service Goal Creation

For non-aggregate resource-requiring tasks, the EST and LFT bounds are used to initialize
a pair of slack nodes that represent the window of time that is available within an order schedule
for securing a resource reservation. The lower boundary time of the left slack node is set to the
EST for the task, and the upper boundary time of the right slack node is set to the LFT. For
aggregate resource-requiring tasks, slack nodes are not created, because aggregates encompass
the slack of their outermost child tasks. In this case, the EST defines the lower bound on the
desired resource reservation for the aggregate, while the LFT defines the upper bound.

The operation-level scheduling subproblems addressed by DSS are defined by the pairing
of the task node for a resource-requiring product task with a service goal that guides the search
for a satisfying reservation. The task node provides the description of the subproblem, while
the service goal controls the process of triggering the appropriate KSs for finding successful
resource reservations for the task node. A resource-requiring task thus becomes a subproblem
as the result of the instantiation of both a task node and a service goal. Tasks that do not require
resources are not paired with service goals, and thus do not appear as scheduling subproblems,
although sufficient time for performing their designated tasks must be included within the final
schedule for an order. Throughout the rest of this discussion, the use of the term subproblem will
refer to a resource-requiring product task seeking a resource reservation within some particular
allowance of time.

Each service goal maintains an allowance defined by the EST and LFT bounds determined
for its corresponding task or slack nodes, and within which any satisfying resource reservation is
desired to be found. The initialization of the boundary times for an aggregate resource-requiring

99

task node or the slack nodes of a non-aggregate resource-requiring task node triggers the creation
of a companion service goal. This process is summarized in Figure 4.6. Whenever there is

Non-Aggregate
resource-requiring tasks

TASK A SERVICE GOAL
resource classes a1, a2

TASK A SERVICE GOAL
resource classes a1, a2

Aggregate
resource-requiring tasks

resource classes a1, a2

TASK A

Slack Node boundary time
initialization triggers Service

Goal creation and time
window initialization.

Aggregate Task Node
boundary time initialization

triggers Service Goal creation
and time window initialization.

resource classes
a1, a2

TASK A

LFTEST
expected
duration
TASK A

expected
duration
TASK A LFTEST

Figure 4.6. Aggregate and Non-Aggregate Service Goal Initialization.

a change in the time bounds for either a resource-requiring aggregate task node (as the result
of propagated changes resulting from updates to the timing constraints of its children) or
either of a (non-aggregate) resource-requiring task node’s slack nodes, the allowance for the
corresponding service goal must also be updated to reflect the change.

A service goal also records all of the resource classes that may be used to perform the
task represented by its corresponding task node, based on the task definitions provided by
the domain description. Using its allowance and list of usable resource classes, a service
goal engineers the triggering of specific resource reservation-securing KSs to find reservations
that satisfy the various requirements of its task node. In the case where more than a single
resource class may be used to perform a task, the service goal is responsible for triggering
reservation-securing KSs for each potential resource class.

4.2.1.3 Inter-Order Task Instantiation

Inter-connected orders warrant special attention during the instantiation process. Their
existence requires an expanded task network structure that links formerly independent task
networks through various inter-order tasks. This expanded network structure represents the
networks for an entire set of inter-connected orders, and thus contains multiple ready times
and due dates, each of which now has a potential impact on the ESTs and LFTs for all of the
task nodes. As a result, the Instantiate Task Network KS must first instantiate the task network

100

structures for the entire order set before determining the time bounds for any of the task nodes,
and these bounds may only be determined after both the forward and backward passes have
been performed using the ready times and due dates (respectively) of each of the orders in the
inter-connected order set. A minor implication of this behavior is that the KS must check
when it actually receives the official notification of an order to make sure that it has not already
instantiated a task network for the order and begun securing its required resources.

Wherever an inter-order task is to occur within an order, an entry must be included in the
process plan template that provides the name of the task, a flag indicating whether the task is
originating or completing, and the means for determining the set of orders to which the task
may be connected. In accordance with the rules of temporal sequencing specified in a process
plan template, originating inter-order tasks may not be started before all of their preceding
operations have been completed and their parent (if any) has begun its execution. At the other
end, completing inter-order tasks act just like local product tasks, in that any succeeding tasks
may not be initiated until the inter-order tasks have been completed.

Figure 4.7 presents a portion of a DSS execution trace showing the reception of an order
(an airplane flight, in this case), followed by the triggering, and immediate execution of the
Instantiate Task Network KS that leads to the creation and activation of the required service
goals. Note that this example involves two inter-connected orders, requiring the Instantiate
Task Network KS to process the two orders during a single invocation. The specific DSS-based
application system used to produce these trace segments is described in Section A.1.

In Figure 4.7, DSS is notified of <[Flight #235/235(Mon)D]-#0> exactly two
hours prior to its expected arrival time.6 The receipt of this order triggers the precondition
function for the Instantiate Task Network KS, which checks that a task network for the
order does not already exist and then determines a rating for the KSA. An activation of
the Instantiate Task Network KS is then created and placed on the queue. The requested
service type for <[Flight #235/235(Mon)D]-#0> is TURNAROUND, which entails the
deplaning of all arriving passengers and baggage, the execution of a collection of assorted ground
servicing tasks, and the final enplaning of all departing passengers and baggage. <[Flight
#235/235(Mon)D]-#0> and <[Flight #1447/1447(Mon)D]-#0> are connected by
two shared PASSENGER TRANSFER and BAGGAGE TRANSFER tasks. After the ESTs and
LFTs for the required ground servicing tasks of both flights have been determined, all of the
necessary service goals are created. The execution trace in Figure 4.7 shows the time at which
each service goal is created, its potential resource classes and initial allowance, and the order to
which each belongs.

Figure 4.8 presents a diagram showing a newly instantiated task network for an Ar-
rival flight, following the execution of the Instantiate Task Network KS. <[Flight
#529/(Mon)D]-#0> (the Arrival flight) is connected to <[Flight #/171(Mon)D]-#0>
(a Departure flight), through two inter-order tasks (BAGGAGE TRANSFER and PASSENGER
TRANSFER). It requires the use of a stationary GATE resource and three mobile resources. The
ARRIVAL ACTIVITY task is the main (aggregate) task, requiring a 30-minute GATE reservation.
The BAGGAGE TRANSFER task is an aggregate requiring a 33-minute BAGGAGE TRUCK
reservation. Reservations for the remaining CLEAN and UNLOAD BAGGAGE tasks are expected
to require an average of 5 and 6 minutes, respectively. The shaded blocks indicate time that

6The two hour advance notification period is a user-defined interval.

101

...

Order Received --------> [Mon 1:36pm] <[Flight #235/235(Mon)D]-#0>
(Release Time: [Mon 3:36pm] - Due Date: [Mon 4:20pm])
TURNAROUND <Application Priority: 1>.

Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #235/235(Mon)D]-#0>)
KS Activation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #235/235(Mon)D]-#0>)
--------------------------------- KSA 2 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #235/235(Mon)D]-#0>)
Created Service Goal --> [Mon 1:36pm] [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#1 (GATE)

([Mon 3:36pm] to [Mon 4:19pm]) <[Flight #235/235(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [SERVICE]-SERVICE-GOAL-#2 (SERVICE-TRUCK)

([Mon 3:40pm] to [Mon 4:15pm]) <[Flight #235/235(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [RESTOCK]-SERVICE-GOAL-#3 (CATERING-TRUCK)

([Mon 3:40pm] to [Mon 4:15pm]) <[Flight #235/235(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [LOAD-BAGGAGE]-SERVICE-GOAL-#4 (BAGGAGE-TRUCK)

([Mon 3:49pm] to [Mon 4:15pm]) <[Flight #235/235(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [UNLOAD-BAGGAGE]-SERVICE-GOAL-#5 (BAGGAGE-TRUCK)

([Mon 3:40pm] to [Mon 4:05pm]) <[Flight #235/235(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [CLEAN]-SERVICE-GOAL-#6 (CLEANING-TRUCK)

([Mon 3:46pm] to [Mon 4:07pm]) <[Flight #235/235(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [REFUEL]-SERVICE-GOAL-#7 (FUEL-TRUCK PUMP-TRUCK)

([Mon 3:46pm] to [Mon 4:07pm]) <[Flight #235/235(Mon)D]-#0>.
Connected Order -------> [Mon 1:36pm] Scheduling for <[Flight #1447/1447(Mon)D]-#0>

(owing to its connection with <[Flight #235/235(Mon)D]-#0>).
Created Service Goal --> [Mon 1:36pm] [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#8 (GATE)

([Mon 4:37pm] to [Mon 5:19pm]) <[Flight #1447/1447(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [SERVICE]-SERVICE-GOAL-#9 (SERVICE-TRUCK)

([Mon 4:40pm] to [Mon 5:16pm]) <[Flight #1447/1447(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [RESTOCK]-SERVICE-GOAL-#10 (CATERING-TRUCK)

([Mon 4:40pm] to [Mon 5:16pm]) <[Flight #1447/1447(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [LOAD-BAGGAGE]-SERVICE-GOAL-#11 (BAGGAGE-TRUCK)

([Mon 4:49pm] to [Mon 5:16pm]) <[Flight #1447/1447(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [UNLOAD-BAGGAGE]-SERVICE-GOAL-#12 (BAGGAGE-TRUCK)

([Mon 4:40pm] to [Mon 5:10pm]) <[Flight #1447/1447(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [BAGGAGE-TRANSFER]-SERVICE-GOAL-#13 (BAGGAGE-TRUCK)

([Mon 3:40pm] to [Mon 5:16pm]) <[Flight #235/235(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [CLEAN]-SERVICE-GOAL-#14 (CLEANING-TRUCK)

([Mon 4:44pm] to [Mon 5:10pm]) <[Flight #1447/1447(Mon)D]-#0>.
Created Service Goal --> [Mon 1:36pm] [REFUEL]-SERVICE-GOAL-#15 (FUEL-TRUCK PUMP-TRUCK)

([Mon 4:44pm] to [Mon 5:10pm]) <[Flight #1447/1447(Mon)D]-#0>.

...

Figure 4.7. Execution Trace Showing the Triggering and Partial Execution of the Instantiate
Task Network KS.

102

has already been set aside within the order schedule for those tasks not requiring any resources.
The dashed lines indicate the initial allowances for the resource-requiring tasks. A completed,
feasible schedule for this flight is presented later.

Figure 4.8. A Sample Initial Task Network.

4.2.2 Service Goal Urgency

The heart of the opportunistic scheduling approach implemented in DSS resides in the
service goal urgency-rating mechanism, which is responsible for considering a broad range of
scheduling perspectives in the process of determining the relative urgency of each service goal
produced for an RCSP. The ratings of the service goals and their stimulated KSAs determine
the path by which DSS explores its developing search space. The effectiveness of this process
affects the quality of the schedules that are produced. Well-focused problem-solving depends
on an informed search process that is capable of understanding the topology of the search
space and detecting the various textures of the space that indicate areas warranting immediate
attention. A misinformed goal-rating process results in a decision-making approach that can
extend the search process and lead to lower-quality solutions.

In this section, we provide a formal description of the goal-rating process employed by
DSS. Service goals are rated upon creation, and then re-rated at any time the expected amount
of difficulty associated with their satisfaction is affected by an internal scheduling decision or

103

external event. The solution of an overall scheduling problem requires the satisfaction of every
service goal created. To take advantage of the various perspectives that exist in dynamic RCSPs,
the DSS goal-rating mechanism is designed to consider a broad range of information in the
process of determining a rating for each service goal. The rating mechanism calculates the
urgency of a service goal using a combination of factors derived from the appropriate multiple
perspectives. The perspectives consulted in this process are described below.

Resource Demand. The current level of demand for a set of potentially satisfying resources
over the period of time specified by a service goal’s allowance contributes to an estimate
of the anticipated difficulty in finding a satisfying reservation.

Resource Availability. The current level of supply for a particular resource class over
time augments the information regarding resource demand. It represents an additional
resource-centered perspective that helps to accurately determine resource bottleneck status,
the levels of which are rarely stable in real-world dynamic environments.

Slack Time. The present amount of slack time for a particular operation, as determined by
its expected processing duration and the size of its allowance, indicates the current degree
of flexibility built into a developing order schedule. The amount of existing slack time
provides information about the chances of finding a resource reservation for a task that will
not incur substantial propagation and schedule-disruption costs upon being introduced.
This order-centered perspective affects the urgency of a subproblem in that the more slack
that is available, the better the chance the scheduler has to satisfy a reservation request,
owing to the larger number of potential reservation times there are to consider.

Task Processing Duration. The expected processing duration for a task provides another
important operation-centered perspective on the urgency of a particular subproblem.
Large reservations have a serious impact on the developing resource schedules, because
they use up large blocks of time, and thereby limit the ability of the scheduler to handle
future requests for the same resource class. However, the longer such (large) reservation
requests are put off by the scheduler, the more difficult they will be to obtain when finally
addressed, and the more costly their introduction to the schedule will become. Smaller
reservations may be put off with less danger of their satisfaction causing substantial
disruption to an existing schedule.

Temporal Urgency. Temporal urgency helps to determine when a particular subproblem
should be dealt with, despite all other concerns. This operation-centered perspective
indicates the proximity of the LST for a subproblem to the current real-world time. The
information provided by this perspective is extremely important (and only relevant) when
scheduling within dynamic environments, where both predictive and reactive scheduling
tasks must be integrated into the developing scheduling strategy while real-world events
continue to develop. If an operation must begin executing in the near future, it warrants
immediate attention from the scheduler.

Order Priority.

The priority of the order to which a task belongs may have a substantial impact on
schedule quality in the form of tardiness penalties. Consideration of order priority allows

104

the scheduler to consult an order-centered perspective in the process of determining
subproblem urgency.

Task Attributes.

Special task attributes may influence the scheduling process, as in the case of inter-order
tasks. The scheduling of an inter-order task has a direct impact on two orders, and possibly
an extended impact on additional orders. Scheduling decisions that involve inter-order
tasks should consider such potentially wide-ranging impact.

By combining the information obtained through consultation with the above scheduling
perspectives, the goal-rating mechanism is able to determine a value that indicates the urgency
of any particular scheduling subproblem. We now discuss the urgency-rating mechanism in
detail.

4.2.2.1 Service Goal Urgency Determination

For the following discussion, we define Tij to be the jth task within an order Oi , and Gij to
be its corresponding service goal. The expected processing duration for a task Tij is accessible
by EXPDURATION Tij . For aggregate tasks, the expected processing duration is equal to the
allowance of Gij , also accessible by ALLOWANCE Gij . For non-aggregate tasks, the expected
processing duration is equal to the average of the minimum and maximum expected service
activity processing durations over the set of all legal resource classes for the task.

An important concept in the process of determining the current levels of contention for
the various resource classes over time is the notion of service goal overlap. This relationship
provides DSS with a perspective on the search space that highlights areas of resource contention
that warrant immediate attention by the scheduler. We preface our discussion of the urgency-
calculation formula with a formal definition of service goal overlap.

Throughout the scheduling process, each service goal created by DSS maintains links to
all existing resources of the legal classes for its corresponding task that also satisfy all relevant
technological and contextual constraints on a task. We refer to this list for a service goal G
by LEGALRESOURCES G . We also define the temporal overlap, OVERLAP I1 I2 (for two
time intervals I1 and I2) to be the size of their intersecting portions, that is, the amount of
time common to both. Formally, using LOWERBOUND I and UPPERBOUND I to return
the lower and upper bounds (respectively) of a temporal interval I , OVERLAP I1 I2 may be
described as follows:

OVERLAP I1 I2 1 min UPPERBOUND I1 UPPERBOUND I2
max LOWERBOUND I1 LOWERBOUND I2

Two goals G1 and G2 are considered to overlap under the following circumstances:

OVERLAP ALLOWANCE G1 ALLOWANCE G2 0 and
LEGALRESOURCES G1 LEGALRESOURCES G2

Service goal overlap is thus determined according to the set of legal resource candidates common
to each goal and the intersection of their shared allowances. We will refer to the set of overlapping

105

goals for a goal G by OVERLAPPINGGOALS G . This set is continuously updated by DSS

throughout the scheduling process.
We are now ready to present the service goal urgency-rating formula. It is a two-phase

calculation, involving the determination of the bottleneck status for the legal resource candidates
for a goal, and the modification of that value according to a number of additional perspectives.

4.2.2.1.1 Step 1–A: Resource Contention

The first calculation determines the current level of demand for the resource classes being
sought by the service goal. This value provides an indication of the current level of contention
for the set of legal resources available to a particular service goal among the set of all unsatisfied
service goals that overlap with that goal. The resource contention value for a service goal G is
calculated using the following equation, where OVERLAPPINGGOALS G .7

CONTENTIONVALUE G

Gij

0 if Gij is satisfied, otherwise

min EXPDURATION T OVERLAP ALLOWANCE Gij ALLOWANCE G
EXPDURATION Tij

SIZE ALLOWANCE Gij

The minimization clause ensures that no amount of temporal overlap with another goal
will exceed the expected processing duration for the task in question. This value is then further
modified by factoring in the available slack for an overlapping goal so that the impact of its
own flexibility on the degree of overlap is considered. Overlap with highly flexible goals (those
goals having significant available slack in their allowances) is thereby discounted. The resource
contention value is thus based on the amount of real overlap between the original goal and
each of its overlapping goals. As such, it provides an accurate assessment of the amount of
contention for a common set of resources at a particular time.

Finally, as shown in Equation 4.1, the resource contention value is normalized by both the
number of unsatisfied overlapping goals and the expected processing duration for the
task involved (T). If , then the contention value is 1.

CONTENTIONVALUE G

EXPDURATION T
4 1

4.2.2.1.2 Step 1–B: Resource Availability

After calculating a measure of the existing level of resource contention among a service
goal and its (unsatisfied) overlapping goals, DSS next determines the current level of availability
for the set of legal resource candidates for that service goal. The resource availability value
provides an accurate assessment of the expected difficulty of satisfying a particular service goal,
comprising the levels of both availability and existing demand for its set of legal candidate
resources.

To determine the resource availability value, we first describe an important aspect of our
resource representation scheme. Each resource Ri maintains an array of state descriptions that

7Note that each service goal Gij (or G) is linked directly to its corresponding task Tij (or T).

106

each indicate a particular activity and the time interval during which that activity is scheduled
to occur. The entries in this array are indicated by Ri k (each Ri having Ki activity states).
The activity scheduled during the kth state of resource Ri is referenced by ACTIVITY Ri k ,
while the time interval itself is accessed by RANGE Ri k . At this point we also introduce the
SIZE I construct, used to return the size (or duration) of a time interval I .

The current level of availability for the set of resources for a goal G is calculated using the
following equation, where LEGALRESOURCES G .

RESOURCEAVAILABILITY G

Ri

Ki

k 1

0 if ACTIVITY Ri k , otherwise
OVERLAP ALLOWANCE G RANGE Ri k

Finally, as shown in Equation 4.2, the resource availability value for a service goal is
normalized by both the number of legal candidate resources for the goal and the size of its
allowance. If , then the resource availability value is 1.

RESOURCEAVAILABILITY G

SIZE ALLOWANCE G
4 2

4.2.2.1.3 Step 1–C: Available Slack

The amount of slack available to a goal is based on its allowance and the expected processing
duration of its task (T). DSS discounts the urgency of service goals having a great deal of
slack. The greater the amount of slack available, the less important the resource contention and
resource availability values become, because of the increased flexibility for the goal. Equation 4.3
is used to calculate a slack value that contributes to the overall bottleneck status value.

EXPDURATION T
SIZE ALLOWANCE G

4 3

The results of Equations 4.1 and 4.2 and 4.3 are then combined with a constant C to
produce an overall bottleneck status value that quantifies, for a particular service goal, the current
scarcity among the set of resource candidates that may be considered to satisfy the goal within
its allowance. Note, however, that service goals that do not overlap any other service goals will
receive a value of 0 as a result of this first rating phase.

The second phase of the urgency-calculation formula consists of a series of modifications
to the bottleneck status value, in consideration of the other important scheduling perspectives
on the service goal. DSS ignores the bottleneck status value if it is less than 1, in which case the
current level of resource contention is deemed too low to be a serious factor. Three additional
factors are combined in this second phase to produce the final urgency rating.

4.2.2.1.4 Step 2–A: Temporal Urgency

This step accounts for the immediacy of a service goal’s task. By maintaining a record of
the farthest downstream due date among the entire order set, DSS is able to gauge the temporal
urgency of each service goal by comparing its allowance with this value. The following form is
used for this purpose.

107

LARGESTDUEDATE

LOWERBOUND ALLOWANCE G if T is an aggregate

UPPERBOUND ALLOWANCE G
EXPDURATION

otherwise

LARGESTDUEDATE

The result of the above equation is combined with the value of the
parameter to account for the different time scales used by various DSS applications.

4.2.2.1.5 Step 2–B: Order Priority

High-priority orders generally incur higher tardiness penalties. The priority of the order
involved is factored directly into the result so that orders with high priority receive a boost in
accordance with their rank.

4.2.2.1.6 Step 2–C: Inter-Order Task Consideration

Finally, inter-order tasks receive a boost as a result of their extent across multiple orders.
Unless a task is an inter-order task, it is discounted by a constant value less than 1.

The urgency-rating for a service goal is thus a product of multiple perspectives on the
goal, task, and order involved, as well as the legal resource candidates being considered. DSS

thereby attains an enhanced degree of flexibility for detecting developments in the scheduling
environment.

4.2.2.2 The Frequency of Service Goal Urgency Determination

A dynamic environment complicates the scheduling process by generating external events
that violate the expectations of the scheduler, and require it to continually modify its assump-
tions about the current state of problem-solving. For example, the reception of a new order
increases the expected demand for certain resource classes, possibly leading to a change in
expected bottleneck conditions. A resource failure decreases the availability of a particular
resource class, and delayed servicing activity by a particular resource may nullify the scheduled
starting times for existing downstream reservations. Both developments may alter expected
bottleneck conditions.

At specific points during the scheduling process, the impact of both internally and externally
generated events is considered by DSS in an attempt to determine how to adapt its current focus
of attention. As the search space is modified, the process of exploring it must be adjusted
in response. With each received event, modification of the urgency of each related unsolved
subproblem may be required. Listed below are some of the key decision points throughout the
scheduling process where DSS takes the opportunity to consider the modification of its present
decision-making strategy by updating the urgency of some of its pending scheduling tasks.

Goal Creation. All service goals whose allowance and set of legal resources overlap with
those of a created service goal require re-rating as a result of the increase in resource
demand.

108

Goal Modification. All service goals sharing a desire for the same resources, and whose
allowance either previously overlapped or currently overlaps the allowance of a modified
service goal require re-rating as a result of the change in resource demand.

Secured Reservation. All service goals sharing a desire for a newly secured resource, and
whose allowance overlaps with the time bounds for the new reservation or the allowance
of the newly satisfied service goal, require re-rating as a result of the decrease in resource
availability.

Canceled Reservation. All service goals sharing a desire for a newly released resource,
and whose allowance overlaps with the time bounds for the canceled reservation or the
allowance of the newly unsatisfied service goal, require re-rating as a result of the increase
in resource availability.

Resource Failure. All service goals that could have been satisfied by a failed resource require
re-rating as a result of the decrease in resource availability.

Resource Creation. All service goals that could be satisfied by a newly available resource
require re-rating as a result of the increase in resource availability.

Figure 4.9 includes another segment of a DSS execution trace showing the service goal rating
and re-rating activities triggered by the creation of new service goals by the Instantiate Task
Network KS. Additional examples of goal re-rating activity triggered by the introduction of
resource reservations (as described in Section 4.2.4) are shown in Figures 4.15, 4.16, and 4.17.
The activity shown in Figure 4.9 occurs following the creation of all service goals necessary for
arranging the Turnaround servicing of <[Flight #416/416(Mon)I]-#0>.

For example, the creation of [REFUEL]-SERVICE-GOAL-#52 leads to an increase in
the rating of the related [REFUEL]-SERVICE-GOAL-#29 (from 602 to 3141), owing
to the sudden increase in demand for the fuel truck and pump truck resource classes.
[CLEAN]-SERVICE-GOAL-#51 and [SERVICE]-SERVICE-GOAL-#47 have a similar
impact on [CLEAN]-SERVICE-GOAL-#28 and [SERVICE]-SERVICE-GOAL-#24, in-
creasing their ratings from 602 to 4580, and from 545 to 1531, respectively. In each of these
three cases, the existing related service goals had no overlapping goals prior to the creation of
the new goals, which accounts for the substantial increases to their urgency ratings. While the
new [RESTOCK]-SERVICE-GOAL-#48 does overlap with an existing goal, the effect on that
goal is minimal enough not to require an update to its urgency.

The creation of the UNLOAD BAGGAGE and LOAD BAGGAGE service goals has a slightly
different impact on the related baggage activity goals ([LOAD-BAGGAGE]-SERVICE-GOAL-
#26, [UNLOAD-BAGGAGE]-SERVICE-GOAL-#27, [BAGGAGE-TRANSFER]-SERVICE-
GOAL-#35, and [BAGGAGE-TRANSFER]-SERVICE-GOAL-#43), due in part to the prior
existence of overlapping goals for each related goal. The new baggage activity goals are all
rated highly as the result of existing levels of contention. But while the new baggage tasks
do contribute to an increase in the demand for baggage trucks, the amount of increase, when
distributed among the related tasks, is smaller than previous levels, so that the overall contention
level for each related service goal actually drops slightly.

109

--------------------------------- KSA 54 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #416/416(Mon)I]-#0>)

...

Service Goal Creation
...

Rated Service Goal ----> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[REFUEL]-SERVICE-GOAL-#52 (FUEL-TRUCK PUMP-TRUCK) {3424}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[REFUEL]-SERVICE-GOAL-#29 (FUEL-TRUCK PUMP-TRUCK)
from {602} to {3141}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[CLEAN]-SERVICE-GOAL-#51 (CLEANING-TRUCK) {6104}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[CLEAN]-SERVICE-GOAL-#28 (CLEANING-TRUCK)
from {602} to {4580}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#50 (BAGGAGE-TRUCK) {8894}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#49 (BAGGAGE-TRUCK) {8593}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#43 (BAGGAGE-TRUCK)
from {16013} to {14733}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#35 (BAGGAGE-TRUCK)
from {17904} to {16797}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#27 (BAGGAGE-TRUCK)
from {19077} to {16096}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#26 (BAGGAGE-TRUCK)
from {16830} to {14362}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[RESTOCK]-SERVICE-GOAL-#48 (CATERING-TRUCK) {495}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[SERVICE]-SERVICE-GOAL-#47 (SERVICE-TRUCK) {1635}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[SERVICE]-SERVICE-GOAL-#24 (SERVICE-TRUCK)
from {545} to {1531}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[TURNAROUND-ACTIVITY]-SERVICE-GOAL-#46 (GATE) {767}.

...

Figure 4.9. Execution Trace Showing the Service Goal Rating Activity Triggered by the
Instantiate Task Network KS.

110

4.2.3 Selecting Reservation-Securing Knowledge Sources

DSS is equipped with a collection of KSs designed to find resource reservations for task
nodes. The process of selecting a particular reservation-securing KS to use in any given situation
is handled by the Select Reservation-Securing Method KS. It is responsible for considering the
status of the service goal for a task node, including the results of any previous failed attempts to
find a reservation for the subproblem. These records are maintained in a KS ACTIVATION TABLE
that is stored with each service goal. Upon the selection of a particular reservation-securing
method to attempt, the KS that implements the selected method is triggered, and the service
goal’s KS ACTIVATION TABLE is updated accordingly.

Every reservation-securing KSA execution records the results of its search (success or
failure) into the service goal’s KS ACTIVATION TABLE, so that the service goal always contains
an up-to-date record of the status of the search for a satisfying reservation. If the executed KSA
finds a reservation, then the stimulating service goal is marked as satisfied, and the success of
the method is recorded in the table. If, however, the executed KSA fails to find a successful
reservation, then the failure is recorded in the table, and the Select Reservation-Securing Method
KS is triggered again. It will analyze the remaining options for finding a reservation and trigger
another reservation-securing KS. If no remaining method is found to attempt to satisfy a service
goal, indicating that none of DSS’s reservation-securing KSs has been able to find a solution for
the subproblem, then the scheduler is unable to produce a schedule for the entire problem.

Some of the reservation-securing KSs in DSS are designed to find reservations within service
goal allowances, while others are designed to find any possible reservation in situations where
a reservation within the allowance may not be achieved. The size of the allowance, therefore,
has a major impact on the process of selecting which particular reservation-securing KS should
be used to attempt to satisfy a particular subproblem.

A service goal’s allowance may easily be modified through the actions triggered by a
reservation-securing KS, most often as the result of the propagation of timing constraints
forced by the introduction of new resource reservations. Whenever a resource reservation is
introduced into the developing schedule, the allowances for the service goals corresponding to
the immediately preceding and succeeding tasks, and possibly some parent tasks as well, must
be modified to reflect the impact of the time bounds for the new reservation. Because the
urgency of a subproblem is partly based on the amount of difficulty that is expected in the
process of trying to find a successful reservation within the allowance of a service goal, any
change in the size of the allowance affects the overall urgency of the subproblem. Therefore, in
the case of a modified allowance, the re-sized service goal must be rerated, and the efforts to find
a successful reservation for the subproblem must be restarted, so that the scheduler may again
determine the most appropriate reservation-securing KS for solving the modified subproblem.

At any point when the allowance for a service goal is modified, all pending KSAs previously
stimulated by the service goal are obviated, the KS ACTIVATION TABLE is reset to its initial state,
and the Select Reservation-Securing Method KS is triggered to start the process over again using
the new allowance.

The current strategy employed by the Select Reservation-Securing Method KS is to simply
go down the list of available reservation-securing methods that appear in the service goal’s KS
ACTIVATION TABLE, and choose the next untried method. The table is initialized at the time a
service goal is created, and the entries are arranged so that the less computationally expensive
and less propagation-inducing methods are attempted first. While this approach is perhaps

111

more simple than it should be, it provides a workable means for regulating the attempts to
secure reservations for resource-requiring tasks.

Some product tasks may be performed by more than a single kind of resource, so the
service goal for a product task may be looking at more than one kind of resource to satisfy
its requirements. Therefore, the service goal maintains a separate KS ACTIVATION TABLE of
reservation-securing methods for each class of resource that may satisfy its requirements. When
the Select Reservation-Securing Method KS processes the service goal’s table, it actually does
so for each allowable resource class, thereby possibly triggering multiple reservation-securing
KSs to satisfy the service goal. As soon as any one of these KSs succeeds, all other pending
reservation-securing KSAs for the service goal are obviated, and the search to satisfy the service
goal is ended.

Figure 4.10 presents a portion of a DSS execution trace showing the multiple triggerings
and resulting executions of the Select Reservation-Securing Method KS following the execution of
the Instantiate Task Network KS. Note that because [REFUEL]-SERVICE-GOAL-#22 may
be satisfied by either a pump truck or fuel truck resource, the execution of the corresponding
Select Reservation-Securing Method KSAs serves to activate two reservation-securing KSs, one
for each resource class. Remember also that the reservation-securing KSs inherit the urgency
ratings of their stimulating service goals.

There are a variety of ways in which the process of selecting particular methods for finding
resource reservations could be altered, in order to take into consideration a broader range of
information about the state of the search. Because some reservation-securing methods are
computationally faster than others, these methods could be encouraged in situations where
the subproblem involved is extremely urgent. Subproblems requiring highly constrained
resources may warrant the selection of methods that are better at finding reservations in densely
packed schedules. In lesser constrained situations, the standard approaches may be the most
appropriate. An interesting area for future research (discussed in Section 6.3.2) involves the
process of determining what aspects of the current state of problem-solving would be relevant
in the process of deciding the exact reservation-securing methods to use in any given situation.

Before discussing the particular methods available for securing resource reservations, we
include Figure 4.11, showing a completed feasible order schedule for the previously presented
<[Flight #529/(Mon)D]-#0> from Figure 4.8. At this point, all required resources have
been secured so that the ground servicing activity for the flight will both start and finish on
time.

4.2.4 Securing Resource Reservations

Each reservation-securing KS is responsible for finding a single resource of a specific class
to satisfy a particular service goal. If a service goal may be satisfied by multiple resource classes,
then individual KSs for each resource class will be triggered. Each KS follows a standard
procedure of first determining a list of candidate resource and reservation pairs that may satisfy
the service goal, and then sorting the candidates to determine the most appropriate resource
and reservation pair to select based on the current state of problem-solving.

It is important to note that the reservation-securing KSs will never introduce conflicts into
the schedule. Each KS is designed to find only those reservations that satisfy all currently
applicable constraints. While the decisions made by these KSs may serve to further constrain

112

--------------------------------- KSA 37 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #516/516(Mon)D]-#0>)

...

Service Goal Creation
...

Service Goal Rating and Re-Rating
...

Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD
([SERVICE]-SERVICE-GOAL-#17)

KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD
([SERVICE]-SERVICE-GOAL-#17)

...

Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD
([REFUEL]-SERVICE-GOAL-#22)

KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD
([REFUEL]-SERVICE-GOAL-#22)

Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD
([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#16)

KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD
([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#16)

--------------------------------- KSA 38 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([SERVICE]-SERVICE-GOAL-#17)
Invoked Precondition --> KS STANDARD-ASSIGNMENT ([SERVICE]-SERVICE-GOAL-#17)
KS Activation ---------> STANDARD-ASSIGNMENT ([SERVICE]-SERVICE-GOAL-#17)

...

--------------------------------- KSA 43 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([REFUEL]-SERVICE-GOAL-#22)
Invoked Precondition --> KS STANDARD-ASSIGNMENT ([REFUEL]-SERVICE-GOAL-#22)
KS Activation ---------> STANDARD-ASSIGNMENT ([REFUEL]-SERVICE-GOAL-#22)
Invoked Precondition --> KS STANDARD-ASSIGNMENT ([REFUEL]-SERVICE-GOAL-#22)
KS Activation ---------> STANDARD-ASSIGNMENT ([REFUEL]-SERVICE-GOAL-#22)
--------------------------------- KSA 44 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#16)
Invoked Precondition --> KS STANDARD-ASSIGNMENT ([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#16)
KS Activation ---------> STANDARD-ASSIGNMENT ([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#16)

...

Figure 4.10. Execution Trace Showing the Triggering and Execution of the Select Reserva-
tion-Securing Method KS.

113

Figure 4.11. A Sample Feasible Completed Task Network.

the state of problem-solving and contribute to the development of future conflicts, no constraint
will be violated when a scheduling decision is made.

DSS is equipped with two important sets of reservation-securing KSs. The first, called the
Standard set, seeks to produce resource reservations without affecting any existing decisions.
These KSs will fail in situations where no reservation may be found that satisfies all existing
constraints. The second set of KSs is the Relaxed set, which is specifically designed to produce
reservations in situations that require either existing reservations to be canceled, or various
constraints to be relaxed.8 The two sets of reservation-securing KSs contain different versions
of three basic reservation-securing methods, namely Assignment, Preemption and Right Shift.
The three standard versions of these methods are described in the following three sections. The
relaxed methods of these methods are then addressed collectively in Section 4.2.4.5.

4.2.4.1 Special Considerations for Securing Mobile Resources

In domains equipped with mobile resources, the allocation of travel time as part of mobile
resource reservations constrains the selection of the shop locations to and from which they must

8Note that while the (Standard) Preemption KS will cancel existing reservations in order to produce a reservation
for a particular subproblem, it will not cancel any other existing reservations or relax any constraints. The Relaxed
Preemption KS, on the other hand, is designed to do just that.

114

report. For example, returning to our simplified AGSS problem from Section 1.4, a baggage
truck for a particular flight may have been secured before the flight has been assigned to a gate.
In this case, the amount of time allocated in the reservation to allow the baggage truck to get
from its previous location, to the location of any candidate gate, defines a radius within which
any candidate gate must be located for the baggage truck to be able to report within the amount
of time allocated.

To avoid the unnecessary introduction of constraints into the developing schedule, DSS uses
a worst-case policy for reserving mobile resources. Figure 4.12 illustrates how this approach
works. If the context within which a mobile resource is to be used is incomplete, DSS preserves
the set of feasible candidates for the relevant unsolved stationary resource subproblem by
constructing an unrefined reservation for the mobile resource that allows it to get to any
possible destination location. The set of feasible destination location candidates is preserved
by constructing a reservation that allows enough travel time for the mobile resource to reach
all candidates.

ORIGINATING
LOCATION

FEASIBLE
DESTINATION
LOCATIONS

Mobile Resource Travel Speed * Allocated Travel Time (UNREFINED)

Figure 4.12. Inclusion of Unrefined Travel Time Allocation in a Mobile Resource Reservation.

In situations where the context within which a mobile resource is to be used is completely
established, DSS will construct refined mobile resource reservations that allow just enough travel
time for a mobile resource to get to and from its assigned locations. Figure 4.13 illustrates
this process. If a destination location has already been selected, then the reservation for the
truck need only allow enough time to get from its previous location to the selected destination
location. Note that such a decision does preclude a number of possible destination locations

115

from future consideration, but such a location has already been secured. As long as the currently
selected destination location remains viable, there has been no serious increase in the degree of
constraints on the related subproblems.

ORIGINATING
LOCATION

FEASIBLE
DESTINATION
LOCATIONS

SELECTED
DESTINATION

LOCATION

Mobile Resource Travel Speed * Allocated Travel Time (REFINED)

Figure 4.13. Inclusion of Refined Travel Time Allocation in a Mobile Resource Reservation.

The basic idea behind our worst-case approach to securing mobile resources is to preserve
the options available to the scheduler. In dynamic, unpredictable environments, a conservative
approach provides a degree of flexibility that can prove to be valuable in helping to resolve
conflict situations. Because resource utilization is also a concern for DSS, a reservation
refinement mechanism has been developed for returning to previous uncertain mobile resource
reservations and recalculating the exact amount of travel time required once the complete
context for their use has been determined. The refinement mechanism is described in
Section 4.2.6.

It should also be noted, however, that there are costs associated with our worst-case
approach to constructing mobile resource reservations, in terms of the decrease in schedule
quality that arises from introducing too many bloated mobile resource reservations into the
developing schedule. Unrefined mobile resource reservations are generally larger than they
need to be, and as a result they tend to use up valuable resource time more quickly, thereby
reducing the availability of those resources and leading to increased numbers of conflicts that
result in potentially costly levels of tardiness. The larger the reservations, the less easy it is to
find reservations within the desired subproblem allowances. The potential for future work in
this subject is discussed in Section 6.3.5.

116

At this point we begin with our discussion of the three basic resource reservation-securing
KSs incorporated into DSS.

4.2.4.2 The Assignment Knowledge Source

The Assignment KS is the most basic reservation-securing KS. Its goal is to secure a resource
reservation that lies within the confines of the allowance for a service goal.

In the process of building its initial list of candidate resource and reservation pairs, the
Assignment KS first considers the set of resources of the designated class that are available (by
residing in an UNUSED state) at any point that overlaps with the service goal’s allowance,
satisfy the various technological constraints imposed upon the resource selection process by the
order and product involved, and satisfy the existing contextual constraints on the subproblem.
The technological and contextual constraints act to shrink the pool of resources that may be
considered for satisfying a particular resource request. Once the list of candidates has been
assembled, the Assignment KS checks each resource to see if it is available for the expected
amount of time that will be required to perform the desired service.

After all of the possible resource and reservation pairs have been found, the KS proceeds
to select a resource and reservation pair through a sequence of steps. It first sorts the list in
order to favor those pairs having the latest start time for the complete resource plan (all EN
ROUTE, SETUP, RESET and SERVICING tasks), so that future arrangements of the list will
favor those reservations requiring the shortest setup times. A second sort arranges the pairs so
that the earliest reservations for early-shifted or non-late-shifted tasks, or the latest reservations
for late-shifted tasks, are moved to the top of the list. This ordering helps to achieve the goal
of maximizing order schedule quality.

Finally, depending on the current level of contention for the resource class to which the
candidate resources belong, the KS will attempt to optimize either the resource schedules or the
order schedules. If contention is high (above 50%), a reservation will be selected that minimizes
the introduction of any fragmentation into an existing resource schedule, so that valuable
resource time is not wasted. This requires a final sort of the candidate list to find (and return)
the reservation that minimizes the amount of time between the candidate reservation and any
preceding or succeeding (depending on the task’s shift preference) reservation. If contention is
low, the reservation at the top of the list will be selected, owing to its highest-ranked satisfaction
of the task shift preference. In both cases, an attempt is made to minimize the amount of setup
time required for the reservation. The current level of contention for a particular resource
class is determined by calculating the average ratio of resources (in the class) that are in use or
requested, to the total number of resources of the class that are available, over the time interval
specified by the service goal’s allowance.

The other reservation-securing KSs implemented in DSS, because they are used in more
highly constrained situations, where fewer of the overall scheduling objectives are expected to
be properly satisfied, rely on a more order-based approach to selecting reservations, although
the attempt to minimize the amount of required setup time is still made.

Figure 4.14 provides a visual description of the value ordering process employed by the
Assignment KS.

The Assignment KS is the quickest of the reservation-securing KSs. Additionally, it requires
the least amount of time bounds constraint modification, and forces no changes to existing
reservations. It completely localizes its temporal impact to lie within the allowance of the service

117

PRODUCT
TASK

resource class r1

r1-a EXISTING RESERVATION

r1-b EXISTING RESERVATION

r1-c EXISTING RESERVATION SETUP

r1-d EXISTING RESERVATION SETUP

r1-e EXISTING RESERVATION

r1-a EXISTING RESERVATION

r1-b EXISTING RESERVATION

r1-c EXISTING RESERVATION SETUP

r1-g

EXISTING RESERVATION SETUP

r1-e EXISTING RESERVATION

r1-d

r1-f EXISTING RESERVATION SETUP

EXISTING RESERVATION

SERVICE GOAL
resource class r1

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

Main
Servicing Task

r1-f EXISTING RESERVATION SETUP Main
Servicing Task

r1-g EXISTING RESERVATION

Light contention for resource class r1:
Satisfy order shift preferences

Heavy contention for resource class r1:
Minimize resource schedule fragmentation

Figure 4.14. Assignment Knowledge Source Value Orderings.

118

goal for the subproblem, and thus does not affect any other subproblems. By selecting only
those reservations that reside within the range of the allowance, the KS forces only the standard
updating of the timing constraints of any upstream or downstream subproblems within the
same order (or any connected orders), while introducing no timing conflicts. Any reservation
constructed by this KS helps to maintain flexibility for the scheduler by minimally constraining
the current state of problem solving.

Figure 4.15 presents a portion from a DSS execution trace showing the execution of the As-
signment KS. In this situation, the current allowance for [REFUEL]-SERVICE-GOAL-#29 is
([Mon 3:50pm] - [Mon 4:12pm]). A successful reservation involving Fuel-Truck-
#FT-F1 is constructed, which allows the main REFUEL servicing task to occur from ([Mon
3:50pm] - [Mon 4:00pm]). Notice that the process plan for using a fuel truck for this
operation requires that the setup- and travel-related resource tasks begin executing at [Mon
3:40pm]. After the standard assignment is made, the pending KSA (<KSA-112 STANDARD-
ASSIGNMENT>) responsible for trying to secure a pump truck to satisfy [REFUEL]-SERVICE-
GOAL-#29 is obviated, and two related REFUEL service goals and their stimulated reservation-
securing KSAs are re-rated.

--------------------------------- KSA 129 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([REFUEL]-SERVICE-GOAL-#29)
Resource Assignment ---> [Mon 1:40pm] Fuel-Truck-#FT-F1 assigned to

[Task Node: <Task: REFUEL> <[Flight #1412/1412(Mon)D]-#0>]
([Mon 3:40pm] - [Mon 4:00pm] ([Mon 3:50pm] - [Mon 4:00pm])).

Obviated KSA ----------> [Mon 1:40pm] KSA <KSA-112 STANDARD-ASSIGNMENT> stimulated
by [REFUEL]-SERVICE-GOAL-#29 <[Flight #1412/1412(Mon)D]-#0>
obviated due to {ALTERNATE-RESOURCE-SATISFACTION}.

Rerated KSA -----------> [Mon 1:40pm] <KSA-145 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[REFUEL]-SERVICE-GOAL-#59
PUMP-TRUCK STANDARD-ASSIGNMENT)
from {1906} to {2571}.

Rerated KSA -----------> [Mon 1:40pm] <KSA-144 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[REFUEL]-SERVICE-GOAL-#59
FUEL-TRUCK STANDARD-ASSIGNMENT)
from {1907} to {2571}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[REFUEL]-SERVICE-GOAL-#59 (FUEL-TRUCK PUMP-TRUCK)
from {1907} to {2571}.

Rerated KSA -----------> [Mon 1:40pm] <KSA-136 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[REFUEL]-SERVICE-GOAL-#52
PUMP-TRUCK STANDARD-ASSIGNMENT)
from {2637} to {3218}.

Rerated KSA -----------> [Mon 1:40pm] <KSA-135 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[REFUEL]-SERVICE-GOAL-#52
FUEL-TRUCK STANDARD-ASSIGNMENT)
from {2638} to {3218}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[REFUEL]-SERVICE-GOAL-#52 (FUEL-TRUCK PUMP-TRUCK)
from {2638} to {3218}.

...

Figure 4.15. Execution Trace Showing the Execution of the Assignment KS.

119

4.2.4.3 The Preemption Knowledge Source

The Preemption KS extends the process of searching for candidate resource and reservation
pairs to include the consideration of resources that are currently reserved by previously satisfied
subproblems. As with the Assignment KS, the goal of the Preemption KS is to secure a resource
reservation that lies within the confines of the time interval defined by a service goal’s allowance,
and to minimize the number of existing reservations that must be canceled in order to facilitate
such an assignment.

The process employed by the Preemption KS to select initial candidate resources works by
considering all resources in the designated class that satisfy all of the relevant technological
constraints, whether or not they are available during the time interval defined by the service
goal’s allowance. After the initial list of candidate resource and reservation pairs has been
assembled, the KS applies a series of checks to each candidate to determine whether it may be
used to satisfy the subproblem. These checks are as follows:

For each reservation that currently exists during the time interval specified by the bounds
of the goal, ensure that:

1. All relevant contextual constraints are satisfied.

2. The existing reservation has not begun executing. All tasks are assumed to be atomic, and
therefore may not be interrupted once they have begun execution.

3. The priority of the order to which the existing reservation belongs is less than that of the
preempting subproblem’s order.

4. The servicing activity portion of the existing reservation does not begin earlier than the
lower bound on the allowance of the preempting subproblem’s service goal.

5. The goal rating for the existing reservation is lower than the goal rating for the preempting
subproblem. It is not desirable for the scheduler to cancel an existing reservation for a
subproblem that will be even more difficult to re-solve than the current preempting
subproblem.9

6. If the existing reservation belongs to the same order as the preempting subproblem, then
the existing reservation must be for a downstream subproblem, that is, an operation
occurring later in the order’s process plan. Preempting an existing upstream reservation
to satisfy a downstream subproblem would force the scheduler to devote a potentially
substantial amount of effort to re-satisfy the preempted upstream subproblem, and
probably increase the amount of tardiness that would eventually be incurred by the
affected order.

7. If the existing reservation belongs to a different order than the preempting subproblem,
then the due date for the existing reservation’s order must be later than the due date
for the preempting subproblem’s order. For reasons similar to the previous check, the
cancellation of a reservation that is part of an order with a due-date that is more urgent

9The service goals for all subproblems whose reservations are considered for preemption are rerated immediately
prior to performing this check.

120

than that of the preempting subproblem’s order would probably increase the amount of
tardiness that would eventually be incurred by the impending order.

8. If the due dates of both the existing reservation’s order and the preempting subproblem’s
order are equal, then the number of the preempting subproblem’s order must be higher
than the number of the existing reservation’s order. This check prevents looping in the
preemption process.

After performing the above checks on any existing reservations, the Preemption KS then
has a list of candidate resource and reservation pairs to consider. The candidates are first
sorted to minimize fragmentation in each resource schedule, and then sorted to minimize
the maximum possible number of existing reservations that must be canceled to satisfy the
preempting subproblem. The KS then looks at each candidate resource (in sorted order),
and using the corresponding model-resource projector unit for each resource, simulates the
cancellation of one existing reservation at a time, until enough available time is produced with
which to construct a feasible reservation for the preempting subproblem. As soon as a feasible
reservation is found, the KS stops looking, cancels the preempted reservations, and makes the
new assignment to satisfy the preempting subproblem.

Figure 4.16 presents a portion from a DSS execution trace illustrating the execution of the
Preemption KS. In this situation, the current allowance for [CLEAN]-SERVICE-GOAL-#182
is ([Thu 7:57am] - [Thu 8:10am]), and its current rating is 72135. Two existing reser-
vations for Cleaning-Truck-#CLT3, one by <[Flight #1197/1197(Thu)D]-#0>
(with a service goal rating of 23837), the other by <[Flight #1136/1136(Thu)D]-#0>
(28279), are collectively held for the time period ([Thu 8:03am] - [Thu 8:14am])The
cancellation of these reservations makes room for a reservation of Cleaning-Truck-#CLT3
that allows the main CLEAN servicing task for <[Flight #1585/1586(Thu)D]-#0>
to occur from ([Thu 8:06am] - [Thu 8:10am]), with some initial travel time from
([Thu 8:03am] - [Thu 8:05am]). Notice that the cancellation of the two previous
reservations for Cleaning-Truck-#CLT3 forces the refinement of the previous travel
time allocation for <[Flight #12/12(Thu)I]-#0>, because the truck will now have
to leave from a different location when reporting to its next assignment. After the preemption
assignment is made, the service goals for the canceled reservations are officially rerated, two
related CLEAN service goals and their stimulated reservation-securing KSAs are re-rated, and
finally the service goals for the two canceled reservations are reactivated.

Computationally, the Preemption KS is more expensive than the Assignment KS. It also
incurs additional costs resulting from the cancellation of existing reservations, because all
canceled reservations must be re-secured. The satisfaction of the preempting subproblem,
nevertheless, has a localized effect that is identical to that of the Assignment KS, because the
new reservation is kept within the time range specified by the allowance of the service goal
corresponding to the preempting subproblem. Conflicts with previous decisions will never
be introduced. From the perspective of the resource schedule, the cost of the Preemption KS
may be higher, due to the introduction of fragmentation into the schedule for the preempted
resource, because a preempted reservation may have started earlier than the one preempting it.

The Preemption KS provides a means for the scheduler to achieve its goal of minimizing the
constraints imposed by its scheduling decisions. In case the scheduler’s previous determination
of the urgency of its subproblems was either misdirected or under-informed in some way

121

--------------------------------- KSA 476 ---------------------------------
KS Invocation ---------> STANDARD-PREEMPTION ([CLEAN]-SERVICE-GOAL-#182)
Canceled Reservation --> [Thu 5:50am] Cleaning-Truck-#CLT3 no longer assigned to

[Task Node: <Task: CLEAN> <[Flight #1197/1197(Thu)D]-#0>].
Canceled Reservation --> [Thu 5:50am] Cleaning-Truck-#CLT3 no longer assigned to

[Task Node: <Task: CLEAN> <[Flight #1136/1136(Thu)D]-#0>].
Succeeding Reservation Refined --> [Thu 5:50am] Resized GOTO-GATE in

[Task Node: <Task: CLEAN> <[Flight #12/12(Thu)I]-#0>]
on Cleaning-Truck-#CLT3 changed to
([Thu 1:39pm] [Thu 1:40pm]) from ([Thu 1:38pm] [Thu 1:40pm]).

Resource Assignment ---> [Thu 5:50am] Cleaning-Truck-#CLT3 assigned to
[Task Node: <Task: CLEAN> <[Flight #1585/1586(Thu)D]-#0>]
([Thu 8:03am] - [Thu 8:10am] ([Thu 8:06am] - [Thu 8:10am])).

Rerated Service Goal --> [Thu 5:50am] <[Flight #1136/1136(Thu)D]-#0>
[CLEAN]-SERVICE-GOAL-#96 (CLEANING-TRUCK)
from {1413} to {23837}.

Rerated Service Goal --> [Thu 5:50am] <[Flight #1197/1197(Thu)D]-#0>
[CLEAN]-SERVICE-GOAL-#124 (CLEANING-TRUCK)
from {669} to {28279}.

Rerated KSA -----------> [Thu 5:50am] <KSA-763 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[CLEAN]-SERVICE-GOAL-#196
CLEANING-TRUCK STANDARD-ASSIGNMENT)
from {64196} to {48216}.

Rerated Service Goal --> [Thu 5:50am] <[Flight #410/410(Thu)I]-#0>
[CLEAN]-SERVICE-GOAL-#196 (CLEANING-TRUCK)
from {64196} to {48216}.

Rerated KSA -----------> [Thu 5:50am] <KSA-755 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[CLEAN]-SERVICE-GOAL-#189
CLEANING-TRUCK STANDARD-ASSIGNMENT)
from {27442} to {20936}.

Rerated Service Goal --> [Thu 5:50am] <[Flight #1448/1448(Thu)D]-#0>
[CLEAN]-SERVICE-GOAL-#189 (CLEANING-TRUCK)
from {27442} to {20936}.

Invoked Precondition --> KS SELECT-RESOURCE-SECURING-KS ([CLEAN]-SERVICE-GOAL-#124)
KS Activation ---------> SELECT-RESOURCE-SECURING-KS ([CLEAN]-SERVICE-GOAL-#124)
Invoked Precondition --> KS SELECT-RESOURCE-SECURING-KS ([CLEAN]-SERVICE-GOAL-#96)
KS Activation ---------> SELECT-RESOURCE-SECURING-KS ([CLEAN]-SERVICE-GOAL-#96)

...

Figure 4.16. Execution Trace Showing the Execution of the Preemption KS.

122

(perhaps due to a lack of up-to-date information), the scheduler may use this opportunity to
employ the Preemption KS to attempt to correct for its previous miscalculations by adjusting
its queue of pending subproblems. This adjustment involves exchanging the places of an
urgent unsatisfied subproblem with those of a number of less urgent, but previously satisfied
subproblems, in what amounts to a form of sacrifice. The checks performed by the KS in the
process of building its list of candidate resource and reservation pairs are designed to ensure that
the subproblems whose reservations are preempted will be easier for the scheduler to re-satisfy
than the preempting subproblem.

4.2.4.4 The Right Shift Knowledge Source

The Right Shift KS serves as a kind of last-chance method for securing a resource reservation.
A right shift describes the movement of an existing reservation from one point in the schedule
to another point later in time (downstream). The goal of the Right Shift KS is to find the
best possible reservation for a subproblem, without guaranteeing that the resulting reservation
will remain within the bounds of a service goal’s allowance. This approach, however, has
the additional impact of possibly forcing temporally constrained downstream reservations to
be right-shifted themselves to make room for a delayed reservation. The introduction of
a right-shifted reservation therefore does not result in a completely localized change in the
schedule. Instead, an entire group of previously satisfied subproblems may be affected, thereby
forcing the system to handle the propagation of a potentially significant number of constraints
throughout the developing schedule. While the Right Shift KS takes a clear step forward in
the process of constructing the schedule, it is an expensive step in terms of the amount of
processing and constraint propagation associated with its decisions.

The Right Shift KS carries out its search process by first assembling information about
the earliest possible reservation that may be secured using each candidate resource, that is, all
resources of the designated class that satisfy the relevant constraints. Task shift preference is
ignored, owing to the fact that all previous attempts to find a reservation within the allowance
for the service goal have failed. This entire process is performed using the resource projector
units associated with each candidate resource, so that the exact extent of each right shift can be
established by the KS before a final decision must be made.

The list of candidate resource and reservation pairs is incrementally constructed by selecting
each candidate resource projector unit and determining the earliest time at which a reservation
for the subproblem may be secured using the corresponding resource. The KS must then
determine the amount of right shifting that will be required for any existing downstream
reservations as the result of the right-shifted subproblem and any other right-shifted downstream
reservations already determined. This is often an expensive search process, because each delayed
candidate reservation may induce a significant amount of downstream right-shifting, which in
turn may push back the scheduled completion time for both the original subproblem’s order and
possibly some of the orders connected by right-shifted inter-order subproblems. Fortunately,
the available slack in this situation helps to limit this cost. Changes to the scheduled release
and completion times of an order may cause additional right-shifting of previously unaffected
reservations if there are time bound constraints on those subproblems that are based on these
times.

The process of determining the full impact of a single right-shift on an existing reservation
requires the Right Shift KS to check and see whether the reservation may be performed by the

123

same resource at some time (the earliest possible) downstream in the schedule. For subproblems
with parent (aggregate) subproblems providing work areas whose reservation must encompass all
child subtask activity, the KS must check to see that the reservations of the parent subproblems
can be extended to handle the delay forced by the right-shifting of any of its children. For
subproblems that have not yet been satisfied, their service goal’s allowances may be shrunk
in the process of absorbing delay from preceding (upstream) subproblems. Tasks that do not
require the use of resources are shifted as necessary. After the impact of each delayed candidate
reservation has been determined (again using the projector units), the KS has a list of candidate
resource and reservation pairs that includes the cost of introducing each potential assignment,
in terms of how many existing reservations will have to be right-shifted or extended, and how
much the release and completion times for all affected orders will be changed.

The Right Shift KS selects a delayed reservation from the list of candidate resource and
reservation pairs that introduces the least amount of delay for all affected orders. The KS then
executes the actual right-shift, and DSS handles the required propagation activities.

Figure 4.17 presents a portion from a DSS execution trace illustrating the execution of the
Right Shift KS. In this situation, the allowance for [LOAD-BAGGAGE]-SERVICE-GOAL-#71
is ([Mon 5:01pm] - [Mon 5:25pm]). All previous attempts to secure a baggage
truck reservation within this period of time have been unsuccessful. Under the current
circumstances, the earliest possible reservation that also limits the amount of delay incurred
by <[Flight #243/243(Mon)D]-#0> is for Baggage-Truck-#BT-BO2 from ([Mon
5:26pm] - [Mon 5:37pm]), with setup activity occurring from ([Mon 5:07pm] -
[Mon 5:25pm]). To make this delayed reservation, the completion dime for <[Flight
#243/243(Mon)D]-#0> will be pushed back 12 minutes, and the previous reservation for
Gate-#F2 (where the flight will be serviced) will be extended by 12 minutes as well. The
extension of the parent TURNAROUND ACTIVITY task reservation also provides additional slack
to the unsatisfied SERVICE task. Finally, the altered [SERVICE]-SERVICE-GOAL-#69 and
its pending Assignment KSA are re-rated.

The execution cost of the Right Shift KS may be quite expensive, especially when the
schedule is densely packed and nearly complete. A single delayed reservation may affect a very
large set of existing reservations. From the scheduler’s perspective, the cost of propagating
the constraint changes caused by right shifting is also expensive in terms of the limitation on
flexibility that it imposes by using up valuable slack time within the affected orders to absorb
delay. This is a KS that should only be used after other less drastic and expensive methods have
failed.

4.2.4.5 Relaxed Reservation-Securing Knowledge Sources

The standard reservation-securing KSs are all restricted to consider only those candidate
resources that satisfy all existing contextual constraints on a subproblem. They will therefore not
consider any resource that is incompatible with all other contextually constraining reservations.

In the AGSS domain, the servicing of an aircraft takes place at a specific gate. All necessary
servicing vehicles must report to the gate’s work area in order to perform their assigned servicing
tasks. Each reservation for one of these mobile resources constrains the choice of a gate, by the
amount of time that has been allocated to the resource for traveling from its previous location
to the gate. If some of the mobile resources have already been reserved at the time a gate
reservation is sought, then the contextual constraints imposed by those reservations may limit

124

--------------------------------- KSA 186 ---------------------------------
KS Invocation ---------> STANDARD-RIGHT-SHIFT ([LOAD-BAGGAGE]-SERVICE-GOAL-#71)
Modified Goal ---------> [Mon 1:45pm] [SERVICE]-SERVICE-GOAL-#69 (SERVICE-TRUCK)

allowance now ([Mon 4:51pm] [Mon 5:37pm]);
was ([Mon 4:51pm] [Mon 5:25pm]) <[Flight #243/243(Mon)D]-#0>.

Modified Due Date -----> [Mon 1:45pm] <[Flight #243/243(Mon)D]-#0>
due [Mon 5:42pm]; originally [Mon 5:30];
now running [12 minutes] LATE <Penalty: 12>.

Resource Assignment ---> [Mon 1:45pm] Baggage-Truck-#BT-BO2 assigned to
[Task Node: <Task: LOAD-BAGGAGE> <[Flight #243/243(Mon)D]-#0>]
([Mon 5:07pm] - [Mon 5:37pm] ([Mon 5:26pm] - [Mon 5:37pm])).

Modified Reservation --> [Mon 1:45pm] [Task Node: <Task: TURNAROUND-ACTIVITY>
<[Flight #243/243(Mon)D]-#0>] Gate-#F2
([Mon 4:42pm] - [Mon 5:41pm] ([Mon 4:47pm] - [Mon 5:41pm]));
was ([Mon 4:42] - [Mon 5:29pm] ([Mon 4:47pm] - [Mon 5:29pm])).

Rerated KSA -----------> [Mon 1:45pm] <KSA-185 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[SERVICE]-SERVICE-GOAL-#69
SERVICE-TRUCK STANDARD-ASSIGNMENT)
from {114} to {113}.

Rerated Service Goal --> [Mon 1:45pm] <[Flight #243/243(Mon)D]-#0>
[SERVICE]-SERVICE-GOAL-#69 (SERVICE-TRUCK)
from {114} to {113}.

...

Figure 4.17. Execution Trace Showing the Execution of the Right Shift KS.

the pool of gates that may be considered for the reservation. While our conservative worst-case
approach to securing mobile resources helps to limit the occurrence of such situations, the
nullification of a previously secured stationary resource reservation, upon which exact mobile
resource reservations have been constructed, can severely limit the options for finding a new
stationary resource. Similarly, mobile resources secured to perform servicing at a gate may have
succeeding reservations that require them to be at a particular location at a designated future
time. Again, the selection of the gate at which such resources are to be used must allow enough
time for all currently secured mobile resources to get from the gate to whatever locations are
required by their succeeding reservations.

When the standard reservation-securing KSs encounter these situations and are unable
to avoid violating the contextual constraints, then consideration of a candidate resource is
halted. If no candidate resource is found that satisfies the existing contextual constraints on a
subproblem, then each of the standard KSs will fail to produce a reservation. For this reason, we
have developed a second set of reservation-securing KSs that perform the necessary relaxation of
any violated contextual constraints by either modifying or canceling any offending reservations
in order to satisfy the present subproblem.

Figure 4.18 illustrates an example of a situation where the contextual constraints imposed
by one reservation preclude the selection of another reservation, thereby warranting the use of
a relaxed reservation-securing KS. In this case, a stationary resource reservation is being sought
which will provide a destination location for two previously secured mobile resources. Note
that the reservation for MOBILE RESOURCE 1 includes enough travel time to permit eight
feasible destination locations (each corresponding to a stationary resource). The reservation
for MOBILE RESOURCE 2, however, is small enough to deny any of those locations from being
selected. The reservation for MOBILE RESOURCE 2 is therefore an offending reservation. The

125

approach taken by the relaxed reservation-securing KSs is to make a selection that ignores
all offending reservations, and to then select the best reservation among those candidates
producing the fewest offenders, that permits each offending reservation to be relaxed (or
canceled) to the point where it no longer precludes the candidate reservation. Referring back
to Figure 4.18, the solution would be to try to either relax or cancel the existing reservation for
MOBILE RESOURCE 2 to permit the selection of one of the eight feasible destination location
stationary resources.

PREVIOUS
LOCATION
(Mobile Resource 2)

DESTINATION
LOCATIONS

Allocated Travel Distance

PREVIOUS
LOCATION

(Mobile Resource 1)

Allocated Travel Distance

Mobile Resource 1 Mobile Resource 2

Feasible Infeasible

Offending Reservation: Mobile Resource 2

Figure 4.18. A Situation Requiring the Use of Relaxation Techniques to Secure a Stationary
Resource Reservation

For the Relaxed Assignment KS, the search process runs similarly to that of the Assignment
KS, except that the contextual constraint check is not initially performed on the candidate
resources. Instead, these constraints are ignored until the KS has assembled its list of candidate
resource and reservation pairs. The list is first sorted so that those reservations involving the
fewest number of offenders are moved to the top. It is then (stably) sorted so that the earliest
reservation with the least amount of setup time occurs first in the list. The KS then proceeds
down the list, attempting to relax all of the offenders for each resource and reservation pair
until success is achieved. If all of the offenders for a pair cannot be relaxed, then the pair is
discarded. If all pairs are discarded, then the KS fails.

Again, as is the case with the Assignment KS, the relaxed version does not leave the scheduler
with any newly re-stimulated and potentially difficult subproblems to solve, because it does
not cancel any of the offending reservations. By relaxing the offenders, it actually restores
some flexibility to the developing schedule by loosening their contextual constraints. The main
additional cost incurred by this KS (when compared to its standard version) is the time devoted
to determining whether all of the offenders for a particular reservation may be relaxed. This is
an expensive filter that may (in the worst case) have to be applied to each candidate resource

126

and reservation pair. The relaxation process, however, does slightly reduce the level of resource
availability by enlarging previous reservations.

For the Relaxed Preemption KS, the list of candidate resource and reservation pairs is
assembled using the same approach as in the standard Preemption KS. The list of candidates
is then sorted so that the resources providing the earliest reservation for the preempting
subproblem will be considered first. The sorted list is then processed one candidate at a
time (as in the standard version) to determine how many existing reservations will have to
be preempted. All current contextual constraints are ignored at this time. The KS then
proceeds down the candidate list, attempting to find the first successful preemption case where
all offending reservations may be relaxed. If success is achieved, the offenders are relaxed,
the reservations to be preempted are canceled, and the new assignment for the preempting
subproblem is made. If no candidate reservation is found that allows all of the offenders to be
relaxed, then the KS fails.

The costs associated with the Relaxed Preemption KS are similar to those for the Relaxed
Assignment KS. An additional expense arises from the increased computation required to
perform the preemption calculations.

The Relaxed Right Shift KS serves as the absolute last-chance method for finding a resource
reservation for a subproblem after every other available method has been exhausted. This KS
is basically designed to find a reservation at any cost. Except for ignoring any existing relevant
contextual constraints, it behaves like the standard Right Shift KS up to the point of determining
the penalties of introducing a delayed reservation. The difference arises when determining the
need to shift or modify existing downstream reservations. If an existing reservation cannot be
shifted to make room for a delayed reservation, it is added to the list of offenders.

Once the list of candidate resource and reservation pairs has been assembled, the KS then
processes the list (ordering it as in the standard method). The offenders are then tested to
see whether they may be relaxed to permit the potential delayed reservation. This is where an
important feature of the Relaxed Right Shift KS comes into play. When an offender cannot
be relaxed, its corresponding reservation is canceled. As a result, this KS should never fail to
find a reservation, as long as an instance of the proper resource class exists. It may, however,
insert a number of potentially difficult-to-solve offending subproblems back into the scheduling
process. In terms of computational expense, this KS should only have to process the first of the
candidates, thereby avoiding a complete traversal through the list, and placing it at roughly the
same cost as the standard Right Shift version. The major impact of its execution is the potential
cancellation of previously secured reservations with no regard for the level of difficulty that
may be expected in the process of re-satisfying them. It should be noted, however, that any
delay to the order introduced by a relaxed right shift may serve to enlarge the window of time
within which the canceled reservations must be re-satisfied, meaning that they may become
less difficult to solve than they originally were.

4.2.5 Re-Securing Resource Reservations

Existing resource reservations may be canceled either as part of the actions taken during
the execution of certain KSs, as the result of the unexpected breakdown of previously secured
resources. In the case of a reservation cancellation, the affected subproblem is re-stimulated by
the reactivation of its corresponding service goal. The reactivation of the service goal restarts
the process of attempting to secure a resource reservation for the subproblem by triggering the

127

(previously described) Select Reservation-Securing Method KS. Upon being reactivated, a service
goal is re-rated before triggering any of the reservation-securing KSs.

The conflicts introduced by the cancellation of a previous resource reservation should not
lead to an over-reaction on the part of the scheduler. In DSS, the affected subproblem is
analyzed on its own merits, and its urgency is placed within the context of the urgency of all
other existing unsatisfied subproblems, so that it may be properly inserted into the current
agenda. A situation that had previously caused a particular subproblem to be addressed and
solved early on in the scheduling process may no longer exist, thereby lessening the urgency
with which it must be re-solved. Other subproblems may have become more urgent in the
meantime. We allow the multiple-perspective view of the scheduling process, as implemented
by the service goal rating mechanism, to determine the course of action for the scheduler to
take in response to a reservation cancellation, just as it does under ordinary circumstances.

4.2.6 Reservation Refinement

One of the ways that DSS maintains flexibility throughout the scheduling process is to
equip the reservation-securing KSs with the ability to produce reservations for mobile resources
that include enough travel time for the secured resource to get from its previous location to
its required destination whether or not either of those locations has been determined. When
a reservation of this type is made, the subproblem for which the resource has been secured
is marked as being unrefined, indicating that possibly more than enough travel time has been
allocated as part of the reservation. This kind of situation may occur in any scheduling domain
involving mobile resources and reserved work areas. If a mobile resource is secured before the
work area to which it must report has been determined, then the inclusion of extra travel time
as part of the mobile resource reservation will preserve for a later time the unconstrained choice
of work areas.

The flexibility built into the schedule in this way is maintained as long as any uncertainty
exists regarding an unrefined reservation. At any point when the context of an unrefined
reservation is further established as the result of other related scheduling decisions, the
refinement mechanism is employed to go through the entire set of related subproblems
and determine whether any of the unrefined reservations among them may be refined and
compacted to free up resource time and eliminate unnecessary fragmentation in the affected
resource schedules. The task structures defined as part of the domain description provide the
information that DSS uses to determine when the opportunity for refinement exists.

The reservation refinement process may be described as follows, referring back to our
discussion of how resource reservations are secured (Section 4.2.4). In uncertain situations,
unrefined reservations of the kind shown in Figure 4.12 are constructed for mobile resources.
At the point when both the selected destination location for a mobile resource and its location
prior to an assignment have both been determined, the reservation refinement mechanism
converts an unrefined reservation into a refined reservation of the kind shown in Figure 4.13,
thereby freeing up previously maintained but now unneeded flexibility for use in satisfying
other resource requests.

We have implemented the Reservation Refinement KS to provide DSS with the means to
periodically stop and make use of its maintained flexibility. This KS is triggered as the result of
the activation of the refinement goal corresponding to a resource-requiring product task. The
activation process works in a top-down fashion, and is triggered whenever the service goal for

128

an aggregate task is satisfied, at which point all of the refinement goals for the subproblems
representing satisfied but unrefined child product tasks (both intra- and inter-order), and those
of their children, are activated as well. A single KSA is instantiated for each relevant unrefined
subproblem.

The Reservation Refinement KS can be activated as long as there is slack to be exploited. It
will attempt to shift a reservation to the left (upstream) or to the right (downstream), depending
on the shift preference of the task, the current level of contention for the resource involved
during the affected time period, the current tardiness for the order involved, and the amount
of slack currently available. If a task has an early shift preference, or there is high resource
contention and the order involved is currently tardy, a left-shift is attempted. Otherwise, a
right shift is attempted. A left shift can be attempted unless there is no slack available to the left
of the task, or there is high resource contention and more slack to the left than the right. That
is, a left shift is attempted, where possible, unless it would decrease the size of a valuable block
of slack that could be used for some other purpose. Similarly, a right shift can be attempted
unless there is no slack available to the right of the task, or there is high resource contention
and more slack to the right than the left. As part of the refinement process, the KS recalculates
the actual amount of processing time required for a reservation given the new context within
which the reservation exists. The result of the execution of this KS is often an improvement in
the resource utilization of the affected resource class, achieved by either reducing some amount
of fragmentation built into the schedule by a previous worst-case decision, or at the very least,
a more efficient use of the resource due to a shortening of a reservation’s overall processing
duration.

Figure 4.19 presents a portion from a DSS execution trace illustrating the execution of the
Reservation Refinement KS. In this situation, the satisfaction of [TURNAROUND-ACTIVITY]-
SERVICE-GOAL-#8during the invocation of KSA 29 (Assignment) is achieved by a reservation
of the stationary resource Gate-#G1. As an aggregate, the TURNAROUND ACTIVITY task
provides potentially important contextual information for its child reservations. Now that a
resource has been secured for this task, any previously secured but still unrefined mobile resource
reservations may be refinable. In Figure 4.19, it turns out that only two previously secured
and still unrefined child reservations exist, those for the UNLOAD BAGGAGE and BAGGAGE
TRANSFER tasks. Two Reservation Refinement KSAs are therefore instantiated, one for each task.
The invocation of the first KSA leads to a refinement of the UNLOAD BAGGAGE reservation
that clips 8 minutes from the previous unrefined reservation of Baggage-Truck-#BT-F2.
The invocation of the second KSA, however, produces no change in the existing BAGGAGE
TRANSFER reservation, because the remaining refinable portion of the BAGGAGE TRANSFER
reservation does not involve the initial travel activity for the baggage truck. The refinement in
this situation actually involves a subtask that does not directly require a resource (the baggage
truck), and must instead be handled as a special case (defined in the following section).

The need to refine the processing durations of tasks that do not require resources can occur
as the result of the introduction of a stationary resource reservation. Just as mobile resource
reservations are often dependent on stationary resources providing work area locations to and
from which they must report, non-resource-requiring tasks may also be dependent on these
stationary resources. For example, in the AGSS domain, the amount of travel time allocated for
the PASSENGER TRANSFER operation between two connecting flights is determined by the two
gates used to service the flights, even though no resource is required for performing the actual

129

--------------------------------- KSA 29 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#8)
Resource Assignment ---> [Mon 1:36pm] Gate-#G1 assigned to

[Task Node: <Task: TURNAROUND-ACTIVITY>
<[Flight #1447/1447(Mon)D]-#0>]

([Mon 4:32pm] - [Mon 5:19pm] ([Mon 4:37pm] - [Mon 5:19pm])).
Invoked Precondition --> KS RESERVATION-REFINEMENT

([UNLOAD-BAGGAGE]-REFINE-GOAL-#63)
KS Activation ---------> RESERVATION-REFINEMENT ([UNLOAD-BAGGAGE]-REFINE-GOAL-#63)
Invoked Precondition --> KS RESERVATION-REFINEMENT

([BAGGAGE-TRANSFER]-REFINE-GOAL-#55)
KS Activation ---------> RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#55)
--------------------------------- KSA 30 ---------------------------------
KS Invocation ---------> RESERVATION-REFINEMENT ([UNLOAD-BAGGAGE]-REFINE-GOAL-#63)
Refined Reservation ---> [Mon 1:36pm] Baggage-Truck-#BT-F2 assigned to

[Task Node: <Task: UNLOAD-BAGGAGE>
<[Flight #1447/1447(Mon)D]-#0>]
([Mon 4:39] - [Mon 4:52] ([Mon 4:40pm] - [Mon 4:45pm]));
was ([Mon 4:33pm] - [Mon 4:54pm] ([Mon 4:40pm] - [Mon 4:45pm])).

--------------------------------- KSA 31 ---------------------------------
KS Invocation ---------> RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#55)

...

Figure 4.19. Execution Trace Showing the Execution of the Reservation Refinement KS.

passenger transfer. In the case of the BAGGAGE TRANSFER task refinement mentioned above,
the task that is affected by the assignment of the gate is actually the non-resource-requiring
TRANSFER X BAGGAGE subtask, which serves to indicate the portion of the overall BAGGAGE
TRANSFER task that is spent actually transferring baggage. Again, its duration has no effect
on the amount of time required to permit the baggage truck to report to its originating service
location.

These relationships are identified using the SPECIAL-REFINEMENT-CASE? flag, which
indicates when the processing duration for a non-resource-requiring task depends on the
processing duration of some other task. When such a relationship exists, an automatic
refinement calculation is initiated whenever a reservation upon which the dependent task
depends is introduced. In the case of the AGSS domain PASSENGER TRANSFER and
BAGGAGE TRANSFER tasks, both are refined at the time when both gates involved in servicing
the connected flights have been secured (for example, during the invocation of KSA 29 in
Figure 4.19).

4.2.7 Processing Resource Failures

A primary concern in the design of the DSS scheduling approach has been the desire to
produce a completely reactive decision-making process. When unexpected events occur within
the environment, they are addressed according to their relative urgency within the context of the
set of pending scheduling activities. This avoids the initiation of a special process for handling
such events that assigns a high priority to the resolution of their resulting conflicts simply
because of their unexpected nature. As a result, each such event can be assessed individually
and then placed into its proper order in the queue of pending scheduling activities, thereby
avoiding an automatic disruption to the existing order.

130

In Figure 4.20, a DSS execution trace is presented that begins with the failure of resource
Baggage-Truck-#BT-BO1. Upon receiving notification of the failure, DSS triggers the
Process Resource Failure KS, which is responsible for determining the impact of the failure on
the existing schedule. Because a resource failure may have a significant impact on the schedule,
the Process Resource Failure KS is executed immediately. Upon invocation, it cancels all existing
pending reservations for the failed resource, including any reservation currently executing,
in which case the task will have to be completely re-executed by some other resource. As a
result of such cancelations, each service goal corresponding to an affected task is reactivated,
and DSS restarts the process of attempting to achieve its satisfaction. The urgency of each
reactivated subproblem is therefore based solely on the current state of problem-solving,
and not on some predefined static ordering. In Figure 4.20, the cancellation of the LOAD
BAGGAGE reservation for <[Flight #370/370(Mon)D]-#0> results in the reactivation
of [LOAD-BAGGAGE]-SERVICE-GOAL-#63, the satisfaction of which will be achieved at
some appropriate time in the future.

...

Resource Breakdown ----> [Mon 4:40pm] Baggage-Truck-#BT-BO1 now unavailable.
Invoked Precondition --> KS PROCESS-RESOURCE-FAILURE (Baggage-Truck-#BT-BO1)
KS Activation ---------> PROCESS-RESOURCE-FAILURE (Baggage-Truck-#BT-BO1)
--------------------------------- KSA 188 ---------------------------------
KS Invocation ---------> PROCESS-RESOURCE-FAILURE (Baggage-Truck-#BT-BO1)
Canceled Reservation --> [Mon 4:40pm] Baggage-Truck-#BT-BO1 no longer assigned to

[Task Node: <Task: LOAD-BAGGAGE> <[Flight #370/370(Mon)D]-#0>].
Rerated Service Goal --> [Mon 4:40pm] <[Flight #370/370(Mon)D]-#0>

[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {11960} to {233}.

Invoked Precondition --> KS SELECT-RESOURCE-SECURING-KS ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
KS Activation ---------> SELECT-RESOURCE-SECURING-KS ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)

...

Figure 4.20. Execution Trace Showing the Execution of the Process Resource Failure KS.

In a situation involving a resource failure that affects a number of existing reservations,
it is possible that the current conditions within the environment may be such that some
of those reservations—for example, those with immediately pending operation times—will
require immediate addressing, while others, being less urgent, may be able to wait until later.

DSS can accommodate unexpected events into its basic control scheme in such a way that
every scheduling task is performed as necessary according to its urgency, and independently of
its specific origin. It is thus able to move seamlessly between predictive and reactive scheduling
tasks, and thereby achieve a high degree of flexibility that permits it to react effectively to a
dynamic environment.

131

4.3 A Summary

The multi-faceted scheduling approach of DSS addresses a number of important issues of
flexibility. The least-commitment preservation of slack time acts to preserve future scheduling
options, the fine-grained opportunism enables quick and effective reaction to dynamic environ-
ments, and the consultation of multiple, relevant scheduling perspectives produces an informed
decision-making process that can detect developing conflicts before they become more serious.

In the following chapter, we present the results of a number of experiments designed to
illustrate the performance benefits and generic capabilities of the DSS scheduling approach. In
a comparison against ISIS and the initial OPIS system using the common benchmarking data
presented in [Chiang et al., 1990], we demonstrate better performance by DSS in terms of
producing lower average tardiness costs, and lower percentages of tardy orders. In addition,
we demonstrate the ability of our least-commitment decision-making process to produce
average work-in-process times that remain well within the average target lead times, despite the
preservation of slack time within those developing schedules.

A second set of experiments uses a reactive, dispatch situation to demonstrate the benefits
of our multiple-perspective urgency-determination heuristic, and the adaptability of our
fine-grained opportunistic problem-solving approach, to both decrease tardiness and increase
computational efficiency under changing environmental conditions. In these experiments, we
contrast the results obtained by our multiple-perspective heuristic with those of a number of
classical scheduling heuristics implemented within the DSS framework. We then continue this
comparison of heuristics under conditions that include unexpected resource failures, to model
more closely the dynamics of a real-world environment.

The final set of experiments evaluate further the ability of the DSS multiple-perspective
urgency-determination heuristic to understand fully the various textures of the current state of
problem-solving, and the ability of its least-commitment decision-making approach to preserve
sufficient flexibility for accommodating unexpected developments.

132

C H A P T E R 5

EXPERIMENTAL EVALUATION OF DSS

Our intent throughout this research has been to demonstrate that the performance of a
scheduling system can be enhanced by preserving and utilizing the flexibility available within
the problem, and considering a broad range of perspectives on the state of problem solving. In
this chapter, we rate the performance of DSS according to both the quality of its schedules and
the computational efficiency of its approach. Furthermore, we evaluate the effectiveness of DSS

within the context of dynamic environments that produce random unexpected events, thereby
demonstrating its ability to perform well in situations where the entire collection of orders is
not known in advance, and when resources are either in short supply, or are susceptible to
breakdowns.

We begin in Section 5.1, with a discussion of the primary performance objectives for DSS,
and continue in Section 5.2 with a description of the various measures we have used to evaluate
the success of our approach. To prepare for the discussions of the actual experiments, Section 5.3
provides descriptions of the set of classical scheduling heuristics we have implemented within
the DSS scheduling mechanism for the purpose of comparing a variety of heuristic approaches.
Following that, Sections 5.4 and 5.5 introduce the two DSS-based scheduling application
systems that will be used to evaluate the performance of the basic DSS scheduling approach
across substantially different domains. The evaluation of the experiments and results is provided
in Section 5.6. In that section, we analyze the results of three different experiments using two
DSS-based scheduling application systems. Finally, we summarize our results in Section 5.7.

5.1 Primary Objectives

While schedule quality can be judged in many ways, the focus is generally on the degree to
which order due dates are met. DSS focuses on the minimization of tardiness, in the form of low
average tardiness costs per order, and low percentages of tardy orders. In terms of processing,
the idea behind the design of DSS has been to produce a scheduling system that understands
fully the current state of problem solving at all times, and is therefore able to react quickly
and appropriately to unexpected changes within its environment. The ability with which a
scheduler is able to understand the state of problem solving can be evaluated by analyzing
its problem-solving behavior. The use of fewer and more efficient decision-making steps to
produce a schedule is evidence of a keen understanding of the entire problem. DSS attempts
to minimize the total number of decision-making steps, and arrange in which those steps are
taken so that the majority of its decisions can be made quickly, and without causing too much
costly disruption to the existing schedule.

In the following two sections, we discuss each of the primary performance objectives in
detail.

134

5.1.1 Minimizing Tardiness

The primary schedule quality objective incorporated into DSS is the minimization of the
degree to which order due dates are exceeded. This objective manifests itself in the minimization
of the average tardiness cost per order, and the incidence of tardiness across the set of all orders.
Schedules with low average tardiness costs and few overdue orders incur fewer penalties resulting
from missed due dates.

The tardiness cost for an order is determined by combining its scheduled tardiness with its
application-specific priority. Let indicate the set of all orders Oi , and let Di be the due date,
and Ci the scheduled completion time, for each order Oi . We then define the average tardiness
cost per order for an entire schedule as follows:

Oi max 0 Ci Di

For the purpose of determining tardiness cost, orders that are completed prior to their due
dates are still considered to be on time, thereby incurring a tardiness cost of zero. Remember
that DSS makes no attempt to minimize order flow times or schedule makespan.1

The incidence of tardiness across the set of all orders is measured as the fraction of tardy
orders within the set, as follows:

Oi s t Ci Di

To achieve the goal of limiting tardiness across the set of all orders, DSS considers the
anticipated effect of its scheduling decisions on the currently scheduled completion times
for all orders involved. Some of the reservation-securing KSs can introduce delays for one
or more jobs in the process of assigning a resource to a particular operation at a certain
time. DSS is designed to avoid the introduction of tardiness by organizing its variable-ordering
decision-making process to address over-constrained subproblems at the time when the broadest
range of options are available for their solution. In addition, its value-ordering heuristics are
designed to favor resource reservations that avoid the introduction of new delays or the further
extension of existing ones.

5.1.2 Maximizing Computational Efficiency

The primary computational objective is to provide DSS with the ability to react efficiently to
developments in a changing environment so that costly backtracking and constraint-relaxation
activities can be avoided. We can measure this ability by considering the number of KSAs that
must be invoked in the course of producing a schedule, and the specific kinds of KSs used to
secure all required resource reservations.

We have discussed how the order in which scheduling subproblems are solved affects
the overall quality of the resulting schedule. To limit the computational expense involved
in producing a schedule, the order in which scheduling subproblems are addressed must be

1This is a possible direction for future work, specifically in trying to balance the need for schedule compaction
with the need to preserve schedule flexibility, according to the current state of problem solving.

135

frequently and properly reorganized according to the changing state of problem solving. A
significant portion of the computational expense incurred during the scheduling process results
from the selection and execution of the various reservation-securing KSs, and the propagation
of the effects of their scheduling decisions. As a subproblem becomes more tightly constrained,
the kind of KS required for its solution becomes increasingly expensive, as do the propagation
activities it triggers. In addition, the more frequently that backtracking is required as a result
of changing environmental conditions or earlier scheduling decisions, the more often that
previously solved subproblems will have to be re-solved at potentially greater computational
expense.

Metrics recorded by GBB are used to provide information on the total number of KSAs
executed during the course of problem solving. These numbers help indicate the total amount
of computational effort that DSS devotes to the process of solving an RCSP. A number of
additional metrics can be calculated from an analysis of satisfaction records maintained by
all created service goals. Each satisfaction record maintains a history of the size of the goal’s
allowance, and the reservations and means by which those reservations were secured, over the
lifetime of the goal. By analyzing this history, the number of times a particular subproblem was
solved, and at what computational cost, can be determined. Service goals that are re-satisfied
on numerous occasions throughout the scheduling process indicate a high level of backtracking
involving their particular subproblems, and may suggest an inappropriate placement of the
subproblem in the scheduler’s queue of scheduling activities. Service goals that are solved only
once during the scheduling process indicate that their placement within the scheduling activity
queue was entirely appropriate.

5.2 Problem-Solving Metrics for Evaluating DSS

There are six basic problem-solving metrics that are used to evaluate the performance of
DSS, in terms of both schedule quality and computational efficiency. These metrics appear in
the graphs that accompany the experiments with which DSS has been evaluated. We describe
each of them below.

Average Tardiness Cost per Order

The Average Tardiness Cost per Order measure is considered in every experiment. It
indicates one of the ways in which tardiness manifests itself in a completed schedule.
While tardiness is measured in units of time, tardiness cost is measured in cost units
determined by the particular problem domain.

Percentage of Tardy Orders

The Percentage of Tardy Orders measure is also considered in every experiment. It indicates
another way in which tardiness manifests itself in a completed schedule. More importantly,
it can be used to ensure that a low average tardiness cost per order is not achieved by
spreading tardiness across many orders. Tardy order percentage is charted as the fraction
of tardy orders within a complete set of orders.

Average Work-in-Process Time per Order

The Average Work-in-Process Time per Order measure is considered as a means of ensuring
that DSS does not sacrifice WIP times by failing to adequately compact its schedules.

136

This metric is used in the evaluation of the TCP job-shop application (described (below)
in Section 5.4) to indicate that reasonable WIP times do result from DSS’s scheduling
process. Average work-in-process times are measured in units of time dictated by the
particular problem domain.

Total Number of KSA Invocations

The Total Number of KSA Invocations measure provides important information about the
amount of decision-making effort that is devoted to a particular RCSP. The process
of reserving a resource for an operation requires a certain amount of KS activity, which
can be measured in terms of the invocation of KSAs. Each KSA invocation represents
a fine-grained decision point. Higher numbers of invocations can also indicate both
ineffective variable-ordering (because many options were explored to solve subproblems)
and a high level of backtracking (because many subproblems had to be re-solved).

Percentage of Standard Assignment Reservations

The Percentage of Standard Assignment Reservations measure provides important additional
information about the specific nature of the problem-solving efforts required to solve a
particular RCSP. The standard Assignment KS introduces the least number of constraints
into the existing state of problem solving, and requires no constraint relaxation. A higher
frequency of subproblem satisfaction using the standard Assignment is thus evidence of a
more efficient variable-ordering process, in which the subproblems are arranged in such
a way as to permit the use of the least-costly reservation-securing method for the greatest
number of subproblems. Standard Assignment reservation percentage is charted as the
fraction of all service goal satisfactions made using the standard Assignment KS.

Elapsed Processing Time

The Elapsed Processing Time measure provides the final view of DSS’s computational
efficiency. While the total number of KSA invocations indicates one measure of scheduling
effort, it ignores any associated activities that must be performed as part of the variable-
ordering process. Because of DSS’s broadly informed service goal urgency-rating function,
a significant amount of processing effort can be required. The Computational Effort
measure accounts for this possibility.2

5.3 Classical Scheduling Heuristics Implemented in DSS

For the purpose of evaluation, DSS is equipped with a variety of rating schemes for guiding
its variable-ordering decision-making process. These rating schemes control the process of
ordering the scheduling subproblems that must be addressed by the KSs responsible for creating
(and occasionally modifying or canceling) resource reservations. By selecting different rating
schemes, we are able to implement any of a group of classical scheduling heuristics, in addition
to our own multiple-perspective approach (DSS(MPH)). The classical heuristics employ a
limited analysis of the current state of problem solving, and while they therefore tend to require

2Computational effort is measured in terms of elapsed processing time (in minutes) on a Digital Alpha 3000
workstation running Harlequin Lispworks (version 3.1). All appropriate trademark disclaimers apply. Very little
effort has been made to optimize the code, leaving the potential to obtain some performance gains.

137

less processing time, they generally pay the price in the form of decreased schedule quality
and increased incidence of backtracking and relaxation. The DSS(MPH) heuristic performs
an in-depth analysis of both existing and anticipated scheduling conditions, and rewards this
extra effort by producing better quality schedules, and efficiently responding to dynamic
environments.

The following heuristics from the project scheduling literature, specifically the work
of [Davis and Patterson, 1975], provide us with the means to compare the behavior of DSS(MPH)
with some classical heuristic approaches. Davis and Patterson ran an experiment that involved
83 different order sets, where the schedules produced using each of a set of eight scheduling
heuristics were compared with optimal schedules for each problem. The heuristics were ranked
according to their ability to produce schedules that were either optimal or sufficiently close.
The set of control strategies that we will use for comparison is a subset of those heuristics
described by Davis and Patterson.3 Each of these heuristics are defined below. Some have been
slightly modified to work within the special constraints of our dynamic RCSPs.

Minimum Earliest Starting Time (DSS(MINEST))

DSS MINEST min ESTij

The DSS(MINEST) heuristic gives priority to those subproblems having the most imminent
EST. The earlier the EST, the greater the priority. Whenever the EST for the subproblem
changes, the rating of its corresponding service goal must be updated.

Minimum Late Finishing Time (DSS(MINLFT))

DSS MINLFT min LFTij

The DSS(MINLFT) heuristic gives priority to those subproblems having the most imminent
LFT. The earlier the LFT, the greater the priority. Whenever the LFT for the subproblem
changes, the rating of its corresponding service goal must be updated.

Shortest Operation First (DSS(SOF))

DSS SOF min dij

The DSS(SOF) heuristic gives priority to those subproblems having the shortest expected
duration. For non-aggregate subproblems, the expected duration is calculated by taking
the average of the minimum and maximum expected durations over all resource classes
able to perform the task. For aggregate subproblems, the expected duration is dictated by
the critical path of the child subproblems. Whenever the critical path of an aggregate’s
child subproblems changes, the rating of its corresponding service goal must be updated.
The rating of a non-aggregate service goal does not change.

3Some of the heuristics in [Davis and Patterson, 1975] require finding solutions to small integer programs, a
capability that has not been provided to DSS.

138

Minimum Job Slack (DSS(MINSLK))

DSS MINSLK min LFTij max ESTij CURRENTTIME dij

The DSS(MINSLK) heuristic gives priority to those subproblems having the minimum
amount of available slack given their allowance. The amount of slack available to a
non-aggregate subproblem is determined by taking the difference between its LFT and
its EST, and subtracting the expected duration of the task. The expected duration is
calculated by taking the average of the minimum and maximum expected durations
over all resource classes able to perform the task. The amount of slack available to an
aggregate subproblem is calculated by first determining the critical path among the child
subproblems. The duration of the critical path is then subtracted from the difference
between the LFT and the EST. Whenever the amount of slack available to a subproblem
changes, the rating of its corresponding service goal must be updated. DSS(MINSLK) is
based on the notion that subproblems having little flexibility in their means of satisfaction
should be handled as quickly as possible, thereby putting off until later the handling of
those subproblems having more room with which to maneuver. Subproblems with little
available slack represent tightly constrained subproblems that require attention before they
become even more constrained, to the point that localized solutions (those solutions that
do not further significantly constrain other related subproblems) are no longer available.
Nearly all of the work on heuristic scheduling has recognized the importance of focusing
attention as early as possible on the most tightly constrained subproblems.

First Come First Served (DSS(FCFS))

DSS FCFS min RECEPTIONTIME ORDER Tij min ESTij

The DSS(FCFS) heuristic forces the sequential scheduling of each order, giving priority
within each order to those subproblems having the most imminent ESTs. Orders are
sequenced according to the time at which they are received by the scheduler. Unlike
DSS(MINEST), where the modification of a subproblem’s EST causes its corresponding
service goal to be re-rated, the rating of a service goal under DSS(FCFS) never changes.
DSS(FCFS) implements an order-based scheduling approach similar to that used in ISIS, in
that each order is scheduled in its entirety by extending the schedule forward, one operation
at a time, from the ready time to the due date of the order. An important feature of
DSS(FCFS) is that its rating scheme all but prohibits preemption of existing reservations.
Higher-rated subproblems cannot be preempted, and because DSS(FCFS) guarantees that
service goal ratings monotonically decrease, satisfied subproblems will never have lower
ratings than their potential preempting subproblems. The only possibility for preemption
exists among subproblems within the same order having identical initial ESTs.

5.4 The TCP System

The TCP (Turbine Component Plant) scheduling application implements a job-shop sched-
uling domain involving a simplified production facility for producing three families of airplane

139

propeller turbine blades. It is based on an application used in the evaluation of the initial OPIS

system [Ow, 1986, Ow and Smith, 1988]. The objectives for this job-shop RCSP include
the minimization of the average tardiness cost per order, the minimization of the average
work-in-process time per order, and the minimization of the total number of setup operations
required for all secured resources. Further details of the job-shop scheduling problem are
discussed in Section 1.3.2.

A total of three process routings are defined for this domain. Six different products (two
in each blade family) can be produced. Two of the process routings consist of six sequential
resource-requiring operations. The remaining process routing consists of three sequential
resource-requiring operations. The second operation in each job can be performed by one
of two different types of resources (depending on the blade family involved). There is no
intra-order parallelism in the production process, and there are no aggregate tasks of the kind
described in Section 3.4.2.2.

Figure 5.1 provides a visual description of the three defined process routings, in addition
to a basic factory layout that consists of eleven work areas containing a total of 33 machine
resources.

The processing duration for each type of operation is defined on a per-lot basis, with lot
size being an attribute of every order. The processing durations for all machine setup operations
are fixed according to resource type. Note that setup activity is required to accompany each
servicing activity unless the immediately preceding assignment (if one exists) for the resource
in question involved an operation on a product within the same blade family.

A collection of benchmarking data for this application, consisting of 22 order sets organized
into 18 different categories, is defined in [Chiang et al., 1990].4 Each category corresponds to
a group of parameter settings that define the product mix, priority class, order lead time, order
release pattern (daily, weekly, or at exponentially distributed intervals), and batch size (orders
are released periodically to the system) for for a set of orders. Two of the order sets contain
85 orders, while the remaining sets contain 120. Each order belongs to one of six priority
classes, indicating the importance of meeting its due date. Tardiness penalties are determined
according to these priority classes.

A detailed summary of the experiments for which this benchmark data was developed can
be found in [Ow, 1986]. The specific implementation details of the TCP system are provided
in Section A.2.

5.5 The ARM System

The ARM (Airport Resource Management) scheduling application implements the airport
ground service scheduling domain described in Section A.1.1, and is capable of producing
ground servicing schedules for three different types of airline passenger flights. The primary
objective in the AGSS domain is to minimize tardiness. Flight departure times must therefore
be met as often as possible. There is, however, no reward for the early departure of a flight,
signaling an important distinction between this domain and many other RCSP domains (such
as the job-shop implemented by the TCP system). The priority of every flight in ARM is identical
(set to 1), so that the average tardiness cost is represented in terms of units of time (minutes).

4Four of the 18 categories have double order sets.

140

WA10:
brazing area

brazer
a

brazer
b

brazer
c

WA11:
final.str str-3a str-3b str-3c str-3d

WA9:
airfoil area p/w

WA8:
2nd/peg.str str-2a str-2b str-2c str-2d str-2e str-2f

WA6:
root.208v r208-9WA5:

root.208h r208c r208hWA4:
root.210 r210a

WA3:
rooting

area
rotary

WA2:
elb.a.
proc

elb.a.
proc

WA1:
1st.str str-1a str-1b str-1c str-1d str-1e str-1f str-1g str-1h str-1i str-1j str-1k str-1l

WA7:
tapered
blade
area

gr.852

This figure is based on Figure 2 (page 3) from CMU-RI-TR-90-05,
Factory Model and Test Data Descriptions: OPIS Experiments,
by Whay-Yu Chiang, Mark S. Fox, and Peng Si Ow.

PRODUCTS:
Pblade3 & Pblade6

T Blade Family
PRODUCTS:

Pblade2 & Pblade5

SSE Blade Family
PRODUCTS:

Pblade1 & Pblade4

CSE Blade Family

Figure 5.1. TCP Process Routings and Factory Layout

141

The three flight types handled by ARM are Arrival, Departure, and Turnaround. Their
required ground servicing activities consist of anywhere from three to seven resource-requiring
operations, and three to four non-resource-requiring operations, and more, depending on
connecting flight relationships. Any flight may be linked to any number of connecting
flights, requiring an additional resource-requiring operation, and four non-resource-requiring
operations, for each connection. Each service type includes a single aggregate resource-requiring
task, which provides a work area (an airport gate) at which all other ground servicing activities
take place. In addition, some of the operations, such as LOAD BAGGAGE and ENPLANE, have a
preference for being completed as late within their jobs as possible. Finally, most of the ground
servicing work is performed in parallel.

The processing duration for each type of operation is dependent on the type of product
involved, specifically the size of the aircraft. Because the AGSS domain includes mobile
resources, much of the setup activity associated with the servicing operations involves travel
throughout the airport environment. The duration of such activity depends on the locations
involved, and the traveling speed of the resource classes. Occasionally, travel activity is not
required, in case a resource already available at a desired location. Otherwise, all required setup
activities must always be performed. Finally, there are a limits on the pairing of resources and
operations, based on various technological constraints.

A variety of layouts containing a varying number of stationary and mobile resources can be
defined. Figure 5.2 presents a simplified model of the Northwest Airlines terminal at Detroit’s
Metropolitan Wayne County Airport. Note that only the assorted shop locations and maximal
set of stationary gate resources are shown. All defined mobile resources are initially placed at
the GARAGE shop location.

The flight timetables used in the experiments with ARM are subsets of a complete daily
timetable of flights run by Northwest Airlines (and its client airlines) through the Detroit
Metropolitan Wayne County Airport. The entire Northwest Airlines timetable consists of
more than 4330 weekly takeoffs and landings, averaging over 600 per day.5 We have assembled
a set of ten flight timetables and a collection of corresponding airport layouts for evaluation
purposes. Each timetable corresponds to a particular period of time during the day, and
includes all flights that either arrive or depart during that period. Figure 5.3 shows the
breakdown (according to the type of ground servicing required) of the flights in each of the ten
timetables.

The ten corresponding layouts for these timetables were constructed by determining, for
each timetable, the least number of resources of each type required by DSS(MPH) or any of the
assorted DSS scheduling heuristics (those described in Section 5.3) for producing a schedule
with no tardiness. This information was used to constructed the Minimum Supply layouts,
which are described in Table 5.1. These layouts are used in all of the ARM experiments.

The specific implementation details of the ARM system are provided in Section A.1.

5It should be noted that because explicit flight schedules identifying the exact matchings of arriving and
departing flights with specific aircraft have been unavailable to us, the schedules used in these experiments were
constructed by hand from a readily available public timetable. Arriving and departing flights with identical
numbers have been linked to single aircraft to form Turnaround flights, as are flights having numbers that differ
by one, and arrive from, and depart to, the same city. All other flights were left as separate Arrival or Departure
flights.

142

C C o n c o u r s e
(I n t e r n a t i o n a l)

D C o n c o u r s e

E C o n c o u r s e

F C o n c o u r s e

G C o n c o u r s e

L . C . S m i t h
(S o u t h)

Te r m i n a l

J . M . D a v e y
(N o r t h)

Te r m i n a l

B C o n c o u r s e

Detroit Metropolitan
Wayne County Airport

Romulus, Michigan

Stationary Resources
G AT E

Shop Locations

K K I T C H E N

F U E L TA N KF

G G A R A G E

B B A G G A G E O U T L E T

H H A N G A R

S S E R V I C E C E N T E R

C L E A N I N G C E N T E RC

Figure 5.2. (Simplified) Detroit Metropolitan Wayne County Airport Showing All Defined
Stationary Gate Resources and Shop Locations.

143

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0

10

20

30

40

50

60

To
ta

l N
um

be
r o

f F
lig

ht
s

Timetable

Arrival

Turnaround

Departure

Figure 5.3. ARM Experimental Flight Timetables.

Table 5.1. ARM Minimum Supply Layouts

Timetable
Number
of Flights

Gates

Domestic
(Intl.)

Baggage
Trucks

Catering
Trucks

Cleaning
Trucks

Fuel
Trucks

Service
Trucks

0550-0639 11 11 (0) 10 5 2 4 1
0650-0759 35 33 (2) 24 11 5 16 4
0810-0919 49 45 (4) 33 12 8 18 5
1050-1139 41 39 (2) 30 10 7 13 4
1200-1249 41 37 (4) 30 12 7 18 5
1250-1349 12 10 (2) 5 2 2 4 1
1500-1549 56 50 (6) 33 11 9 15 4
1600-1729 52 45 (7) 32 13 8 18 5
1830-2009 59 58 (1) 30 10 8 15 4
2030-2129 46 41 (5) 37 10 10 13 5

144

5.6 Experiments and Evaluation

One of the primary contributions made by DSS to the field of knowledge-based scheduling
involves the development of a multi-faceted approach to solving dynamic RCSPs that applies to
a variety of scheduling domains. At specific and frequent decision-making points throughout
the scheduling process, the proper consultation of relevant scheduling perspectives coupled with
the intent to preserve the options necessary for handling future conflicts, helps DSS(MPH) to
make better-informed decisions in spite of the uncertainty that exists within the environment.
This approach permits DSS to react quickly and effectively to unexpected events. In this section,
we will present a series of experiments designed to support the contributions represented by
our approach.

We begin by reiterating the specific research contributions of our multi-faceted approach
to solving dynamic RCSPs.

Use of slack time to preserve flexibility and limit schedule disruption.

Quick and effective reaction to dynamic environments.

Consultation of multiple perspectives in all scheduling and control decisions.

Accommodation of additional domain complexities.

We now present a description of the four experiments we have designed, executed, and evaluated,
to achieve these contributions.

Comparisons with Common Benchmarks. In this experiment, we make use of the
experimental data developed for the evaluation of the initial OPIS system [Chiang et al.,
1990], to place the performance of DSS (using DSS(MPH)) within the context of a number
of important knowledge-based scheduling systems.

Dispatch Scheduling. This experiment tests the ability of DSS(MPH) and the assorted DSS

heuristics to continually accommodate unexpected orders into their developing schedules,
and illustrates the degree to which each approach is dependent on a preliminary analysis
of the order set. This experiment closely models dynamic, real-world factory conditions.

Coping with Resource Failures. This experiment tests the ability of DSS(MPH) and the
assorted DSS heuristics to react quickly and effectively to the problems that arise when
resources break down during the execution of a schedule.

Unexpected Order Sets. In this experiment, we test the ability of DSS(MPH) and the
assorted DSS heuristics to comprehend fully a continually narrowing solution space.

The benchmark experiment shows that DSS (using DSS(MPH)) outperforms a number of
existing knowledge-based scheduling systems, in minimizing both the average tardiness cost
per order, and the percentage of tardy orders. These results indicate that DSS(MPH) is able to
organize its scheduling activities in such a way as to limit the introduction of tardiness. It does
so in two important ways. First, it maintains flexibility throughout the scheduling process
by preserving available slack time, which eases the constraints on the current state of problem
solving. Secondly, it consults multiple, relevant scheduling perspectives at key decision-making

145

points, to provide it with the means to understand fully the state of problem solving, and
thereby organize its decision-making strategy accordingly. Furthermore, these results show that
even within scheduling domains where the compaction of the schedule is an objective of the
scheduling process, that the basic approach of DSS is not hampered by such objectives nor its
inability to intentionally compact its developing or completed schedules.

In the dispatch scheduling experiments, we show that DSS(MPH) is able to minimize both
tardiness and computational effort, despite the need to react continually to the developing
nature of the problem. The comparisons between DSS(MPH) and the assorted DSS heuristics
indicate that the frequent consultation of multiple scheduling perspectives provides DSS(MPH)
with the edge in understanding better the nature of the current overall scheduling problem.
The ARM system used in these experiments also demonstrates the wide applicability of DSS,
specifically its ability to represent a variety of complex RCSP domain requirements. Finally,
experimentation with both the TCP and ARM systems demonstrates a consistency in performance
results that extends across substantially different domains.

The results from the resource failure experiments indicate that the well-informed DSS(MPH)
heuristic is better able to react to the difficulties presented by unexpected machine breakdowns,
in terms of maximizing both schedule quality and computational efficiency. DSS(MPH) achieves
a consistently lower average tardiness cost per order, and even produces shorter average WIP
times, despite the loss of important resources. It also limits the total number of KSA
invocations, and maximizes the use of its most efficient reservation-securing KS, evidence
of a full understanding of the changing conditions within the environment.

Finally, our experiments with unexpected order groups provide a final example of the value
of consulting multiple scheduling perspectives, as performed by DSS(MPH). As the solution
space tightens with the scheduling of each order set, DSS(MPH) continues to successfully
minimize tardiness and maximize its computational efficiency.

Both the collection and filtering of data for the metrics described in Section 5.2 and
the definition and running of the experiments involving DSS described within this section
were accomplished using the Common Lisp Instrumentation Package (CLIP) [Westbrook et al.,
1992].

5.6.1 Comparison with Common Benchmarks

In the following experiments, TCP was run in a batch scheduling mode, with the entire
set of unchanging orders known from the outset. There were no surprise orders and no
resource failures. These experiments illustrate the degree to which each scheduling approach
is able to maintain flexibility in its developing schedules, and organize its decision-making
strategy according to its understanding of the overall scheduling problem. We now compare
the performance of DSS(MPH) (through TCP) with that of OPIS 0, ISIS, and COVERT, according
to each of the stated OPIS scheduling objectives.

5.6.1.1 Average Tardiness Cost per Order

Figure 5.4 shows a graph comparing the tardiness cost results obtained by DSS(MPH) and
the OPIS 0, ISIS, and COVERT systems.6 DSS(MPH) produced lower average tardiness costs per

146

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

60

70
Av

er
ag

e
Ta

rd
in

es
s

Co
st

 p
er

 O
rd

er

Category

Covert

ISIS

OPIS

DSS(MPH)

Figure 5.4. Comparison (via TCP) of the Average Tardiness Cost per Order Between DSS(MPH)
and the OPIS 0, ISIS, and COVERT Systems (Lower is Better).

order for all but one of the 18 order set categories. DSS(MPH) was able to produce schedules
with lower average tardiness costs per order, at an average level of approximately 26% below the
costs achieved by OPIS 0. In addition, the percentage of tardy orders produced by DSS(MPH)
across all of the order set categories ranged between 9.17 and 62.5, with an average of 29.57.
The percentage of tardy orders produced by OPIS 0 ranged “fairly evenly” between 20 and
67 [Ow and Smith, 1988, page 104].

These are very important results for confirming the success of the least-commitment
DSSscheduling approach in maintaining flexibility through the preservation of slack time in
its developing schedules, to provide attractive scheduling options for solving outstanding
subproblems. In fact, even when DSS(MPH) was replaced with the classical heuristics described
in Section 5.3, DSS, running in batch mode, was still occasionally able to outperform OPIS 0
on average, in terms of minimizing tardiness. DSS(MINSLK) achieved average tardiness costs
per order that were only approximately 26% higher, on average, than those costs achieved by
OPIS 0, and outperformed OPIS 0 in 8 of the 18 categories. The results achieved by DSS(MINEST)
were approximately 4% lower, outperforming OPIS 0 in 13 categories, while the DSS(MINLFT)
results were approximately 10% lower, outperforming OPIS 0 in all but 4 of the categories.
Regardless of the heuristic being used, the flexibility afforded by the basic least-commitment
DSS scheduling approach, and the resulting benefits, are clearly evident.

6Data from the OPIS, ISIS, and COVERT comparison experiments has been extrapolated from the graphs
presented in [Ow and Smith, 1988]. All numerical comparisons (except those involving the percentage of tardy

orders) are therefore based on estimated values.

147

5.6.1.2 Average Work-in-Process Time per Order

As shown in Figure 5.5, the WIP results obtained by DSS(MPH) were worse than both ISIS

and OPIS 0 (though better than COVERT). This is because DSS does not currently have the
ability to compact its schedules by removing any slack time that may have been incorporated
into its jobs. In addition, the reservation-securing KSs implemented for DSS can be severe in
the amount of tardiness they introduce when a reservation does not reside within the current
allowance of a service goal. For example, the Right Shift KSs perform a right shift on the order
schedule, instead of the resource schedule, thereby causing operations to be shifted occasionally
some distance downstream until an available resource is found. Additionally, once the due date
has been extended for an order, DSS is currently unable to reset that date if the cause of the
original extension is removed. Both ISIS and OPIS are designed to compact their developing
order schedules throughout the scheduling process. As a result, while these systems are able
to achieve lower WIP times, we have seen from the tardiness cost results in Figure 5.4 that
this ability comes at the expense of maintaining important problem-solving flexibility, and by
extension, schedule quality.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25

30

35

Av
er

ag
e

W
or

k-
in

-P
ro

ce
ss

 T
im

e
pe

r O
rd

er
 (D

ay
s)

Category

Covert

ISIS

OPIS

DSS(MPH)

Target Lead Time

Figure 5.5. Comparison (via TCP) of the Average Work-in-Process Time per Order Between
DSS(MPH) and the OPIS 0, ISIS, and COVERT Systems (Lower is Better, Below Target is
Acceptable).

The average mean WIP times achieved by DSS(MPH) were approximately 47% above those
times achieved by OPIS 0. It should be noted, however, that DSS(MPH) still managed to achieve
average WIP times that were within the average target lead times for each order set category.

5.6.1.3 Total Number of Machine Setups

The following comparisons involve the total numbers of machine setups required for a
given schedule.

148

Figure 5.6 shows the total number of machine setups in the schedules produced by
DSS(MPH), OPIS 0, ISIS, and COVERT. DSS(MPH) attempts to limit the total number (and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

50

100

150

200

250

To
ta

l N
um

be
r o

f M
ac

hi
ne

 S
et

up
s

Category

Covert

ISIS

OPIS

DSS(MPH)

Figure 5.6. Comparison (via TCP) of the Total Number of Machine Setups Required by
DSS(MPH) and the OPIS 0, ISIS, and COVERT Systems (Lower is Better).

processing duration) of machine setups in a schedule by equipping its reservation-securing
KSs with value-ordering heuristics that favor those reservations containing the least amount
of setup operation processing. While this approach does help minimize the total number of
setups, its success is limited by the tendency for DSS(MPH) to jump opportunistically across
resource classes in the course of problem solving, instead of working on subproblems in a
strictly resource-based fashion that is conducive to minimizing the need for setups.

Figure 5.7 shows the total number of bottleneck machine setups in the schedules produced
by DSS(MPH), OPIS 0, ISIS, and COVERT. Referring back to Figure 5.1, the five bottleneck work
areas are WA2, WA3, WA4, WA5, and WA6, as stated in [Chiang et al., 1990, page 2]. These
work areas contain a total of six machines responsible for handling the second operation in the
process routing for any turbine blade. They were classified as bottlenecks based on the OPIS

benchmark data order sets.
With its two-perspective scheduling approach, OPIS 0 first produces the schedules for all

declared bottleneck resources, and then completes schedules for each order using the order-based
scheduling mechanism implemented in ISIS. And overall, the OPIS 0 approach does exhibit
the best performance among ISIS, COVERT, and DSS(MPH), in terms of minimizing the total
number of machine setup operations across all resources. DSS(MPH), however, outperforms the
other three systems when it comes to minimizing the total number of bottleneck machine setups.
Interestingly enough, a comparison of the graphs in Figures 5.6 and 5.7 suggests that the OPIS 0
resource-based scheduler, which is responsible for scheduling the bottleneck resources, is not as
successful in minimizing setups as is its order-based scheduler. On average, the total number
of setup operations for bottleneck resources in the schedules produced by OPIS 0 accounts for

149

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

60

70

80

To
ta

l N
um

be
r o

f B
ot

tle
ne

ck
 M

ac
hi

ne
 S

et
up

s

Category

Covert

ISIS

OPIS

DSS(MPH)

Figure 5.7. Comparison (via TCP) of the Total Number of Bottleneck Machine Setups Required
by DSS(MPH) and the OPIS 0, ISIS, and COVERT Systems (Lower is Better).

approximately 21% of the total number of setup operations across all resources. The ratio
for both ISIS and COVERT exceeds 30%. DSS(MPH), however, achieves a very low ratio of
6.69%. The variable-ordering capabilities of DSS(MPH) and the value-ordering heuristics of
DSS therefore contribute greatly to minimizing the total number of required setup operations
for bottleneck resources while bottleneck conditions exist. After those conditions begin to recede,
the total number of machine setups required for all non-bottleneck resources begins to rise.

5.6.2 Reactive Analysis

In this section, we focus on one of the major goals of this research, namely to test the
effectiveness of our approach in reacting to various kinds of unexpected events that occur within
real-world scheduling environments. In the first set of experiments, we test the basic reactive
capabilities of DSS(MPH) (using TCP) when operating in a dispatch mode, where the order set
develops gradually, thereby precluding a complete view of the overall problem, and forcing the
scheduler to do the best with what it knows at any point in time. In the second experiment, we
evaluate the performance of DSS(MPH) (again using TCP) when having to react to unexpected
resource failures (and still in dispatch mode).

5.6.2.1 Dispatch Scheduling

Schedulers often do not have the luxury of knowing in advance the complete set of orders
for which they must produce a schedule. In most job-shop scheduling environments, orders
are received by the shop during the execution of a working schedule. These new orders must
be incorporated into the existing schedule as it executes. These dispatch situations limit the
options available to the scheduler by narrowing the search space as previously made decisions are

150

executed. While this reduces the scope of the problem at every point, the ability to anticipate
future conflicts is also lost, because knowledge of future orders does not exist. These situations
force a scheduler to understand to the best degree possible the current state of problem solving
when making its scheduling decisions, so that it can be prepared for whatever situation may
develop. Dispatch mode in DSS allows orders to be received throughout the entire scheduling
process, either individually, or in groups. Upon receiving new orders, DSS(MPH) analyzes the
updated conditions to determine the need for modifying its present decision-making strategy.

In the two experiments below, we evaluate the performance of DSS(MPH) using both the
TCP and ARM systems.

5.6.2.1.1 TCP Experiments

To simulate a dispatch scheduling mode in TCP, orders are received at a time immediately
prior to their ready time.7 TCP begins scheduling new orders immediately following their
reception, and their execution may begin as early as the next time unit.

Figure 5.8 shows the average tardiness cost per order achieved by DSS(MPH) and the assorted
DSS heuristics, in dispatch scheduling mode. In dispatch scheduling mode, DSS(MPH) produces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100

120

140

160

Av
er

ag
e

Ta
rd

in
es

s
Co

st
 p

er
 O

rd
er

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.8. Comparison (via TCP) of the Average Tardiness Cost per Order Among the Assorted
DSS Heuristics in Dispatch Scheduling Mode (Lower is Better).

average tardiness costs per order that are 69.18% higher, on average, than those achieved in
batch mode, indicating that there is a definite penalty in limiting the information made available
to the scheduler. Compared to the OPIS 0 results, however, DSS(MPH)’s average tardiness costs
are only approximately 23% higher, with DSS(MPH) outperforming OPIS 0 in 4 of the 18
categories. Compared to the results of the other heuristics, DSS(MPH) produced the lowest

7The advance time amount may be set to any constant time (greater than zero) to simulate the dispatch
simulation.

151

average tardiness costs per order in 6 of the 18 categories, while DSS(MINEST), DSS(MINLFT),
and DSS(MINSLK) achieved the lowest costs in 5, 4, and 3 categories (respectively). A final
observation is the difference in performance between DSS(SOF) and DSS(FCFS) as compared to
that of the other heuristics. Both DSS(SOF) and DSS(FCFS) are static heuristics,8 thereby limiting
severely their ability to adapt to a changing environment.

Figure 5.9 shows the percentage of tardy orders achieved by DSS(MPH) and the assorted
DSS heuristics, in dispatch scheduling mode. In dispatch scheduling mode, the percentage of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f T
ar

dy
 O

rd
er

s

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.9. Comparison (via TCP) of the Percentage of Tardy Orders Among the Assorted DSS

Heuristics in Dispatch Scheduling Mode (Lower is Better).

tardy orders produced by DSS(MPH) ranges between 13.33 and 57.5, with an average of 29.9,
which compares closely with the range of 9.17 to 62.5, and average of 29.57, achieved in batch
mode. More importantly, DSS(MPH) outperforms the other heuristics in 10 of the 18 categories
(including 3 ties), while DSS(MINEST) performs the best in 3 categories, and ties for best with
DSS(MPH) in 2 categories.

Figure 5.10 shows the average work-in-process time per order achieved by DSS(MPH)
and the assorted DSS heuristics, in dispatch scheduling mode. In dispatch scheduling mode,
DSS(MPH) and the other heuristics all experience longer average WIP times per order, with
DSS(MPH) and all but DSS(MINSLK) exceeding the average target lead time in 2 of the 18
categories (DSS(MINSLK) exceeds the average target lead time only once). DSS(FCFS) achieves
the best overall results, owing to its tendency to produce the schedule by performing a generally
uniform traversal forward through time.

Figure 5.11 shows the total number of KSA invocations achieved by DSS(MPH) and the
assorted DSS heuristics, in dispatch scheduling mode. DSS(MPH) outperforms the other
heuristics in 8 of the 18 categories. DSS(MINLFT) performs best in 4 categories, while

8DSS(SOF) is effectively static in the TCP system, owing to the lack of aggregate tasks in the domain.

152

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25

30

35

Av
er

ag
e

W
or

k-
in

-P
ro

ce
ss

 T
im

e
pe

r O
rd

er
 (D

ay
s)

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Target Lead Time

Figure 5.10. Comparison (via TCP) of the Average Work-in-Process Time per Order Among
the Assorted DSS Heuristics in Dispatch Scheduling Mode (Lower is Better, Below Target is
Acceptable).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1000

1500

2000

2500

3000

3500

To
ta

l N
um

be
r o

f K
SA

 In
vo

ca
tio

ns

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.11. Comparison (via TCP) of the Total Number of KSA Invocations Among the
Assorted DSS Heuristics in Dispatch Scheduling Mode (Lower is Better).

153

DSS(MINEST) and DSS(FCFS) tie with 3. An important relationship exists between DSS(MPH)
and DSS(FCFS), in that DSS(MPH) outperforms DSS(FCFS) in 14 of the 18 categories, indicating
that the variable-ordering of DSS(MPH) is efficient enough to use fewer KSAs than a heuristic
that performs no backtracking. Finally, we note the penalty paid by DSS(SOF) for its static
nature, and the penalty paid by DSS(MINSLK) for its lack of a resource-based perspective to
balance its order-based view.

Figure 5.12 shows the percentage of standard Assignment reservations achieved by DSS(MPH)
and the assorted DSS heuristics, in dispatch scheduling mode. The comparison of the percentage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
55

60

65

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f S
ta

nd
ar

d
As

sig
nm

en
t R

es
er

va
tio

ns

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.12. Comparison (via TCP) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics in Dispatch Scheduling Mode (Higher is Better).

of standard Assignment reservations, as with the total number of KSA invocations, demonstrates
the benefits of the variable-ordering capability of DSS(MPH). DSS(MPH) outperforms the
other heuristics in 13 of the 18 categories, sometimes losing closely to either DSS(MINEST)
or DSS(MINLFT), but often winning by large margins.

Figure 5.13 shows the elapsed processing time (in minutes) achieved by DSS(MPH) and the
assorted DSS heuristics, in dispatch scheduling mode. While these results indicate the price
paid by DSS(MPH) for supporting its well-informed variable-ordering process, the penalty is not
as severe as might be expected. DSS(MPH) expends the most computational effort in 5 of the
18 categories, as do, however, both DSS(MINSLK) and DSS(MINLFT). DSS(MINEST) expends the
most effort in 3 categories. Interestingly enough, in more than half of the categories (by a ratio
of 8 to 5) where DSS(MPH) does not use the most amount of processing time, it outperforms 2
or more of the other heuristics. Finally, the value of a static heuristic in minimizing processing
time is demonstrated by the generally lower results of both DSS(SOF) and DSS(FCFS).

154

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

60

120

180

240
El

ap
se

d
Pr

oc
es

sin
g

Ti
m

e
(M

in
ut

es
)

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.13. Comparison (via TCP) of the Elapsed Processing Time Among the Assorted DSS

Heuristics in Dispatch Scheduling Mode (Lower is Better).

5.6.2.1.2 ARM Experiments

For the ARM experiments, we make use of the ten timetables described in Figure 5.3 and
the corresponding Minimum Supply layouts described in Table 5.1. To simulate a dispatch
scheduling mode, orders are received by ARM at different times according to their flight type.
For Arrival and Turnaround flights, notification is received when the aircraft takes off from its
originating city. For Departure flights, notification is received at a fixed point prior to their due
date (departure time). Note that airport ground service scheduling is generally performed in
advance, according to established timetables. As a result, the dispatch scheduling described in
this section serves an experimental purpose only.

The results of the ARM experiments differ from those of the TCP experiments, owing to
the existence of mobile resources in the airport ground service scheduling RCSP. As described
in Section 4.2.4, mobile resources are secured by DSS a way that preserves flexibility for future
related scheduling decisions. As a result, when making reservations of mobile ground-servicing
resources before their designated gate work areas have been secured, the maximum possible
amount of travel time for the mobile resource to get to any possible gate location is included.
While this approach does preserve the scheduling options for securing stationary resources
in the future, it also temporarily over-commits the mobile resources, thereby limiting their
availability.

The DSS mobile resource reservation policy therefore impacts the performance of the
assorted heuristics with which we are comparing DSS(MPH). It should also be noted that the
timetables used in the ARM experiments are generally uniform, containing orders with similar
servicing requirements that are to be processed during short scheduling horizons. Additionally,
the Minimum Supply layouts provide a consistent supply of resources for all of the necessary
tasks, preventing any particular resource class from becoming a bottleneck. We describe the
affect of these features on the assorted heuristics below:

155

DSS(MINEST) has a tendency to secure gates early, owing to their relatively early starting
times. This allows future mobile resource reservations to be more compact, thereby
providing more scheduling flexibility, and minimizing order tardiness.

DSS(MINLFT) suffers for the same reason that DSS(MINEST) performs well. Gates also have
large finishing times, so that they are secured late in the scheduling process. As a result,
most mobile resource reservations are larger, thus reducing their availability.

DSS(SOF) also suffers because of the time at which gate resources are secured. Gate-
requiring subproblems have the largest processing durations, and are therefore secured
last.

DSS(MINSLK) does not suffer from its lack of a resource-based perspective, primarily
because the consistent supply of resources provided by the Minimum Supply layouts. As
a result, the consideration of slack time proves quite sufficient in accurately determining
subproblem urgency.

DSS(FCFS) performs quite similarly to DSS(MINEST). Gates are the first resources secured
in each order, owing to their earliest starting times.

DSS(MPH) still performs well in this environment, despite its frequent need to over-commit in
the reservation of mobile resources, but the effectiveness of its variable-ordering mechanism
more than compensates for this fact.

Figure 5.14 shows the average tardiness cost per order achieved by DSS(MPH) and the
assorted DSS heuristics, using the Minimum Supply layouts in dispatch scheduling mode.
DSS(MINSLK) outperforms both DSS(MPH) and the other heuristics in 7 of the 10 timetables,
while DSS(MPH) does so in 3 categories (tying once with DSS(MINSLK)). DSS(FCFS) achieves the
lowest results in 2 categories (also tying once with DSS(MINSLK)). DSS(MPH), however, places
a close second to DSS(MINSLK) in 6 of the 10 timetables, with an average increase of 15.74%
in mean tardiness cost per order above the DSS(MINSLK) results. DSS(MINEST) remains in the
pack with results generally similar to those of DSS(FCFS) (with one extreme exception), while
both DSS(MINLFT) and DSS(SOF) lag behind.

Figure 5.15 shows the percentage of tardy orders achieved by DSS(MPH) and the assorted DSS

heuristics, using the Minimum Supply layouts in dispatch scheduling mode. In this measure,
DSS(MINSLK) outperforms both DSS(MPH) and the other heuristics in 9 of the 10 timetables,
while DSS(MPH) does so in 4 categories (tying three times with DSS(MINSLK)). DSS(FCFS)
achieves the lowest results in 3 categories (tying twice with DSS(MINSLK)). DSS(MPH) again
places a close second to DSS(MINSLK) with an average increase of 25.67% in the percentage of
tardy orders above the DSS(MINSLK) results. DSS(FCFS) achieves an average increase of 33.42%
above the DSS(MINSLK) results. DSS(MINEST) again finishes at the fringe of the top of the pack,
leaving DSS(MINLFT) and DSS(SOF) behind.

Figure 5.16 shows the total number of KSA invocations achieved by DSS(MPH) and the
assorted DSS heuristics, using the Minimum Supply layouts in dispatch scheduling mode. The
total numbers of KSA invocations serve primarily to demonstrate the division among DSS(MPH)
and the other heuristics. DSS(MPH), DSS(MINSLK), DSS(FCFS), and DSS(MINEST) perform at
one level, while DSS(MINLFT) and DSS(SOF) perform at another.

156

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0

2

4

6

8

10

12

14
Av

er
ag

e
Ta

rd
in

es
s

Co
st

 p
er

 O
rd

er

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.14. Comparison (via ARM) of the Average Tardiness Cost per Order Among the
Assorted DSS Heuristics Using Minimum Supply Layouts in Dispatch Scheduling Mode (Lower
is Better).

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
30

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0
5

10
15
20
25
30
35
40
45
50

Pe
rc

en
ta

ge
 o

f T
ar

dy
 O

rd
er

s

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.15. Comparison (via ARM) of the Percentage of Tardy Orders Among the Assorted DSS

Heuristics Using Minimum Supply Layouts in Dispatch Scheduling Mode (Lower is Better).

157

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
30

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0

200

400

600

800

1000

1200

1400

To
ta

l N
um

be
r o

f K
SA

 In
vo

ca
tio

ns

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.16. Comparison (via ARM) of the Total Number of KSA Invocations Among the
Assorted DSS Heuristics Using Minimum Supply Layouts in Dispatch Scheduling Mode (Lower
is Better).

Figure 5.17 shows the percentage of standard Assignment reservations achieved by DSS(MPH)
and the assorted DSS heuristics, using the Minimum Supply layouts in dispatch scheduling mode.
In this measure, DSS(FCFS) outperforms both DSS(MPH) and the other heuristics in 7 of the 10
timetables. DSS(MINSLK) produces results that average 1.8% lower, while DSS(MPH) averages
1.94% lower, and DSS(MINEST) averages 2.32% lower.

Figure 5.18 shows the elapsed processing time achieved by DSS(MPH) and the assorted
DSS heuristics, using the Minimum Supply layouts in dispatch scheduling mode. This final
measure, as expected, again demonstrates the increase in computational effort that is expended
by DSS(MPH) to maintain its well-informed view of the state of problem solving. In contrast
to the results from the preceding experiments with TCP, DSS(MPH) expends the most effort in
the clear majority of the timetables (8 out of 10), with an average 24.22% increase in elapsed
processing time over the lowest time, and an average 77.5% increase over the second-highest
processing time, in those 8 cases. These increases, however, are not overly substantial, nor
prohibitive, within this particular context.

158

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
30

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f S
ta

nd
ar

d
As

sig
nm

en
t R

es
er

va
tio

ns

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.17. Comparison (via ARM) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics Using Minimum Supply Layouts in Dispatch Scheduling
Mode (Higher is Better).

159

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
30

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0
1
2
3
4
5
6
7
8
9

10

El
ap

se
d

Pr
oc

es
sin

g
Ti

m
e

(M
in

ut
es

)

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.18. Comparison (via ARM) of the Elapsed Processing Time Among the Assorted DSS

Heuristics Using Minimum Supply Layouts in Dispatch Scheduling Mode (Lower is Better).

160

5.6.2.2 Coping with Resource Failures

The ability to react effectively to resource failures is a primary means of judging the
real-world applicability of a scheduling system. When resources break down, a scheduler must
reevaluate both the new state of problem solving, and its current scheduling strategy, and then
adjust its focus of attention accordingly. The key to the approach taken by DSS is to incorporate
the reactions to resource failures into the basic problem-solving routine so that all conflicts are
resolved within the context of the current state of problem solving.

The experiments in this section use the TCP system to compare how well DSS(MPH) is
able to adapt to unexpected resource failures. We have selected five machines to fail at certain
points along the scheduling horizon. Referring back to Figure 5.1, we arrange to have three
of the FIRST STRAIGHTENING machines in work area WA1, namely STR-1A, STR-1C, and
STR-1E, fail at a point exactly two and a half days into the scheduling horizon, as determined
by the earliest ready time in the order set. WA1 provides the machines used to perform
the first operation in the process routings for each blade family. The three failures account
for 25% of the FIRST STRAIGHTENING machines. At the five-day mark, two of the FINAL
STRAIGHTENING machines in work area WA11, namely STR-3B and STR-3D, also fail. WA11
provides the machines used to perform the final operation in the process routings for each blade
family. The two failures account for 50% of the FINAL STRAIGHTENING machines.

Figure 5.19 shows the average tardiness cost per order achieved by DSS(MPH) and the
assorted DSS heuristics, with five resource failures in dispatch scheduling mode. In terms of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

50

100

150

200

250

300

Av
er

ag
e

Ta
rd

in
es

s
Co

st
 p

er
 O

rd
er

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.19. Comparison (via TCP) of the Average Tardiness Cost per Order Among the
Assorted DSS Heuristics With Five Resource Failures in Dispatch Scheduling Mode (Lower is
Better).

minimizing the average tardiness cost per order, and despite the five resource failures, DSS(MPH)
clearly performs the best, producing minimal costs in 15 of the 18 categories, and coming in
second-best in 2 others. In those 15 categories, DSS(MPH) achieved average tardiness costs per

161

order that were 25.87% lower than the second-lowest costs. DSS(MINSLK) achieves a strong
second-place showing, coming in second-best in 11 of the 18 categories. Both DSS(MPH) and
DSS(MINSLK) benefit from their informed analyses of the state of problem solving, although the
performance of DSS(MINSLK) is achieved largely because of worse performances by the other
heuristics.

Figure 5.20 shows the percentage of tardy orders achieved by DSS(MPH) and the assorted
DSS heuristics, with five resource failures in dispatch scheduling mode. The percentages of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f T
ar

dy
 O

rd
er

s

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.20. Comparison (via TCP) of the Percentage of Tardy Orders Among the Assorted DSS

Heuristics With Five Resource Failures in Dispatch Scheduling Mode (Lower is Better).

tardy orders achieved by DSS(MPH) and the other heuristics indicate uniform performance by
each approach. Tardy orders range from between an average of 20% to 80% of the order set,
with an average mean of 47%. While DSS(MPH) outperforms the other heuristics in 6 of the 18
categories, DSS(FCFS), DSS(MINSLK), and DSS(MINEST) achieve the lowest results in 5, 4, and 3
categories (respectively).

Figure 5.21 shows the average work-in-process time per order achieved by DSS(MPH) and
the assorted DSS heuristics, with five resource failures in dispatch scheduling mode. The WIP
results are in line with the average tardiness cost results. DSS(MPH) outperforms the other
heuristics in 9 of the 18 categories, while DSS(MINSLK) does so in 7. Furthermore, both
DSS(MPH) and DSS(MINSLK) exceed the average target lead times in only 4 of the 18 categories,
while DSS(FCFS) does so in 5 categories, and each of the rest does so in 9. The results do
demonstrate, however, a marked improvement in the ability of DSS(MPH) to minimize average
WIP times per order relative to the other heuristics, under extreme conditions of the kind
caused by unexpected resource failures. A look back to the results of Figure 5.10 indicates that
DSS(MPH) appears more capable than the other heuristics of controlling work-in-process times
in these highly constrained situations.

Figure 5.22 shows the total number of KSA invocations achieved by DSS(MPH) and the
assorted DSS heuristics, with five resource failures in dispatch scheduling mode. The total

162

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25

30

35

40

45

Av
er

ag
e

W
or

k-
in

-P
ro

ce
ss

 T
im

e
pe

r O
rd

er
 (D

ay
s)

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Target Lead Time

Figure 5.21. Comparison (via TCP) of the Average Work-in-Process Time per Order Among
the Assorted DSS Heuristics With Five Resource Failures in Dispatch Scheduling Mode (Lower
is Better, Below Target is Acceptable).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1000

1500

2000

2500

3000

3500

4000

4500

5000

To
ta

l N
um

be
r o

f K
SA

 In
vo

ca
tio

ns

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.22. Comparison (via TCP) of the Total Number of KSA Invocations Among the
Assorted DSS Heuristics With Five Resource Failures in Dispatch Scheduling Mode (Lower is
Better).

163

numbers of KSA invocations demonstrate the overall effectiveness of DSS(MPH), as well as the
separation of the DSS heuristics into three performance classes. DSS(MPH) and DSS(FCFS) achieve
the lowest total KSA invocations, with DSS(MPH) outperforming the other heuristics in 15 of
the 18 categories, and DSS(FCFS) doing so in the remaining 3. These results place DSS(MPH)
at the top performance level, owing to its well-informed variable-ordering decision-making
capabilities. DSS(FCFS) performs nearly as well, the result of its utter avoidance of backtracking,
which automatically limits the KSA invocation count. DSS(SOF) maintains its previous status,
owing to its static nature and its lack of proper perspective on the problem, but it appears
at the middle level because of worse performances by other heuristics. DSS(MINSLK) joins
DSS(SOF) because of its own failure to consider an important resource-based perspective. Finally,
DSS(MINEST) and DSS(MINLFT), with their reliance on an even more limited order-based
perspective, clearly occupy the bottom performance level.

Figure 5.23 shows the percentage of standard Assignment reservations achieved by DSS(MPH)
and the assorted DSS heuristics, with five resource failures in dispatch scheduling mode.
DSS(MPH) outperforms the other heuristics in all of the 18 order set categories. The stratification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f S
ta

nd
ar

d
As

sig
nm

en
t R

es
er

va
tio

ns

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.23. Comparison (via TCP) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics With Five Resource Failures in Dispatch Scheduling Mode
(Higher is Better).

mentioned earlier is likewise in evidence here. The performance of DSS(FCFS) is again achieved
because of its lack of backtracking, which avoids producing the kinds of schedule upsets that
are generally solved inefficiently.

Figure 5.24 shows the elapsed processing time (in minutes) achieved by DSS(MPH) and the
assorted DSS heuristics, with five resource failures in dispatch scheduling mode. The elapsed
processing times indicate the price paid by DSS(MPH) to maintain its well-informed view of the
state of problem solving. Both DSS(MPH) and DSS(MINEST) expend the most computational

164

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

60

120

180

240

300
El

ap
se

d
Pr

oc
es

sin
g

Ti
m

e
(M

in
ut

es
)

Category

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.24. Comparison (via TCP) of the Elapsed Processing Time Among the Assorted DSS

Heuristics With Five Resource Failures in Dispatch Scheduling Mode (Lower is Better).

effort in 9 of the 18 categories, with DSS(MPH) placing second-worst in 8 of the remaining
categories. The computational effort of DSS(MPH), however, is balanced by successes in schedule
quality and variable-ordering efficiency.

5.6.3 Accommodating Unexpected Order Sets

In these experiments, we use the ARM system to further test the performance of DSS(MPH)
and the assorted DSS heuristics in highly constrained scheduling situations. DSS (via ARM) is
run in batch scheduling mode, to provide the most comprehensive view of the search space for
each approach. The set of orders is randomly divided into distinct subsets to be scheduled to
completion, one at a time. Once a subset of orders has been scheduled, its schedule cannot be
changed. Existing reservations from preceding order subsets may not be preempted. Orders
in succeeding subsets must therefore manage with a continually restricted solution space. The
purpose is to provide a means for judging the ability of each strategy to develop an accurate
understanding of the state of problem solving, and thereby enhance its ability to produce quality
solutions in response to unforeseen developments. These experiments also model real-world
situations where orders arrive unpredictably, and must be incorporated into existing schedules
without disrupting any previous decisions.

We make use of the ten timetables described in Figure 5.3, and the corresponding Minimum
Supply layouts described in Table 5.1. Two experiments are described, the first involving a
division of each timetable into two order groups, and the second involving a division into three
order groups.

Figure 5.25 shows the average tardiness cost per order achieved by DSS(MPH) and the
assorted DSS heuristics, using two order groups in batch scheduling mode. DSS(MPH) out-
performs the other heuristics in 7 of the 10 timetables, clearly demonstrating its success at
incorporating unforeseen orders into existing schedules when little room for maneuvering is

165

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0

2

4

6

8

10

12

14

Av
er

ag
e

Ta
rd

in
es

s
Co

st
 p

er
 O

rd
er

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.25. Comparison (via ARM) of the Average Tardiness Cost per Order Among the
Assorted DSS Heuristics Using Two Order Groups in Batch Scheduling Mode (Lower is Better).

available. DSS(MINSLK), consistent with the previous dispatch scheduling analysis of DSS(MPH)
using ARM, achieves the lowest average tardiness cost in the three remaining categories.

In the following three measures, the behavior of DSS(MPH) and DSS(MINSLK) is again
quite similar to previous results, with the two approaches consistently outperforming the other
heuristics, and then either alternating or sharing in achieving the best results. Figure 5.26
shows the percentage of tardy orders achieved by DSS(MPH) and the assorted DSS heuristics,
using two order groups in batch scheduling mode. Figure 5.27 shows the total number of KSA
invocations, and Figure 5.28 shows the percentage of standard Assignment reservations, under
the same circumstances.

We now move to the experiments involving the division of each timetable into three order
groups. Figure 5.29 shows the average tardiness cost per order achieved by DSS(MPH) and the
assorted DSS heuristics, using three order groups in batch scheduling mode, and Figure 5.30
shows the percentage of tardy orders, under the same circumstances. In minimizing the average
tardiness cost per order, DSS(MPH) outperforms the other heuristics in 8 of the 10 categories.
In minimizing the percentage of tardy orders, DSS(MPH) outperforms the other heuristics in 7
categories, an improvement over the results using two order groups. The results achieved by
DSS(MPH) and the other heuristics, in both minimizing the total number of KSA invocations,
and maximizing the percentage of standard Assignment reservations, using three order groups,
are similar to the results from the two-group experiments.

166

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0
5

10
15
20
25
30
35
40
45
50

Pe
rc

en
ta

ge
 o

f T
ar

dy
 O

rd
er

s

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.26. Comparison (via ARM) of the Percentage of Tardy Orders Among the Assorted
DSS Heuristics Using Two Order Groups in Batch Scheduling Mode (Lower is Better).

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0

200

400

600

800

1000

1200

1400

To
ta

l N
um

be
r o

f K
SA

 In
vo

ca
tio

ns

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.27. Comparison (via ARM) of the Total Number of KSA Invocations Among the
Assorted DSS Heuristics Using Two Order Groups in Batch Scheduling Mode (Lower is Better).

167

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f S
ta

nd
ar

d
As

sig
nm

en
t R

es
er

va
tio

ns

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.28. Comparison (via ARM) of the Percentage of Standard Assignment Reservations
Among the Assorted DSS Heuristics Using Two Order Groups in Batch Scheduling Mode
(Higher is Better).

168

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0

2

4

6

8

10

12

14
Av

er
ag

e
Ta

rd
in

es
s

Co
st

 p
er

 O
rd

er

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.29. Comparison (via ARM) of Average Tardiness Cost per Order Among the Assorted
DSS Heuristics Using Three Order Groups in Batch Scheduling Mode (Lower is Better).

05
50

-0
63

9

06
50

-0
75

9

08
10

-0
91

9

10
50

-1
13

9

12
00

-1
24

9

12
50

-1
34

9

15
00

-1
54

9

16
00

-1
72

9

18
30

-2
00

9

20
30

-2
12

9

0
5

10
15
20
25
30
35
40
45
50

Pe
rc

en
ta

ge
 o

f T
ar

dy
 O

rd
er

s

Timetable

DSS(MINEST)

DSS(MINLFT)

DSS(SOF)

DSS(MINSLK)

DSS(FCFS)

DSS(MPH)

Figure 5.30. Comparison (via ARM) of the Percentage of Tardy Orders Among the Assorted
DSS Heuristics Using Three Order Groups in Batch Scheduling Mode (Lower is Better).

169

5.7 A Summary

In this section we take the opportunity to summarize the various graphs presented in
Sections 5.6.2 and 5.6.3. Table 5.7 provides a summary of the results from the dispatch
scheduling experiments in Section 5.6.2.1. In the TCP results, DSS(MPH) achieves the lowest

Table 5.2. Summary of the Dispatch Scheduling Experimental Results (via TCP and ARM)
Showing the Average Ranking (Lower Number is Better) and Total Number of Best Finishes
(Higher is Better) per Metric Achieved by the Assorted DSS Heuristics.

Heuristic
Scheduling
Approach

Average
Tardiness

Cost
per Order

Percentage
of Tardy
Orders

Average
Work-in-
Process
Time

per Order

Total
Number
of KSA

Invocations

Percentage
of Standard
Assignment

Reservations

Elapsed
Processing

Time

Reactive Analysis: Dispatch Scheduling (TCP)

DSS(MINEST) 2.39 (5) 2.89 (5) 2.39 (1) 2.56 (3) 2.44 (3) 4.06

DSS(MINLFT) 2.28 (4) 4.17 (1) 3.44 (2) 2.28 (4) 2.56 (2) 4.00

DSS(SOF) 6.00 5.56 5.22 5.94 6.00 2.56 (3)

DSS(MINSLK) 2.89 (3) 3.06 (3) 3.39 (2) 4.94 4.44 4.44

DSS(FCFS) 4.83 3.17 (2) 1.78 (13) 3.44 (3) 4.17 1.33 (15)

DSS(MPH) 2.56 (6) 1.50 (10) 4.78 1.83 (8) 1.39 (13) 4.61

Reactive Analysis: Dispatch Scheduling (ARM)

DSS(MINEST) 3.7 (1) 2.9 (1) 3.0 (2) 3.2 (1) 2.2 (2)

DSS(MINLFT) 5.1 5.0 (1) 5.8 5.4 5.0

DSS(SOF) 5.2 4.6 (1) 5.2 5.2 4.4

DSS(MINSLK) 1.5 (7) 1.2 (9) 1.8 (5) 2.4 (3) 1.5 (6)

DSS(FCFS) 2.9 (2) 2.9 (3) 1.7 (4) 1.4 (7) 2.2 (3)

DSS(MPH) 1.9 (3) 2.0 (4) 3.2 (1) 2.6 (2) 5.6

percentage of tardy orders in 10 of the 18 categories. Furthermore, the rankings for the total
number of KSA invocations and the percentage of standard Assignment reservations are the
best among the other heuristics. While the average tardiness cost ranking for DSS(MPH) is
slightly below that of both DSS(MINEST) and DSS(MINLFT), it does produce the lowest average
tardiness cost per order in one third of the categories. In the ARM results, the average tardiness
cost ranking for DSS(MPH) improves slightly, while the percentage of tardy orders ranking slips
below that of DSS(MINSLK). The computational efficiency rankings demonstrate the penalty

170

incurred by DSS(MPH) as a result of the worst-case mobile resource reservation policy. DSS(MPH)
drops consistently below both DSS(MINSLK) and DSS(FCFS) in both the total number of KSA
invocations and the percentage of standard Assignment reservation rankings.

Table 5.7 provides a summary of the results from the resource failure experiments in
Section 5.6.2.2. These results demonstrate the dramatic improvements achieved by

Table 5.3. Summary of Coping with Resource Failures Experimental Results (via TCP) Showing
Average Ranking (Lower Number is Better) and Total Number of Best Finishes (Higher is
Better) per Metric by the Assorted DSS Heuristics.

Heuristic
Scheduling
Approach

Average
Tardiness

Cost
per Order

Percentage
of Tardy
Orders

Average
Work-in-
Process
Time

per Order

Total
Number
of KSA

Invocations

Percentage
of Standard
Assignment

Reservations

Elapsed
Processing

Time

Reactive Analysis: Coping with Resource Failures (TCP)

DSS(MINEST) 4.67 3.67 (3) 4.89 (1) 5.22 5.22 4.50 (2)

DSS(MINLFT) 5.56 4.78 (1) 5.39 5.67 5.72 1.78 (8)

DSS(SOF) 3.44 (1) 4.06 (1) 4.11 3.06 3.44 3.94

DSS(MINSLK) 2.28 (2) 2.61 (4) 1.94 (7) 3.94 3.22 3.11 (1)

DSS(FCFS) 3.67 2.50 (5) 2.67 (1) 1.83 (3) 2.22 2.22 (7)

DSS(MPH) 1.33 (15) 2.56 (6) 2.00 (9) 1.17 (15) 1.00 (18) 5.44

DSS(MPH) over the previous dispatch scheduling results, in terms of both schedule quality and
computational objectives. DSS(MPH) produces the lowest average tardiness cost values in 15
of the 18 categories, and ranks second in percentage of tardy orders (producing the lowest
percentage in a third of the categories). The computational efficiency rankings are well above
those of the other heuristics, with DSS(MPH) using the fewest number of KSA invocations in 15
of the 18 categories, and achieving the highest percentage of standard Assignment reservations
in all categories.

Table 5.7 provides a summary of the results from the unexpected order set experiments in
Section 5.6.3. In each of these experiments, DSS(MPH) outperforms the other heuristics by
producing the lowest average tardiness costs, and ranks either first or second (trading off with
DSS(MINSLK)) in terms of producing the lowest percentage of tardy orders. The computational
efficiency results are only slightly below those of DSS(MINSLK). Throughout these experiments,
the remaining heuristics, namely DSS(MINEST), DSS(MINLFT), DSS(SOF), and DSS(FCFS), rank
significantly lower than both DSS(MINSLK) and DSS(MPH).

Throughout this section we have evaluated the performance of the DSS scheduling approach
in two substantially different RCSP domains. We have shown how the preservation of slack
time allows DSS to preserve its future scheduling options, how its fine-grained opportunism

171

Table 5.4. Summary of Accommodating Unexpected Order Sets Experimental Results (via ARM)
Showing Average Ranking (Lower Number is Better) and Total Number of Best Finishes
(Higher is Better) per Metric by the Assorted DSS Heuristics.

Heuristic
Scheduling
Approach

Average
Tardiness

Cost
per Order

Percentage
of Tardy
Orders

Total
Number
of KSA

Invocations

Percentage
of Standard
Assignment

Reservations

Accommodating Unexpected Order Sets: Two Order Groups (ARM)

DSS(MINEST) 3.5 3.2 (1) 3.2 3.5

DSS(MINLFT) 4.5 4.9 5.8 5.8

DSS(SOF) 5.8 4.3 (1) 5.2 4.6 (1)

DSS(MINSLK) 1.7 (3) 1.3 (7) 1.4 (6) 1.7 (5)

DSS(FCFS) 3.8 4.3 (1) 3.6 3.6

DSS(MPH) 1.5 (7) 1.5 (6) 1.7 (5) 1.7 (5)

Accommodating Unexpected Order Sets: Three Order Groups (ARM)

DSS(MINEST) 3.4 3.0 (1) 3.5 4.1

DSS(MINLFT) 4.1 (1) 4.0 (1) 5.6 5.5

DSS(SOF) 5.6 4.9 5.4 5.0

DSS(MINSLK) 2.3 (1) 2.0 (3) 1.4 (7) 1.7 (5)

DSS(FCFS) 4.4 4.0 (1) 2.9 (1) 2.6 (3)

DSS(MPH) 1.2 (8) 1.4 (7) 2.1 (2) 2.1 (2)

172

enables it to react quickly and effectively to dynamic environments, and how its frequent
consultation of multiple scheduling perspectives provides it with the means to understand fully
the current state of problem solving. DSS is therefore able to organize its decision-making
strategy to both decrease tardiness and increase computational efficiency while responding to
the unexpected changes that occur in dynamic, real-world environments. Finally, we have
demonstrated the applicability of DSS to a variety of scheduling domains, and verified the
consistency of its performance across these domains.

C H A P T E R 6

CONCLUSIONS

In this chapter we review the research issues addressed by our work with DSS, and reiterate
our contributions to the field of knowledge-based scheduling. We also discuss a number of
important directions for future research, concluding with some brief closing remarks.

6.1 Research Issues Revisited

Throughout the course of this research, we have focused on the idea of exploiting flexibility
in the scheduling process to deal with the uncertainties of dynamic environments. It remains
our claim that the difficulties faced in the process of scheduling within real-world environments
can be eased by approaching the problem with a high level of understanding and opportunism,
and the intention of preserving solution options for producing high quality results and limiting
problem-solving effort.

We began by noting both the questionable real-world value of predictively optimal
schedules, and the difficulty involved in trying to adapt such schedules to fit changing
environmental conditions. In real-world situations, the order set develops over time, affected by
periodic additions and cancellations. The resource supply is unstable, owing to the tendency for
machines to break down. Basing a long-term scheduling strategy upon a preliminary analysis
of the state of problem solving is therefore of little real value.

Besides affecting the ability to anticipate future developments, the dynamic nature of the
scheduling problem also places a premium on the ability of the scheduler to adjust its focus
of attention quickly and properly in response to the changing state of problem solving. It
must be able to understand the actual situation, and then adjust its decision-making strategy
accordingly. It must also be able to react to the new situation without causing too much
disruption to the existing schedule.

Detection is an important precursor to reaction. Consultation of multiple relevant
perspectives provides a scheduler with the ability to understand the often subtle textures
of the problem space, and thereby permit it to detect potential conflicts before they become
too serious. Such a flexible decision-making capability prevents the system from having to
make myopic traversals through the developing search space. Once the decision is made to
modify the course of problem solving to conform to a new decision-making strategy, it is
imperative that the system be able to institute the necessary alterations before conditions in
the environment change again. Opportunism enables reaction while conditions are still stable.
Finally, the scheduler must be equipped with problem-solving mechanisms that can anticipate
future conflicts and actively attempt to avoid them. By preserving flexibility, conflicts can be
solved more easily when the need arises.

These sources of flexibility in the scheduling process have each been addressed by the
approach implemented in DSS.

174

6.2 Contributions Revisited

In this section, we review the specific contributions to the field of knowledge-based
scheduling that have resulted from our work with DSS.

6.2.1 Developing A Multi-Faceted Approach to Solving Dynamic Resource-Constrained
Scheduling Problems

DSS brings together a number of important features to create a flexible approach for solving
dynamic RCSPs. The approach is notable for its simultaneous preservation of flexibility within
developing schedules, flexibility in adapting to the dynamics of real-world environments, and
flexibility in understanding the varying textures of the developing state of problem solving. Our
design for DSS has been fully implemented, as described in Chapters 3 and 4, and extensively
evaluated, as described in Chapter 5.

6.2.1.1 Use of Slack Time to Preserve Flexibility and Limit Schedule Disruption

In our experiments using the OPIS benchmark data and the DSS-based TCP scheduling
application, we have demonstrated the value of making decisions that preserve future scheduling
options, for use in resolving the conflicts that develop throughout the scheduling process. The
flexibility that is maintained by this approach, in the form of explicitly represented slack time,
preserves choices that help to minimize the loss of schedule quality that can result from having
to settle for the least-objectionable among a limited number of unattractive options. Using
this approach, DSS is able to produce higher quality schedules, in terms of minimizing both
the average tardiness cost per order, and the percentage of tardy orders. Additionally, the
preservation of flexibility allows for the more frequent use of less disruptive decision-making
mechanisms that execute quickly, without causing substantial, and often costly, constraint
propagation. The results presented in Section 5.6.1, where DSS outperformed both ISIS and
the initial OPIS system in minimizing tardiness, even when using limited, classical scheduling
heuristics, indicate that the sacrifice of minimal flow times for the sake of maintaining flexibility,
is entirely worthwhile.

6.2.1.2 Quick and Effective Reaction to Dynamic Environments

In response to the rigid approaches of existing knowledge-based scheduling systems, we
have designed the DSS scheduling approach to be highly opportunistic in directing its focus
of attention during problem solving, specifically in its resolution of the conflicts triggered by
unexpected events. The experiments in Section 5.6.2 demonstrate the ability of DSS to adapt to
unexpected events by determining their extent quickly, and then integrating the means for their
solution into the existing problem-solving agenda. The reliance on special-purpose resolution
mechanisms that automatically suspend potentially urgent scheduling activities regardless of
the severity of a conflict, is thereby avoided. The importance of dealing with a specific conflict
is determined according to the relative urgency of all currently outstanding activities.

175

6.2.1.3 Consultation of Multiple Perspectives in All Scheduling and Control Decisions

In Section 4.2.2.2 we identified a number of key decision-making points in the scheduling
process that provide the opportunity for a scheduler to detect changes in the current state of
problem solving, and develop an informed view of the overall problem being addressed. In
Section 1.4.3.3 we described a broad range of scheduling perspectives that can be brought to
bear at these decision-making points. We have developed a scheduling approach that considers
a broad range of relevant information throughout the decision-making process, to help produce
quality schedules and limit the required computational effort.

The results of our experiments in Section 5.6 indicate that when a scheduler’s variable-
ordering and value-ordering decisions are based on a limited consultation of perspectives, less
information is brought to bear on the problem at hand, causing the scheduler to misdirect its
efforts, generate lower quality solutions, and increase the probability that whatever decisions it
does make will have to be reconsidered and corrected at a later time. Our approach was tested
in dynamic situations where unexpected events such as new orders and resource failures occur,
thereby placing a premium on the ability of the scheduler to maintain an accurate view of the
changing conditions within the environment.

6.2.1.4 Accommodation of Additional Domain Complexities

As part of our work on the development of DSS, we have attempted to address some
of the common complexities found in RCSP domains, which have been ignored by existing
knowledge-based scheduling systems. In particular, the airport ground service scheduling
domain requires the management of both inter-order tasks, and mobile resources with sig-
nificant travel requirements. We have developed a representation scheme that accommodates
task-interconnection, and thereby permits a greater level of interdependence among otherwise
separate orders. Detailed examples of the ARM system (including the necessary inter-order
task specifications for the AGSS domain) can be found in Section A.1. Mobile resources
with significant travel times present additional computational requirements for DSS. The
reservation-securing mechanisms described in Section 4.2.4.1 must consider travel require-
ments in the construction of mobile resource reservations, and the refinement mechanism
described in Section 4.2.6 is required for collapsing earlier mobile resource reservations made
to preserve flexibility under uncertain conditions. Experiments with the ARM system described
in Sections 5.6.2.1 and 5.6.3 demonstrate the functionality of these various mechanisms.

6.2.2 Demonstrating the Generic Capabilities of DSS

The applicability of DSS to a wide variety of dynamic RCSPs has been established by its
ability to represent a number of diverse scheduling domains, including the following.

The airport ground service scheduling domain implemented by ARM (the Airport Resource
Management system) and described in Section A.1

A variety of job-shop scheduling domains, including the OPIS benchmark domain im-
plemented by TCP (the Turbine Component Plant scheduling system) and described
Section A.2

A large-scale transportation planning domain (not described in this document)

176

DSS critics blame lack of resources for failure
Boston Globe

Specialists' study
says DSS in need
of a restructuring

Boston Globe

Report finds
'breakdown'
at DSS, calls
for overhaul

Boston Globe

Figure 6.1. Miscellaneous Newspaper Headlines (Seemingly) Unrelated to the Dynamic
Scheduling System.

Our goal has been to ensure that the techniques used by DSS to represent dynamic RCSPs
are sufficient for representing the information that defines a variety of RCSP domains, and
that its collection of generic scheduling knowledge sources is sufficient for reasoning with
this information to produce high-quality schedules. Our experience has shown that with
surprisingly little difficulty, DSS can be successfully applied to a variety of dynamic RCSP
domains. The results presented in Section 5.6 show that DSS can produce quality schedules in
each of those domains.

6.3 Directions for Future Research

In addition to the many improvements in efficiency that can be achieved for the DSS

implementation by means of some thoughtful reprogramming, there is plenty of room for
future research involving both DSS and the solution of dynamic RCSPs. (This may or may
not be evident from the headlines in Figure 6.1).1 In this section we describe a number of the
important directions for future research that we can envision for improving the performance
of DSS and extending its scheduling capabilities.

6.3.1 Improving the Management and Utilization of Slack Time

There is a great deal of work that can be done involving the issue of slack time, in terms of
where, when, and how it should be maintained, which could have a major impact on the ability
of DSS to minimize its computational effort. When flexibility is provided in the right place,
the scheduler gains access to a wider range of streamlined solution options that help minimize
schedule disruption.

The current approach used by DSS to maintain slack time within developing order schedules
works by first determining the total amount of time available to process the order, as indicated
by the target lead time (the difference between the ready time and the due date). The actual
amount of available slack is then determined by subtracting the length of the order’s critical
path from the target lead time. Slack is then allocated to the various resource-requiring tasks

1In Massachusetts, DSS also stands for the Department of Social Services.

177

based on their earliest and latest starting and finishing times. The slack creates a window
within which a resource can be secured for a particular task without disrupting other parts of an
order’s schedule. One possible modification would be to use the existing and anticipated levels
of resource contention in deciding where slack time is allocated, in that operations requiring
bottleneck resources would benefit from larger allowances.

Remember that slack time is a shared commodity. Several tasks within an order can each
lay claim to the same amount of slack time. Currently, the first of these tasks for which a
reservation is secured can use that slack as desired, owing to its higher degree of urgency. That
task relinquishes control of the slack to the other tasks down the line, following the introduction
of its own reservation. It may, however, use a large enough portion of the existing slack to
significantly affect the urgency of its neighboring tasks (all of which must share the slack). This
situation suggests another factor that should be considered in the reservation-securing process,
namely the degree of constraint that accompanies the reservation, upon its incorporation into
the schedule.

Finally, the reservation-securing knowledge sources could be provided with the option of
occasionally including slack time as part of its reservations, to prepare for situations where
future difficulties involving a task or particular resource class are anticipated. The process of
maintaining slack time could therefore be more closely controlled, to provide flexibility in the
places where it is needed most.

On a somewhat different level, there is also the question of how much slack is required
to provide the necessary flexibility for a given scheduling situation. At the moment, the
least-commitment approach taken by DSS prohibits full schedule compaction. In cases where
the compaction of the order schedules is a desired objective, the amount of available slack
could be decreased, by collapsing the target due dates, to encourage the earlier delivery of jobs.
The key issue to determine is the value of the scheduling flexibility that is afforded through
the preservation of slack. Questions such as, how much computational efficiency is lost by
decreasing the amount of available slack, and whether the loss of flexibility is compensated by the
compacted results, are important to answer. Conditions in a dynamic real-world environment
play an important role in determining the answers to these questions. An investigation into the
impact on schedule quality and computational efficiency caused by systematically decreasing
the amounts of available slack time is an important first step in this process.

6.3.2 Developing an Adaptive Scheduling Strategy

The class of dynamic RCSPs contains a wide range of problems. These problems differ
according to their desired objectives, the nature of their orders, and the availability and reliability
of their resources. In some cases, orders may need to be compacted to minimize flow times and
deliver products as early as possible, while in others, the orders may need to meet their desired
ready times and due dates exactly. Resource supply may or may not be capable of meeting
anticipated demand. Finally, while it is sometimes possible for a schedule to be completed in
advance of its intended execution, more often the production of the schedule must take place
within a dynamic environment, requiring a scheduler to react to unexpected developments
while still in the process of building the schedule.

A dynamic scheduling problem is an evolving entity that changes with the pattern of order
reception, the availability of resources, the scheduling objectives, and the conditions within
the environment, all of which may change during the course of scheduling. Previous work

178

on classical, heuristic-based approaches for solving related job-shop and factory scheduling
problems has led to the observation that no single scheduling strategy is appropriate for all
problems [Davis and Patterson, 1975]. While one heuristic may work well in a particular
situation, it may perform abysmally in another. Quite simply, different situations call for
different strategies. Our own experiences in producing schedules for a variety of domains,
including the airport ground service scheduling domain, a standard job-shop, and a large-scale
transportation planning environment, have led us to the same conclusion.

An important direction for future research would be to try and identify the various aspects
of a dynamic RCSP that suggest the use of a particular scheduling strategy, given the current
scheduling objectives. The goal of this endeavor would be the development of the mechanisms
necessary for both assessing the current state of problem solving at any point, and modifying the
current scheduling strategy as necessary. For example, the current level of resource contention
provides information that can be used to choose among different scheduling strategies. If
resources are in abundant supply, then scheduling decisions might be tailored towards the
optimization of order schedules. When resource contention is high, on the other hand, the
focus might shift towards the optimization of the schedules for bottlenecked resources. The
result would be a scheduling approach that is truly reactive in every sense of the word.

Another aspect of this particular research direction is the issue of learning. It is possible
that DSS could be engineered to record and classify the important attributes of the current
state of problem solving, and then develop a model for indicating which scheduling strategies
perform the best under different conditions. Case-based reasoning techniques would certainly
be applicable to this process.

Finally, determining the appropriate scheduling strategy for any situation still depends on
having a full understanding of the current state of problem solving. Just as in the current
implementation of DSS, the consultation of multiple, relevant scheduling perspectives would
assist in the process of informing the scheduler about specific conditions in the environment.
While we have taken an important first step in this direction with the value-ordering heuristics
in the DSS reservation-securing knowledge sources, there is still much more to be done.

6.3.3 Accommodating Resource-Based Schedule Quality Objectives

Currently, the DSS schedule quality objectives are all order-based. The minimization of
tardiness focuses on the due dates for the orders, as does the minimization of flow times (which
we have not yet implemented). Missing from the notion of schedule quality in DSS is the degree
of resource utilization, including the minimization of external fragmentation in the resource
schedules, the minimization of travel time for mobile resources, and the minimization of the
incidence of optional setup activities. Although each of these concerns is partially addressed
by the value-ordering heuristics in the current implementation of DSS’s reservation-securing
knowledge sources, their optimization is not an overriding priority of the DSS variable-ordering
process.

An early attempt to represent resource-based schedule quality concerns in DSS involved
the creation of resource goals responsible for voicing the concerns of the resources throughout
the decision-making process. The intent was for these goals to contribute to the urgency of
certain subproblems depending on conditions within the environment related to the resources.
Resources with specific openings in their schedules to accommodate certain outstanding
subproblems would be able to attract the attention of the scheduler in an attempt to target

179

those subproblems for the openings. These resource goals would also be capable of assisting
the value-ordering process by contributing better-enhanced resource-centered perspectives.
The ability to address both order-based and resource-based schedule quality objectives would
represent an important enhancement to the overall functionality of DSS.

6.3.4 Avoiding Worst-Case Mobile Resource Reservations

A DSS domain description is required to include information about the anticipated behavior
of all classes of mobile resources operating in a factory environment, specifically their basic
progression through factory locations in the course of performing their required servicing
activities. This information is used by the domain-supplied duration-calculation methods
to provide DSS with both the expected and exact processing durations for each task to be
performed, based on a specific resource (if provided), and the product and order involved.
When calculating processing durations that involve the movement of mobile resources, these
methods must include enough time for a mobile resource to get from any location at which it
may initially reside to any location at which it may be needed. This process provides DSS with
reservations that do not constrain the selection of the stationary resources that will provide the
exact origin and destination locations for any previously secured mobile resources. As a result,
the options for securing these work areas in the future are not further limited by constrictive
mobile resource travel ranges.

The scheduling process in DSS is then augmented by a reservation-refinement mechanism
that is triggered whenever additional contextual information regarding a mobile resource
reservation is determined, generally as the result of securing a stationary resource that provides a
work area to (or from) which the mobile resource must report. These relationships are implicit
in the domain description. The reservation-refinement process is responsible for compacting
mobile resource reservations made under uncertain conditions. The flexibility made available
to the scheduler for securing stationary work area resources is thus preserved until it is no longer
needed, at which point it is released and made available for use in satisfying other outstanding
resource requests.

Experiments with DSS, however, such as those described in Section 5.6.2.1 involving
the ARM system, demonstrate the price that is paid by using this worst-case mobile resource
reservation approach. Oversized reservations make it more difficult to satisfy outstanding
mobile resource requests, which in turn makes it more difficult for DSS to minimize tardiness. A
solution to this problem would be to incorporate travel time into mobile resource reservations
depending on the availability of both the mobile and stationary resource classes involved.
If, for example, the stationary resources are in abundant supply, then the mobile resource
reservations need not include maximal travel time allocations. In the case where the supply of
mobile resources is low, then the mobile resource reservations should include only the minimal
travel time allocations. Different allocation procedures should be put into place for different
conditions. The goal of avoiding the tendency to over-constrain outstanding subproblems
could still be maintained, but it would be tempered by the desire to improve the overall
performance of the system through a more careful mobile resource allocation process.

6.3.5 Enhancing the Least-Commitment Decision-Making Process

In relation to the topic of the preceding subsection, the process of preserving scheduling
options for the satisfaction of future subproblems needs to be extended to consider the impact of

180

equipment compatibility constraints and technological constraints in addition to just temporal
concerns. Currently, the worst-case reservation of mobile resources preserves the scheduling
options for solving outstanding stationary resource subproblems. As evidenced by the AGSS
domain, however, there are equipment compatibility constraints that can affect the ability to
secure future reservations. Consider the AGSS refueling operation. Given a choice between
using a pump truck or a fuel truck, an important concern is whether the gate at which the
refueling is to occur is equipped with the necessary equipment to support the use of a pump
truck. A fuel truck can be used at any gate, so if a fuel truck is secured first, there is no impact
on the future ability to secure a gate. If, on the other hand, a pump truck is secured first, then
the impact on the future ability to secure a gate is constrained according to the supply of gates
with underground fuel tanks that can support the use of the pump truck. Assuming that this
set of gates is a subset of the entire set of gates, the decision to use the pump truck has acted to
limit the choice of a gate.

The problem can be extended to consider the similar impact of technological constraints
between products and resources. Returning to the AGSS domain, consider the situation where
two adjacent gates must share overlapping work space, such that the assignment of a large
aircraft to one gate limits the size of aircraft that can be serviced at the other gate during the
same period of time. In this case, the assignment of the first gate to an order involving a large
flight acts to limit the set of gates that can be assigned to other orders with large aircraft.

Both of these problems warrant the attention of our attempts to preserve flexibility
within the developing schedule. A better-informed decision-making process, able to anticipate
accurately the impact of its scheduling decisions, would contribute greatly to the computational
efficiency of the approach.

6.3.6 Introducing Planning Issues

The applicability of DSS to an even wider range of real-world dynamic scheduling environ-
ments would be enhanced by incorporating some basic planning abilities into its scheduling
approach. Currently, DSS is unable to modify process routings during the scheduling process.
Regardless of conditions within the environment, DSS is forced to schedule operations according
to the static process routing templates provided by the domain descriptions. If conditions in
the environment change drastically during the scheduling process, DSS has no ability to modify
the order set on its own.

An important capability for DSS would be to allow it some flexibility in dealing with
the process routing templates. Consider the situation where a particular resource class is in
extremely short supply. And suppose that an operation requiring that type of resource is not
an integral part of its process routing. DSS should have the option of removing that task from
the queue of outstanding subproblems, at perhaps some expense of schedule quality, so that
other more important subproblems can be addressed. Given clear scheduling objectives, such
flexibility would improve the ability of DSS to adapt to a greater variety of dynamic situations.

6.3.7 Enhancing the Urgency-Determination Mechanism

There are a number of directions that could be taken to enhance the urgency-determination
mechanism in DSS.

Presently, DSS considers only the existing demand for resources when generating its
resource-based perspective in the process of determining subproblem urgency. The known

181

rate of failure per resource class (if available), would provide additional valuable information
about the stability of the resource supply, and thereby act to modify assumptions about the
bottleneck status of the resources. If a particular resource class, in good supply, suffers from a
high failure rate, its anticipated level of supply should be discounted to account for expected
failures, to prevent subproblems requiring that resource class from being arranged improperly
on the queue of outstanding scheduling activities. If the failure rate is high, the urgency of
those subproblems should be boosted accordingly.

Another consideration that could play an important part in the urgency-determination
process would be the expected pattern of job arrivals to the system. Such information could be
used to indicate time periods in which to expect high contention for certain resource classes,
which cannot be detected from the existing order set. In many real-world scheduling domains,
the pattern of job arrivals can be determined over time, and used to prepare a scheduler for
certain difficult conditions that may occur. The AGSS domain implemented in the ARM

system provides an example of when the order set is essentially known far in advance (often
on a per-month basis) of the actual reception of the orders. By incorporating this knowledge,
when available, into the scheduling process, DSS could bring the performance of its dispatch
scheduling mode closer to that of its batch scheduling mode in the same environment.

6.3.8 Extending the Problem Definition

The real-world applicability of DSS would be enhanced by extending our current RCSP
definition to include a number of important additional complexities.

The issue of resource capacity provides an obvious direction for enhancement of our
RCSP definition. Currently, implicit resource capacity constraints in DSS allow only a single
operation to be performed (or serviced) on any resource at the same time. Yet many scheduling
domains involve resources that can accommodate a number of operations at once. In many
transportation planning domains, where container resources, such as trucks, boats, or aircraft,
are used to transport cargo between specific locations, the same container resource may be used
to transport the cargo for a number of jobs. Adding a capacity dimension to the concept of
resource availability would increase the variety of real-world domains in which DSS could be
used.

The expected processing duration any task is currently assumed to remain constant during
the course of scheduling. Conditions in the environment, however, can often have a substantial
impact on the actual time it takes to perform certain tasks. In the AGSS domain, weather
conditions can wreak havoc on a schedule by increasing the amount of time it takes to perform
all ground servicing activities. The ability to modify the current assumptions about how long
certain tasks will take to execute would permit DSS to better react to changing environmental
conditions, by adjusting its scheduling strategy to account for the changes in resource demand
and contention that occur when processing duration expectations are altered.

6.3.9 Distributing the Flexible Scheduling Approach

Many RCSPs can be treated as distributed problems. A set of independent, though basically
cooperative, scheduling agents, each with its own resource supply, may share responsibility for
a set of orders. Individual orders could be assigned to scheduling agents according to some
organizational model, perhaps with each agent accepting complete responsibility for a subset

182

of the orders, or working together with other agents on shared order sets. An overall schedule
is completed through the collective actions of all scheduling agents.

When agents experience difficulty from a lack of resources, they may request resource loans
from other agents to complete their own scheduling assignments. Issues of negotiation come
into play in this environment, where each agent must now deal with external resource requests
in addition to the needs of its own assigned subproblems. Agents must also decide when to ask
other agents for resource loans instead of trying to manipulate their own schedules.

An important factor in the negotiation process is the issue of slack time. By including
slack time along with the loan of a resource, that is, by loaning the resource for a time in excess
of the time requested, lending agents can temporarily release their control over a resource,
thereby allowing the borrowing agent more flexibility in the use of the resource. The more
autonomy that is provided in this fashion, the lower the communication costs to each of the
agents involved in the process. The inclusion of slack time within resource loans also depends
on the local state of problem solving for the lending agent. If its own resources are in short
supply, it is more likely to loan out resources for only the time requested, if at all.

A distributed version of DSS has already been constructed, using a distributed version of
the AGSS domain [Neiman et al., 1994]. The scheduling agents in this domain correspond to
the various airlines operating out of a particular airport. Each airline is given its own supply of
resources, but may be occasionally forced to request the loan of a resource from another airline.
Many of the issues involving negotiation and slack time have yet to be addressed.

6.3.10 Evaluating DSS in Real-World Scheduling Environments

A final direction for future research is the application of DSS to an actual real-world
scheduling domain. While we have experimented with a variety of different RCSPs, and
simulated a number of dynamic environmental conditions, we have yet to experience the
demands of a real scheduling environment. The operation of DSS within such an environment
would provide important information about its ability to react quickly to changes, and produce
schedules in a timely fashion.

6.4 Closing Remarks

We have implemented DSS as a means of evaluating our flexible, knowledge-based approach
to solving dynamic RCSPs. While our approach has exhibited success applied to a number of
scheduling environments under dynamic environmental conditions, there is considerable work
yet to be done in enhancing both its effectiveness and applicability. Nevertheless, the current
design and implementation of DSS stands as a solid base upon which to build.

A P P E N D I X A

SCHEDULING APPLICATION SYSTEMS BUILT WITH
DSS

In this appendix, we describe two different RCSP domains, and the corresponding
scheduling applications we have built on top of DSS to evaluate the effectiveness of our flexible
scheduling approach. The purpose of these discussions is to provide general information about
each of these RCSPs, and demonstrate how the mechanisms provided by DSS have been used
to represent their required domain information.

In each of the following sections, we describe an RCSP domain and the corresponding
application system we have implemented. We describe each application system by first
explaining the basic assumptions about the problem, then presenting the resources, shop
locations and products involved in the domain, and finally explaining the kinds of operations
performed by the resources, and the sequences of these operations that are used to produce the
desired products.

In the first section, we describe the ARM system, used for scheduling the airport ground
servicing activities at a large airport. Section A.2 describes the TCP system, which implements
the simplified job-shop scheduling domain used to evaluate the initial OPIS system.

Figure A.1 provides a legend for understanding the resource and process plans presented
throughout this chapter.

A.1 ARM: The Airport Resource Management System

The development and implementation of DSS originated from an investigation into the
problem of scheduling the resources for performing the various required ground servicing
activities at large airports. As it turns out, the airport ground service scheduling (AGSS) domain
is an ideal example of a real-world dynamic RCSP. The scheduling objectives for the AGSS
domain are common to many job-shop and factory scheduling environments. This observation
has guided us in the process of designing DSS for use in representing and solving a broad range
of RCSPs. Finally, the AGSS domain has provided us with some additional scheduling issues
to consider, such as the use of mobile resources to perform some of the servicing tasks, and the
existence of inter-order tasks.

A.1.1 The Airport Ground Service Scheduling Domain

Flight schedules are prepared periodically by airline companies. Gate and other resource
capacities at the airports involved are considered in this process. Once the daily flight schedules
are determined for an airline at a specific airport, local ground controllers generally take over
the responsibility of assigning gates and other resources to the flights in advance of their arrival.
When problems occur during the execution of a daily schedule, the ground controllers are

184

GENERIC
RESOURCE TASK
ACTIVITY CLASS

RESOURCE
TASK NAME

Non
Resource-
Requiring

Resource-
Requiring Aggregate

Resource
Task Node

PRODUCT
TASK NAME

required resources

PRODUCT TASK NAMEPRODUCT
TASK NAME

required resources

Shaded task nodes indicate tasks
belonging to preceding or succeeding
inter-connected orders.

Aggregate task nodes appear at the
top of the shaded region that contains
their sub-tasks.

Notes:

The main servicing task for a resource
plan is connected to its product task
by a pair of dashed lines.

Task Nodes

Constraints

Indicates a constraining relation
between two task nodes.

Indicates the required location
of a mobile resource at a specific
point in a resource plan.

General Description

BINARY TASK NODE
CONSTRAINT

Location Description

BEGINNING / ENDING
LOCATION CONSTRAINT

Annotations:

Task Shift
Preference
Indicators

Early Late

EST, LST, EFT, LFT Constraints

Inter-Order
Task Indicator

Temporal
Sequencing
Constraint

Figure A.1. Key to Resource and Process Plan Figures.

185

responsible for quickly repairing the schedule to keep all of the scheduled ground servicing
activities running as smoothly as possible.

More recently, many airlines have begun leasing entire airport terminals at specific airports
(called hubs) through which to route most of their flights. The result is that many large
airports now have one airline (or more) that uses a significantly large number of the airport’s
gates solely for its own flights. With the demand for passenger air travel remaining heavy,
and airport building and expansion becoming ever more difficult and expensive to undertake,
the problem of scheduling increasing numbers of flights using a generally static collection of
resources becomes even more difficult to solve.

The ground servicing that is required for the aircraft that arrive and depart from an airport
is extensive, involving the utilization of a variety of resources within a relatively short period of
time. Passengers must be deplane and enplane, and their baggage must be loaded and unloaded
from the aircraft, and transferred between connecting flights. In addition, all aircraft must be
cleaned, restocked, refueled and serviced, while remaining docked at an assigned gate. The goal
of a scheduler in this environment is to produce a schedule of resource usage that allows all of
the required ground servicing activities to be performed in a timely manner to minimize flight
delays, and to maximize the utilization of the resources (depending on the varying levels of
resource contention per resource class). In the AGSS domain, unlike other job-shop scheduling
domains, the penalties for earliness are just as severe as those for tardiness. The penalties for
producing low quality schedules are measured in terms of dissatisfied customers in a highly
competitive business environment, and the creation of idle time for very expensive aircraft and
other equipment.

The related problem of scheduling crew assignments for an airline’s flights is an interesting
problem, which is not, however, within the scope of the problem we are focused on. Never-
theless, if we were to view the problem from a higher, possibly distributed level, and were to
further enhance the constraint specification mechanism, it is conceivable that the assignment
of crews to flights is a process similar to the assignment of gates to aircraft. For now, however,
we leave the crew assignment problem out of our model of the AGSS domain.

To help experiment with and evaluate our approach to solving dynamic RCSPs, we have
built, upon DSS, the Airport Resource Management System (ARM). ARM represents and solves
dynamic RCSPs within the airport ground service scheduling domain. Throughout the rest of
this appendix, we provide a detailed description of ARM, including descriptions of the resources
and shop locations, products, operations, orders and process plans that define the dynamic
RCSP that exists within the AGSS domain.

We begin our discussion of ARM with a statement of our basic assumptions about the AGSS
domain.

A.1.2 Domain Assumptions

The problem of scheduling in the AGSS domain has received the attention of members of
the operations research and expert systems fields. As a result, while the overall model of the
domain has been the same, there has often been a difference in the kinds of problems actually
addressed, and thus a difference in the way that the AGSS domain is represented.

We take the opportunity in this section to identify some aspects of the AGSS domain that
we do not represent or consider within ARM. These items are discussed below.

186

In ARM, the assignment of a particular kind of aircraft to a specific gate does not affect
the range of use for any adjoining gates. That is, the process of assigning gates to aircraft
does not consider whether or not a neighboring gate is in use, nor the kind of aircraft that
may be docked there. In ARM, individual gate and aircraft compatibility relationships are
handled independently of all other gate and aircraft pairings.

Specific resource preferences for operations are not supported in ARM. Such preferences
show up in the AGSS domain, for example, where it is often desirable to schedule certain
daily flights at the same gate.

ARM requires that all of the ground servicing activities for an aircraft be performed at a
single gate. As a result, the ability to move an aircraft from the gate at which its arriving
phase has been processed to another gate where its departing phase will be processed is
not provided.

The scope of the scheduling performed by ARM is limited to the activities occurring
within the ground servicing areas of the airport. That is, ARM is not concerned with the
sequencing of flight landings and departures, nor the assignment of runways and taxiways
to aircraft. For the purposes of assigning gates, ARM assumes that arriving aircraft will
land 5 minutes prior to their expected arrival (ready) times, and that departing aircraft will
take off 5 minutes after their actual departure (completion) times. Changes in expected
arrival (ready) times may force ARM to modify its existing schedule.

Unfortunately, this research was undertaken without the assistance of any of the large U.S.
airline companies.1 As a result, the entire ARM system is based on a reasonable approximation
of the real-world AGSS domain. The flight schedules, the kinds of servicing tasks required and
their processing durations, the supplies and attributes of the resources, and the dimensions of
the basic airport layout used in our experiments are all based on realistic estimates.

A.1.3 Resources and Shop Locations

The AGSS domain as implemented in ARM includes seven resource classes, six of which
are mobile. Five kinds of shop locations are also defined.

The single instance of the stationary resource class is the GATE. A gate is required for all of
the ground servicing that is performed in the AGSS domain, because all scheduled activity is
performed on an aircraft while it is docked at a gate. All mobile resources must therefore travel
from gate to gate in the process of carrying out their assigned ground servicing tasks. Each
gate provides a work area for the required mobile resources to perform their required ground
servicing tasks, as well as the jetway through which passengers embark upon and disembark
from the aircraft.

Gates may be restricted in the size of aircraft they are able to handle. Gate usage may be
further restricted according to the types of government inspection services a gate is equipped
to provide (for handling customs and related passenger processing), which determines whether
or not it may be used for processing international flights. Gates without such facilities are

1The scheduling practices of the airlines can be classified as extremely proprietary.

187

limited to use by domestic flights only. The immediately preceding and succeeding stops for a
flight are used to indicate whether it is international or domestic. Finally, some gates may be
equipped with underground fuel storage systems that increase the number of refueling options
available to the aircraft it services.

The six mobile resource classes required by our implementation of the AGSS domain in
ARM are described below.

FUEL TRUCK

A fuel truck is used to refuel an aircraft prior to its departure. It may be used for any kind
of aircraft or flight.

PUMP TRUCK

A pump truck is also used to refuel an aircraft prior to its departure. While a pump truck
may be used on any kind of aircraft or flight, it may only be used in conjunction with a
gate that is equipped with an underground fuel storage system. The selection of a pump
truck to perform the refueling task for a flight therefore constrains the selection of a gate,
while the selection of a gate may or may not constrain the selection of a truck to perform
the refueling task.

SERVICE TRUCK

A service truck is used to perform the various miscellaneous mechanical servicing tasks
necessary to prepare an aircraft for departure. It may be used for any kind of aircraft or
flight.

CLEANING TRUCK

A cleaning truck is used to remove the range of waste products from an aircraft following
its arrival. It may be used for any kind of aircraft or flight.

CATERING TRUCK

A catering truck is used to restock an aircraft with the necessary food and assorted supplies
for its departure. It may be used for any kind of aircraft or flight.

BAGGAGE TRUCK

A baggage truck is used for loading and unloading the baggage from an aircraft, and for
transferring baggage between connecting flights. A baggage truck may be used for any
kind of aircraft or flight.

The five kinds of shop locations required by our implementation of the AGSS domain in
ARM are described below.

FUEL TANK

The fuel tank is used for filling fuel trucks before they refuel an aircraft. Fuel trucks must
report to the fuel tank at the beginning of every refueling assignment.

188

KITCHEN

The kitchen is used for filling catering trucks before they restock an aircraft. Catering
trucks must report to the kitchen at the beginning of every restock assignment.

BAGGAGE OUTLET

Baggage outlets (there may be more than one) are used in the course of loading and
unloading the baggage from an aircraft. Baggage trucks use the baggage outlet that is
nearest to the gate assigned to the aircraft they must service. When unloading baggage,
a baggage truck reports to the appropriate baggage outlet at the end of its assignment to
unload its contents for their transfer to the baggage claim area. When loading baggage, a
baggage truck reports to the appropriate baggage outlet at the beginning of the assignment
to load all checked baggage from the airline check-in area. When transferring baggage
between flights, a baggage outlet is not used.

HANGAR

The hangar provides a location for storing aircraft waiting to be used for Departure flights
that originate at the airport.

GARAGE

The garage provides an additional location (besides the gates and the other shop locations)
for housing mobile resources. Mobile resources are often initially placed in the garage in
order not to influence the gate assignment process (for experimental purposes).

A.1.4 Products

The only products defined in ARM are the aircraft for the flights being serviced. For each
flight requiring servicing, the ARM simulator creates a new aircraft of the appropriate type to
be used for the flight. The type of aircraft created is based on a number of factors, such as the
populations of the cities serviced by the flight, and the distance from the previous stop to the
local airport whose ground service scheduling is being handled by ARM (and implicitly, DSS).
There is a one-to-one mapping of aircraft to flights, that is, each aircraft is used for only a single
flight, and each flight uses only a single aircraft. A total of 14 types of commercial aircraft are
defined for ARM. The aircraft type plays an important role in the domain code that provides
DSS with the required and estimated durations of the various ground servicing tasks.

A.1.5 Operations

In this section, we provide a description of the specific airport ground servicing tasks
performed in the AGSS domain as implemented in ARM. For each of these tasks, we describe
its overall purpose, the sequence of resource tasks that comprise its resource plan(s), and any of
the constraints that it introduces.

189

A.1.5.1 Docking Support Activities for Arrival, Departure, and Turnaround Flights

These product tasks represent the required docking support activities provided by the
Arrival, Departure and Turnaround flights (described in Section A.1.6). This support includes
providing a work area for the required ground servicing to take place, as well as a jetway
for getting passengers onto and off of the aircraft. Figure A.2 provides an illustration of
the common resource plan shared by the ARRIVAL ACTIVITY, DEPARTURE ACTIVITY and
TURNAROUND ACTIVITY product tasks. These tasks require the use of a GATE.

SETUP
RESOURCE

SETUP

PREPARE
GATE

ARRIVAL
ACTIVITY

gate

TURNAROUND
ACTIVITY

DEPARTURE
ACTIVITY

REFUEL

pump or fuel truck

SERVICE
PRODUCT
SERVICE

GATE
PROCESSING

lack of underground fuel
storage system at gate

precludes use of pump truck

EQUIPMENT COMPATIBILITY
CONSTRAINT

Figure A.2. Common Resource Plan for the ARRIVAL ACTIVITY, DEPARTURE ACTIVITY and
TURNAROUND ACTIVITY Product Tasks.

The ARRIVAL ACTIVITY, DEPARTURE ACTIVITY and TURNAROUND ACTIVITY tasks are
performed by means of a two-step resource plan. The PREPARE-GATE resource task prepares
the gate for docking, with a constant duration of 5 minutes. The GATE-PROCESSING resource
task encompasses the entire ground servicing process. These product tasks are aggregates,
meaning that their durations are dependent on the desired and secured servicing times of their
required child sub-tasks.

Figure A.3 shows the gate-related resource task specifications that are used to define the
various flight servicing types described in Section A.1.6.2 For the DEPARTURE ACTIVITY and

2The definitions of the ARRIVAL ACTIVITY, DEPARTURE ACTIVITY and TURNAROUND ACTIVITY aggregate

190

;;; ---
;;; Gate Activity Resource Task Definitions:

(define-resource-task PREPARE-GATE (setup-resource))

(define-resource-task GATE-PROCESSING (service-product))

;;; ---

Figure A.3. Resource Task Specifications for Gate-Related Operations.

TURNAROUND ACTIVITY product tasks, both of which require the refueling of an aircraft, the
lack of an underground fuel storage system precludes the use of a pump truck to perform
the refueling task. This is achieved with an EQUIPMENT-COMPATIBILITY-CONSTRAINT
(ECC).

A.1.5.2 LOAD BAGGAGE

The LOAD BAGGAGE product task involves the movement of all baggage for the departing
leg of a flight from the baggage outlet shop location nearest the gate servicing the flight to the
departing aircraft, and the loading of that baggage onto the aircraft. Figure A.4 provides an
illustration of the LOAD BAGGAGE task, including its resource plan and associated constraints.
This task may only be performed by a BAGGAGE TRUCK.

The LOAD BAGGAGE product task is performed by means of a four-step resource plan.
The GOTO-BAGGAGE-OUTLET resource task moves the baggage truck to the baggage outlet
nearest the assigned gate, as specified by the BEGINNING-LOCATION-CONSTRAINT (BLC).
If the truck is already at the baggage outlet, this resource task is not performed. At this point,
all checked baggage is loaded onto the truck. The duration of the FILL-BAGGAGE-TRUCK
resource task ranges from 6 to 18 minutes, depending on the capacity of the aircraft. The
GOTO-GATE resource task moves the baggage truck to the assigned gate, at which point
the baggage is loaded onto the aircraft. The duration of this FILL-AIRCRAFT resource
task ranges from 6 to 12 minutes, again depending on the capacity of the aircraft. The
ENDING-LOCATION-CONSTRAINT (ELC) indicates that the baggage truck remains at the
gate upon completion of the LOAD BAGGAGE task.

The ANCHORED-DISTANCE-CONSTRAINT (ADC) ensures that the assigned gate is
within the allocated travel distance from the nearest baggage outlet. The INITIAL-TRAVEL-
DISTANCE-CONSTRAINT (ITDC) indirectly constrains the choice of a gate to service the
flight, by limiting the set of usable baggage outlets (and hence, gates) to those within the
allocated travel distance of the baggage truck’s previous location.3 The EST constraint indicates
that the main activity of the LOAD BAGGAGE product task (LOAD-AIRCRAFT), may not begin
any earlier than a time 30 minutes prior to the due date of the order (the expected departure
time for the flight).

product tasks are provided in Section A.1.6, along with their corresponding service type descriptions.

3Note that the ITDCs, ADCs, DISTANCE-CONSTRAINTs, ECCs, BLCs, and ELCs are defined as part
of the duration calculation methods for the resource task nodes. These constraints are instantiated and returned
with the processing time durations calculated by these methods.

191

to gate from closest
baggage outlet

ANCHORED
DISTANCE CONSTRAINT

from previous location to
closest baggage outlet to gate

INITIAL TRAVEL
DISTANCE CONSTRAINT

LOAD
BAGGAGE

baggage truck

DEPARTURE
ACTIVITY

gate

TURNAROUND
ACTIVITY

FILL
AIRCRAFT

SERVICE
PRODUCT
SERVICE

GOTO
GATE

GOTO SERVICE
LOCATION
EN ROUTE

FILL
BAGGAGE

TRUCK
SETUP

RESOURCE
SETUP

GOTO
BAGGAGE
OUTLET
TO LOAD

GOTO SETUP
LOCATION
EN ROUTE

closest baggage outlet to gate
BEGINNING LOCATION CONSTRAINT

gate
ENDING LOCATION CONSTRAINT

EST: 30 minutes
from DD

Figure A.4. Resource Plan for the LOAD BAGGAGE Product Task.

Figure A.5 shows the task specifications that define the LOAD BAGGAGE operation.4

A.1.5.3 UNLOAD BAGGAGE

The UNLOAD BAGGAGE product task involves the removal from the aircraft of all baggage
destined for the local airport, and the movement of that baggage from the aircraft to the baggage
outlet shop location nearest the gate servicing the flight. Figure A.6 provides an illustration of
the UNLOAD BAGGAGE task, including its resource plan and associated constraints. This task
may only be performed by a BAGGAGE TRUCK.

The UNLOAD BAGGAGE product task is performed by means of a four-step resource plan.
The GOTO-GATE resource task moves the baggage truck to the assigned gate, as specified by
the BLC. If the truck is already at the gate, this resource task is not performed. At this point, all
baggage destined for the local airport is unloaded from the aircraft, and loaded onto the truck.
The duration of the EMPTY-AIRCRAFT resource task ranges from 6 to 10 minutes, depending
on the capacity of the aircraft. The GOTO-BAGGAGE-OUTLET-TO-UNLOAD resource task
moves the baggage truck to the baggage outlet nearest the assigned gate, at which point the
baggage is unloaded from the truck. The duration of the EMPTY-BAGGAGE-TRUCK resource

4For the purpose of completeness in these task specification figures, we have redundantly presented a number
of generic task definitions that are shared by several of the ARM operations, and which actually appear only
once in the actual specification files. (These shared operations are GOTO-GATE , REFUEL-AIRCRAFT ,
PREPARE-GATE , and GATE-PROCESSING).

192

;;; ---
;;; Load-Baggage Resource Task Definitions:

(define-resource-task GOTO-BAGGAGE-OUTLET-TO-LOAD (goto-setup-location)
 :NEXT-LOCATION
 (:CLOSEST-SHOP-LOCATION
 (:RESOURCE (turnaround-activity departure-activity) gate)
 baggage-outlet))

(define-resource-task FILL-BAGGAGE-TRUCK (setup-resource))

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION
 (:RESOURCE (turnaround-activity departure-activity) gate))

(define-resource-task LOAD-AIRCRAFT (service-product))

;;; ---
;;; Load-Baggage Product Task Definition:

(define-product-task LOAD-BAGGAGE
 :SHIFT-PREFERENCE :LATE
 :EARLIEST-START-TIME (:FROM-DUE-DATE 30)
 :RESOURCE-REQUIREMENTS
 ((baggage-truck
 :RESOURCE-PLAN
 (goto-baggage-outlet-to-load fill-baggage-truck
 goto-gate load-aircraft)
 :MAIN-ACTIVITY load-aircraft)))

;;; ---

Figure A.5. Task Specifications for the LOAD BAGGAGE Operation.

task ranges from 6 to 18 minutes, again depending on the capacity of the aircraft. The ELC
indicates that the baggage truck remains at the baggage outlet upon completion of the UNLOAD
BAGGAGE task. The ADC ensures that the assigned gate is within the allocated travel distance
from the nearest baggage outlet. The ITDC indirectly constrains the choice of a gate to service
the flight, by limiting the set of usable baggage outlets (and hence, gates) to those within the
allocated travel distance from the baggage truck’s previous location.

Figure A.7 shows the task specifications that define the UNLOAD BAGGAGE operation.

A.1.5.4 BAGGAGE TRANSFER

The BAGGAGE TRANSFER product task is an inter-order task that involves the transfer of
baggage between the aircraft for two connected flights. It is an aggregate task with sub-tasks for
unloading from the first aircraft all baggage destined for the departing leg of a specific connecting
flight (UNLOAD X BAGGAGE), the transfer of that baggage between the gates servicing the two
aircraft (TRANSFER X BAGGAGE), and the loading of the baggage onto the connecting flight
aircraft (LOAD X BAGGAGE). Figure A.8 provides an illustration of the BAGGAGE TRANSFER
task, including its resource plan and associated constraints. This task may only be performed
by a BAGGAGE TRUCK.

The BAGGAGE TRANSFER task is performed by means of a two-step resource plan. The
GOTO-GATE resource task moves the baggage truck to the assigned gate, as specified by
the BLC. If the truck is already at the gate, this resource task is not performed. The

193

from previous location to gate

INITIAL TRAVEL
DISTANCE CONSTRAINT

ARRIVAL
ACTIVITY

gate

TURNAROUND
ACTIVITY

UNLOAD
BAGGAGE

baggage truck

GOTO
GATE

GOTO SERVICE
LOCATION
EN ROUTE

EMPTY
BAGGAGE

TRUCK
RESET

RESOURCE
RESET

GOTO RESET
LOCATION
EN ROUTE

EMPTY
AIRCRAFT

SERVICE
PRODUCT
SERVICE

GOTO
BAGGAGE
OUTLET

TO UNLOAD

from gate to closest
baggage outlet

ANCHORED
DISTANCE CONSTRAINT

ENDING LOCATION CONSTRAINT
closest baggage outlet to gate

BEGINNING LOCATION CONSTRAINT
gate

Figure A.6. Resource Plan for the UNLOAD BAGGAGE Product Task.

BAGGAGE-TRANSFER-PROCESSING resource task encompasses the entire baggage transfer
process. The ELC indicates that the baggage truck remains at the gate assigned to service the
connecting flight aircraft upon completion of the BAGGAGE TRANSFER task. This product
task is an aggregate, meaning that its duration is dependent on the desired servicing times of
its required sub-tasks.

The ITDC constrains the choice of a gate to service the arriving flight, by limiting the set
of usable gates to those within the allocated travel distance from the baggage truck’s previous
location. The DISTANCE-CONSTRAINTs imposed on each of the gates constrain the choice
of gates for servicing the flights to those within the allocated travel distance of each other,
as specified by the duration of the TRANSFER X BAGGAGE sub-task. The LFT constraint
on the UNLOAD X BAGGAGE sub-task indicates that all of the transfer baggage destined for
a connecting flight must be unloaded from the arriving flight aircraft by a time five minutes
prior to the due date of the originating order (the time when its aircraft leaves its gate). The
EST constraint on the LOAD X BAGGAGE sub-task indicates that all of the transfer baggage
originating from a connecting flight may not be loaded onto the departing flight aircraft any
earlier than a time five minutes after the ready time of the destination order (the time when its
aircraft arrives at its gate).

The duration of the UNLOAD X BAGGAGE task ranges from 4 to 14 minutes, depending
on the capacity of the originating aircraft. The duration of the LOAD X BAGGAGE task ranges
from 5 to 16 minutes, depending on the capacity of the destination aircraft.

Figure A.9 shows the task specifications that define the BAGGAGE TRANSFER operation.
The EXPECTED-DURATION-FUNCTION (including the MINIMUM and MAXIMUM varieties)

194

;;; ---
;;; Unload-Baggage Resource Task Definitions:

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION
 (:RESOURCE (turnaround-activity arrival-activity) gate))

(define-resource-task UNLOAD-AIRCRAFT (service-product))

(define-resource-task GOTO-BAGGAGE-OUTLET-TO-UNLOAD (goto-reset-location)
 :NEXT-LOCATION
 (:CLOSEST-SHOP-LOCATION
 (:RESOURCE (turnaround-activity arrival-activity) gate)
 baggage-outlet))

(define-resource-task EMPTY-BAGGAGE-TRUCK (reset-resource))

;;; ---
;;; Unload-Baggage Product Task Definition:

(define-product-task UNLOAD-BAGGAGE
 :SHIFT-PREFERENCE :EARLY
 :RESOURCE-REQUIREMENTS
 ((baggage-truck
 :RESOURCE-PLAN
 (goto-gate unload-aircraft
 goto-baggage-outlet-to-unload empty-baggage-truck)
 :MAIN-ACTIVITY unload-aircraft)))

;;; ---

Figure A.7. Task Specifications for the UNLOAD BAGGAGE Operation.

provide DSS with the means to determine the expected, minimum, and maximum process-
ing durations for non-resource-requiring tasks. The NEXT-LOCATION argument to the
BAGGAGE-TRANSFER-PROCESSING resource task informs DSS that the baggage truck used
to perform the baggage-transfer operation will end up at the gate used by the flight to which
the baggage is being transferred (either a Departure or Turnaround flight). The non-nil value
for the SPECIAL-REFINEMENT-CASE? flag indicates that the duration of the TRANSFER X
BAGGAGE product task must be recalculated whenever the origin or destination of the transfer
is updated (this flag is described in Section 4.2.6).

A.1.5.5 CLEAN

The CLEAN product task involves the removal of waste products and the general cleaning
of the aircraft. Figure A.10 provides an illustration of the CLEAN task, including its resource
plan and associated constraints. This task is only performed by a CLEANING TRUCK.

The CLEAN product task is performed by means of a two-step resource plan. The
GOTO-GATE resource task moves the cleaning truck to the assigned gate, as specified by
the BLC. If the truck is already at the gate, this resource task is not performed. Once the
truck is at the gate, the cleaning process may begin. The duration of the CLEAN-AIRCRAFT
resource task ranges from 5 to 15 minutes, depending on the capacity of the aircraft. The ELC
indicates that the cleaning truck remains at the gate upon completion of the CLEAN task. The
ITDC constrains the choice of a gate to service the flight, by limiting the set of usable gates to
those within the allocated travel distance from the cleaning truck’s previous location.

195

from gate of succeeding
order to gate of
preceding order

DISTANCE CONSTRAINT
from gate of preceding

order to gate of
succeeding order

DISTANCE CONSTRAINT

UNLOAD X
BAGGAGE

LOAD X
BAGGAGE

TRANSFER X
BAGGAGE

LFT: 5 minutes from DD EST: 5 minutes after RT(SO)

ARRIVAL
ACTIVITY

gate

TURNAROUND
ACTIVITY

Preceding Order

DEPARTURE
ACTIVITY

gate

TURNAROUND
ACTIVITY

Succeeding Order

baggage truck

BAGGAGE
TRANSFER

GOTO SERVICE
LOCATION
EN ROUTE

GOTO
GATE

SERVICE
PRODUCT

BAGGAGE
TRANSFER

PROCESSING

SERVICE

gate of preceding order
BEGINNING LOCATION CONSTRAINT

from previous
location to gate

INITIAL
TRAVEL

DISTANCE
CONSTRAINT

gate of succeeding order
ENDING LOCATION CONSTRAINT

Figure A.8. Resource Plan for the BAGGAGE TRANSFER Product Task.

196

;;; ---
;;; Baggage-Transfer Resource Task Definitions:

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION
 (:RESOURCE (turnaround-activity arrival-activity) gate))

(define-resource-task BAGGAGE-TRANSFER-PROCESSING (service-product)
 :NEXT-LOCATION
 (:RESOURCE
 (:INTER-ORDER (turnaround-activity departure-activity))
 gate))

;;; ---
;;; Baggage-Transfer (and Children) Product Task Definitions:

(define-product-task UNLOAD-X-BAGGAGE
 :SHIFT-PREFERENCE :EARLY
 :LATEST-FINISH-TIME (:FROM-DUE-DATE 5)
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-unload-x-baggage)

(define-product-task TRANSFER-X-BAGGAGE
 :SPECIAL-REFINEMENT-CASE? t
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-transfer-x-baggage
 :MINIMUM-EXPECTED-DURATION-FUNCTION
 arm::minimum-time-required-to-transfer-x-baggage
 :MAXIMUM-EXPECTED-DURATION-FUNCTION
 arm::maximum-time-required-to-transfer-x-baggage)

(define-product-task LOAD-X-BAGGAGE
 :SHIFT-PREFERENCE :LATE
 :EARLIEST-START-TIME (:FROM-READY-TIME 5 :SUCCEEDING-ORDER)
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-load-x-baggage)

;;; -

(define-product-task BAGGAGE-TRANSFER
 :RESOURCE-REQUIREMENTS
 ((baggage-truck
 :RESOURCE-PLAN (goto-gate baggage-transfer-processing)
 :MAIN-ACTIVITY baggage-transfer-processing))
 :AGGREGATE-SUB-TASKS
 (:SEQUENCE unload-x-baggage transfer-x-baggage load-x-baggage))

;;; ---

Figure A.9. Task Specifications for the BAGGAGE TRANSFER Operation.

197

from previous location to gate

INITIAL TRAVEL
DISTANCE CONSTRAINT

CLEAN
AIRCRAFT

SERVICE
PRODUCT
SERVICE

GOTO
GATE

GOTO SERVICE
LOCATION
EN ROUTE

CLEAN

cleaning truck

ARRIVAL
ACTIVITY

gate

TURNAROUND
ACTIVITY

gate
BEGINNING LOCATION CONSTRAINT

gate
ENDING LOCATION CONSTRAINT

Figure A.10. Resource Plan for the CLEAN Product Task.

Figure A.11 shows the task specifications that define the CLEAN operation.

A.1.5.6 SERVICE

The SERVICE product task involves the general mechanical servicing of the aircraft.
Figure A.12 provides an illustration of the SERVICE task, including its resource plan and
associated constraints. This task is only performed by a SERVICE TRUCK.

The SERVICE product task is performed by means of a two-step resource plan. The
GOTO-GATE resource task moves the service truck to the assigned gate, as specified by the
BLC. If the truck is already at the gate, this resource task is not performed. Once the truck
is at the gate, the servicing process may begin. The duration of the SERVICE-AIRCRAFT
resource task ranges from 5 to 10 minutes, depending on the capacity of the aircraft. The ELC
indicates that the service truck remains at the gate upon completion of the SERVICE task. The
ITDC constrains the choice of a gate to service the flight, by limiting the set of usable gates to
those within the allocated travel distance from the service truck’s previous location.

Figure A.13 shows the task specifications that define the SERVICE operation.

A.1.5.7 RESTOCK

The RESTOCK product task involves the restocking of the necessary food and supplies for
the aircraft. Figure A.14 provides an illustration of the RESTOCK task, including its resource
plan and associated constraints. This task is only performed by a CATERING TRUCK.

198

;;; ---
;;; Clean Resource Task Definitions:

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION
 (:RESOURCE (turnaround-activity arrival-activity) gate))

(define-resource-task CLEAN-AIRCRAFT (service-product))

;;; ---
;;; Clean Product Task Definition:

(define-product-task CLEAN
 :SHIFT-PREFERENCE :EARLY
 :RESOURCE-REQUIREMENTS
 ((cleaning-truck :RESOURCE-PLAN (goto-gate clean-aircraft)
 :MAIN-ACTIVITY clean-aircraft)))

;;; ---

Figure A.11. Task Specifications for the CLEAN Operation.

gate
ENDING LOCATION CONSTRAINT

gate

TURNAROUND
ACTIVITY

SERVICE
AIRCRAFT

SERVICE
PRODUCT
SERVICE

GOTO
GATE

GOTO SERVICE
LOCATION
EN ROUTE

SERVICE

service truck

gate
BEGINNING LOCATION CONSTRAINT

from previous location to gate

INITIAL TRAVEL
DISTANCE CONSTRAINT

Figure A.12. Resource Plan for the SERVICE Product Task.

199

;;; ---
;;; Service Resource Task Definitions:

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION (:RESOURCE turnaround-activity gate))

(define-resource-task SERVICE-AIRCRAFT (service-product))

;;; ---
;;; Service Product Task Definition:

(define-product-task SERVICE
 :SHIFT-PREFERENCE :EARLY
 :RESOURCE-REQUIREMENTS
 ((service-truck :RESOURCE-PLAN (goto-gate service-aircraft)
 :MAIN-ACTIVITY service-aircraft)))

;;; ---

Figure A.13. Task Specifications for the SERVICE Operation.

kitchen

ANCHORED
DISTANCE CONSTRAINT

DEPARTURE
ACTIVITY

gate

TURNAROUND
ACTIVITY

RESTOCK
AIRCRAFT

SERVICE
PRODUCT
SERVICE

GOTO
GATE

GOTO SERVICE
LOCATION
EN ROUTE

FILL
CATERING

TRUCK
SETUP

RESOURCE
SETUP

GOTO
KITCHEN

GOTO SETUP
LOCATION
EN ROUTE

RESTOCK

catering truck

gate
ENDING LOCATION CONSTRAINT

kitchen
BEGINNING LOCATION CONSTRAINT

Figure A.14. Resource Plan for the RESTOCK Product Task.

200

The RESTOCK product task is performed by means of a four-step resource plan. The
GOTO-KITCHEN resource task moves the catering truck to the kitchen shop location, as
specified by the BLC. If the truck is already at the kitchen, this resource task is not performed.
At this point, all necessary catering supplies are loaded onto the truck. The duration of
the FILL-CATERING-TRUCK resource task ranges from 6 to 14 minutes when full meal
service is provided with the departing flight, from 5 to 14 minutes when only snack service
is provided, and from 4 to 10 minutes when no food service is provided. These times are
all dependent on the capacity of the aircraft. The GOTO-GATE resource task moves the
catering truck to the assigned gate, at which point the supplies are loaded onto the aircraft.
The durations for the RESTOCK-AIRCRAFT resource task are identical to the times for the
FILL-CATERING-TRUCK resource task. The ELC indicates that the catering truck remains
at the gate upon completion of the RESTOCK task. The ADC constrains the choice of a gate to
service the flight, by limiting the set of usable gates to those within the allocated travel distance
from the kitchen shop location.

Figure A.15 shows the task specifications that define the RESTOCK operation.

;;; ---
;;; Restock Resource Task Definitions:

(define-resource-task GOTO-KITCHEN (goto-setup-location)
 :NEXT-LOCATION kitchen)

(define-resource-task FILL-CATERING-TRUCK (setup-resource))

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION
 (:RESOURCE (turnaround-activity departure-activity) gate))

(define-resource-task RESTOCK-AIRCRAFT (service-product))

;;; ---
;;; Restock Product Task Definition:

(define-product-task RESTOCK
 :SHIFT-PREFERENCE :EARLY
 :RESOURCE-REQUIREMENTS
 ((catering-truck
 :RESOURCE-PLAN (goto-kitchen fill-catering-truck
 goto-gate restock-aircraft)
 :MAIN-ACTIVITY restock-aircraft)))

;;; ---

Figure A.15. Task Specifications for the RESTOCK Operation.

A.1.5.8 REFUEL

The REFUEL product task involves the refueling of the aircraft. Figure A.16 provides an
illustration of the REFUEL task, including its two possible resource plans and their associated
constraints. This task is performed by either a FUEL TRUCK or a PUMP TRUCK.

While many real-world aircraft actually do allow for servicing by multiple refueling trucks
due to their being equipped with multiple fuel connection points (one under each wing, for

201

PU
M

P
TR

UC
K

FU
EL

 T
RU

CK

fuel tank

ANCHORED
DISTANCE CONSTRAINT

REFUEL

pump or fuel truck

DEPARTURE
ACTIVITY

gate

TURNAROUND
ACTIVITY

REFUEL
AIRCRAFT

SERVICE
PRODUCT
SERVICE

GOTO
GATE

GOTO SERVICE
LOCATION
EN ROUTE

FILL
FUEL

TRUCK
SETUP

RESOURCE
SETUP

GOTO
FUEL
TANK

GOTO SETUP
LOCATION
EN ROUTE

REFUEL
AIRCRAFT

SERVICE
PRODUCT
SERVICE

GOTO
GATE

GOTO SERVICE
LOCATION
EN ROUTE

gate
ENDING LOCATION CONSTRAINT

fuel tank
BEGINNING LOCATION CONSTRAINT

gate
BEGINNING LOCATION CONSTRAINT

gate
ENDING LOCATION CONSTRAINT

from previous location to gate

INITIAL TRAVEL
DISTANCE CONSTRAINT

use of pump truck requires
underground fuel storage

system at gate

EQUIPMENT COMPATIBILITY
CONSTRAINT

Figure A.16. Both Resource Plans for the REFUEL Product Task.

202

example), our implementation of the AGSS domain requires the refueling task to be performed
by a single truck only, be it a fuel truck or a pump truck.

When the gate being used for staging the overall flight servicing activity is equipped with
a hydrant system for dispensing fuel from an underground storage facility, a pump truck may
be used to perform the refueling task. In this case, the REFUEL task is performed by means
of a two-step resource plan. The GOTO-GATE resource task moves the pump truck to the
assigned gate, as specified by the BLC. If the truck is already at the gate, this resource task
is not performed. Once the truck is at the gate, it hooks up to both the hydrant system and
the aircraft, and the refueling process may begin. The duration of the REFUEL-AIRCRAFT
resource task is dependent on the distance from the local airport to the immediate destination
city of the departing leg of the flight. The ELC indicates that the pump truck remains at
the gate upon completion of the REFUEL task. The ITDC constrains the choice of a gate to
service the flight, by limiting the set of usable gates to those within the allocated travel distance
from the pump truck’s previous location. The ECC indicates that the use of a pump truck for
performing the REFUEL task constrains the choice of a gate by forcing it to be equipped with
an underground fuel storage system.

When a hydrant system is not available at a gate, a fuel truck must be used. In this case,
the REFUEL task is performed by means of a four-step resource plan. The GOTO-FUEL-TANK
resource task moves the fuel truck to the fuel tank shop location, as specified by the BLC. If the
truck is already at the fuel tank, this resource task is not performed. At this point, the required
amount of fuel is loaded onto the truck. The duration of the FILL-FUEL-TRUCK depends
on the distance from the local airport to the immediate destination city of the departing leg
of the flight. The GOTO-GATE resource task moves the fuel truck to the assigned gate, at
which point the fuel is loaded onto the aircraft. The durations for the REFUEL-AIRCRAFT
resource task are identical to the times for the FILL-FUEL-TRUCK resource task. The ELC
indicates that the fuel truck remains at the gate upon completion of the REFUEL task. The
ADC constrains the choice of a gate to service the flight, by limiting the set of usable gates to
those within the allocated travel distance from the fuel tank.

Figure A.17 shows the task specifications that define the REFUEL operation.

A.1.5.9 PASSENGER TRANSFER

The PASSENGER TRANSFER product task is an inter-order task that involves the transfer
of passengers between the aircraft for two connected flights. No resource is required for
this operation. Figure A.18 illustrates the constraints that are imposed by the PASSENGER
TRANSFER task.

The DISTANCE-CONSTRAINTs imposed on each of the gates constrain the choice of gates
to service the flights to those within the allocated travel distance of each other, as indicated by
the duration of the PASSENGER TRANSFER task.

Figure A.19 shows the task specification that defines the PASSENGER TRANSFER op-
eration. The DISTANCE-CONSTRAINTSs imposed on each of the gates are produced
by the arm::passenger-transfer-constraints function, which is linked to the
PASSENGER TRANSFER product task by the CONSTRAINT-FUNCTION argument.

A.1.5.10 POWER IN, SHUTDOWN, DEPLANE, ENPLANE, POWER OUT, and STARTUP

These remaining product tasks do not require any resources.

203

;;; ---
;;; Refuel Resource Task Definitions:

;;; Fuel-Truck:

(define-resource-task GOTO-FUEL-TANK (goto-setup-location)
 :NEXT-LOCATION fuel-tank)

(define-resource-task FILL-FUEL-TRUCK (setup-resource))

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION
 (:RESOURCE (turnaround-activity departure-activity) gate))

(define-resource-task REFUEL-AIRCRAFT (service-product))

;;; -

;;; Pump-Truck:

(define-resource-task GOTO-GATE (goto-service-location)
 :NEXT-LOCATION
 (:RESOURCE (turnaround-activity departure-activity) gate))

(define-resource-task REFUEL-AIRCRAFT (service-product))

;;; ---
;;; Refuel Product Task Definition:

(define-product-task REFUEL
 :SHIFT-PREFERENCE :EARLY
 :RESOURCE-REQUIREMENTS
 ((fuel-truck
 :RESOURCE-PLAN
 (goto-fuel-tank fill-fuel-truck goto-gate refuel-aircraft)
 :MAIN-ACTIVITY refuel-aircraft)
 (pump-truck
 :RESOURCE-PLAN (goto-gate refuel-aircraft)
 :MAIN-ACTIVITY refuel-aircraft)))

;;; ---

Figure A.17. Task Specifications for the REFUEL Operation.

from gate of succeeding
order to gate of
preceding order

DISTANCE CONSTRAINT
from gate of preceding

order to gate of
succeeding order

DISTANCE CONSTRAINT

ARRIVAL
ACTIVITY

gate

TURNAROUND
ACTIVITY

Preceding Order

DEPARTURE
ACTIVITY

gate

TURNAROUND
ACTIVITY

Succeeding Order

PASSENGER
TRANSFER

Figure A.18. Constraints Imposed by the PASSENGER TRANSFER Product Task.

204

;;; ---
;;; Passenger-Transfer Product Task Definition:

(define-product-task PASSENGER-TRANSFER
 :SPECIAL-REFINEMENT-CASE? t
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-transfer-passengers
 :MINIMUM-EXPECTED-DURATION-FUNCTION
 arm::minimum-time-required-to-transfer-passengers
 :MAXIMUM-EXPECTED-DURATION-FUNCTION
 arm::maximum-time-required-to-transfer-passengers
 :CONSTRAINT-FUNCTION arm::passenger-transfer-constraints)

;;; ---

Figure A.19. Task Specification for the PASSENGER TRANSFER Operation.

POWER IN

The POWER IN product task involves the process of maneuvering the aircraft into the
proper docking location at a gate and connecting it to the jetway. The amount of
processing time required for this operation ranges from 1 to 2 minutes, depending on
the size of the aircraft. The POWER IN task has an early shift preference. No resource is
required for this operation.5

SHUTDOWN

The SHUTDOWN product task involves the process of mechanically shutting down the
aircraft and connecting it to the jetway upon its arrival at a gate. For Arrival and
Turnaround flights, this activity encompasses the POWER IN operation. The amount of
processing time required for this operation ranges from 3 to 4 minutes, depending on the
size of the aircraft. The SHUTDOWN task has an early shift preference. No resource is
required for this operation.

DEPLANE

The DEPLANE product task involves the process of passenger disembarkation. The amount
of processing time required for this operation ranges from 4 to 7 minutes, depending on
the seating capacity of the aircraft. The DEPLANE task has an early shift preference. No
resource is required for this operation.

ENPLANE

The ENPLANE product task involves the process of passenger embarkation (boarding).
The amount of processing time required for this operation ranges from 6 to 9 minutes,
depending on the seating capacity of the aircraft. The ENPLANE task has a late shift
preference. No resource is required for this operation. The EST constraint indicates that
the ENPLANE task may not begin any earlier than a time 15 minutes prior to the due date
of the order (the expected departure time for the flight).

5Note that an appropriate (and realistic) extension to both the POWER IN and POWER OUT task definitions
would be to add the requirement of a mobile TUG resource to help with the maneuvering of certain larger types
of aircraft.

205

POWER OUT

The POWER OUT product task involves the process of disconnecting the aircraft from
the jetway and maneuvering it out from its docking location at a gate. The amount of
processing time required for this operation ranges from 1 to 2 minutes, depending on
the size of the aircraft. The POWER OUT task has a late shift preference. No resource is
required for this operation.

STARTUP

The STARTUP product task involves the process of disconnecting the aircraft from the
jetway and mechanically starting it up prior to its departure from a gate. For Turnaround
and Departure flights, this activity encompasses the POWER OUT operation. The amount
of processing time required for this operation ranges from 3 to 4 minutes, depending
on the size of the aircraft. The STARTUP task has a late shift preference. No resource is
required for this operation.

Figure A.20 shows the task specifications that define the POWER IN, SHUTDOWN, DEPLANE,
ENPLANE, POWER OUT, and STARTUP operations.

;;; ---
;;; Non Resource-Requiring (Intra-Order) Product Task Definitions:

(define-product-task POWER-IN
 :SHIFT-PREFERENCE :EARLY
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-power-in)

(define-product-task SHUTDOWN
 :SHIFT-PREFERENCE :EARLY
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-shutdown)

(define-product-task DEPLANE
 :SHIFT-PREFERENCE :EARLY
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-deplane)

(define-product-task ENPLANE
 :SHIFT-PREFERENCE :LATE
 :EARLIEST-START-TIME (:FROM-DUE-DATE 15)
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-enplane)

(define-product-task STARTUP
 :SHIFT-PREFERENCE :LATE
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-startup)

(define-product-task POWER-OUT
 :SHIFT-PREFERENCE :LATE
 :EXPECTED-DURATION-FUNCTION arm::time-required-to-power-out)

;;; ---

Figure A.20. Task Specifications for the POWER IN, SHUTDOWN, DEPLANE, ENPLANE, POWER
OUT, and STARTUP Operations.

206

A.1.6 Orders and Process Plans

In this section, we describe the different types of orders described in ARM, and present
their corresponding process plans. The orders in our implementation of the AGSS domain
represent regularly scheduled passenger flights. There are no cargo, charter or private flights.
ARM understands three types of flights, referred to as Turnaround, Arrival and Departure flights,
each distinguished by the specific kind of ground service required by the aircraft involved. The
aircraft for a Turnaround flight originates elsewhere, arrives at a gate at the local airport, and
then departs for another destination following a short (roughly one hour) layover period. The
aircraft for an Arrival flight originates elsewhere, arrives at a gate at the local airport, and is then
moved to the local hangar following a short servicing period. The aircraft for a Departure flight
is moved from the local hangar to a gate, and then departs for another destination following a
short preparation period.

Each of these types of flights has a desired ready time and due date respectively correspond-
ing to their expected arrival and departure times. In the AGSS domain, one of the primary
scheduling goals is to produce a schedule that exactly meets the ready times and due dates of all
flights so that each is serviced immediately upon arrival and does not leave any earlier or later
than its expected departure time. This goal as achieved by specifying late shift preferences on
some of the tasks in the process plan template so that the task network may not be collapsed
during the scheduling process.

Each flight that requires scheduling in ARM is instantiated from a particular flight specifier.
The flight specifier provides all of the information that is needed by the domain code that
helps DSS produce a schedule. This code calculates the expected and required durations of the
various ground servicing tasks, and identifies pairs of connecting flights. We provide below a
description of the various kinds of information that help describe each individual flight.

SERVICE TYPE: Indicates the specific kind of ground service required by the flight.

REMOTE DEPARTURE TIME: This time serves as the point when DSS is alerted that a
flight will require scheduling. For Arrival and Turnaround flights, this is the time when
the flight is expected to begin its flight to the local airport.6 For Departure flights, this
time is set according to the default amount of time the user has indicated the associated
ground servicing activities will require, which is subtracted from the expected departure
time, and an additional user-supplied duration indicating how much advance warning is
to be given, which is subtracted from the previous result.

ARRIVAL TIME: Indicates the expected arrival time for a flight at a gate. For Departure
flights, this time is set according to the default amount of time the user has indicated the
associated ground servicing activities will require, which is subtracted from the expected
departure time.

DEPARTURE TIME: Indicates the expected departure time for a flight from a gate. For
Arrival flights, this time is set according to the default amount of time the user has
indicated the associated ground servicing activities will require, which is added to the
expected arrival time.

6Note that this value is subject to override by the user.

207

SERVICE [ORIGIN]: The level of meal service provided on the arriving leg of a flight. This
value is undefined for Departure flights.

SERVICE [DESTINATION]: The level of meal service provided on the departing leg of a
flight. This value is undefined for Arrival flights.

CONNECTING FLIGHTS [DESTINATION]: Indicates any remote flights to which the
departing leg of flight is connected. This value is undefined for Arrival flights.

AIRLINE: The airline responsible for a flight.

PRECEDING FLIGHT SPECIFIERS: A link used to identify all preceding inter-connected
flights.

SUCCEEDING FLIGHT SPECIFIERS: A link used to identify all succeeding inter-connected
flights.

ORIGIN: The origin city of an Arrival or Turnaround flight. This value is undefined for
Departure flights.

DESTINATION: The destination city of a Departure or Turnaround flight. This value is
undefined for Arrival flights.

We now describe the process plans for the three types of flights defined in ARM.

A.1.6.1 Arrival Flights

An Arrival flight aircraft arrives at the airport, reports to its assigned gate for servicing, and
is then moved to the local hangar to await later usage by a Departure flight.7 The duration of
this activity defaults to 40 minutes, and is specified by the user. The required activities involve
emptying and cleaning the aircraft. Baggage is unloaded and transferred to any connecting
flights. Passengers are deplaned and transferred to any connecting flights. The aircraft must
be properly shut down upon arrival and then powered out of the gate prior to its being moved
to the local hangar. The process plan template for this particular service is illustrated in
Figure A.21.

The READY TIME label in the three following process plan figures refers to the flight arrival
time for Arrival and Turnaround flights, or the time at which a departing aircraft arrives at its
gate (from the hangar) prior to Departure flight processing. The DUE DATE label refers to the
flight departure time for Departure and Turnaround flights, or or the time at which an arriving
aircraft leaves its gate (for the hangar) following Arrival flight processing.

Figure A.22 shows the specification of the process plan template and the top-level product
task (ARRIVAL ACTIVITY) that describe the required ground servicing activities comprising the
ARRIVAL FLIGHT PROCESSING service type. The SUCCEEDING-INTER-ORDER-TASK entry
indicates the origin of a particular inter-order task. The second argument in the specification

7Remember, however, that in our implementation of the AGSS domain, an Arrival flight aircraft will report
to the hangar, but will not be reused by any other flight. Instead, a new aircraft is created for each Departure flight
and given the hangar as its initial location.

208

CLEAN

cleaning truck

R
E

A
D

Y
 T

IM
E D

U
E

 D
A

T
E

ARRIVAL
ACTIVITY

gate

baggage truck

BAGGAGE
TRANSFER

UNLOAD X
BAGGAGE

LOAD X
BAGGAGE

TRANSFER X
BAGGAGE

succeeding
order

STARTUP

DEPLANESHUTDOWN

PASSENGER
TRANSFER

succeeding
order

ENPLANE

LFT: 5 minutes from DD EST: 5 minutes after RT(SO)

UNLOAD
BAGGAGE

baggage truck

POWER
OUT

Figure A.21. Process Plan for the ARRIVAL FLIGHT PROCESSING Service Type.

209

;;; ---
;;; Arrival-Activity Product Task Definition:

(define-product-task ARRIVAL-ACTIVITY
 :RESOURCE-REQUIREMENTS
 ((gate :RESOURCE-PLAN (prepare-gate gate-processing)
 :MAIN-ACTIVITY gate-processing))
 :AGGREGATE-SUB-TASKS
 (:SEQUENCE
 shutdown
 (:PARALLEL
 (:SEQUENCE
 deplane
 (:PARALLEL
 (:SUCCEEDING-INTER-ORDER-TASK
 arm::flight-spec$succeeding-flight-specs
 passenger-transfer)
 clean))
 (:SUCCEEDING-INTER-ORDER-TASK
 arm::flight-spec$succeeding-flight-specs
 baggage-transfer)
 unload-baggage)
 power-out))

;;; ---
;;; Arrival Flight Process Plan Definition:

(define-process-plan ARRIVAL-FLIGHT-PROCESSING
 :SERVICES arrival-activity)

;;; ---

Figure A.22. Specifications for the ARRIVAL FLIGHT PROCESSING Service Type.

is the accessor for the SUCCEEDING FLIGHT SPECIFIERS slot of the order’s corresponding
flight specifier. It returns the set of all connected flight specifiers for which an instance of this
inter-order task must be instantiated. The third argument is the name of the inter-order task.

A.1.6.2 Departure Flights

A Departure flight aircraft waits at the local hangar before reporting to its assigned gate for
servicing, after which it departs from the airport. The duration of the service activity defaults
to 40 minutes, and is specified by the user. The required activities involve the loading of the
aircraft. Baggage, including quantities possibly transferred from connecting flights, is loaded.
The aircraft is restocked and refueled. Passengers, possibly including some from connecting
flights, are enplaned. The aircraft is powered into the gate upon arrival from the hangar, and
must be started up prior its departure. The process plan template for this particular service is
illustrated in Figure A.23.

Figure A.24 shows the specification of the process plan template and the top-level product
task (DEPARTURE ACTIVITY) that describe the required ground servicing activities comprising
the DEPARTURE FLIGHT PROCESSING service type. The PRECEDING-INTER-ORDER-TASK
entry indicates the destination of a particular inter-order task. The second argument in
the specification is the accessor for the PRECEDING FLIGHT SPECIFIERS slot of the order’s
corresponding flight specifier. It returns the set of all connected flight specifiers for which an

210

REFUEL

pump or fuel truck

catering truck

RESTOCK

LOAD
BAGGAGE

baggage truck

EST: 15 minutes
from DD

EST: 30 minutes
from DD

R
E

A
D

Y
 T

IM
E D

U
E

 D
A

T
E

POWER
IN ENPLANE

DEPARTURE
ACTIVITY

gate

STARTUP

PASSENGER
TRANSFER

preceding
order

DEPLANE

baggage truck

BAGGAGE
TRANSFER

UNLOAD X
BAGGAGE

LOAD X
BAGGAGE

TRANSFER X
BAGGAGE

preceding
order

SHUTDOWN

LFT: 5 minutes from DD EST: 5 minutes after RT(SO)

Figure A.23. Process Plan for the DEPARTURE FLIGHT PROCESSING Service Type.

211

;;; ---
;;; Departure-Activity Product Task Definition:

(define-product-task DEPARTURE-ACTIVITY
 :RESOURCE-REQUIREMENTS
 ((gate :RESOURCE-PLAN (prepare-gate gate-processing)
 :MAIN-ACTIVITY gate-processing))
 :AGGREGATE-SUB-TASKS
 (:SEQUENCE
 power-in
 (:PARALLEL
 (:SEQUENCE
 (:PRECEDING-INTER-ORDER-TASK
 arm::flight-spec$preceding-flight-specs
 passenger-transfer)
 enplane)
 (:PRECEDING-INTER-ORDER-TASK
 arm::flight-spec$preceding-flight-specs
 baggage-transfer)
 load-baggage
 refuel
 restock)
 startup))

;;; ---
;;; Departure Flight Process Plan Definition:

(define-process-plan DEPARTURE-FLIGHT-PROCESSING
 :SERVICES departure-activity)

;;; ---

Figure A.24. Specifications for the DEPARTURE FLIGHT PROCESSING Service Type.

instance of this inter-order task must be instantiated. The third argument is the name of the
inter-order task.

A.1.6.3 Turnaround Flights

Turnaround flights represent the majority of flights. They are comprised of two separate
segments: an arriving leg and a departing leg. The basic servicing of a Turnaround flight aircraft
generally takes place within a one hour period. Baggage must be unloaded, loaded and possibly
transferred to one or more connecting flights.8 The aircraft must be cleaned, serviced, refueled
and restocked for the departing flight. Passengers must be deplaned, possibly transferred to any
connecting flights, and enplaned. The aircraft itself requires specific periods for shutting down
upon arriving at the gate, and starting up prior to its departure. The process plan template
for this particular service is presented in Figure A.25. The gradient-filled inter-order tasks in
Figure A.25 represent the preceding and succeeding instantiations of the task nodes for the
TURNAROUND FLIGHT PROCESSING order class.

Figure A.26 shows the specification of the process plan template and the top-level product
task (TURNAROUND ACTIVITY) that describe the required ground servicing activities comprising
the TURNAROUND FLIGHT PROCESSING service type.

8The unloading, transfer, and loading of the baggage from a connecting flight is the responsibility of the
originating flight.

212

baggage truck

BAGGAGE
TRANSFER

SHUTDOWN DEPLANE ENPLANE

REFUEL

pump or fuel truck

STARTUP

service truck

SERVICE

catering truck

RESTOCK

CLEAN

cleaning truck

UNLOAD X
BAGGAGE

LOAD X
BAGGAGE

TRANSFER X
BAGGAGE

LOAD
BAGGAGE

baggage truck

UNLOAD
BAGGAGE

baggage truck

PASSENGER
TRANSFER

succeeding
order

ENPLANE

preceding
order

DEPLANE

EST: 15 minutes
from DD

EST: 30 minutes
from DD

R
E

A
D

Y
 T

IM
E D

U
E

 D
A

T
E

succeeding
order

STARTUP

preceding
order

SHUTDOWN

TURNAROUND
ACTIVITY

gate

LFT: 5 minutes from DD EST: 5 minutes after RT(SO)

Figure A.25. Process Plan for the TURNAROUND FLIGHT PROCESSING Service Type.

213

;;; ---
;;; Turnaround-Activity Product Task Definition:

(define-product-task TURNAROUND-ACTIVITY
 :RESOURCE-REQUIREMENTS
 ((gate :RESOURCE-PLAN (prepare-gate gate-processing)
 :MAIN-ACTIVITY gate-processing))
 :AGGREGATE-SUB-TASKS
 (:SEQUENCE
 shutdown
 (:PARALLEL
 (:SEQUENCE
 deplane
 (:PARALLEL
 refuel
 (:SUCCEEDING-INTER-ORDER-TASK
 arm::flight-spec$succeeding-flight-specs
 passenger-transfer)
 (:PRECEDING-INTER-ORDER-TASK
 arm::flight-spec$preceding-flight-specs
 passenger-transfer)
 clean)
 enplane)
 (:SUCCEEDING-INTER-ORDER-TASK
 arm::flight-spec$succeeding-flight-specs
 baggage-transfer)
 (:PRECEDING-INTER-ORDER-TASK
 arm::flight-spec$preceding-flight-specs
 baggage-transfer)
 (:SEQUENCE unload-baggage load-baggage)
 restock
 service)
 startup))

;;; ---
;;; Turnaround Flight Process Plan Definition:

(define-process-plan TURNAROUND-FLIGHT-PROCESSING
 :SERVICES turnaround-activity)

;;; ---

Figure A.26. Specifications for the TURNAROUND FLIGHT PROCESSING Service Type.

214

A.2 TCP: The Turbine Component Plant Job-Shop Scheduling System

The TCP application system implements the job-shop scheduling domain used in the
evaluation of the initial OPIS system [Ow, 1986, Ow and Smith, 1988]. The factory model for
this benchmark system is described in [Chiang et al., 1990]. Compared to the AGSS domain
as implemented in ARM, this domain is quite straightforward.

A.2.1 The Turbine Component Plant Job-Shop Scheduling Domain

TCP implements a standard job-shop for producing turbine blades. Figure A.27 presents
the job-shop model for the domain. Three classes (families) of turbine blades are produced by
the factory, with a different process routing for each family.

A.2.2 Domain Assumptions

The factory controlled by TCP only operates from 8:00am Monday morning until 8:00am
Saturday morning, at which point it is shut down for the weekend (a two-day period). There
is no penalty for suspending the processing of a job over the weekend. Suspended work is
immediately resumed on the following Monday morning.

A.2.3 Resources

The TCP factory layout consists of a set of 33 stationary machine resources assigned to
eleven work areas. Each machine requires a setup operation prior to its main servicing activity,
unless the immediately preceding operation of the resource involved a product of the same
family. The setup operations for each resource class have constant durations.

A.2.4 Products

There are three different turbine blade families, with two products per family. The CSE
blade family includes products PBLADE1 and PBLADE4. The SSE blade family includes
products PBLADE2 and PBLADE5. The T blade family includes products PBLADE3 and
PBLDAE6.

A.2.5 Operations

Figure A.28 provides an illustration of the resource plan for the typical TCP product task.
Each product task has an early shift preference, and consists of a SERVICE-PRODUCT resource
task preceded by an optional SETUP-RESOURCE resource task. The processing durations for
the product tasks are based on the operation being performed, and the lot-size of the order.

Figure A.29 shows the task specifications that define the typical TCP product task. The non-
nil value for the VARIABLE-SETUP-DURATION flag indicates that the SETUP-RESOURCE
resource task is optional. Note that the specification does not include the definition for the
three product tasks that allow for a choice of machine types.

215

WA10:
brazing area

brazer
a

brazer
b

brazer
c

WA11:
final.str str-3a str-3b str-3c str-3d

WA9:
airfoil area p/w

WA8:
2nd/peg.str str-2a str-2b str-2c str-2d str-2e str-2f

WA6:
root.208v r208-9WA5:

root.208h r208c r208hWA4:
root.210 r210a

WA3:
rooting

area
rotary

WA2:
elb.a.
proc

elb.a.
proc

WA1:
1st.str str-1a str-1b str-1c str-1d str-1e str-1f str-1g str-1h str-1i str-1j str-1k str-1l

WA7:
tapered
blade
area

gr.852

This figure is based on Figure 2 (page 3) from CMU-RI-TR-90-05,
Factory Model and Test Data Descriptions: OPIS Experiments,
by Whay-Yu Chiang, Mark S. Fox, and Peng Si Ow.

PRODUCTS:
Pblade3 & Pblade6

T Blade Family
PRODUCTS:

Pblade2 & Pblade5

SSE Blade Family
PRODUCTS:

Pblade1 & Pblade4

CSE Blade Family

Figure A.27. TCP Job-Shop Model

216

TCP BLADE
OPERATION

tcp machine

MAIN
SERVICING

TASK
SERVICE

PRODUCT
SERVICE

SETUP
TASK

SETUP
RESOURCE

SETUP

Figure A.28. Basic Resource Plan for all TCP Product Tasks.

;;; ---
;;; General TCP Operation Resource Task Definitions:

(define-resource-task SETUP-TCP-RESOURCE (setup-resource)
 :VARIABLE-SETUP-DURATION? t)

(define-resource-task MAIN-TCP-OPERATION-ACTIVITY (service-product))

;;; ---
;;; General TCP Operation Product Task Definition:

(define-product-task TCP-OPERATION
 :SHIFT-PREFERENCE :EARLY
 :RESOURCE-REQUIREMENTS*
 ((tcp-resource
 :RESOURCE-PLAN (setup-tcp-resource main-tcp-operation-activity)
 :MAIN-ACTIVITY main-tcp-operation-activity)))

;;; ---

* The second operation in each of the three TCP service types provides a choice between two resource types.

Figure A.29. Basic Task Specifications for all TCP Operations.

217

A.2.6 Orders

Orders in TCP have a lot-size indicating the quantity of a certain (single) type of turbine
blade to produce. In addition, each order is assigned to one of six priority classes, indicating
its relative urgency. The priority class for an order is combined with its scheduled tardiness (in
terms of days tardy) to determine its tardiness cost.

A.2.7 Process Plans

We now describe the process plans used for producing the three families of turbine blades.

A.2.7.1 CSE Blade Family

The process plan templates for the PRODUCE PBLADE1 and PRODUCE PBLADE4 service
types are presented in Figure A.30. Both products (PBLADE1 and PBLADE4) are produced in

OP-1.BLADE1

1st.str

OP-2.BLADE1
elb.a.proc or
rooting area

OP-3.BLADE1

2nd/peg.str

OP-4.BLADE1

airfoil area

OP-5.BLADE1

brazing area

OP-6.BLADE1

final.str

D
U

E
 D

A
T

E

OP-1.BLADE4

1st.str

OP-2.BLADE4
elb.a.proc or
rooting area

OP-3.BLADE4

2nd/peg.str

OP-4.BLADE4

airfoil area

OP-5.BLADE4

brazing area

OP-6.BLADE4

final.str

D
U

E
 D

A
T

E

P R O D U C T : Pblade1

P R O D U C T : Pblade4 FA M I LY : CSE blade

FA M I LY : CSE blade

R
E

A
D

Y
 T

IM
E

R
E

A
D

Y
 T

IM
E

Figure A.30. Process Plans for the PRODUCE PBLADE1 & PRODUCE PBLADE4 Service Types.

a six-step serial process, with a choice of machine types to perform the second operation.
Figure A.31 shows the specification of the process plan template that describes the

PRODUCE PBLADE1 and PRODUCE PBLADE4 service types.

A.2.7.2 SSE Blade Family

The process plan templates for the PRODUCE PBLADE2 and PRODUCE PBLADE5 service
types are presented in Figure A.32. Both products (PBLADE2 and PBLADE5) are produced in
a six-step serial process, with a choice of machine types to perform the second operation.

Figure A.33 shows the specification of the process plan template that describes the
PRODUCE PBLADE2 and PRODUCE PBLADE5 service types.

218

;;; ---
;;; CSE Blade Family Process Plan Definitions:

;;; PBlade1:

(define-process-plan PRODUCE_PBLADE1
 :SERVICES (:SEQUENCE op-1.blade1 op-2.blade1 op-3.blade1
 op-4.blade1 op-5.blade1 op-6.blade1))

;;; PBlade4:

(define-process-plan PRODUCE_PBLADE4
 :SERVICES (:SEQUENCE op-1.blade4 op-2.blade4 op-3.blade4
 op-4.blade4 op-5.blade4 op-6.blade4))

;;; ---

Figure A.31. Specifications for the PRODUCE PBLADE1 & PRODUCE PBLADE4 Service Types.

OP-1.BLADE2

1st.str

OP-2.BLADE2
root.210 or
root.208h

OP-3.BLADE2
tapered

blade area

OP-4.BLADE2

airfoil area

OP-5.BLADE2

brazing area

OP-6.BLADE2

final.str

D
U

E
 D

A
T

E

OP-1.BLADE5

1st.str

OP-2.BLADE5
root.210 or
root.208h

OP-3.BLADE5
tapered

blade area

OP-4.BLADE5

airfoil area

OP-5.BLADE5

brazing area

OP-6.BLADE5

final.str

D
U

E
 D

A
T

E

P R O D U C T : Pblade2

P R O D U C T : Pblade5 FA M I LY : SSE blade

FA M I LY : SSE blade

R
E

A
D

Y
 T

IM
E

R
E

A
D

Y
 T

IM
E

Figure A.32. Process Plans for the PRODUCE PBLADE2 & PRODUCE PBLADE5 Service Types.

219

;;; ---
;;; SSE Blade Family Process Plan Definitions:

;;; PBlade2:

(define-process-plan PRODUCE_PBLADE2
 :SERVICES (:SEQUENCE op-1.blade2 op-2.blade2 op-3.blade2
 op-4.blade2 op-5.blade2 op-6.blade2))

;;; PBlade5:

(define-process-plan PRODUCE_PBLADE5
 :SERVICES (:SEQUENCE op-1.blade5 op-2.blade5 op-3.blade5
 op-4.blade5 op-5.blade5 op-6.blade5))

;;; ---

Figure A.33. Specifications for the PRODUCE PBLADE2 & PRODUCE PBLADE5 Service Types.

A.2.7.3 T Blade Family

The process plan templates for the PRODUCE PBLADE3 and PRODUCE PBLADE6 service
types are presented in Figure A.34. Both products (PBLADE3 and PBLADE6) are produced

OP-3.BLADE6

final.str

OP-2.BLADE6
root.208h or

root.208v

OP-1.BLADE6

1st.str

OP-3.BLADE3

final.str

OP-1.BLADE3

1st.str

OP-2.BLADE3
root.208h or

root.208v

D
U

E
 D

A
T

E
D

U
E

 D
A

T
E

P R O D U C T : Pblade3

P R O D U C T : Pblade6 FA M I LY : T blade

FA M I LY : T blade

R
E

A
D

Y
 T

IM
E

R
E

A
D

Y
 T

IM
E

Figure A.34. Process Plans for the PRODUCE PBLADE3 & PRODUCE PBLADE6 Service Types.

in a three-step serial process, with a choice of machine types to perform the second operation.
Figure A.35 shows the specification of the process plan template that describes the

PRODUCE PBLADE3 and PRODUCE PBLADE6 service types.

220

;;; ---
;;; T Blade Family Process Plan Definitions:

;;; PBlade3:

(define-process-plan PRODUCE_PBLADE3
 :SERVICES (:SEQUENCE op-1.blade3 op-2.blade3 op-3.blade3))

;;; PBlade6:

(define-process-plan PRODUCE_PBLADE6
 :SERVICES (:SEQUENCE op-1.blade6 op-2.blade6 op-3.blade6))

;;; ---

Figure A.35. Specifications for the PRODUCE PBLADE3 & PRODUCE PBLADE6 Service Types.

A P P E N D I X B

ANNOTATED DSS EXECUTION TRACE

This appendix presents a sequence of annotated execution trace segments from the output
of DSS (via the ARM application system). In the trace segments, we have chosen to focus on
one particular flight, and the satisfaction of some of its service goals. The system is run in
dispatch mode, for a simulated time period of roughly 4 hours. One resource failure occurs,
approximately 3 hours into the scheduling process. A timetable consisting of ten flights (with
four inter-order connections), is used in conjunction with a sufficiently-stocked airport layout.

Each line in the trace corresponds to a particular problem-solving event. DSS starts by
executing the ARM frontend function to initialize the APPLICATION DATA blackboard by loading
the airport layout and the timetable. The Queuing Flight Activity event signals the
insertion of the ten order notification events, one for each flight, onto the pending world
event queue. The scheduling process now commences with the processing of the earliest
order notification event, which corresponds to <[Flight #235/235(Mon)D]-#0> . The
Instantiate Task Network knowledge source is immediately triggered, and then activated for
execution.

===
Initialization --------> GBB
KS Activation ---------> FRONTEND NIL
--------------------------------- KSA 1 ---------------------------------
KS Invocation ---------> FRONTEND (SYSTEM-INITIALIZATION-EVENT)
Calling Application Frontend Function --> FRONTEND-KS-FUNCTION.
DSS Application Message --> Using AIRPORT: ‘(DTW) Standard Allocation’.
DSS Application Message --> Using TIMETABLE: ‘10 flights (4 connections)’.
Queuing Flight Activity --> 10 flights (interval: [Mon 12:00am] to [Sun 11:59pm]).
Order Received --------> [Mon 1:36pm] <[Flight #235/235(Mon)D]-#0>

(Release Time: [Mon 3:36pm] - Due Date: [Mon 4:20pm])
TURNAROUND <Application priority: 1>.

Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #235/235(Mon)D]-#0>)
KS Activation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #235/235(Mon)D]-#0>)
--------------------------------- KSA 2 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #235/235(Mon)D]-#0>)

...

222

The actions of the Instantiate Task Network knowledge source trigger the creation and
activation of all required service goals for an order. Since no other orders have been received at
this time, DSS proceeds immediately with the process of satisfying all existing service goals to
produce a schedule for <[Flight #235/235(Mon)D]-#0> .

After a schedule has been completed for <[Flight #235/235(Mon)D]-#0> , the
pending world event queue is processed, and the order notification event corresponding to
<[Flight #516/516(Mon)D]-#0> is received. The Instantiate Task Network knowledge
source is immediately triggered, and then activated for execution.

...

Order Received --------> [Mon 1:39pm] <[Flight #516/516(Mon)D]-#0>
(Release Time: [Mon 3:39pm] - Due Date: [Mon 4:25pm])
TURNAROUND <Application priority: 1>.

Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #516/516(Mon)D]-#0>)
KS Activation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #516/516(Mon)D]-#0>)
--------------------------------- KSA 37 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #516/516(Mon)D]-#0>)

...

Again, since no other orders have been received at this time, DSS proceeds imme-
diately with the process of satisfying all existing service goals to produce a schedule for
<[Flight #516/516(Mon)D]-#0> . After a schedule has been completed for <[Flight
#516/516(Mon)D]-#0> , the pending world event queue is processed, and the order no-
tification events corresponding to <[Flight #1412/1412(Mon)D]-#0> , <[Flight
#416/416(Mon)I]-#0> , and <[Flight #3039/3052(Mon)D]-#0> are received. The
Instantiate Task Network knowledge source is immediately triggered (once for each order), and
three activations are then instantiated for execution.

223

...

Order Received --------> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
(Release Time: [Mon 3:40pm] - Due Date: [Mon 4:25pm])
TURNAROUND <Application priority: 1>.

Order Received --------> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
(Release Time: [Mon 3:40pm] - Due Date: [Mon 4:25pm])
TURNAROUND <Application priority: 1>.

Order Received --------> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
(Release Time: [Mon 3:40pm] - Due Date: [Mon 4:30pm])
TURNAROUND <Application priority: 1>.

Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #1412/1412(Mon)D]-#0>)
KS Activation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #1412/1412(Mon)D]-#0>)
Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #416/416(Mon)I]-#0>)
KS Activation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #416/416(Mon)I]-#0>)
Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #3039/3052(Mon)D]-#0>)
KS Activation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #3039/3052(Mon)D]-#0>)
--------------------------------- KSA 53 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #1412/1412(Mon)D]-#0>)

...

--------------------------------- KSA 54 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #416/416(Mon)I]-#0>)

...

After task networks have been instantiated for <[Flight #1412/1412(Mon)D]-#0>
and <[Flight #416/416(Mon)D]-#0> , DSS begins performing the same activities for
<[Flight #3039/3052(Mon)D]-#0> . Since <[Flight #3039/3052(Mon)D]-#0>
is connected to <[Flight #370/370(Mon)D]-#0> , the Instantiate Task Network knowl-
edge source automatically arranges for the scheduling of both orders.

--------------------------------- KSA 55 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #3039/3052(Mon)D]-#0>)
Created Service Goal --> [Mon 1:40pm] [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#53 (GATE)

([Mon 3:40pm] to [Mon 4:29pm]) <[Flight #3039/3052(Mon)D]-#0>.
Created Service Goal --> [Mon 1:40pm] [SERVICE]-SERVICE-GOAL-#54 (SERVICE-TRUCK)

([Mon 3:43pm] to [Mon 4:26pm]) <[Flight #3039/3052(Mon)D]-#0>.
Created Service Goal --> [Mon 1:40pm] [RESTOCK]-SERVICE-GOAL-#55 (CATERING-TRUCK)

([Mon 3:43pm] to [Mon 4:26pm]) <[Flight #3039/3052(Mon)D]-#0>.
Created Service Goal --> [Mon 1:40pm] [LOAD-BAGGAGE]-SERVICE-GOAL-#56 (BAGGAGE-TRUCK)

([Mon 3:59pm] to [Mon 4:26pm]) <[Flight #3039/3052(Mon)D]-#0>.
Created Service Goal --> [Mon 1:40pm] [UNLOAD-BAGGAGE]-SERVICE-GOAL-#57 (BAGGAGE-TRUCK)

([Mon 3:43pm] to [Mon 4:20pm]) <[Flight #3039/3052(Mon)D]-#0>.
Created Service Goal --> [Mon 1:40pm] [CLEAN]-SERVICE-GOAL-#58 (CLEANING-TRUCK)

([Mon 3:47pm] to [Mon 4:20pm]) <[Flight #3039/3052(Mon)D]-#0>.
Created Service Goal --> [Mon 1:40pm] [REFUEL]-SERVICE-GOAL-#59 (FUEL-TRUCK PUMP-TRUCK)

([Mon 3:47pm] to [Mon 4:20pm]) <[Flight #3039/3052(Mon)D]-#0>.

224

Connected Order -------> [Mon 1:40pm] Scheduling for <[Flight #370/370(Mon)D]-#0>
(owing to its connection with <[Flight #3039/3052(Mon)D]-#0>).

Created Service Goal --> [Mon 1:40pm] [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#60 (GATE)
([Mon 4:40pm] to [Mon 5:24pm]) <[Flight #370/370(Mon)D]-#0>.

Created Service Goal --> [Mon 1:40pm] [SERVICE]-SERVICE-GOAL-#61 (SERVICE-TRUCK)
([Mon 4:44pm] to [Mon 5:20pm]) <[Flight #370/370(Mon)D]-#0>.

Created Service Goal --> [Mon 1:40pm] [RESTOCK]-SERVICE-GOAL-#62 (CATERING-TRUCK)
([Mon 4:44pm] to [Mon 5:20pm]) <[Flight #370/370(Mon)D]-#0>.

Created Service Goal --> [Mon 1:40pm] [LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
([Mon 4:54pm] to [Mon 5:20pm]) <[Flight #370/370(Mon)D]-#0>.

Created Service Goal --> [Mon 1:40pm] [UNLOAD-BAGGAGE]-SERVICE-GOAL-#64 (BAGGAGE-TRUCK)
([Mon 4:44pm] to [Mon 5:10pm]) <[Flight #370/370(Mon)D]-#0>.

Created Service Goal --> [Mon 1:40pm] [BAGGAGE-TRANSFER]-SERVICE-GOAL-#65 (BAGGAGE-TRUCK)
([Mon 3:43pm] to [Mon 5:20pm]) <[Flight #3039/3052(Mon)D]-#0>.

Created Service Goal --> [Mon 1:40pm] [CLEAN]-SERVICE-GOAL-#66 (CLEANING-TRUCK)
([Mon 4:50pm] to [Mon 5:12pm]) <[Flight #370/370(Mon)D]-#0>.

Created Service Goal --> [Mon 1:40pm] [REFUEL]-SERVICE-GOAL-#67 (FUEL-TRUCK PUMP-TRUCK)
([Mon 4:50pm] to [Mon 5:12pm]) <[Flight #370/370(Mon)D]-#0>.

The service goal creation process causes the new goals, and any existing service goals whose
urgency is affected by the increased contention resulting from the new goals, to be placed onto
a list of service goals to be rated (and re-rated). The (re-)rating process commences after the
Instantiate Task Network knowledge source has finished executing.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[REFUEL]-SERVICE-GOAL-#67 (FUEL-TRUCK PUMP-TRUCK) {487}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1044/1044(Mon)D]-#0>
[REFUEL]-SERVICE-GOAL-#45 (FUEL-TRUCK PUMP-TRUCK)
from {182} to {186}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #381/381(Mon)D]-#0>
[REFUEL]-SERVICE-GOAL-#37 (FUEL-TRUCK PUMP-TRUCK)
from {1992} to {2728}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[CLEAN]-SERVICE-GOAL-#66 (CLEANING-TRUCK) {172}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #381/381(Mon)D]-#0>
[CLEAN]-SERVICE-GOAL-#36 (CLEANING-TRUCK)
from {1798} to {3401}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65 (BAGGAGE-TRUCK) {9680}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#64 (BAGGAGE-TRUCK) {2880}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK) {1457}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1044/1044(Mon)D]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#42 (BAGGAGE-TRUCK)
from {1396} to {1333}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1044/1044(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#41 (BAGGAGE-TRUCK)
from {604} to {616}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #381/381(Mon)D]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#34 (BAGGAGE-TRUCK)
from {4906} to {4480}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #381/381(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#33 (BAGGAGE-TRUCK)
from {4243} to {4264}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[RESTOCK]-SERVICE-GOAL-#62 (CATERING-TRUCK) {115}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #381/381(Mon)D]-#0>
[RESTOCK]-SERVICE-GOAL-#32 (CATERING-TRUCK)
from {351} to {498}.

225

Rated Service Goal ----> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[SERVICE]-SERVICE-GOAL-#61 (SERVICE-TRUCK) {115}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #381/381(Mon)D]-#0>
[SERVICE]-SERVICE-GOAL-#31 (SERVICE-TRUCK)
from {532} to {755}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[TURNAROUND-ACTIVITY]-SERVICE-GOAL-#60 (GATE) {3772}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #381/381(Mon)D]-#0>
[TURNAROUND-ACTIVITY]-SERVICE-GOAL-#30 (GATE)
from {3539} to {4645}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1044/1044(Mon)D]-#0>
[TURNAROUND-ACTIVITY]-SERVICE-GOAL-#38 (GATE)
from {2635} to {2489}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[REFUEL]-SERVICE-GOAL-#59 (FUEL-TRUCK PUMP-TRUCK) {1907}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[REFUEL]-SERVICE-GOAL-#52 (FUEL-TRUCK PUMP-TRUCK)
from {3424} to {2638}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[REFUEL]-SERVICE-GOAL-#29 (FUEL-TRUCK PUMP-TRUCK)
from {3141} to {2910}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[CLEAN]-SERVICE-GOAL-#58 (CLEANING-TRUCK) {2897}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[CLEAN]-SERVICE-GOAL-#51 (CLEANING-TRUCK)
from {6104} to {4084}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[CLEAN]-SERVICE-GOAL-#28 (CLEANING-TRUCK)
from {4580} to {4244}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#57 (BAGGAGE-TRUCK) {5947}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#56 (BAGGAGE-TRUCK) {5714}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#50 (BAGGAGE-TRUCK)
from {8894} to {7550}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#49 (BAGGAGE-TRUCK)
from {8593} to {7337}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#43 (BAGGAGE-TRUCK)
from {14733} to {14091}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#35 (BAGGAGE-TRUCK)
from {16797} to {15374}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#27 (BAGGAGE-TRUCK)
from {16096} to {14063}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#26 (BAGGAGE-TRUCK)
from {14362} to {12647}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[RESTOCK]-SERVICE-GOAL-#55 (CATERING-TRUCK) {459}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[SERVICE]-SERVICE-GOAL-#54 (SERVICE-TRUCK) {879}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #416/416(Mon)I]-#0>
[SERVICE]-SERVICE-GOAL-#47 (SERVICE-TRUCK)
from {1635} to {1161}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[SERVICE]-SERVICE-GOAL-#24 (SERVICE-TRUCK)
from {1531} to {1444}.

Rated Service Goal ----> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[TURNAROUND-ACTIVITY]-SERVICE-GOAL-#53 (GATE) {9275}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1412/1412(Mon)D]-#0>
[TURNAROUND-ACTIVITY]-SERVICE-GOAL-#23 (GATE)
from {767} to {12595}.

...

226

The SELECT-RESERVATION-SECURING-METHOD knowledge source precondition is
now triggered for each new service goal, resulting in a single activation of the knowledge
source for each. This particular sequence of events for two of the service goals associated with
<[Flight #3039/3052(Mon)D]-#0> and <[Flight #370/370(Mon)D]-#0> is
presented below.

...

Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD
([BAGGAGE-TRANSFER]-SERVICE-GOAL-#65)

KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD
([BAGGAGE-TRANSFER]-SERVICE-GOAL-#65)

...

Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD
([LOAD-BAGGAGE]-SERVICE-GOAL-#63)

KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD
([LOAD-BAGGAGE]-SERVICE-GOAL-#63)

...

Each SELECT-RESERVATION-SECURING-METHOD knowledge source activation is
immediately executed, resulting in the activation of a reservation-securing knowledge source(s)
for each. (Multiple reservation-securing knowledge sources are activated when there is a choice
of resource classes to perform the task involved.) This particular sequence of events for the same
two service goals associated with <[Flight #3039/3052(Mon)D]-#0> and <[Flight
#370/370(Mon)D]-#0> is presented below.

--------------------------------- KSA 90 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([BAGGAGE-TRANSFER]-SERVICE-GOAL-#65)
Invoked Precondition --> KS STANDARD-ASSIGNMENT ([BAGGAGE-TRANSFER]-SERVICE-GOAL-#65)
KS Activation ---------> STANDARD-ASSIGNMENT ([BAGGAGE-TRANSFER]-SERVICE-GOAL-#65)

...

--------------------------------- KSA 96 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Invoked Precondition --> KS STANDARD-ASSIGNMENT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
KS Activation ---------> STANDARD-ASSIGNMENT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)

...

227

By now, the construction of the schedules for <[Flight #3039/3052(Mon)D]-#0>
and <[Flight #370/370(Mon)D]-#0> has begun. We now follow the process in which
the urgencies of [LOAD-BAGGAGE]-SERVICE-GOAL-#63 and [BAGGAGE-TRANSFER]-
SERVICE-GOAL-#65 are re-rated as a result of other related scheduling decisions. Whenever
a service goal is re-rated, all of its triggered knowledge source activations must also be re-rated.

--------------------------------- KSA 101 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([BAGGAGE-TRANSFER]-SERVICE-GOAL-#35)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-D1 assigned to

[Task Node: <Task: BAGGAGE-TRANSFER>
<[Flight #1412/1412(Mon)D]-#0>]

([Mon 3:36pm] - [Mon 5:05pm] ([Mon 3:44pm] - [Mon 5:05pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {1457} to {1864}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {1457} to {1864}.

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-142 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {9680} to {13762}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65 (BAGGAGE-TRUCK)
from {9680} to {13762}.

...
--------------------------------- KSA 102 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([BAGGAGE-TRANSFER]-SERVICE-GOAL-#43)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-C3 assigned to

[Task Node: <Task: BAGGAGE-TRANSFER>
<[Flight #1412/1412(Mon)D]-#0>]

([Mon 3:36pm] - [Mon 5:21pm] ([Mon 3:44pm] - [Mon 5:21pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {1864} to {2856}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {1864} to {2856}.

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-142 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {13762} to {18762}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65 (BAGGAGE-TRUCK)
from {13762} to {18762}.

228

...
--------------------------------- KSA 103 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([UNLOAD-BAGGAGE]-SERVICE-GOAL-#27)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-BO4 assigned to

[Task Node: <Task: UNLOAD-BAGGAGE>
<[Flight #1412/1412(Mon)D]-#0>]

([Mon 3:36pm] - [Mon 4:07pm] ([Mon 3:44pm] - [Mon 3:52pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-142 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {18762} to {19735}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #3039/3052(Mon)D]-#0>
[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65 (BAGGAGE-TRUCK)
from {18762} to {19735}.

...

[BAGGAGE-TRANSFER]-SERVICE-GOAL-#65 is now ready to be satisfied using the
standard Assignment reservation-securing knowledge source. The process of re-rating [LOAD-
BAGGAGE]-SERVICE-GOAL-#63 and its triggered knowledge source activation continues.

--------------------------------- KSA 104 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([BAGGAGE-TRANSFER]-SERVICE-GOAL-#65)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-BO3B assigned to

[Task Node: <Task: BAGGAGE-TRANSFER>
<[Flight #3039/3052(Mon)D]-#0>]

([Mon 3:35pm] - [Mon 5:20pm] ([Mon 3:43pm] - [Mon 5:20pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {2856} to {4104}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {2856} to {4104}.

...
--------------------------------- KSA 109 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([LOAD-BAGGAGE]-SERVICE-GOAL-#33)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-BO4 assigned to

[Task Node: <Task: LOAD-BAGGAGE>
<[Flight #381/381(Mon)D]-#0>]

([Mon 4:36pm] - [Mon 5:05pm] ([Mon 4:56pm] - [Mon 5:05pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {4104} to {3784}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {4104} to {3784}.

229

...
--------------------------------- KSA 115 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([UNLOAD-BAGGAGE]-SERVICE-GOAL-#34)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-E4 assigned to

[Task Node: <Task: UNLOAD-BAGGAGE>
<[Flight #381/381(Mon)D]-#0>]

([Mon 4:26pm] - [Mon 4:57pm] ([Mon 4:34pm] - [Mon 4:42pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {3784} to {4716}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {3784} to {4716}.

...
--------------------------------- KSA 116 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([UNLOAD-BAGGAGE]-SERVICE-GOAL-#64)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-BO2 assigned to

[Task Node: <Task: UNLOAD-BAGGAGE>
<[Flight #370/370(Mon)D]-#0>]

([Mon 4:36pm] - [Mon 5:07pm] ([Mon 4:44pm] - [Mon 4:52pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {4716} to {4451}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {4716} to {4451}.

...

The following re-rating of [LOAD-BAGGAGE]-SERVICE-GOAL-#63 and its triggered
knowledge source activation comes about from the refinement of the reservation for the UNLOAD
BAGGAGE task in <[Flight #381/381(Mon)D]-#0> , which frees up nine minutes of
time in the resource schedule for Baggage-Truck-#BT-E4 .

--------------------------------- KSA 119 ---------------------------------
KS Invocation ---------> RESERVATION-REFINEMENT ([UNLOAD-BAGGAGE]-REFINE-GOAL-#86)
Refined Reservation ---> [Mon 1:40pm] Baggage-Truck-#BT-E4 assigned to

[Task Node: <Task: UNLOAD-BAGGAGE> <[Flight #381/381(Mon)D]-#0>]
([Mon 4:34pm] - [Mon 4:56pm] ([Mon 4:34pm] - [Mon 4:42pm]));
was ([Mon 4:26pm] - [Mon 4:57pm] ([Mon 4:34pm] - [Mon 4:42pm])).

...
Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>

(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {4451} to {4418}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {4451} to {4418}.

230

...

The satisfaction of [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#60 triggers the
refinement process for all of its satisfied subgoals. The refinement of the reservation for
the UNLOAD BAGGAGE task in <[Flight #370/370(Mon)D]-#0> frees up one minute
of time in the resource schedule for Baggage-Truck-#BT-BO2 . The refinement of the
reservation for the BAGGAGE TRANSFER task in <[Flight #3039/3052(Mon)D]-#0>
(connecting with <[Flight #370/370(Mon)D]-#0>) frees up no time, because a gate for
<[Flight #3039/3052(Mon)D]-#0> has not yet been secured. The existing reservation
must therefore be left unrefined, still containing enough time for any gate to be selected.

--------------------------------- KSA 121 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#60)
Resource Assignment ---> [Mon 1:40pm] Gate-#F5 assigned to

[Task Node: <Task: TURNAROUND-ACTIVITY>
<[Flight #370/370(Mon)D]-#0>]

([Mon 4:35pm] - [Mon 5:24pm] ([Mon 4:40pm] - [Mon 5:24pm])).

...

Invoked Precondition --> KS RESERVATION-REFINEMENT ([UNLOAD-BAGGAGE]-REFINE-GOAL-#115)
KS Activation ---------> RESERVATION-REFINEMENT ([UNLOAD-BAGGAGE]-REFINE-GOAL-#115)
Invoked Precondition --> KS RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#107)
KS Activation ---------> RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#107)
--------------------------------- KSA 122 ---------------------------------
KS Invocation ---------> RESERVATION-REFINEMENT ([UNLOAD-BAGGAGE]-REFINE-GOAL-#115)
Refined Reservation ---> [Mon 1:40pm] Baggage-Truck-#BT-BO2 assigned to

[Task Node: <Task: UNLOAD-BAGGAGE> <[Flight #370/370(Mon)D]-#0>]
([Mon 4:36pm] - [Mon 5:06pm] ([Mon 4:44pm] - [Mon 4:52pm]));
was ([Mon 4:36pm] - [Mon 5:07pm] ([Mon 4:44pm] - [Mon 4:52pm])).

Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {4418} to {4384}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {4418} to {4384}.

Rerated KSA -----------> [Mon 1:40pm] <KSA-124 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#41
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {2329} to {2312}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1044/1044(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#41 (BAGGAGE-TRUCK)
from {2329} to {2312}.

Rerated KSA -----------> [Mon 1:40pm] <KSA-125 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#42
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {4527} to {4500}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #1044/1044(Mon)D]-#0>
[UNLOAD-BAGGAGE]-SERVICE-GOAL-#42 (BAGGAGE-TRUCK)
from {4527} to {4500}.

--------------------------------- KSA 123 ---------------------------------
KS Invocation ---------> RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#107)

231

A final re-rating of [LOAD-BAGGAGE]-SERVICE-GOAL-#63 and its triggered knowl-
edge source activation precedes its solution by the standard Assignment knowledge source.

--------------------------------- KSA 124 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([UNLOAD-BAGGAGE]-SERVICE-GOAL-#42)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-E4 assigned to

[Task Node: <Task: UNLOAD-BAGGAGE>
<[Flight #1044/1044(Mon)D]-#0>]

([Mon 4:57pm] - [Mon 5:18pm] ([Mon 5:04pm] - [Mon 5:09pm])).

...

Rerated KSA -----------> [Mon 1:40pm] <KSA-149 STANDARD-ASSIGNMENT>
(TRIGGER-STANDARD-ASSIGNMENT-KS-EVENT
[LOAD-BAGGAGE]-SERVICE-GOAL-#63
BAGGAGE-TRUCK STANDARD-ASSIGNMENT)
from {4384} to {11960}.

Rerated Service Goal --> [Mon 1:40pm] <[Flight #370/370(Mon)D]-#0>
[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {4384} to {11960}.

...

--------------------------------- KSA 125 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-BO1 assigned to

[Task Node: <Task: LOAD-BAGGAGE>
<[Flight #370/370(Mon)D]-#0>]

([Mon 4:56pm] - [Mon 5:20pm] ([Mon 5:11pm] - [Mon 5:20pm])).

...

When [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#53 is finally satisfied, thereby
producing a gate assignment for <[Flight #3039/3052(Mon)D]-#0> , the refinement of
the reservation for the UNLOAD BAGGAGE task in <[Flight #3039/3052(Mon)D]-#0>
(connecting with <[Flight #370/370(Mon)D]-#0>) can finally occur. Six minutes of
time are freed up in the resource schedule for Baggage-Truck-#BT-BO1 .

The satisfaction of [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#53 also removes
the need for the GOTO-BAGGAGE-OUTLET-TO-LOAD segment of the LOAD BAGGAGE task
in <[Flight #381/381(Mon)D]-#0> , because Baggage-Truck-#BT-BO4 , which
performs the UNLOAD BAGGAGE operation for <[Flight #3039/3052(Mon)D]-#0> ,
will now be left at the exact BAGGAGE OUTLET location where it can begin performing its
previously-assigned, LOAD BAGGAGE task for <[Flight #381/381(Mon)D]-#0> .

--------------------------------- KSA 141 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([TURNAROUND-ACTIVITY]-SERVICE-GOAL-#53)
Succeeding Reservation Refined --> [Mon 1:40pm] Resized GOTO-BAGGAGE-OUTLET-TO-LOAD in

[Task Node: <Task: LOAD-BAGGAGE> <[Flight #381/381(Mon)D]-#0>]
on Baggage-Truck-#BT-BO4 (CLEARED).

Resource Assignment ---> [Mon 1:40pm] Gate-#F3 assigned to
[Task Node: <Task: TURNAROUND-ACTIVITY>

<[Flight #3039/3052(Mon)D]-#0>]
([Mon 3:35pm] - [Mon 4:29pm] ([Mon 3:40pm] - [Mon 4:29pm])).

...

232

Invoked Precondition --> KS RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#107)
KS Activation ---------> RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#107)

...

--------------------------------- KSA 143 ---------------------------------
KS Invocation ---------> RESERVATION-REFINEMENT ([BAGGAGE-TRANSFER]-REFINE-GOAL-#107)
Refined Reservation ---> [Mon 1:40pm] Baggage-Truck-#BT-BO3B assigned to

[Task Node: <Task: BAGGAGE-TRANSFER>
<[Flight #3039/3052(Mon)D]-#0>]

([Mon 3:41pm] - [Mon 5:20pm] ([Mon 3:43pm] - [Mon 5:20pm]));
was ([Mon 3:35pm] - [Mon 5:20pm] ([Mon 3:43pm] - [Mon 5:20pm])).

...

As a result of the following assignment, the GOTO-BAGGAGE-OUTLET-TO-LOAD segment
of the recently-solved LOAD BAGGAGE task in <[Flight #370/370(Mon)D]-#0> must
be increased in size by one minute, to account for a change in the expected positioning of
Baggage-Truck-#BT-BO1 .

--------------------------------- KSA 155 ---------------------------------
KS Invocation ---------> STANDARD-RIGHT-SHIFT ([LOAD-BAGGAGE]-SERVICE-GOAL-#56)
Succeeding Reservation Refined --> [Mon 1:40pm] Resized GOTO-BAGGAGE-OUTLET-TO-LOAD in

[Task Node: <Task: LOAD-BAGGAGE> <[Flight #370/370(Mon)D]-#0>]
on Baggage-Truck-#BT-BO1 changed to
([Mon 4:55pm] [Mon 4:56pm]) from ([Mon 4:56pm] [Mon 4:56pm]).

Resource Assignment ---> [Mon 1:40pm] Baggage-Truck-#BT-BO1 assigned to
[Task Node: <Task: LOAD-BAGGAGE> <[Flight #3039/3052(Mon)D]-#0>]
([Mon 4:16pm] - [Mon 4:30pm] ([Mon 4:25pm] - [Mon 4:30pm])).

...

After the schedules for the first nine flights have been completed, the pending world
event queue is processed, and the order notification event corresponding to <[Flight
#243/243(Mon)D]-#0> is received. The Instantiate Task Network knowledge source is
immediately triggered, and then activated for execution. Notice also that immediately following
the notification of DSS, <[Flight #243/243(Mon)D]-#0> departs from Fort Lauderdale
(on time).

...

Order Received --------> [Mon 1:45pm] <[Flight #243/243(Mon)D]-#0>
(Release Time: [Mon 4:47pm] - Due Date: [Mon 5:30pm])
TURNAROUND <Application priority: 1>.

Approaching Takeoff ---> [Mon 1:45pm] [Flight #243/243(Mon)D]
<[FLL] Fort Lauderdale, FL> DC-10-#10 <ON TIME>.

Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #243/243(Mon)D]-#0>)
KS Activation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #243/243(Mon)D]-#0>)
--------------------------------- KSA 168 ---------------------------------
KS Invocation ---------> INSTANTIATE-TASK-NETWORK (<[Flight #243/243(Mon)D]-#0>)

233

...

After a schedule has been completed for <[Flight #243/243(Mon)D]-#0> , the
schedule for all ten flights is finished. The remaining orders received by DSS have already
been processed, owing to their previously-encountered connections to other orders. The
precondition for the Instantiate Task Network knowledge source is immediately executed for
each order, but the knowledge source is not activated.

...

Approaching Takeoff ---> [Mon 1:59pm] [Flight #235/235(Mon)D]
<[DCA] Washington, DC/Baltimore, MD [National]> A300-#1
<ON TIME>.

Approaching Takeoff ---> [Mon 2:00pm] [Flight #416/416(Mon)I]
<[MSP] Minneapolis/St. Paul, MN> DC-9-Series-20-#6 <ON TIME>.

Order Received --------> [Mon 2:30pm] <[Flight #381/381(Mon)D]-#0>
(Release Time: [Mon 4:30pm] - Due Date: [Mon 5:10pm])
TURNAROUND <Application priority: 1>.

Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #381/381(Mon)D]-#0>)
Quiescence ------------> Pending KSA Queue
Order Received --------> [Mon 2:35pm] <[Flight #1447/1447(Mon)D]-#0>

(Release Time: [Mon 4:37pm] - Due Date: [Mon 5:20pm])
TURNAROUND <Application priority: 1>.

Approaching Takeoff ---> [Mon 2:35pm] [Flight #516/516(Mon)D]
<[CVG] Cincinnati, OH> F-28-Friendship-#7 <ON TIME>.

Approaching Takeoff ---> [Mon 2:35pm] [Flight #1447/1447(Mon)D]
<[PVD] Providence, RI> DC-9-Series-20-#2 <ON TIME>.

Quiescence ------------> Pending KSA Queue
Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #1447/1447(Mon)D]-#0>)
Order Received --------> [Mon 2:40pm] <[Flight #370/370(Mon)D]-#0>

(Release Time: [Mon 4:40pm] - Due Date: [Mon 5:25pm])
TURNAROUND <Application priority: 1>.

Approaching Takeoff ---> [Mon 2:40pm] [Flight #1412/1412(Mon)D]
<[MDW] Chicago, IL [Midway]> A300-#3 <ON TIME>.

Approaching Takeoff ---> [Mon 2:40pm] [Flight #3039/3052(Mon)D]
<[CAK] Akron/Canton, OH> SA-226TC-Metro-#8 <ON TIME>.

Quiescence ------------> Pending KSA Queue
Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #370/370(Mon)D]-#0>)
Order Received --------> [Mon 2:45pm] <[Flight #1044/1044(Mon)D]-#0>

(Release Time: [Mon 4:45pm] - Due Date: [Mon 5:25pm])
TURNAROUND <Application priority: 1>.

Quiescence ------------> Pending KSA Queue
Invoked Precondition --> KS INSTANTIATE-TASK-NETWORK (<[Flight #1044/1044(Mon)D]-#0>)

...

234

The schedule now begins executing. The following trace segment includes the remaining
Approaching Takeoff events, and the execution of the scheduled ground servicing
activities for <[Flight #370/370(Mon)D]-#0> .

...

Approaching Takeoff ---> [Mon 3:25pm] [Flight #381/381(Mon)D]
<[GRB] Green Bay, WI> A300-#4 <ON TIME>.

Approaching Takeoff ---> [Mon 3:25pm] [Flight #370/370(Mon)D]
<[ORD] Chicago, IL [O’Hare]> A300-#9 <ON TIME>.

Started Unloading Transfer Baggage --> [Mon 3:43pm] Baggage-Truck-#BT-BO3B
[Flight #3039/3052(Mon)D] (SA-226TC-Metro-#8)
to [Flight #370/370(Mon)D] (A300-#9).

Finished Unloading Transfer Baggage --> [Mon 3:46pm] Baggage-Truck-#BT-BO3B
[Flight #3039/3052(Mon)D] (SA-226TC-Metro-#8)
to [Flight #370/370(Mon)D] (A300-#9).

Started Passenger Transfer --> [Mon 3:47pm] [Flight #3039/3052(Mon)D] (SA-226TC-Metro-#8)
to [Flight #370/370(Mon)D] (A300-#9).

Finished Transferring Baggage --> [Mon 3:47pm] Baggage-Truck-#BT-BO3B
[Flight #3039/3052(Mon)D] (SA-226TC-Metro-#8)
to [Flight #370/370(Mon)D] (A300-#9).

Finished Passenger Transfer --> [Mon 3:48pm] [Flight #3039/3052(Mon)D] (SA-226TC-Metro-#8)
to [Flight #370/370(Mon)D] (A300-#9).

Approaching Takeoff ---> [Mon 3:55pm] [Flight #1044/1044(Mon)D]
<[GRR] Grand Rapids, MI> F-28-Friendship-#5 <ON TIME>.

Flight Takeoff --------> [Mon 4:25pm] A300-#1 [Flight #235/235(Mon)D].

Flight Takeoff --------> [Mon 4:30pm] A300-#3 [Flight #1412/1412(Mon)D].
Flight Takeoff --------> [Mon 4:30pm] DC-9-Series-20-#6 [Flight #416/416(Mon)I].
Flight Takeoff --------> [Mon 4:30pm] F-28-Friendship-#7 [Flight #516/516(Mon)D].

Flight Landing --------> [Mon 4:35pm] A300-#9 [Flight #370/370(Mon)D] taxiing to Gate-#F5.

Flight Takeoff --------> [Mon 4:39pm] SA-226TC-Metro-#8 [Flight #3039/3052(Mon)D].

...

At 4:40pm Monday, DSS receives notification that Baggage-Truck-#BT-BO1 has
failed. The PROCESS-RESOURCE-FAILURE knowledge source is activated and executed
immediately. The only reservation affected by the failure is for the LOAD BAGGAGE task in
<[Flight #370/370(Mon)D]-#0> . This now-obsolete reservation is officially canceled,
whereupon [LOAD-BAGGAGE]-SERVICE-GOAL-#63 is re-activated and re-rated.

235

A new reservation is finally found for [LOAD-BAGGAGE]-SERVICE-GOAL-#63 by the
standard Right Shift knowledge source, following the failure of the standard Assignment and
standard Preemption knowledge sources. As a result of the right shift, the due date (departure
time) for <[Flight #370/370(Mon)D]-#0> is pushed back twelve minutes, and the
reservation of Gate-#F5 must be extended accordingly.

...

Resource Breakdown ----> [Mon 4:40pm] Baggage-Truck-#BT-BO1 now unavailable.
Invoked Precondition --> KS PROCESS-RESOURCE-FAILURE (Baggage-Truck-#BT-BO1)
KS Activation ---------> PROCESS-RESOURCE-FAILURE (Baggage-Truck-#BT-BO1)
--------------------------------- KSA 188 ---------------------------------
KS Invocation ---------> PROCESS-RESOURCE-FAILURE (Baggage-Truck-#BT-BO1)
Canceled Reservation --> [Mon 4:40pm] Baggage-Truck-#BT-BO1 no longer assigned to

[Task Node: <Task: LOAD-BAGGAGE> <[Flight #370/370(Mon)D]-#0>].
Rerated Service Goal --> [Mon 4:40pm] <[Flight #370/370(Mon)D]-#0>

[LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
from {11960} to {233}.

...

Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD
([LOAD-BAGGAGE]-SERVICE-GOAL-#63)

KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD
([LOAD-BAGGAGE]-SERVICE-GOAL-#63)

--------------------------------- KSA 189 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Invoked Precondition --> KS STANDARD-ASSIGNMENT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
KS Activation ---------> STANDARD-ASSIGNMENT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
--------------------------------- KSA 190 ---------------------------------
KS Invocation ---------> STANDARD-ASSIGNMENT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Allocation Failure ----> [Mon 4:40pm] ‘STANDARD-ASSIGNMENT’ KS unable to find any

‘BAGGAGE-TRUCK’ resources to satisfy STANDARD-ASSIGNMENT.
Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
--------------------------------- KSA 191 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Invoked Precondition --> KS STANDARD-PREEMPTION ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
KS Activation ---------> STANDARD-PREEMPTION ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
--------------------------------- KSA 192 ---------------------------------
KS Invocation ---------> STANDARD-PREEMPTION ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Allocation Failure ----> [Mon 4:40pm] ‘STANDARD-PREEMPTION’ KS unable to find any

‘BAGGAGE-TRUCK’ resources to satisfy STANDARD-PREEMPTION.
Invoked Precondition --> KS SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
KS Activation ---------> SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)

236

--------------------------------- KSA 193 ---------------------------------
KS Invocation ---------> SELECT-RESERVATION-SECURING-METHOD

([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Invoked Precondition --> KS STANDARD-RIGHT-SHIFT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
KS Activation ---------> STANDARD-RIGHT-SHIFT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
--------------------------------- KSA 194 ---------------------------------
KS Invocation ---------> STANDARD-RIGHT-SHIFT ([LOAD-BAGGAGE]-SERVICE-GOAL-#63)
Modified Goal ---------> [Mon 4:40pm] [LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)

allowance now ([Mon 5:06pm] [Mon 5:20pm]);
was ([Mon 4:54pm] [Mon 5:20pm]) <[Flight #370/370(Mon)D]-#0>.

Modified Goal ---------> [Mon 4:40pm] [LOAD-BAGGAGE]-SERVICE-GOAL-#63 (BAGGAGE-TRUCK)
allowance now ([Mon 5:06pm] [Mon 5:32pm]);
was ([Mon 5:06pm] [Mon 5:20pm]) <[Flight #370/370(Mon)D]-#0>.

Modified Goal ---------> [Mon 4:40pm] [TURNAROUND-ACTIVITY]-SERVICE-GOAL-#60 (GATE)
allowance now ([Mon 4:40pm] [Mon 5:36pm]);
was ([Mon 4:40pm] [Mon 5:24pm]) <[Flight #370/370(Mon)D]-#0>.

Modified Due Date -----> [Mon 4:40pm] <[Flight #370/370(Mon)D]-#0>
due [Mon 5:37pm]; originally [Mon 5:25pm];
running [12 minutes] LATE <Penalty: 12>.

Resource Assignment ---> [Mon 4:40pm] Baggage-Truck-#BT-BO4 assigned to
[Task Node: <Task: LOAD-BAGGAGE> <[Flight #370/370(Mon)D]-#0>]
([Mon 5:06pm] - [Mon 5:32pm] ([Mon 5:23pm] - [Mon 5:32pm])).

Modified Reservation --> [Mon 4:40pm] [Task Node: <Task: TURNAROUND-ACTIVITY>
<[Flight #370/370(Mon)D]-#0>] Gate-#F5
([Mon 4:35pm] - [Mon 5:36pm] ([Mon 4:40pm] - [Mon 5:36pm]));
was ([Mon 4:35pm] - [Mon 5:24pm] ([Mon 4:40pm] - [Mon 5:24pm])).

...

The execution of the remaining portion of the schedule now continues, finishing with the
takeoff of <[Flight #243/243(Mon)D]-#0> at 5:47pm Monday.

...

Finished Airplane Shutdown --> [Mon 4:43pm] A300-#9 [Flight #370/370(Mon)D].

Started Deplaning Airplane --> [Mon 4:44pm] A300-#9 [Flight #370/370(Mon)D].

Started Restocking ----> [Mon 4:44pm] Catering-Truck-#KT-F4 A300-#9
[Flight #370/370(Mon)D].

Started Unloading Baggage --> [Mon 4:44pm] Baggage-Truck-#BT-BO2 A300-#9
[Flight #370/370(Mon)D].

Finished Deplaning Airplane --> [Mon 4:49pm] A300-#9 [Flight #370/370(Mon)D].

Started Refueling -----> [Mon 4:50pm] Fuel-Truck-#FT-F4 A300-#9 [Flight #370/370(Mon)D].

Started Cleaning ------> [Mon 4:51pm] Cleaning-Truck-#CT-E1 A300-#9
[Flight #370/370(Mon)D].

Finished Restocking ---> [Mon 4:53pm] Catering-Truck-#KT-F4 A300-#9
[Flight #370/370(Mon)D].

Finished Refueling ----> [Mon 5:00pm] Fuel-Truck-#FT-F4 A300-#9 [Flight #370/370(Mon)D].

Finished Servicing ----> [Mon 5:07pm] Service-Truck-#ST-G1 A300-#9
[Flight #370/370(Mon)D].

Flight Takeoff --------> [Mon 5:15pm] A300-#4 [Flight #381/381(Mon)D].

237

Finished Loading Transfer Baggage --> [Mon 5:20pm] Baggage-Truck-#BT-BO3B
[Flight #3039/3052(Mon)D] (SA-226TC-Metro-#8)
to [Flight #370/370(Mon)D] (A300-#9).

Started Loading Baggage --> [Mon 5:23pm] Baggage-Truck-#BT-BO4 A300-#9
[Flight #370/370(Mon)D].

Started Enplaning Airplane --> [Mon 5:25pm] A300-#9 [Flight #370/370(Mon)D].
Flight Takeoff --------> [Mon 5:25pm] DC-9-Series-20-#2 [Flight #1447/1447(Mon)D].

Flight Takeoff --------> [Mon 5:30pm] F-28-Friendship-#5 [Flight #1044/1044(Mon)D].

Finished Loading Baggage --> [Mon 5:32pm] Baggage-Truck-#BT-BO4 A300-#9
[Flight #370/370(Mon)D].

Started Airplane Prep --> [Mon 5:33pm] A300-#9 [Flight #370/370(Mon)D].
Finished Airplane Prep --> [Mon 5:36pm] A300-#9 [Flight #370/370(Mon)D].

Flight Departure ------> [Mon 5:37pm] A300-#9 [Flight #370/370(Mon)D]
from Gate-#F5 <[12 minutes] LATE>.

Flight Takeoff --------> [Mon 5:42pm] A300-#9 [Flight #370/370(Mon)D].

Flight Takeoff --------> [Mon 5:47pm] DC-10-#10 [Flight #243/243(Mon)D].
===
***** Explicit :STOP returned by PROCESS-PENDING-SIMULATION-EVENT-QUEUE function *****

238

REFERENCES

[Adams et al., 1988] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck
procedure for job shop scheduling. Management Science, 34(3):391–401, March 1988.

[Babić, 1987] Obrad Babić. Optimization of refuelling truck fleets at an airport. Transportation
Research, 21B(6):479–487, December 1987.

[Bellman et al., 1982] R. Bellman, A. Esogbue, and I. Nabeshima. Mathematical Aspects of
Scheduling and Applications. Pergamon Press, Oxford England, 1982.

[Blackboard Technology Group, 1992] Blackboard Technology Group. GBB Reference: Ver-
sion 2.1. Amherst MA, September 1992.

[Boctor, 1990] Fayez F. Boctor. Some efficient multi-heuristic procedures for resource-
constrained project scheduling. European Journal of Operational Research, 49(1):3–13,
November 1990.

[Brazile and Swigger, 1988] Robert P. Brazile and Kathleen M. Swigger. GATES: An airline
gate assignment and tracking expert system. IEEE Expert, 3(2):33–39, Summer 1988.

[Carver and Lesser, 1992] Norman Carver and Victor Lesser. The evolution of blackboard
control architectures. CMPSCI Technical Report 92-71, Department of Computer Science,
University of Massachusetts, Amherst, October 1992.

[Chiang et al., 1990] Whay-Yu Chiang, Mark S. Fox, and Peng Si Ow. Factory model and test
data descriptions: OPIS experiments. Technical Report CMU-RI-TR-90-05, Center for
Integrated Manufacturing and Decision Systems, The Robotics Institute, Carnegie Mellon
University, Pittsburgh PA, March 1990.

[Christofides et al., 1987] Nicos Christofides, R. Alvarez-Valdes, and J.M. Tamarit. Project
scheduling with resource constraints: A branch and bound approach. European Journal of
Operational Research, 29(3):262–273, June 1987.

[Coffman, 1976] E.G. Coffman, Jr., editor. Computer and Job-Shop Scheduling Theory. Wiley,
New York, 1976.

[Corkill et al., 1982] Daniel D. Corkill, Victor R. Lesser, and Eva Hudlická. Unifying data-
directed and goal-directed control: An example and experiments. In Proceedings, Second
National Conference on Artificial Intelligence, pages 143–147, Pittsburgh PA, August 1982.
American Association for Artificial Intelligence (AAAI).

[Davis and Heidorn, 1971] Edward W. Davis and George E. Heidorn. An algorithm for
optimal project scheduling under multiple resource constraints. Management Science,
17(12):B803–B816, August 1971.

240

[Davis and Patterson, 1975] Edward W. Davis and James H. Patterson. A comparison of
heuristic and optimum solutions in resource-constrained project scheduling. Management
Science, 21(8):944–955, April 1975.

[Davis, 1973] Edward W. Davis. Project scheduling under resource constraints—historical
review and categorization of procedures. AIIE Transactions, 5(4):297–313, December 1973.

[Dechter and Pearl, 1988] Rina Dechter and Judea Pearl. Network-based heuristics for
constraint-satisfaction problems. Artificial Intelligence, 34(1):1–38, January 1988.

[Erman et al., 1980] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy.
The Hearsay-II speech-understanding system: Integrating knowledge to resolve uncertainty.
Computing Surveys, 12(2):213–253, June 1980.

[Field and Harrison, 1988] Anthony J. Field and Peter G. Harrison. Functional Programming.
Addison-Wesley, Reading MA, 1988.

[Fisher, 1988] Marsha J. Fisher. Airport gate system is ready for arrival. Datamation,
34(13):21–25, 1 July 1988.

[Fox and Kempf, 1985] B.R. Fox and K.G. Kempf. Complexity, uncertainty and opportunistic
scheduling. In Proceedings, Second Conference on Artificial Intelligence Applications, pages
487–492, Miami Beach FL, December 1985. Institute of Electrical and Electronics Engineers
(IEEE).

[Fox and Smith, 1984] Mark S. Fox and Stephen F. Smith. ISIS—a knowledge-based system
for factory scheduling. Expert Systems, 1(1):25–49, July 1984.

[Fox et al., 1982] Mark S. Fox, Brad P. Allen, and Gary A. Strohm. Job-shop scheduling: An
investigation in constraint-directed reasoning. In Proceedings, Second National Conference on
Artificial Intelligence, pages 155–158, Pittsburgh PA, August 1982. American Association
for Artificial Intelligence (AAAI).

[Fox, 1983] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh PA,
December 1983.

[French, 1982] Simon French. Sequencing and Scheduling: An Introduction to the Mathematics
of the Job-Shop. Ellis Horwood, Chichester England, 1982.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

[Garey et al., 1978] M.R. Garey, R.L. Graham, and D.S. Johnson. Performance guarantees
for scheduling algorithms. Operations Research, 26(1):3–21, January–February 1978.

[Gosling, 1982] Geoffrey D. Gosling. An aircraft gate assignment computer program user
guide. Research Report UCB-ITS-RR-82-8, Institute of Transportation Studies, University
of California, Berkeley, June 1982.

241

[Gosling, 1990] Geoffrey D. Gosling. Design of an expert system for aircraft gate assignment.
Transportation Research, 24A(1):59–69, January 1990.

[Graves, 1981] Stephen C. Graves. A review of production scheduling. Operations Research,
29(4):646–675, July–August 1981.

[Hamzawi, 1986] Salah G Hamzawi. Management and planning of airport gate capacity:
A microcomputer-based gate assignment simulation model. Transportation Planning and
Technology, 11(3):189–202, December 1986.

[Haralick and Elliott, 1980] Robert M. Haralick and Gordon L. Elliott. Increasing tree
search efficiency for constraint satisfaction problems. Artificial Intelligence, 14(3):263–313,
October 1980.

[Held and Karp, 1962] Michael Held and Richard M. Karp. A dynamic programming ap-
proach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics,
10(1):196–210, March 1962.

[Keene, 1989] Sonya E. Keene. Object-Oriented Programming in Common Lisp: A Programmer’s
Guide to CLOS. Addison-Wesley, Reading MA, 1989.

[Kelley and Walker, 1959] James E. Kelley, Jr. and Morgan R. Walker. Critical-path planning
and scheduling. In Proceedings, Eastern Joint Computer Conference, pages 160–173, Boston
MA, December 1959. Joint Computer Conference.

[Kurtulus and Davis, 1982] I. Kurtulus and E.W. Davis. Multi-project scheduling: Cate-
gorization of heuristic rules performance. Management Science, 28(2):161–172, February
1982.

[Lawler and Wood, 1966] E.L. Lawler and D.E. Wood. Branch-and-bound methods: A
survey. Operations Research, 14(4):699–719, July–August 1966.

[Lawrence and Morton, 1993] Stephen R. Lawrence and Thomas E. Morton. Resource-
constrained multi-project scheduling with tardy costs: Comparing myopic, bottleneck,
and resource pricing heuristics. European Journal of Operational Research, 64(2):168–187,
January 1993.

[Mangoubi and Mathaisel, 1985] R.S. Mangoubi and Dennis F.X. Mathaisel. Optimizing gate
assignments at airport terminals. Transportation Science, 19(2):173–188, May 1985.

[Martin-Martin and Mary, 1986] T. Martin-Martin and D. Mary. CARPPA model: Opti-
mization of aircraft positionning and staff regulation for Orly-West airport. In Proceedings,
26th Annual AGIFORS Symposium, pages 7–16, Bowness-on-Windermere England, October
1986. Airline Group of the International Federation of Operational Research Societies
(AGIFORS).

[McKay et al., 1988] Kenneth N. McKay, Frank R. Safayeni, and John A. Buzacott. Job-shop
scheduling theory: What is relevant? Interfaces, 18(4):84–90, July–August 1988.

242

[Neiman et al., 1994] Daniel E. Neiman, David W. Hildum, Victor R. Lesser, and Tuomas W.
Sandholm. Exploiting meta-level information in a distributed scheduling system. In
Proceedings, Twelfth National Conference on Artificial Intelligence, volume 1, pages 394–400,
Seattle WA, August 1994. American Association for Artificial Intelligence (AAAI).

[Niland, 1970] Powell Niland. Production Planning, Scheduling, and Inventory Control: A Text
and Cases. Macmillan, New York, 1970.

[Norbis and Smith, 1988] Mario I. Norbis and J. MacGregor Smith. A multiobjective, multi-
level heuristic for dynamic resource constrained scheduling problems. European Journal of
Operational Research, 33(1):30–41, January 1988.

[Noronha and Sarma, 1991] S.J. Noronha and V.V.S. Sarma. Knowledge-based approaches
for scheduling problems: A survey. IEEE Transactions on Knowledge and Data Engineering,
3(2):160–171, June 1991.

[Ow and Smith, 1986] Peng Si Ow and Stephen F. Smith. Towards an opportunistic
scheduling system. In Proceedings, Nineteenth Hawaii International Conference on System
Sciences, pages 345–353, Honolulu, January 1986.

[Ow and Smith, 1988] Peng Si Ow and Stephen F. Smith. Viewing scheduling as an
opportunistic problem-solving process. Annals of Operations Research, 12:85–108, 1988.

[Ow et al., 1988] Peng Si Ow, Stephen F. Smith, and Alfred Thiriez. Reactive plan revision.
In Proceedings, Seventh National Conference on Artificial Intelligence, volume 1, pages 77–82,
Saint Paul MN, August 1988. American Association for Artificial Intelligence (AAAI).

[Ow, 1986] Peng Si Ow. Experiments in knowledge-based scheduling. Technical report, The
Robotics Institute, Carnegie Mellon University, Pittsburgh PA, April 1986. Forthcoming.

[Panwalkar and Iskander, 1977] S.S. Panwalkar and Wafik Iskander. A survey of scheduling
rules. Operations Research, 25(1):45–61, January–February 1977.

[Papadimitriou and Steiglitz, 1982] Christos H. Papadimitriou and Kenneth Steiglitz. Com-
binatorial Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs NJ,
1982.

[Patterson, 1984] James H. Patterson. A comparison of exact approaches for solving the
multiple constrained resource, project scheduling problem. Management Science, 30(7):854–
867, July 1984.

[Pease, 1978] Marshall C. Pease, III. ACS.1: An experimental automated command support
system. IEEE Transactions on Systems, Man, and Cybernetics, SMC-8(10):725–735, October
1978.

[Pritsker et al., 1969] A. Alan B. Pritsker, Lawrence J. Watters, and Philip M. Wolfe. Multi-
project scheduling with limited resources: A zero-one programming approach. Management
Science, 16(1):93–108, September 1969.

243

[Riccio and Ron, 1985] Lawrence A. Riccio and Nathan Ron. Computer-generated system
aids airline’s passenger flow and routing of aircraft. Industrial Engineering, 17(9):52–56,
September 1985.

[Rickel, 1988] Jeff Rickel. Issues in the design of scheduling systems. In Michael D. Oliff,
editor, Expert Systems and Intelligent Manufacturing, pages 70–89. Elsevier, New York, 1988.

[Sadeh and Fox, 1990] Norman Sadeh and Mark S. Fox. Variable and value ordering heuristics
for activity-based job-shop scheduling. In Proceedings, Fourth International Conference on
Expert Systems in Production and Operations Management, pages 134–144, Hilton Head SC,
May 1990.

[Sadeh et al., 1993] Norman Sadeh, Shinichi Otsuka, and Robert Schnelbach. Predictive and
reactive scheduling with the Micro-Boss production scheduling and control system. In
Proceedings, IJCAI-93 Workshop on Knowledge-Based Production Planning, Scheduling and
Control, Chambery France, August 1993. International Joint Conferences on Artificial
Intelligence (IJCAI).

[Sadeh, 1991] Norman Sadeh. Look-Ahead Techniques for Micro-Opportunistic Job Shop Sched-
uling. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh
PA, March 1991.

[Schröder, 1972] Helmut Schröder. The assignment of aircraft to gate positions. In
Proceedings, 12th Annual AGIFORS Symposium, pages 301–318, Nathanya Israel, October
1972. Airline Group of the International Federation of Operational Research Societies
(AGIFORS).

[Shifrin, 1988] Carole A. Shifrin. Gate assignment expert system reduces delays at United’s
hubs. Aviation Week & Space Technology, pages 148–149, 25 January 1988.

[Simon, 1981] Herbert A. Simon. Sciences of the Artificial. MIT Press, Cambridge MA, second
edition, 1981.

[Smith and Ow, 1985] Stephen F. Smith and Peng Si Ow. The use of multiple problem
decompositions in time constrained planning tasks. In Proceedings, Ninth International Joint
Conference on Artificial Intelligence, volume 2, pages 1013–1015, Los Angeles CA, August
1985. International Joint Conferences on Artificial Intelligence (IJCAI).

[Smith et al., 1986a] Stephen F. Smith, Mark S. Fox, and Peng Si Ow. Constructing and
maintaining detailed production plans: Investigations into the development of knowledge-
based factory scheduling systems. AI Magazine, 7(4):45–61, Fall 1986.

[Smith et al., 1986b] Stephen F. Smith, Peng Si Ow, Claude Le Pape, Bruce McLaren,
and Nicola Muscettola. Integrating multiple scheduling perspectives to generate detailed
production plans. In Proceedings, Conference on AI in Manufacturing, pages 2/123–2/137,
Long Beach CA, September 1986. Society of Manufacturing Engineers (SME).

244

[Smith et al., 1990] Stephen F. Smith, Peng Si Ow, Nicola Muscettola, Jean-Yves Potvin, and
Dirk C. Matthys. An integrated framework for generating and revising factory schedules.
Journal of the Operational Research Society, 41(6):539–552, June 1990.

[Smith, 1987] Stephen F. Smith. A constraint-based framework for reactive management of
factory schedules. In Proceedings, International Conference on Expert Systems and the Leading
Edge in Production Planning and Control, pages 349–366, Charleston SC, May 1987.

[Smith, 1991] Stephen F. Smith. Knowledge-based production management: Approaches,
results and prospects. Technical Report CMU-RI-TR-91-21, Center for Integrated
Manufacturing Decision Systems, The Robotics Institute, Carnegie Mellon University,
Pittsburgh PA, December 1991.

[Speranza and Vercellis, 1993] M. Grazia Speranza and Carlo Vercellis. Hierarchical models for
multi-project planning and scheduling. European Journal of Operational Research, 64(2):312–
325, January 1993.

[Steele, 1990] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, Bedford MA,
second edition, 1990.

[Stefik, 1980] Mark J. Stefik. Planning With Constraints. PhD thesis, Department of
Computer Science, Stanford University, Stanford CA, January 1980.

[Stinson et al., 1978] Joel P. Stinson, Edward W. Davis, and Basheer M. Khumawala. Multiple
resource-constrained scheduling using branch and bound. AIIE Transactions, 10(3):252–
259, September 1978.

[Tsubakitani and Deckro, 1990] Shigeru Tsubakitani and Richard F. Deckro. A heuristic for
multi-project scheduling with limited resources in the housing industry. European Journal
of Operational Research, 49(1):80–91, November 1990.

[Vepsaleinen, 1984] Ari Vepsaleinen. State Dependent Priority Rules for Scheduling. PhD thesis,
Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh PA,
April 1984.

[Weiss and Kulikowski, 1984] Sholom M. Weiss and Casimir A. Kulikowski. A Practical Guide
to Designing Expert Systems. Rowman and Alanheld, Totowa NJ, 1984.

[Westbrook et al., 1992] David L. Westbrook, Scott D. Anderson, David M. Hart, and Paul R.
Cohen. Common lisp instrumentation package: User manual. CMPSCI Technical Report
94-26, Department of Computer Science, University of Massachusetts, Amherst, 1992.

[Willis, 1985] R.J. Willis. Critical path analysis and resource constrained project scheduling—
theory and practice. European Journal of Operational Research, 21(2):149–155, August 1985.

