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Abstract

Data flow analysis is a versatile technique that can be used to address a variety of analysis
problems. Typically, data flow analyzers are handcrafted to solve a particular analysis prob-
lem. In this paper, we describe an architecture for data flow analyzers along with a library
of components and component generators that can be employed to build data flow analyzers.
We further extend the architecture to support the development of analyzers for qualified data
flow analysis problems. We describe our experience using this architecture to construct several
prototype data flow analyzers.
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94-C-0137.



1 Introduction

Data flow analysis is a versatile technique that has been applied to a wide variety of analysis
problems. Typically, data flow analyzers are handcrafted to solve a particular problem. Building
analyzers requires a significant effort. Developers must consider, and choose from, a wide variety
of options for encoding the data flow analysis problem and then there is the software development
effort required to implement the analyzer. While evaluation of some analysis design options can be
done analytically, it is often the case that the cost-effectiveness of a particular approach must be
judged empirically. In these cases, the significant software development cost of building data flow
analyzers is a barrier to exploring the space of analysis design options.

In this paper, we describe a flexible architecture for building data flow analyzers that reduces
software development costs. The architecture is based on Kildall’s data flow fremework [15]. The
architecture defines a data flow analyzer as consisting of a function space and map, a lattice of
flow values, a flow graph, and a solver. The interface to each of these is defined by an architectural
template. Abstractions that satisfy these interfaces are referred to as components of a data flow
analyzer.

With this architecture, a developer chooses from a collection of pre-existing components or, using
high-level component generators, constructs new components and combines them to produce a data
flow analyzer. A library of existing components gives developers a significant base to start from.
Component generators capture common functionality and allow creation of components specialized
for the problem at hand. Finally, the interfaces defined by the architecture allow existing and
generated components to be reused across data flow analyzers. Thus, the cost of building, or
generating, a component can be amortized over uses in a number of analyzers.

Although, we do not expect these analyzers to be as efficient as hand built, finely tuned an-
alyzers, we provide support for the construction of high-quality implementations in the form of
component generators and components that can be tuned for specific problems.

An extension of the architecture allows analyzers to be built for qualified data flow analysis
problems [12]. The components of an existing qualified analyzer can be reused in new analyzers.
This encourages an iterative approach to designing data flow analyses. A design can be experi-
mentally evaluated, and then successive designs can incorporate additional functionality to reduce
analysis cost or increase the accuracy of analysis results.

We believe this architecture supports a wide variety of analysis problems. Our motivation for
building this architecture is to support rapid prototyping and evaluation of data flow analyses for
use in validation and verification of concurrent software [7]. We have implemented a library that
includes many general components and a number of components that are specific to this application
domain. Using the architecture with this library we have constructed several data flow analyzers.
These analyzers illustrate the ease with which analyzers can be implemented using the architecture.

The next section describes related work. Sections 3 and 4 describe the architecture and library
of components, respectively. Section 5 describes an extended architecture for building analyzers for
qualified data flow problems. Section 6 describes several data flow analyzers that have been built
and our implementation of the library. We conclude with an informal evaluation of this architecture



and plans for future work.

2 Related Work

Kildall [15] introduced data flow frameworks as a means of mathematically formulating data
flow problems. Subsequently, a number of theoretical results and algorithms related to data flow
frameworks have been developed [16]. Algorithms for solving general data flow frameworks have
been presented, e.g., [1, 11]. For restricted classes of frameworks, such as rapid frameworks [14],
very efficient solution algorithms have been developed.

Recent work has exploited the inherent generality of data flow frameworks and attempted to
explore some of the issues in supporting a flexible, general approach for constructing data flow
analyzers. FIAT [10] is a framework for rapid prototyping of interprocedural analyses and trans-
formations. It provides abstract interfaces for procedure summary information and call graphs. It
also provides interfaces for describing a data flow analysis as a data flow framework and provides
a general iterative solver for these analyses. Sharlit [18] is a tool for generating optimizers based
on data flow analysis. It generates a data flow analyzer, based on an iterative solver, from code
fragments that specify the components of a data flow framework. It provides an abstraction for
the flow graph to allow generated analyzers to operate on a wide variety of representations. Sharlit
supports tuning the performance of analyzers by constructing a set of rules that are used to summa-
rize the cumulative effects of flow graph paths. These rules can greatly reduce the time and space
cost of analysis. Unfortunately, they can be difficult to build and are dependent on the specified
function space and, therefore, are not generally reusable. In addition, the algorithm Sharlit uses
to process rules and improve the efficiency of analysis is dependent on the reducibility of the flow
graph. For reducible graphs, Sharlit has been used to build a very efficient optimization phase of
a high-quality compilation system.

Our work is similar to both FIAT and Sharlit in that it is based on specifying the data flow anal-
ysis as a data flow framework. Like those systems, our architecture provides interface descriptions
of the function space, flow graph, and lattice. Unlike those systems, our approach also provides an
interface to a solver algorithm, thereby allowing a variety of solution algorithms to be incorporated
in data flow analyzers. Our approach provides a library of pre-existing components that can be
used to build analyzers as well as generators for common classes of analyzer components. The
benefits available from our architecture are not limited to reducible graphs. This is important to
us since many representations of concurrent programs (2, 5, 7, 9, 17] are irreducible. In addition,
we provide support for building analyzers for qualified data flow problems.

3 An Architecture for Data Flow Analyzers

Our architecture is based on Kildall’s data flow framework. We define a data flow framework

as (L,G,F,M):
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Figure 1: Architecture of Data Flow Analyzer

L is a meet-semilattice with a set of values, V, and the standard operators. ! Typically, a meet-
semilattice is specified only with M, we include U and A to support analyzer components that are
more naturally specified using those operators. G is a flow graph, with a set of entities, E, a set of
designated start entities, Start, and the predecessor, Pred, and successor, Succ, functions. This
specification allows a wide variety of graph types to be viewed as a flow graph. F is a function
space consisting of a set of transfer functions defined over the lattice values, V. M is a function
map that binds flow graph entities, E, to transfer functions.

The architecture consists of templates that specify the interface to each part of a data flow
framework and to the solution algorithm. In practice, function maps are defined in terms of
attributes of flow graph entities; consequently, our interface merges the specification of function
space and function map. We refer to a mutually consistent set of lattice, function space, and flow
graph components as a date flow problem. A solver is instantiated with a data flow problem to
produce an analyzer, as illustrated in Figure 1.

In the remainder of this section we provide a description of the interfaces specified by the
architectural templates.

Lattice

The lattice values constitute the data that are propagated throughout the flow graph. These
values are transformed by transfer functions and combined at merge points in the flow graph. The
interface to the lattice is:

type LatticeValue;

function Create return LatticeValue;

procedure Destroy(v : in out LatticeValue);

function Equal(x, y : in LatticeValue) return Boolean;
procedure Assign(l : out LatticeValue; r : in LatticeValue);

! Although we require T, this restriction could be lifted as long as initial values are available for the problem.



function NotAbove(x, y : in LatticeValue) return Boolean;

function Meet(x, y : in LatticeValue) return LatticeValue;
function Join(x, y : in LatticeValue) return LatticeValue;
Top : constant LatticeValue;

Bottom : constant LatticeValue;

In this interface LatticeValue is V, Meet is N, Join is L, NotAbove is /i, Top is T, and Bottom is
L. We include constructors, destructors, assignment and equality operators to allow manipulation
of lattice values in intermediate computations.

Function Space

The function space consists of a set of transfer functions that propagate and potentially trans-
form lattice values at each flow graph entity. Although not strictly part of the function space, we
include a Confluence operator that is applied at flow graph merge points; it is typically the lattice
Meet operator. We include it here to support generators that produce function spaces. For example,
the GenKill function space generator described in Section 4 chooses Meet or Join as Confluence
operator depending on the kind of problem specified. The interface to a function space is:

function Init return LatticeValue;

function Start return LatticeValue;

function Confluence(x, y : in LatticeValue) return LatticeValue;

function FunctionMap(e : in Entity; v : in LatticeValue) return LatticeValue;

The FunctionMap operator can be thought of as selecting a function from F when given an entity
and applying that function to the given lattice value. We include Init and Start to specify
initialization values for flow graph entities and start entities respectively; for many problems these
are defined using T or L. The function space described by this template is equivalent to a set of
flow equations of the form:

In(e) = Confluencepeprea(e)(Out(p))
Out(e) = FunctionMap(e,In(e))

where the Confluence operator has been extended to sets of lattice values, and In and Out are
the values flowing into and out of the entity.

Flow Graph

The flow graph consists of a collection of entities and predecessor and successor functions that
describe the ordering of entities. The interface to a flow graph is:

type FlowGraph;
type Entity;



function MaxEntity(g : in FlowGraph) return Natural;
function GetIndex(e : in Entity) return Natural;
function Starts(g : in FlowGraph) return SetOfEntity;
function Predecessors(e : in Entity) return SetOfEntity;
function Successors(e : in Entity) return SetOfEntity;

This interface supports a very general view of a flow graph. For example, we can specify analyses
over nodes, edges, or subsets of those, and we allow multiple start entities. In addition to the
interface specified for G above, we require that each entity in a flow graph can be mapped to a
unique natural number, via GetIndex. To minimize the amount of space used to solve the data
flow problem, the “indexes” should be contiguous and lie in the range 1... MaxEntity. Indexing
operators are included to support construction of analyzers that are more time and space efficient.
In our experience these requirements are easily satisfied and have significant payoff.

We note that backwards analyses are specified by defining the reverse of the flow graph. This

can be done by exchanging the Predecessors and Successors functions for each entity and by
defining Starts to be the exit entities of the flow graph.

Solver

A solver template requires a data flow problem, i.e., a mutually consistent lattice, function space
and flow graph. A solver component is instantiated to produce:

type Results;

function GetInValue(e : in Entity; r : in Results) return LatticeValue;
function GetOutValue(e : in Entity; r : in Results) return LatticeValue;
function Solve(g : in FlowGraph) return Results;

The Solve operator computes the solution to the given data flow problem for the input graph and
returns the final values for flow graph entities as Results. GetInValue and GetOutValue are used
to retrieve results for individual entities.

4 The Library of Components

The architectural templates describe interfaces that individual components must satisfy in order
to be combined to produce a data flow analyzer. Conceptually, other than the template specifi-
cations, there are no restrictions on the components that may be used to fill the roles of each’
template. Practical data flow analyzers usually consist of monotone function spaces, finite lattices,
and flow graphs that are linear in the size of the program. In this section, we describe a library of
components designed to support the production of practical analyzers. Figure 2 depicts the library
organized around each architectural template. Boxes with G denote generators for components
that satisfy the associated template. A solid circle denotes components that are specifically de-
signed to work together. This is an open library; as new components or generators are developed
they are incorporated into the library.



Lattice Template  Function Space Template Flow Graph Template Solver Template

Components Components Components Compeonents
Boolean Var
Boolean Var @
Bit Vectors
Figure 2: A Library of Components
unknown Fideni(v) = v
true  ifx=false Funknown(v) = unknown
true false Froi(x) = f‘lse ;::c:;: Ftrue(v) = true
Ffalse(v) = false
both Fboth(v) = both
Lattice Function Space

Figure 3: Boolean Variable

4.1 Lattice Components

We provide three components that satisfy the lattice interface: bit-vectors, sets and boolean
variables.

Bit-vectors are a common representation in data flow problems for which the values of interest
can be easily embedded in a powerset. Although they can be consumptive of space, they provide
efficient Meet, Join and NotAbove operators. In addition, the transfer functions defined in many
function spaces can be implemented efficiently as bit-vector manipulations. When the domain of
values of interest is too large or the mapping from values to indexes, required for bit-vectors, is too
expensive, one can use a more general set component. The boolean variable lattice component can
be represented as a special case of the lattice of singletons [19]. This lattice, illustrated in Figure
3, is designed to work with the boolean variable function space to track the values of boolean
variables.

We are building components for other common types of state variables, such as baunded coun-
ters, and for the lattice of singletons, lattice of intervals, and lattice of arithmetic congruences

(8].
4.2 Function Space Components

We provide a generator for a common function space class, GenKill, and a component for
tracking the value of a boolean variable.



Data flow frameworks for many classic compiler optimization problems, such as available expres-
sions and reaching definitions, have a regular form. Individual transfer functions are constructed
from a description of the values generated and killed at each flow graph entity. We provide a gen-
erator that takes as input a lattice component, an indication of whether the problem is all paths or
any path, and the following;:

function Gen(e : in Entity) return LatticeValue;
function Kill(e : in Entity) return LatticeValue;

Based on the values of the inputs, the generator produces the two major operators of a function
space interface:

function Confluence(x,y : in LatticeValue) return LatticeValue;
function FunctionMap(e : in Entity; v : in LatticeValue) return LatticeValue;

This provides a function space that is equivalent to flow equations of the form:

In(e) = Confluencepepreas(c)(Out(p))
Out(e) Join(Gen(e), (In(e) — Kill(e)))

where the Confluence operator is Meet for an all paths problem and Join for an any path problem.

We provide a monotone function space defined over the boolean variable lattice. The transfer
functions are illustrated in Figure 3. The mapping of transfer functions to flow graph entities is
made by querying attributes of entities. If the entity assigns constant true to the variable or the
entity is the true branch of a conditional that tests the variable, then Ftrue is used. The conditions
for Ffalse are analogous. If the entity assigns an unknown value to the variable then Funknown
is used. If the entity assigns the negation of the variable to itself then Fnot is used. All other
entities are bound to Fident, the identity transfer function.

We intend to support tracking values of other common types of state variables, for example
bounded counters.

4.3 Flow Graph Components

A wide variety of control-flow-graph-like representations can be used directly as components in
this architecture; others may require a shallow wrapper to make their interface conform. Graph
types for concurrent programs such as state reachability graphs, Petri nets, and a number of
control-flow-graph-like representations [2, 5, 7, 9, 17] can be adapted to meet the interface.

The cost of solving a data flow problem is strongly dependent on flow graph size. A number
of representations, such as SSA [4] and the PDG [13], have been developed that effectively reduce
flow graph size for some data flow analyses. Choi et. al [3] describe a general algorithm for
constructing sparse data flow evaluation graphs (SDFEG) for monotone data flow frameworks.
Use of this representation eliminates propagation of data through flow graph regions that add no



information to the results. Constructing an SDFEG requires finding paths through the flow graph
that correspond to chains of identity, or constant, transfer functions. This dependence on the
function space, however, limits reuse of an SDFEG in different data flow problems.

In contrast to SDFEGs, we provide a generator that produces a sparse flow graph component
that is independent of a particular data flow problem. We use a relevance predicate to determine
whether the entity is relevant and should be included in the representation, or whether it is irrelevant
and should be excluded. One can think of the SDFEG construction algorithm as using a restricted
relevance predicate, i.e., the existence of a non-identity and non-constant transfer function mapped
to a given entity means the entity is relevant. Abstracting away from the function space allows
sparse representations to be defined and reused in different data flow problems for which the
relevance predicate is appropriate. The generator is given a flow graph component and a relevance
predicate:

function IsRelevant(e : in Entity) return Boolean;

It produces a sparse flow graph component and a function that is used to initialize instances of the
sparse flow graph.

4.4 Solver Components

The interface specified by the solver architectural template is very general. It makes few require-
ments on the structure of the lattice and no requirement on the structure of the function space and
flow graph. It is well know that for certain classes of data flow problems, very efficient algorithms
exist. Our intent is that those algorithms are to be implemented once, installed in the library of
solver components, and incorporated into data flow analyzers as needed. To date, we have provided
an iterative worklist solution algorithm for frameworks with monotone function spaces [11].

5 Extending the Architecture for Qualified Analyses

The accuracy of data flow analysis suffers from the fact that all paths through the flow graph are
considered executable. Encoding information about path executability can improve the accuracy of
analysis results, but usually increase the size of the flow graph considerably. An alternate approach
is to include information in the data flow problem that is used to restrict consideration of certain
program paths. This has been done for individual data flow analyses, e.g., [19]. A more general
method, and one that we employ, is to use qualified data flow analysis [12].

We refer to the data flow problem of interest as the primary problem. We formulate necessary
conditions for path executability and encode those conditions as constraint data flow problems.
A qualified problem is a combination of a primary and a set of constraint data flow problems.
Conceptually, the qualified problem restricts the propagation of any value that violates one of the
necessary conditions encoded in the constraint problems. Care must be taken at flow graph merge
points so that information that could be used to restrict value propagation is not lost.



To simplify the discussion, we describe qualified analysis for a single constraint, where both the
primary and constraint problems operate over the same flow graph. A qualified lattice value is a
set, whose members are pairs of primary and constraint lattice values. We call such pairs PCpairs.
The qualified function space consists of a Confluence operator and FunctionMap. We construct the
qualified Confluence operator to preserve information that may be eventually used to restrict value
flow. To enable this, the developer specifies a function, MayDiffer, that accepts a pair of constraint
lattice values and returns true, if one of the values may cause flow to be restricted and the other
value never causes flow to be restricted. The Confluence operator merges PCpairs with equivalent
contraint values, as determined by MayDiffer. The qualified FunctionMap is constructed as the
component-wise application of the primary and constraint FunctionMaps. The developer specifies
a function, TestConstraint, that is used to restrict the set of values processed at an entity to only
the input values that satisfy the constraint. The induced set of flow equations is the same as for
the solver architectural template, except for the restriction operation.

In(e) = Confluencepepyeds(e)(Out(p))
Restricted(e) = {PCpair|PCpair € In(e) A TestConstraint(e, PCpair.constraint)}
Out(e) = FunctionMap(e, Restricted(e))

Although we could perform the restriction operation inside the FunctionMap and use any solver
component, there are potential performance gains by using a solver component specialized for
qualified data flow problems. To generate a qualified data flow problem, developers provide a flow
graph, primary and constraint lattice and function space components and the following predicates:

function MayDiffer(x, y : in ConmstraintLatticeValue) return Boolean;

function TestConstraint(e : Entity; v : in ComstraintLatticeValue) return Boolean;]}

We note that analyzers for qualified data flow problems offer increased accuracy, over the
primary problem, at the expense of analysis time. In general, the cost of qualified analysis is
exponential in the number of constraints, so care must be taken in defining qualified problems.

The interface described above has been simplified for this presentation. We have designed a
more general interface for specifying and generating qualified data flow problems. This interface
allows existing qualified problems to be reused as the primary problem in specifying a new qualified
analysis. This allows construction of analyzers for qualified data flow problems by incrementally
composing a primary problem with a series of constraints. Using this approach, developers can
try many combinations of constraints with a single primary problem to attempt to find a qualified
problem whose solution meets the desired accuracy and efficiency needs.

6 Experience with the Architecture

In this section, we describe our experience building a variety of data flow analyzers and out
current implementation of the library components.



6.1 Experience Building Data Flow Analyzers

To date we have built and experimented with six data flow analyzers using the architecture
and associated components. We have designed a number of other analyzers, including some for
qualified analysis problems. This work is part of a larger effort related to verification and validation
of explicitly stated correctness properties of concurrent programs [7]. Some of the analyses are
recognizable as extensions of familiar data flow analyses; others are less familiar. Qur goal here is
not to motivate or explain the information the algorithms produce, instead we hope to illustrate
the way these analyzers were constructed from the library of existing components. We note that
all of the analyzers use the iterative worklist solver component.

A trace flow graph (TFG) is a flow graph with 3 kinds of edges: control flow (CF), communi-
cation (COM) and may-immediately-precede (MIP). We built an analyzer to compute the set of
communication edges in a TFG that dominate one another. The flow graph is a sparse representa-
tion of a TFG where the relevant entities are COM edges. The lattice is a bit-vector of TFG COM
edges. The function space is an all paths GenKill function space. For each COM edge, Gen returns
a vector with the edge’s bit set and Kill returns a zero vector. Mapping of edges to functions is
done using the edge index operation from the flow graph. We also built an analyzer to compute
communication edge post-dominator information by reusing the same lattice and function space
and the reverse flow graph.

We built a more general edge dominator analyzer. For this problem, the flow graph is a TFG
where the entities are COM and CF edges. The lattice is a bit-vector of TFG COM and CF edges.
The function space is a GenKill space similar to the one described above. We have also built an
analyzer to compute post-dominator information by using the same lattice and function space and
the reverse flow graph.

In each of these problems there were some subtleties, related to the definition of TFGs, that
involved treating groups of edges as a single edge. We found that the flexibility of the component
interfaces made this easy.

We built an analyzer that computes an approximate test to determine if paths in a TFG
correspond to accepting strings for a deterministic finite automaton, called a PA. The flow graph is
a TFG and the entities are CF, COM and MIP edges. The lattice is a bit-vector of PA states. The
function space is constructed from 4, the PA state transition function. The Confluence operator
is union and FunctionMap(e, v) = 6*(In(e), Label(e)), where Label(e) is a symbol in the alphabet
of the PA that labels the edge. We note that 4* is the extension of the state transition function to
sets of PA states.

Our final data flow analyzer used a TIG-based Petri Net (TPN), a bipartite graph with node
kinds called places and transitions [6]. A TPN may contain transitions that are dead, i.e., they
are unreachable according to TPN semantics. We formulate an approximate test for deadness as a
data flow analysis problem. The flow graph is a TPN with transitions as entities. The lattice is a
bit-vector of transitions. The function space consists of distinct functions for each TPN transition.
Each function tests if any predecessor has its bit set in the input value, and if so, adds the bit for
the current transition. This is quite similar to the dominator function space, except that we test
the input value here in a way that is not supported by the GenKill function space generator.
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We have designed a data flow analyzer for a qualified analysis where the primary problem is
state propagation and the constraint problem models boolean variable. This is useful in the analysis
of concurrent programs, since it is common to have a local state variable control the pattern of
inter-task communication, for example, enforcing exclusive write access. For such programs, it
is often possible to improve the precision of state propagation analysis by modeling the control
variable’s values and restricting propagation of PA states to TFG paths that are consistent with
a given value of the controlling variable. For this qualified data flow problem, TestConstraint(e,
v) returns false if the edge, e, is a true(false) branch and the constraint value , v, is false(true),
otherwise it returns true. MayDiffer(x, y) returns false if z = y or if one value is Both and the
other is Unknown, otherwise it returns true.

6.2 An Implementation

We have implemented versions of all of the components and generators described in Section 4
in Ada.

All of the generators are implemented as Ada generic packages and components are generated
by generic instantiation. This has the positive benefit of making the resulting component a reusable
Ada unit. Some of the more basic components, such as the boolean variable function space, are
also implemented as generics. This allows them to be tailored to the particular application; in the
case of the boolean variable function space, we instantiate it with the identity of the variable being
modeled to construct the function map.

While bit operations are not directly supported in Ada, we were able to implement a bit-vector
package that generates machine-level bit operations. This implementation reduces the portability
of these components, however.

All of the flow graph components we used were pre-existing abstract data types implemented
as Ada packages. Many of them conformed to the flow graph architectural template interface. A
few required shallow wrapping to make the interfaces conform.

One drawback of Ada’s type system is that there is no convenient way to encode the abstract
interfaces of the architectural templates in the language. Also, Ada does not allow packages as
generic parameters. This results in some syntactic inconvenience and makes the number of generic
parameters large in some cases. Ada lacks first-class functions and as a result the FunctionMap
operation essentially wraps all of the transfer functions. In practice, we found that the FunctionMap
does not grow to be unmanageable in size.

By using Ada we were able to make use of an existing collection of reusable data types in
this implementation. Ada’s support for generics was crucial in being able to build a collection
of components and generators that met the architectural goals of being composable and reusable.
Both of these were significant factors in choosing an implementation language.
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7 Conclusion

Our experience has demonstrated that it is relatively easy to construct a new data flow analyzer
using this architecture. The existing library components reduce the software development costs
involved in building analyzers. There are two cost reduction benefits; one does not have to write the
code and one does not have to test and debug it. This may seem simplistic but in practice the payoff
is high. When we needed to build new components we often found a number of opportunities for
reuse. A good example is the reuse of GenKill function spaces across dominator and post-dominator
problems.

We developed the four dominator related and state propagation analyzers in a matter of days.
In contrast, it took approximately three weeks to develop a handcrafted analyzer for the state
propagation algorithm alone. In fairness, this handcrafted analyzer was built before the others
and provided valuable insight that was used in building the others. Nevertheless, the reduction in
programming and testing cost gained by using the architecture and components was large.

We believe the flexibility of the architecture allows relatively efficient analyzers to be con-
structed. While we do not expect to obtain the performance of handcrafted analyzers, it is possible
to improve the performance of selected analyzer components. For example, we intend to incorpo-
rate additional bookkeeping information in the implementation of the function space for the state
propagation analyzer to eliminate redundant computation.

Our design experience with qualified analysis provides evidence that an iterative style of building
data flow analyzers is beneficial, especially at the early stage of design when developers have yet
to settle on the right combination of information to encode in the problem. This approach allows
for rapid construction of a set of analyzers to explore the various design tradeoffs.

To support our application of data flow analysis to software validation and verification we intend
to continue this work. Implementation of support for qualified analysis is underway. We plan to
add new components to the library to support a number of new analyses. For example, we are
interested in lattices and associated function spaces for symbolic representations of the number of
times program events happen.

In summary, data flow analyses are a class of computations that have a well developed theo-
retical basis and a large base of interesting applications. As these applications are extended and
new applications are considered, developers need support for evaluating the analysis design space.
Our architecture, and associated library of components, allow low-cost construction of data flow
analyzers to enable such evaluations.
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