
Design-to-time Scheduling with Uncertainty

Alan Garvey and Victor Lesser
Department of Computer Science

University of Massachusetts

UMass Computer Science Technical Report 95–03
January 9, 1995

Abstract

Design-to-time real-time scheduling is an approach to solving time-sensitive problems where
multiple methods are available for many subproblems. This paper examines design-to-time
scheduling problems where the value (quality) and duration of methods is uncertain. We
first describe our basic approach to scheduling design-to-time problems, describe the necessary
extensions for scheduling uncertain tasks, and describe the effects of uncertainty on the difficulty
of scheduling and on the quality of the schedules produced.
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1 Introduction
Design-to-time[Garvey and Lesser, 1993, Garvey et al., 1993, Garvey et al., 1994] is an
approach to problem solving that involves designing a solution plan dynamically at runtime
that uses all of the time available to find as good a solution as it can. Because the problems
it is solving are generally intractable and because time spent finding solution plans is time
that could otherwise be spent solving the actual problem, it is a satisficing approach. In our
design-to-time work, problem solving is modeled as a set of interrelated computational tasks,
with alternative ways of accomplishing the overall task and not a single “right” answer, but a
range answers of different qualities, where the overall quality of a problem solution is a function
of the quality of individual subtasks. This scheduling of such prespecified task structures that
contain alternatives represents a simplified version of the scheduling problem in which a planner
for dynamically generated process plans is tightly integrated with a scheduler as described by
Smith[Smith, 1993]. Our approach is quite different from his, but the basic idea of problems
that require both deciding “what” to do and deciding “when” to do it is shared. Another
major focus of our work on design-to-time is on taking interactions among subproblems into
account when building solution plans, both “hard” interactions that must be heeded to find
correct solutions (e.g., hard precedence constraints), and “soft” interactions that can improve
(or hinder) performance (e.g., facilitates constraints[Decker and Lesser, 1993]).

Previous work on design-to-time scheduling has examined scheduling in an actual application[Gar-
vey and Lesser, 1993], in a simulation of an application with particularly circumscribed in-
teractions among tasks[Garvey et al., 1993], and in a distributed simulation[Garvey et al.,
1994]. In the work on the actual application (the Distributed Vehicle Monitoring Testbed)
the focus was on scheduling in situations where approximations were available for some of
the tasks of the system, and interactions among tasks were assumed to be minimal. The
solution involved building periodic schedules, monitoring task execution (because tasks did
not always perform as expected, partially because predictions were only approximate and par-
tially because interactions did exist even if it was assumed they did not), and dynamically
rescheduling as necessary. The initial simulation work looked at a slightly simplified model of
the actual application with a focus on the interactions among subtasks. Both hard and soft
interactions were allowed. In this work an optimal algorithm was found when interactions
were limited to particular parts of the overall problem. Most recently, design-to-time research
has looked at distributed scheduling. In this work no limitations were placed on interactions
(thus necessitating heuristic scheduling) and problems were divided (usually with some over-
lap) among multiple agents. Coordination between agents was handled using the Generalized
Partial Global Planning (GPGP) approach[Decker and Lesser, 1992]. At the request of the
coordination algorithm, agents would make commitments to completing particular methods by
particular times. The heuristic scheduling in this work was done using an early version of the
basic algorithm described in this paper.

An example of a problem to be solved by the design-to-time scheduling algorithm is
given in Figure 1. This representation of a task structure is based on the TÆMS modeling
framework[Decker and Lesser, 1993]. In a TÆMS task structure the leaves of the graph
represent executable computations (known as methods) and the nonleaf nodes represent tasks
that achieve quality as a function of the quality of their subtasks. Each separate graph is known
as a task group and represents a single independent problem to be solved. Each task group has
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a deadline by which all computation on that task group must be completed. Non-parent-child
connections between tasks and methods represent interactions, such as enables (Task A must
have quality greater than a threshold before Method B can correctly begin execution) and
facilitates (if Task A has quality greater than a threshold, then Method B will have reduced
duration and/or increased quality).
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Figure 1: An example of TÆMS task structure to be scheduled. The black lines represent
task/subtask connections, while the gray lines represent facilitates relationships.

Given task structures of this form, the job of the design-to-time scheduling algorithm is
to dynamically build schedules with a preference for schedules that (in order of importance)
achieve nonzero quality for all task groups, maximize the sum of the qualities of all task groups,
and minimize the total duration of method executions. The result of this scheduling algorithm
is a schedule that specifies what methods to execute, when to execute them, and what values
are expected from that execution. Figure 2 shows a schedule for the task structure in Figure 1.
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Figure 2: A schedule that solves the problem from Figure 1. The runtimes and qualities for
and are not as indicated in Figure 1, because both methods are facilitated, thus reducing
duration and increasing quality.

In the task structure shown here, it is assumed that the quality and duration of each method
is known with certainty and the effect of interactions among tasks is completely predictable.
Most systems-oriented work in real-time shares this assumption that the worst-case execution
time of each method is known and is relatively close to the expected execution time. For most
AI applications this is not a reasonable assumption because of the heuristic algorithms used.
The performance of AI tasks is often difficult to predict and worst-case execution time (when
known at all) is often much longer than expected (average case) execution time. For this reason
it is useful to extend our problem representation to allow uncertainty in the quality and duration
of methods, and in the effects of interactions. This of course introduces significant additional
difficulties in the building of schedules and in their execution. In particular, monitoring
of method execution becomes necessary. Along with an ordered list of methods to execute
(with expected start and finish times) a schedule now also needs to contain what we call
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monitoring points, scheduled times to interrupt method execution and check on progress, as
well as specifications of what progress to require and what to do if those requirements are not
expected to be met.

Design-to-time is related to anytime algorithm[Dean and Boddy, 1988, Russell and Zilber-
stein, 1991] and imprecise computation[Liu et al., 1991] approaches to problem solving. In
the anytime algorithm approach a procedure is available for each subproblem that achieves
increasing value as it is given increasing runtime. In early anytime algorithm work by Dean
and Boddy[Dean and Boddy, 1988, Boddy and Dean, 1989] each of these procedures was
assumed to be independent and the function mapping value to time (known as the performance
profile was assumed to be static. Dean and Boddy derived an algorithm for optimally allo-
cating time to anytime algorithms under these assumptions . More recent work in anytime
algorithm scheduling has been done by Zilberstein and Russell[Russell and Zilberstein, 1991,
Zilberstein and Russell, 1992]. They extended the paradigm to allow performance profiles to
be dependent on inputs. The focus of their work has been on compilation, that is, finding time
allocations for sets of anytime algorithms that are related by sharing inputs and outputs. They
are able to find optimal solutions for problems where the graph of anytime algorithms connected
by shared inputs/outputs is a directed acyclic graph, that is, for problems where each subprob-
lem provides outputs for exactly one other problem. For problems with shared subproblems
they describe heuristic algorithms that should generally perform quite well. Anytime algorithm
work differs from design-to-time scheduling in the assumption that all methods are anytime
algorithms with well behaved performance profiles and in the limitation of interactions to
those possible through the direct sharing of inputs/outputs. More detail on anytime algorithms
and other AI approaches to real-time are described in Garvey and Lesser[Garvey and Lesser,
1994]. Imprecise computation is a systems-oriented approach that relies on methods that have
mandatory and optional parts. Solutions to problems involve finding schedules that execute all
mandatory parts and get as much value as possible out of optional parts (usually just by spending
as much time executing optional parts as possible). Optional parts can be either anytime algo-
rithms (usually with linear performance profiles) or 0/1 algorithms that either must be executed
completely or not at all. The only kind of interaction between methods that has been explored
in imprecise computation is hard precedence constraints. Research in imprecise computation
has focussed on finding polynomial time algorithms for well constrained subsets of the general
problem[Liu et al., 1991], or showing that particular problems are NP-Complete[Ho et al.,
1992, Leung et al., 1992]. Imprecise computation differs from design-to-time in its limiting of
interactions to precedence constraints, its interest in severely limiting problem representation
to allow polynomial time solutions to be found, and its exclusive focus on optimal (rather than
heuristic, satisficing) solutions.

In this paper we first describe the kinds of problems we are interested in solving (as
represented in the TÆMS task modeling paradigm), then describe the basic mechanisms used
by our heuristic scheduling algorithm. Next we describe extensions to that algorithm to allow
it to schedule when there is uncertainty in the duration and quality of methods and the effect
of interactions. Following that we describe experiments that explore the effect of uncertainty
on the difficulty of scheduling and the quality of schedules produced. We conclude with a

A more general and more efficient algorithm for solving this problem has since been designed by
Dey, Kurose and Towsley[Dey et al., 1993].
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summary of the approach and a discussion of future research questions.

2 Problem Specification
In our work, problems are presented to the decision-maker as TÆMS task structures. The
form of such task structures is described in more detail in [Decker and Lesser, 1993]. Briefly, a
problem episode consists of a set of independent task groups , each with
a hard deadline and containing interrelated tasks . Within a task group, tasks form
a directed acyclic graph through the relationship. The quality or value of a task at a
particular time (notated Q(T,t)) is a function of the quality of its subtasks (in this paper, the
function is one of minimum (AND-like), maximum (OR-like), or sum). At the leaves of the
DAG are executable methods representing actual computations that can be performed. An
agent may have multiple methods for a task that trade-off time and quality. Besides the
relationship tasks can have other relationships to methods representing the interactions among
tasks. Such relationships include meaning that the enabling task must have
quality above a threshold before the enabled method can execute,
meaning that if the facilitating task has quality above a threshold then the facilitated method

can execute more quickly (proportional to ) and/or achieve higher quality (proportional
to ), and (the opposite of facilitates) where if the hindering task has
quality, then the hindered method will achieve reduced quality and/or increased duration
if it is executed. Note that these relationships occur from a task or method to a method. A
relationship from Task A to Task B is translated to relationships from Task A to all methods
below Task B.

3 Heuristic Design-to-time Scheduling Algorithm
This section describes the basic algorithm used to schedule TÆMS task structures. The algo-
rithm consists of three main components corresponding to the three subproblems of planning
(deciding “what” tasks to do), scheduling (deciding “when” to do those tasks), and iterative
repair (trying to improve schedules). In our work these components are initial alternative
generation, method ordering (aka scheduling), and schedule analysis. The two basic data
structures used by the algorithm are alternatives and schedules. An alternative is an annotated
set of methods that, if they were all to achieve their expected quality, would achieve quality for
their task. Alternatives are generated for each task and task group as described below. They
are combined together to form alternatives for the entire set of task groups to be scheduled. A
schedule is an ordered set of methods with expected start times, finish times and qualities. A
graph showing the interconnections between the components and data structures is shown in
Figure 3.

3.1 Initial Alternative Generation

Initial alternative generation involves analyzing a task structure and deciding on a set of alter-
natives for each task group. This initial analysis is done without reference to task relationships
or deadlines, so it is possible that a given method set could not possibly achieve quality either
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Figure 3: A chart showing the interconnections between components of the scheduling algo-
rithm.

because of interacting relationships (e.g., some methods not being enabled by any methods in
the method set) or deadlines. To help alleviate some of the uncertainty introduced by ignoring
deadlines and relationships, a broad range of alternative generators are used. Different genera-
tors will be applicable in different problem solving circumstances (e.g., extreme time pressure,
no time pressure, ).

Alternatives are generated by recursively generating alternatives for each task in the task
structure starting at the leaves. There is exactly one alternative for each method that consists of
just that method. For tasks there is a small set of alternative generators that generate alternatives
using the quality accumulation function for the task and the alternatives for each child task.
At this point the complete set of initial alternative generators (not all of which are applicable
for all tasks) consists of:

highest quality – This generates the highest (expected) quality alternative with the min-
imum (expected) duration. For the sum quality accumulation function this is just the
highest expected quality alternative for each subtask combined together. For minimum
quality accumulation we find the highest quality alternative for each subtask, take the
one that has the lowest quality, and combine it with the fastest alternative for each
other subtask that achieves at least that (lowest) quality. This is because when quality is
combined using minimum it is not possible to achieve higher than this lowest quality, so
there is no point in achieving higher quality for other subtasks. For maximum quality
accumulation this is the alternative for the one subtask that has the highest expected
quality with the highest value. For example, in the task structure in Figure 1 this the
highest quality alternative for is and for it is .

minimum duration – This generates the minimum (expected) duration alternative that
achieves nonzero quality. For minimum quality accumulation this is the combination
of the minimum duration alternatives for each subtask. For maximum and sum quality

Note that in these alternative generators there is a distinction made between expected qual-
ity/duration and maximum possible quality and minimum possible duration. Expected quality/duration
is the quality/duration a method would achieve if no relationships had any effect on it. Maximum
possible quality is the quality that a method would achieve if all positive relationships had their most
positive effect and no negative relationships had any effect. Minimum possible duration is similar.
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accumulation this is the alternative for the one subtask that has the minimum expected
duration with the minimum value. From the example, the minimum duration alternative
for is and for it is .

maximum possible quality – This is identical to highest quality, except it uses maximum
possible quality rather than expected quality.

quality/duration tradeoff – This generates a fixed number of extra alternatives for tasks
with sum and minimum quality accumulation. The idea is to allow the exploration
of a few of the exponential number of possible combinations of subtasks for sum and
minimum quality tasks. At this point a parameterized number (5 by default) of extra
alternatives are generated that combine alternatives with the highest quality to duration
ratios. In some cases these alternatives are either identical to existing alternatives or
achieve lower or equal quality to existing alternatives in higher or equal duration. These
inferior alternatives are pruned. From the example, a quality/duration tradeoff alternative
for is which has an expected quality of about half the highest
quality alternative, and a duration that is about 50% less. In tight deadline situations
this alternative might be preferable to the longer duration alternative.

nonlocal – This and the next generator are only useful in multiagent situations. This
generator looks to see if a nonlocal result is expected for the task (i.e., if another agent has
committed to transmitting the result for this task by a particular time). If such a result
is expected, then an alternative that relies on that result is generated with the expected
quality of the result and a duration of zero.

minimize nonlocal – This generator is similar to highest quality, but tries to find the
highest quality alternative with minimum nonlocal result usage, rather than minimum
duration. Associated with each alternative is a list of nonlocal results that it is relying
on to achieve its expected quality. When alternatives are combined to generate new
alternatives, their nonlocal results are combined as well. This generator tries to find an
alternative that has the shortest list of nonlocal results.

When two different alternative generators generate identical alternatives (consisting of the same
method set) those alternatives are combined.

The result of this process is a set of alternatives for each task group. The next step is to
combine these task group alternatives together to form complete alternatives for the entire
task structure. Since the order in which this combination occurs does not matter (although
the order of methods in schedules certainly does matter) the number of such combinations
is simply the number of alternatives for each task group multiplied together. The number
of initial alternatives for a task group is usually between 5 and 10, although sometimes the
number is lower because of the combining of identical alternatives. Thus the number of
possible combinations of alternatives is approximately where is the semiconstant
number of alternatives for each task group and is the number of task groups. Clearly for all
but a small number of task groups this number is too large to consider. At this point all such
possible combinations of alternatives are actually generated, but a better approach would be
to heuristically generate a parameterized number of them. In the example, 2 alternatives are
generated for and 3 alternatives are generated for , leading to 6 initial alternatives.
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3.2 Scheduling of Alternatives

Once an initial set of alternatives for the entire set of task groups has been generated, we begin to
take these alternatives and schedule the methods they contain. The first step in the scheduling
of these alternatives is choosing which alternative to attempt to schedule. A simple heuristic
technique is used to make this choice. Initially it chooses the fastest acceptable alternatives, with
a goal of getting a minimal acceptable schedule. If the schedule analysis module has suggested
alternatives with conservative or liberal biases (as explained below) these are given preference.
Then it begins looking at the alternatives with the highest expected quality value. These
heuristics for ordering the alternatives contribute to the anytime character of the scheduling
algorithm by finding a minimal acceptable schedule as soon as possible and finding better
schedules as more alternatives are considered. When an alternative is chosen, the scheduler first
checks to see if the schedule to be produced by this alternative could possibly be better than the
best schedule we already have (by comparing the maximum quality the schedule could possibly
produce to the expected quality of the best existing schedule). If this best possible quality is less
than our best existing quality, then scheduling is terminated (since the chosen alternative is the
best still unscheduled). Scheduling is also terminated when a threshold number of alternatives
have been considered. Otherwise the best alternative is returned.

Once an alternative has been chosen, it is scheduled in a simple, nonbacktracking, heuristic
manner. The basic procedure is extremely simple.

1. Start with an empty schedule that does nothing.

2. Rate each method in the chosen alternative against a set of heuristics (taking the current
schedule into account.)

3. Add the method with the highest nonnegative rating to the end of the schedule. If all
methods have been scheduled, then return the current schedule, else if all ratings are
negative, then consider adding idle time to the end of the schedule (followed by a repeat
of step 2 or return), else a repeat of step 2.

A negative rating for a method means that it is inappropriate to add the method to the end of
the current schedule, probably because it is not enabled or would violate a deadline or earliest
start time constraint. A zero rating means it would probably be better not to add the method,
but it is not an error to do so. A positive rating assesses the method’s utility relative to other
positively rated method’s utilities.

The standard set of heuristics is:

enforce enables – Gives a negative rating to unenabled methods and a 0 to all other
methods.

enforce hard deadline – Gives a negative rating to any method that would exceed its
deadline if the method was added to the end of the schedule and a 0 to all other
methods.

enforce earliest start time – Gives a negative rating to any method that would violate an
earliest start time constraint if the method was added to the end of the schedule and a 0
to all other methods.
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prefer facilitators – Increases the rating of all methods that allow other methods to
transition from unfacilitated to facilitated if the facilitating method is added to the end
of the schedule. The increase in value is proportional to the number of methods that are
newly facilitated. Does not change the current rating of nonfacilitating methods.

delay facilitatees – Gives a 0 rating to all methods that could be facilitated by tasks that
have not yet achieved nonzero quality (meaning that the facilitation would not take place
if the method was added to the end of the schedule). Allows the current rating of all
other methods to be unchanged.

prefer increased quality – Increases the rating of all methods that would directly increase
the quality of their task group if they were to be added to the end of the schedule. The
rating increase is proportional to the increase in quality for the task group. Allows the
current rating to be unchanged otherwise.

avoid violating commitments – Reduces the rating of methods that would cause com-
mitments to be newly violated. The reduction in rating is proportional to the penalty
associated with violating the commitments. Allows the current rating to be unchanged
otherwise.

prefer satisfying commitments – Increases the rating of methods that cause commitments
to be newly satisfied. The increase in rating is proportional to the value of satisfying the
commitment. The rating is unchanged otherwise.

prefer earlier deadlines – Increases the rating of methods proportional to the earliness
of their deadlines. The increase is ratings is substantial and causes all positively rated
methods to be rated in an earliest deadline first manner with all other ratings breaking
ties among methods with the same deadline.

These heuristics are evaluated in the order given and as soon as any heuristic assigns a negative
rating, the process is aborted and the negative rating is returned.

Besides the standard heuristic set given above there are two minor modifications that bias
the scheduler to be more conservative or more liberal. An alternative can have a suggested
scheduling bias associated with it that indicates the preference of the originator of the alternative.
The suggestion of such nonstandard biases is done by the Schedule Analysis component as
described below. The intent of these biases is to change the way the scheduler orders methods
in over constrained situations (where there is not enough time available to schedule all desired
methods) or less constrained situations (where extra time is available to improve quality). In
over-constrained situations it might be better to jettison work on task groups that we have not
been able to generate quality for. In less constrained situations it might be useful to dampen
some of the best-first character of the heuristics to allow longer duration combinations of
methods to be considered.

The liberal scheduling heuristics are identical to the standard, except that delay facilitatees is
replaced by help circular facilitates which looks for cases where two methods that both cause the
facilitation of another method are schedulable. Normally, the one that generates higher quality
would be scheduled (because of the ratings of other heuristics). This heuristic gives a higher
rating to the lower quality method in the pair, thus allowing the facilitation to occur, and still
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allowing the other (higher quality) member of the pair to be facilitated later thus achieving
higher overall quality. The prefer increased quality heuristic is also removed from the liberal
set, under the assumption that enough time is available to schedule all methods, so scheduling
highest quality first has no useful purpose and might interfere with other ordering heuristics.

The conservative scheduling heuristics are also identical to the standard, except the addi-
tional heuristic avoid working on hopeless task groups is added to the very end. This heuristic
assigns a rating of 0 to methods whose task group is on a list associated with the alternative.
This is a list of task groups that the originator of the conservative bias for the alternative believes
cannot possibly achieve nonzero quality. This heuristic has the effect of not scheduling work on
methods from task groups on that list unless no other methods are executable. The intention
is to allow more time for other task groups, which might allow them to achieve higher quality
than they would otherwise achieve.

For example, in the example task structure from Figure 1, one alternative for the set
of both task groups is , combining the fastest alternative for
with the highest quality alternative for . When this alternative is scheduled, the pre-
fer increased quality heuristic dominates resulting in a schedule that orders the methods

. This schedule generates a total quality of 358.5 (18 for
and 340.5 for ), but does not take advantage of the facilitates from to and from

to . The reason the heuristics initially rate the methods this way is because this ordering
returns the most quality quickly. The heuristics are greedy because no backtracking is done
when schedules are built, so it is always preferred to get as much quality as possible as quickly
as possible. However, in this case the liberal scheduling improvement (described below) will
notice that all methods were successfully scheduled, but one or more methods did not achieve
their maximum quality (in this case methods and .) When the methods in the alterna-
tive are rated using the liberal scheduling heuristics, the ordering is
(as shown in Figure 2) and the resulting total quality is 438.8 (18 for and 420.8 for ).

3.3 Schedule Analysis

Each schedule that is returned by the Alternative Scheduling component undergoes some level
of analysis by this component. First, the schedule is evaluated against all evaluation functions
to determine if it is better than the best current schedule against any of them. If it is, then it
is pushed on the list of good schedules to be remembered. The current evaluation function
prefers schedules that achieve the highest quality. From the set of schedules that achieve the
highest quality it prefers the schedules that have the shortest duration. An extra reward is
given to schedules that achieve nonzero quality for all task groups. In the work on uncertainty
mentioned below, a consideration of the probability that the schedule will achieve its expected
quality is also done.

Following this basic evaluation, a series of local improvements are attempted on the schedule.
These improvements are a form of iterative repair[Zweben et al., 1993], except that each
successful improvement adds new alternatives for the entire set of task groups to those being
considered (i.e., new plans), rather than actual complete schedules. There are parameters that
control both how many total alternatives can be generated and how many alternatives can be
generated as possible ways to improve any particular schedule. In practice no more than about
4 improvements can be suggested for any one schedule given limitations of the current set of
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local improvements, but this number will increase as new, more specialized improvements are
added.

The first set of improvements check to see if the schedule could potentially benefit from a
scheduling bias. These biases adjust the set of heuristics used to order the methods in a schedule.
The intent is consider different ways of ordering the methods, either because methods achieved
zero quality or missed deadlines (calling for a conservative bias) or all methods were scheduled
but some achieved less than their maximum possible quality (calling for a liberal bias).

The conservative bias is biased against particular task groups (indicated as part of indicating
the conservative bias.) Methods associated with these task groups will not be scheduled unless
nothing else can be scheduled. The intent is to allow consideration of methods that might be
able to achieve quality but haven’t because time is being wasted on task groups that do not
end up achieving quality. The consider conservative bias improvement notices if the schedule
was unbiased or had a conservative bias but still had zero quality for some task group not in
the conservative bias list for the alternative, and if so generates an alternative that has the same
methods as the schedule’s alternative, and a conservative bias with a list of task groups that
includes the previous schedule’s list (if any), plus the earliest deadline zero quality task group
(not already in the list) in the schedule.

The liberal bias is biased in favor of taking chances that might achieve higher quality, but
might achieve less or no quality if they fail. Normally the scheduling heuristics are greedy and
try to achieve quality as quickly as possible, even if it is not the best possible quality. The liberal
bias changes this to favor orderings that might achieve higher quality, but might not complete
by a deadline. The consider liberal bias improvement notices if the schedule was unbiased, all
methods in the alternative were scheduled and at least one task group has less than its maximum
possible quality, and if so generates an alternative that has the same methods as the schedule’s
alternative, and a liberal bias.

The next set of improvements try to add additional methods to the schedule’s alternative
to allow unenabled or unfacilitated methods to be enabled or facilitated. The unenabled
method improvement looks for methods in schedule that were not enabled, and combines an
alternative for the task that enables the unenabled method (from the alternatives originally
generated for that task) with the schedule’s alternative. The nonmax quality improvement looks
for methods in the schedule that are not achieving their maximum possible quality (because
of facilitates that are not taken advantage of) and combines an alternative for the facilitators
of these methods (again from the original alternatives generated for those facilitating tasks)
with the schedule’s alternative. If the facilitators already achieve nonzero quality, then it is
probably a circular facilitates problem of some sort, so a different alternative (different than
the one already included in the schedule alternative) for the facilitator is added to the schedule.
The nonmax quality circular improvement is very similar. It combines another alternative for
methods that do not achieve their maximum quality with the schedule’s alternative. This also
is meant to help with circular facilitates in the case where the nonmax quality method has to
be executed too early to be facilitated (presumably because it enables or facilitates something
else) and allows another alternative to be scheduled. Both of these last two improvements work
best with liberal scheduling biases, but they are first tried with the standard bias to ensure that
no obvious schedules are missed. They will be considered for a liberal bias after the standard
version is actually scheduled.

Once all of the improvements have been considered, control passes back to the Alternative
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Scheduling component. This component can either decide to schedule another alternative or
stop scheduling.

3.4 Anytime Behavior

Because of the heuristic approach that is used to choose which alternatives to schedule, a
minimal value schedule is usually found quickly and the schedules produced tend to improve
in value as more alternatives are scheduled. This gives the scheduling algorithm an anytime
algorithm character.

Figure 4 shows the sum quality of the best schedule found (so far) as more alternatives are
considered. In this case, the first alternative considered for the set of task groups is the alternative
that combines the minimum duration alternative for each task group (consisting of ).
The schedule generated from this alternative achieves a sum quality of 30. This is followed by
a liberal-biased version of this alternative (because does not achieve its maximum quality)
that generates the same schedule. The next alternative considered is the combination of the
highest quality alternatives for each task group (consisting of ) and
the resulting schedule achieves a sum quality of 298, but 0 quality for (because it is
unable to complete execution of before its deadline of 40). This is followed by several
improvements that try to increase the qualities for and , as well as achieve nonzero quality
for . These improvements are unable to improve the sum quality. Next the alternative that
combines the minimum duration alternative for with the highest quality alternative for

is considered. As described at the end of Section 3.2, this initially results in an ordering
that achieves a sum quality of 358.5. Rescheduling with a liberal bias improves this sum
quality to 430.8. This is followed by 10 more improvements that try to achieve higher quality
for , but are unsuccessful. At this point scheduling terminates, because no alternative is
left that could possibly achieve a higher sum quality. Alternatives not considered include, for
example, the highest quality for combined with minimum duration for , because it
could not achieve a sum quality of more than 69 (57 for plus 12 for ).

This algorithm has a few parameters that can externally control the behavior of the algo-
rithm. Judicious use of these parameters can result in anytime performance by the algorithm.
Unfortunately it would probably be quite difficult to calculate an a priori performance profile
for the scheduling of a particular task structure. It should (in principle) be possible to predict
the bounds on runtime for the algorithm given a particular task structure, but it is very difficult
(probably impossible) to predict the expected quality and duration of the resulting schedule
without actually doing a minimum amount of actual scheduling.

4 Extensions for Uncertainty
Unfortunately, in many real applications the precise quality and duration values used in the
algorithm described above might not be available, either because it is too expensive or difficult to
calculate them or because of inherent uncertainty in the problem domain. In those situations,
it is desirable to extend the problem solving model to include uncertainty. This has the effect
of significantly increasing the difficulty of the scheduling problem, but schedulers that take
uncertainty into account are likely to create schedules that achieve much better results in
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Figure 4: The sum quality of the best schedule as a function of the number of alternatives
considered for the task structure from Figure 1.

uncertain situations both because they can take the likelihood of achieving results into account
and because rescheduling overhead can be reduced (as described below) by doing contingency
scheduling.

Uncertainty is introduced to the system as uncertain duration and qualities for methods
and uncertain parameter values for relationships. In this work the form of these uncertainties
is discrete distributions (e.g., there is a 20% chance the value is 12, a 50% chance the value is
13, and a 30% chance the value is 14). Each method has independent discrete distributions for
its quality and duration. Each relationship has a discrete distribution for its parameters (e.g.,
the duration and quality power parameters for facilitates relationships).

In extending the heuristic scheduler described above to work with uncertain information
two major changes are required: modifying the scheduler to maintain and propagate un-
certain information as schedules are constructed, and annotating schedules with monitoring
information and using that information at runtime to monitor method execution.

When constructing a schedule it is necessary to propagate uncertainty information through
the schedule. For example, the start time distribution for a method in a schedule is the finish
time distribution of the previous method in the schedule, and the finish time distribution for a
method is its start time distribution plus its duration distribution. For those times in the finish
time distribution that are later than the deadline for the method, the quality distribution has
to be updated to be 0.

When a method is added to a schedule, the scheduler looks for a lower quality, but faster
method that could replace the added method. If it can find such an alternate, the schedule
is annotated to remember the alternate and switching to the alternate is one of the options
considered when monitoring is done. (In the future, we would like to explore more complex
versions of this contingency scheduling that might have alternates for larger sections of a
schedule or entire contingent schedules that continue on from a monitoring point.)

Once a schedule has been constructed, it is evaluated (and possibly improved) as before. As
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mentioned above, one of the factors taken into account in this evaluation is the likelihood that
this schedule will produce the quality that is expected. The importance of this likelihood could
be varied, depending on the tolerance for a schedule occasionally not completing as expected
and on the amount of monitoring.

When a schedule is executed, as each method begins execution monitoring points are assigned
to it. These are times at which execution will be stopped and progress on the method execution
evaluated. Associated with each monitoring point are minimum quality and maximum duration
values. If these expectations are not being met, the monitor has the option of reinvoking the
scheduler or switching to an alternate method (if one is available). In our current (somewhat
simple) implementation, monitoring is always done at the latest point that the alternate could
still begin execution (to ensure that we allow the option of switching to the alternate), and
periodically (with an experimentally controlled period) if no alternate is available.

5 Experiments
The intent of our experiments is to understand the effects of uncertainty on the quality
of the results produced by our scheduling algorithm. In the first experiment we compare
our approach of using expected values from the quality and duration distributions with the
more traditional systems-oriented approach of using worst-case values. As the scheduler is
propagating quality and duration distributions during schedule construction, it is often useful
to distill the distribution down to a single number. Normally the scheduler uses the median
value (50th percentile) of the distribution. In this experiment we modified the scheduler to
use a time percentile for time-related distributions (e.g., duration) and a quality percentile for
quality-related distributions. When these values are set to 1 for time and 0 for quality the
scheduler will make worst-case assumptions about the expected quality and duration of the
distribution in question.

We ran the scheduler on 100 randomly generated problem episodes (generated with envi-
ronmental parameters that result in task structures with at least the size and complexity of the
one in Figure 1) with each of the two possible values for the two percentiles that are varied.
Because the variance between these randomly generated episodes is so great, we took advantage
of the paired response nature of the data to run a non-parametric Wilcoxon matched-pairs
signed-ranks test [Daniel, 1978] to compare the worst-case values (0 for quality, 1 for time)
with the median values (0.5 for each). The null hypothesis is that there is no difference in the
sum of quality for all task groups in each pair of runs. We were able to disprove this hypothesis
( ) and, on average, the runs using the worst-case values achieved 3.6 percent less
quality. We were not able to disprove the null hypothesis that there is no difference between the
number of deadlines missed using the two different values (meaning no significant difference
was detected between the number of deadlines missed in the two runs.)

We next extended this experiment to look at the effect of deadline tightness on the quality
of schedules produced. As above, we compared using worst-case quality and duration values
to using median values. It might be imagined that as deadlines become tighter, the usefulness
of using worst-case values increases. Our results suggest this is not true, in fact as deadlines
become tighter, the value of using median values increases. Again we used a non-parametric
Wilcoxon matched-pairs signed-ranks test to compare worst-case values with median values for
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deadlines that were 0.5 and 0.75 times the original deadlines. The null hypothesis is that there
is no difference in the sum quality for all task groups in each pair of runs. We were able to
disprove this hypothesis ( for 0.5 times deadline and for 0.75 times
deadline) and, on average, the runs using the worst-case values achieved 4.7% and 5.8% less
quality respectively. Again no significant difference was detected in the number of deadlines
missed.

These results suggest that there is potential benefit from taking uncertainty into account
when scheduling, rather than just using worst-case values, and that this benefit can be gained
without missing any more deadlines than are missed when worst-case assumptions are made.

6 Future Work
There are several directions in which this research can be extended. Some of these directions
include extending the kinds of task structures that can be scheduled (such as by adding the
ability to schedule methods that are anytime algorithms, increasing the set of relationships
that are handled, and adding the ability to schedule tasks that require non-CPU resources),
improving the heuristic performance of the scheduling algorithm (such as by adding more
schedule improvement modules and making the scheduler more aware of its own use of
resources), and testing the ideas in a real application. Work in each of these areas is planned as
part of the continued development of the design-to-time scheduling approach.
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