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Abstract

In this paper, we develop bounds on the individual session backlog and delay distribu-
tion under the Generalized Processor Sharing (GPS) scheduling discipline . This work is
motivated by, and is an extension of, Parekh and Gallager’s deterministic study of the GPS
scheduling discipline with leaky-bucket token controlled sessions [PG93a,b, Parekh92].
Using the exponentially bounded burstiness (E.B.B.) process model introduced in [YaSi93]
as a source traffic characterization, we establish results that extend the deterministic study
of GPS: for a single GPS server in isolation, we present statistical bounds on the distribu-
tions of backlog and delay for each session. In the network setting, we show that networks
belonging to a broad class of GPS assignments, the so-called Consistent Relative Session
Treatment (CRST) GPS assignments, are stable in a stochastic sense. In particular, we
establish simple bounds on the distribution of backlog and delay for each session in a Rate
Proportional Processor Sharing (RPPS) GPS network with arbitrary topology.

1 Introduction

The provision of Quality-of-Service (QOS) guarantees has become an increasingly important
and challenging topic in the design of high-speed networks. One important issue in the provision
of QOS guarantees is the study of the scheduling disciplines to be employed at network switches.
Ideally these scheduling disciplines should, on the one hand, provide isolation between sessions
so that the misbehavior of one session will not affect other sessions, and on the other hand,
exploit statistical multiplexing gain [CSZ92]. They should also, preferably, be amenable
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to analysis so that theoretical bounds can be derived. The provable bounds can be either
deterministic (i.e., hard guarantees) or statistical (i.e., soft guarantees) depending on the nature
of applications.

Perhaps the most widely studied non-FCFS scheduling is the Generalized Processor Sharing
(GPS) scheduling discipline (also known as Weighted Fair Queueing (WFQ) in the literature
[e.g. DKS89, CSZ92]). In [PG93a,b, Parekh92], Parekh and Gallager presented a thorough
examination of GPS with leaky-bucket token controlled incoming traffic (hence traffic from each
session conforms to Cruz’s Linear Bounded Arrival Process (LBAP) traffic model [Cruz91a,
Cruz91b]). Given that each session is leaky-bucket controlled and that the total rate of the
arrivals is smaller than the service rate, it was shown, in the case of a single GPS server in
isolation, that the backlog and delay of each session are bounded from above; and in the case
of a network of GPS servers, that under a broad class of GPS assignments known as Consistent
Relative Session Treatment (CRST) GPS assignments, the network is stable. These bounds
are actually attainable in the worst-case scenario. Of particular interest is a subclass of CRST
GPS networks, the so-called Rate Proportional Processor Sharing (RPPS) GPS networks. For
RPPS GPS networks, bounds on backlog and delay for each session do not depend on the length
of the route the session traverses but only on the bottleneck node on the route. In this case,
simple closed form expressions can be derived for each session. These nice features of GPS
make it an attractive choice when QOS guarantees must be made.

The work of Parekh and Gallager makes it possible to provide worst-case deterministic bounds
(i.e., hard guarantees) for networks employing the GPS scheduling. As many applications,
especially multimedia applications, can tolerate a certain amount of loss due either to late
arrival or buffer overflow, it is more desirable if statistical bounds (i.e., soft guarantees) can
also be provided. Moreover, simulation results [YKTH93] show that deterministic upper
bounds are usually very conservative. Hence, if these bounds are used as admission control
criteria, low utilization of network bandwidth will result.

This motivates us to investigate the behavior of the GPS scheduling discipline in a stochastic
setting. In this paper, we model the source session traffic as an E.B.B. process, a notion
introduced in [YaSi93]. Using techniques similar to those of Parekh and Gallager’s, we
examine the sample path behavior of the sessions served by a single GPS server in isolation and
derive several useful relations on a sample path. Based on these relations, we derive statistical
bounds on the backlog, delay and departure processes for each session. We then apply our
result for an isolated GPS server to networks of GPS servers. We introduce the notion of a
feasible partition, which captures the essence of the notion of feasible orderings introduced by
Parekh and Gallager. With the help of this notion, we are able to obtain tighter bounds for each
session. Parallel to the deterministic case studied by Parekh and Gallager, we show thata CRST
GPS network with arbitrary topology is stable in a statistical sense. In particular, for RPPS
GPS networks, the upper bounds on the backlog and delay distributions for each session are
shown not to depend on the length of the route the session traverses but only on the bottleneck



node on the route and have simple closed form expressions.

In [YaSi94], Yaron and Sidi also studied GPS scheduling discipline using E.B.B. processes
as source traffic models for sessions. Their focus was mostly on establishing the input-
output relation for a single GPS server and the stability of CRST GPS network with E.B.B.
arrival processes. Their analysis was based on direct investigation of the output processes
of the sessions, and the E.B.B. characterizations for the output processes were expressed in a
recursive fashion. In contrast, we take a decomposition approach in the analysis of the sample
path behavior of a GPS server which allows us to decouple the sessions. As a consequence,
we are able to obtain bounds on the backlog and delay distribution for each session and derive
simpler E.B.B. characterizations for the output processes. Moreover, in the network setting,
we define CRST GPS assignments in terms of the feasible partition at each node. This yields a
larger set of CRST GPS assignments than Parekh and Gallager’s original definition and hence
we are able to show stability results for a broader class of GPS networks than [YaSi94]. In
particular, we obtain simple but important results for RPPS GPS networks which parallel those
for the deterministic case.

A number of papers have also been concerned with developing performance bounds. For
example, several studies [Cruz91a, Cruz91b, Chang94] have obtained performance bounds in
the case that sources are characterized by deterministic traffic models (Cruz’s LBAP model
and Chang’s Envelope Process model). Stochastic models have been considered for policies
other than GPS in [Kurose91, YaSi93, Chang94]. The second of these, [YaSi93], introduced
the Exponentially Bounded Burstiness (E.B.) process model which we use in our work. These
studies derive stochastic bounds on some interested performance metrics under arbitrary work-
conserving service disciplines. Other work includes studies of the Stop-and-go scheduling
policy, {Go90, Go91), Hierarchical Round Robin [KKK90], and some rate-control or jitter-
control based algorithms (e.g., [ZF93, VZF91]).

The rest of the paper is organized as follows. In Section 2, we introduce the necessary notation.
In Section 3, we examine the sample path behavior of sessions for a single GPS server. In
Section 4, we present bounds on backlog and delay distribution and establish input-output
relations. In Section 5, we introduce the concept of a feasible partition and refine the bounds
obtained in the previous section. In Section 6, we analyze a network of GPS servers, show that
CRST GPS networks are stable and study RPPS GPS networks in particular. We also present
a numerical example for a simple RPPS GPS network. Finally in Section 7, we conclude the
paper and discuss possible future work.



2 Preliminaries

Generalized Processor Sharing (GPS) is a work-conserving scheduling discipline defined under
the assumption that sources are described by fluid models, (i.e., packets are infinitely divisible!)
and is work-conserving. Extensions to account for the packet nature of communication are not
difficult [PG93a, YaSi93b], but will not be considered here. Consider a GPS server with rate r
serving N sessions. Following Parekh and Gallager’s definition, each session 1 is assigned a
fixed real-valued positive parameter ¢;, where {¢:}1<i<n is called a GPS assignment. The N
sessions share the server in the following way:

For1 <7 < N, let S;(r,t) be the amount of session ¢ traffic served in a time interval [, ¢].

Then Sirt)
i\7 P .

Sj(T,t)Z¢j’ 7=L2,...,N (1)
for any session 2 that is backlogged throughout the interval [r,t]. A session is backlogged
throughout an interval if there is always traffic queued for that session at all times in the
interval [PG93a, Parekh92]. From (1), one can derive that when session 7 is backlogged, it is
guaranteed a backlog clearing rate (or equivalently, a guaranteed amount of service per unit
time) of g; = —,?‘——r For simplicity, we will assume » = 1 throughout the paper, except in

2,‘::1 2 :

Section 6 where.we consider a network of GPS queues.

We use the exponentially bounded burstiness (E.B.B.) process introduced in [YaSi93] to model
traffic generated by a source. We say a session ¢ arrival process, A;, is a (p;, Ai, o;)-E.B.B.
process, if for any 7 and ¢ such that 7 < ¢ and for any z > 0,

Pr{A;(r,t) 2 pi(t — 7) + z} < Nje™™F (2)

where p; is called the long term upper rate of the arrival process, A; the prefactor and o; the
decay rate of the exponential decay function. As a necessary stability condition, we require
that ¥, p; < 1.

A corresponding concept of an E.B.B. process is the concept of an exponentially bounded (E.B.)
process. We say a stochastic process X (t) is an (a, A)-E.B. process if for any ¢ and any z > 0,

Pr{X(t) >t} < Ae™®". (3)

As in the case of E.B.B. process, a is the decay rate and A the prefactor of the E.B. process.
Relationships between E.B.B. and E.B. processes are found in [YaSi93].

!Namely, we are regarding traffic from each session as a bit flow. There is no notion of “packet” in the fuid
model [PG93a, Parekh92].



In [PG93a,b, Parekh92], Parekh and Gallager showed? that, given Zfi , Pi < 1, there exists an
ordering among the sessions such that, after relabeling of the sessions,

) i1
i< =p—(1-Yp) 1Si<N. @
j=i ¢j i=1

Such an ordering is called a feasible ordering (with respect to {p;}1<i<y and {:}1<i<n).
In general, there are many feasible orderings associated with a given set of {pihi<i<n and

{éihi<icn-

We introduce several basic notations for the statistical analysis of a single GPS server in
isolation. Notation for the network analysis is deferred until Section 6.

For1 < i < N, A; denotes the arrival process for session z and S; the corresponding departure
process, where for any 7 < t, A;(r,t) is the amount of traffic from session 7 during the time
interval [r, t], and S;(7, t) the amount of service session ¢ received during the same period. The
session 7 backlog at time t, denoted as Q;(t), is given by Q:(t) = sup,,{A:i(7,t) — Si(7,t)}.
The delay experienced by a session 4 traffic arriving at time ¢ is denoted as D;(t). If the traffic
from a session is serviced by the FCFS scheduling discipline (which is assumed to be so in
this paper), then D;(t) is the time that the session 7 backlog at time ¢, Q;(t), gets cleared.
Furthermore, we say a time interval, B;, is a session ¢ busy period if it is the maximal interval
such that session ¢ is backlogged throughout the interval. For any time ¢ € B;, we say session
i is busy at time ¢. A time interval B is a system busy period if it is the maximal interval such
that, at any time in the interval, at least one session is busy.

3 Sample Path Behavior of a Single GPS Server

We first study the sample path behavior of the sessions served by a single GPS server. For
convenience of exposition, we assume that each session has its own infinite capacity queue.
Recall that traffic for each session, A;, is characterized by an E.B.B. process with long term
upper rate p; such that'Zfil pi < r = 1. By abuse of notation, let A; also denote a sample
path (or a realization) of a random arrival process A;, so A;(7,t) is the amount of traffic from
session 7 during the time interval [r, ¢] on this sample path. In general, we assume that A; is a
right continuous function with left limit, therefore A;(t,t) = 0 for any ¢. Similarly, we will use

Si, Qi and D; to denote the corresponding sample paths of the corresponding random processes
Sis Qi and Di-

The analysis of a stochastic system such as a GPS system where several queues share a server
is generally very difficult, as the amount of service a session receives at any moment depends

2 Actually the strict inequality here and in (4) can be replaced by “<" in the deterministic case they considered.
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Figure 1: Decomposition of a GPS system.

not only on its arrival process and the content of its own queue at the moment but also on
the arrival processes to the other sessions and the contents of their queue. To circumvent this
difficulty, we would like to decompose the GPS system in such a way that the sessions are
decoupled. Imagine that we divide a GPS server of rate » = 1 into a set of N (fictitious) servers
withrates 74, .. ., 7n, so that, instead of having a GPS system with IV sessions sharing a server,
we have a decomposed system consisting of N separate queues, each of which has a dedicated
server (see Figure 1). For each session  in the decomposed system, let §;(t) denote its queue
length (or backlog) at time ¢. We hope to bound the (actual) session % backlog Q;(t) of the real
GPS system in terms of the (fictitious) session ¢ backlog &;(t)’s of the imaginary decomposed
system. Now the crucial question is how to decompose the GPS system so that our goal can be
achieved, i.e., how shall we choose the r;’s? Obviously we must have ¥ r; < 1 and p; < ;
for &;(t) to be well-defined. We need to impose an additional relation on the =;’s in order to
reflect the GPS scheduling discipline, corresponding to relation (4). We choose a set of r;’s

such that, after some relabeling of the sessions,

) i-1
T < ,35 (1->_r), 1<i<N. (5)

Ej:i ¢J’ i=1
As long as N #; < 1, such a feasible ordering of the sessions always exists. Note that as
pi < 3, we have ¢; = r; — p; > 0. Without loss of generality, we assume that1,2,...,N isa

feasible ordering of the N sessions with respect to {r;}1<i<n throughout the rest of this section
and the next section.

From the study of G/G/1 queue, it is well known that é;(¢) can be expressed in the form,

4(t) = itg){A,-(s,t) —ri(t — s)}. (6)
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Clearly, &;(t) > 0 for any ¢. For T < ¢, applying (6) to §;(7) and &;(t), we can easily derive the
following useful inequality:

Ai(r,t) < it — 1) + &(t) — &i(7) < r(t — 1) + 8(t). @)

For any ¢, let () = Qi(t) — &(t). As Si(r,t) = Ai(r,t) + Q:i(7) — Qi(¢), from (7), we have
Si(r,t) < ri(t — ) + m(r) = mi(t) < milt — 7) + mil7) + &i(2)- (8)
where the last inequality holds as Q:(t) > 0.

Now we state an important fact, the proof of which is relegated to the appendix.

Lemma 1 For each sessioni, 1 <1 < N, at any time t,
> Qi(t) < 3 8i(t)- 9)
i=1 i=1

This lemma says that on a sample path basis, the sum of the (actual) backlogs of the first
sessions of a feasible ordering in the real GPS system is bounded from above by the sum of
the (fictitious) backlogs of the corresponding sessions in the imaginary decomposed system.
We can also bound the (actual) backlog, Q;(t), and delay, D;(t), of each individual session of
the real GPS system in terms of the §;(¢)’s, but first we need to establish a lower bound on the
session 1 service function S; when it is in a busy period. This is stated in Lemma 2 below. The
bounds on individual sessions are then given in Lemma 3.

Lemma 2 For any t, let T be the beginning of a session 1 busy period that contains t. Then

-
Sirit) 2 (e = 7) = - 3 55(e). (10)
j=1 73 j=1

Proof: As session 1 is busy in [, ¢, from the definition of GPS, we can easily derive that

@i =
S,' s 2 - T — Sj T, .
(r,t) z:j-i,-«ﬁ,-(t T 1_2_21 (7,t)) (11)

By (8) and Lemma 1, we have

i-1 i-1

Y Si(mt) < Do(mi(r) +ri(t —7) + 85(¢))

i=1 i=1
i-1

Y (ri(t — ) + 85(t)).

i=1

IN



Substituting the above inequality into (11) and noticing that r; < +(1 - ¥ile;), we

=1
obtain that
Si(r,t) > ri(t - Z 8;(t). (12)
J—t J—l

N

Lemma 3 Foranyt,
Qi(t) < &t Z 8;(t (13)

]—l ¢.7

and

D;(t) < p (5 (t) + Z& (t)) (14)

where g; = =i isthe guaranteed backlog clearing rate for session 1.

PIRRYS

J—s

Proof: Let T be the beginning of a session i busy period that contains ¢t. As @;(t) =
A;(7,t) — Si(r,t), from (7) and Lemma 2, we obtain (13). (14) follows immediately as session
1 is guaranteed a backlog clearing rate of g;. : "

Forr < t, as Si(7,t) < Ai(r,t) + Qi(r), applying Lemma 3 to Q;(7), we have

Lemma 4 Over any time interval [r,t),

S"(T: t) < Ai'(Tr ) + 6

ZJ (15)

J—i

Before we leave this section, we point out the connection between our notations and those of
Parekh and Gallager. In [PG93a, Parekh92], Parekh and Gallager defined

L(t) = iréi"{r.-(t —8)+0; — Ai(s,t)} (16)

and

Gi(t) = Q,’(t) + l;(t). (7
In terms of leaky buckets, /;(¢) is the number of tokens left in the bucket at time ¢, and denotes the
maximal allowable burst at the next moment, ¢*. a;(t) is the potential discrepancy between the
arrival function and the service function at this next moment. We observe that l;(t) = o; — d;(t)
and o;(t) = n:(t) + o;. Therefore, in this context, d;(t) can be interpreted as the excess of
session 1 traffic over the tokens generated up to time ¢ (excluding the full token bucket at the
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very beginning and the tokens lost due to bucket overflow), and ni(t) the discrepancy between
the session 3 arrival function (with this excess, &;(t), excluded) and the service function at time
t.

Our notations, however, are more general. They can be better used to describe another token
control scheme: for each session 7, tokens are generated as a continuous bit flow at a constant
rate of r;. They are consumed immediately by the incoming session 1 traffic arriving at the same
moment. If not all tokens generated are consumed, they are discarded (i.e., the token bucket
size is zero®). The arriving traffic in excess of the tokens generated at the moment is marked
and let into the network (instead of being lost or buffered as in the typical leaky bucket control
scheme). Under this scheme, &;(¢) is the amount of marked session 1 traffic at time ¢, and 7;(¢)
is the backlog of unmarked session i traffic at time ¢, whereas @;(t) = 7:(t) + &(t) is the total
backlog of session 1 traffic (both unmarked and marked) at time ¢. Under this scheme, p; is the
long term upper rate of session ¢ which reflects the true characteristic of session ¢ whereas 7; is
the token generating rate for session 7. The methods in the next section can be used to study
the distribution of the amount of marked traffic of each session at any time and the impact the
marked traffic has on the unmarked traffic in terms of backlog and delay distribution.

4 Statistical Analysis of a Single GPS Server

In the previous section we have established some useful relations on backlog and delay on a
sample path basis. It is interesting to note that they are independent of whatever stochastic
model we use to characterize each session source traffic. In this section we will use an E.B.B.
process characterization of a session to establish upper bounds on the tail distributions of
backlog and delay for each session. For simplicity of exposition, at first we will assume that
the arrival processes are all independent. The results for the case where the arrival processes
are dependent will be mentioned at the end of this session.

From Lemma 3, we see that in order to bound the tail distributions of Q;(¢) and D;(t) we only
need to bound &;(t) for any ¢. Under the E.B.B. process model, such a bound can be easily
obtained. For example, the proof of Theorem | in [YaSi93] provides an upper bound on §;(t)
which is paraphrased below.

Lemma S Foranyz > 0,

A‘.eaipif .
Prif(t) 2=} < T o™ (18)

where ¢ satisfies 0 < £ < ‘nitl)

xi€¢

3We can modify our notations to describe the case where the token buckets are not of zero size but of size o;
for each session i: 87°(t) = sup, ¢, {Ai(s,t) — ri(t — 5) — 0i}.
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Remark: In [YaSi93a], the condition on ¢ is such that for some fixed o, 0 < ¢ < 2 (actually
Ajeifit

0 < § < 2 issufficient) and ;2 > €. Note that the condition we impose on ¢ ensures
A;e®iri

that ;2&2r > e™>m¢. Hence we can always pick an zo such that 2555, > eaizo > gairit,

For reasons that will become clearer, we are actually interested in bounding the moment
generating function of §(t), i.e., Ee®(*) for some §. We first observe that for r < ¢ and for
0<fl<a, '

EeOA.'('r,t) S ea(p,-(t—r)+5'.'(0)) (19)
where 7 < ¢ and 6;(6) = §In(1 4+ 21%). To see why this is true, for 0 < 8 < a; and 7 < ¢, let
y = e%i(t-7) then

EefAilmt) — / = Pr{f4(m8) > z}dz
[}

= /v Pr{f4i(mt) > g}dz + /w Pr{ef4i(mt) > zldz.
o v

As Pr{ef4i("t) > z} < 1, the first integral is at most y = e?i(t-7) whereas by a change of
variable ¢ = ®lPi(t-7)+] the second integral becomes

00 [ Pr{Ai(r,t) 2 pilt — 7) + o} do
0

< §ebpilt-7) /m Aie~ @07 4o
()

A"o 6pi(t—7)
- g — Ge )
Therefore, (19) follows.
Now we show that
Lemma 6 For0 < 0 < q;,
66:(2) 9(3i(0)+pif) 20
Ee™\ < T otat (20)
where £ > 0 is an arbitrary discretization parameter.
Proof: Recall that
d:(t) = sup{Ai(r,t) — mi(t — 1)} (21

T<t

Let s, s < t, be such that §;(t) = A;(s,t) — ri(t — s). Forany { > 0, there is a k > 1, such that
t—ké <s<t—ké+E& Then,

Jg(t) = Ag(s,t) - T,'(t - 8) < Ai(t - kf,t) — kér; + ri€. (22)

10



Therefore, for0 < 6 < a;,
() < max{exp[B(Ai(t — k€, t) — kéri +&m)]}

< it i exp(0(Ai(t — k€, t) — kér;)).
k=1

Taking the expectation on both sides yields

B < €Y Bexpl0( At — k€, t) — kér)

k=1
[~ -]
< eOrif z e@(kfﬂi+&i(9))e—8k£ri
k=1
[~ ]
— ea(r{£+5'.‘(0)) Z e—kﬂqf
k=1
e~ beil
— 9("-&““7:(9))
1 — e~
O(5:(0)+i)
T 1 etat
where the second inequality follows from (19). .
Remarks:
(1) One can show that f(§) = °°f‘, is a convex function that attains its minimum at

o = %& and f(&) = éi:_e%. Hence the righthand side of (20) attains its minimum value
P50 f(gy) = (1 + —Ai—)—'f-ei‘ Similarly, the prefactor A% of the right hand side of (18)

attains its mlmlmun value at ¢ = mm{ In(A; “), ln ""“ 2.}, In other words, the minimum value

is (A; +1)% a if A; < &, and —pke': otherw1se In the rest of the paper, however, when using
(20), we will choose € = : 1 for simplicity of notation.

(2) In the discrete time case, similar bounds on §;(¢) as (18) and (20) can also be obtained (see
[YaSi93] and [Chang94]).

(3) In general, if we know the more specific structure of the arrival process, better bounds for
6:(t) are usually available. As &;(t) is the backlog of session ¢ when it is serviced by a server
with rate 7;, known results for the single server queue can be applied. For example, in the case
that arrivals are described by Markov modulated processes, results of the studies reported in
[LNT94, BD94] can be applied. We note that by using better bounds on §;(¢) in the proofs of
the following theorems, better bounds than those stated in the theorems can be obtained. We
will not elaborate on this here. In section 6.3, we will present an example to illustrate this point.

Foreachz, let ¢; = E%T The following is the main theorem of this section.
j=i P

11



Theorem 7 Suppose that {A;}1<i<n are N independent (p,-, A;, a;)-E.B.B processes sharing
a GPS server with assignment {¢;}1<i<n. Assume E-—x pi < land that 1,2,...,N is a

feaszble ordermg with respect to {¢:}1<i<y and {r; = p; + € }1<i<N, where €& > 0 and
Z,_l €<1-— Z.—1 pi. Then at any time t, for any q > 0,

Pr{Qi(t) 2 g} S AT™e™™, (23)
and for any d > 0,
Pr{D;(t) > d} < Af*te % (24)
moreover, for any fixed time interval [t,t] and any =z > 0,
Pr{Si(r,t) 2 pi(t — 7) + &} < AT¥e O (25)
where )
At = exp(6[6:(6) + pi +¢-_ i21(85(9:8) + p3))) 26)
(1 —e~f) [I;2i(1 — e~¥ebei)
and0 < 0 < minlsjs,' a;.
Proof: From (13), we have
Pr{Qi(t) > ¢} < Pr{6 ) + ¥ 26 (t) > q}. 27

As §;(t) only depends on A; up to time ¢ and Ay, A,, ..., Ay are independent, §;(t), 82(2),
., n(t) are also independent for any fixed ¢. Using Chernoff’s Bound, for any 6 such that
0<f< mjnls,-sg aj, We have

Pr{8i(t) + ¥ ia (£) > g} < B[] H B[e¥5i(0)e~0a (28)

i=1 i=1
For1 < k < 1, choosing an appropriate 8', applying (20) and substituting into (28) yields (23).

Equation (24) then follows as the session ¢ bits are assumed to be serviced in a first-come-first-
serve manner, and the session ¢ is guaranteed a minimum service rate of g; whenever its queue
is not empty.

To prove (25), for 7 < t, we define

8 (t) = &i(7) + Ai(,t) — pilt — 7). (29)
Then from Lemma 4, we have
i—1
Si(rt) < pilt = 7) + 81(t) + —2— 3" 45(r). (30)
Yridi o
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By an argument similar to the one used in the proof of Lemma 6, we can show that

0(6:(8)+pi€)
Eei) < €

S T et Gh

where £ > 0. As before, we take £ = 1 for simplicity.

Clearly, given that A;,1 < j < ¢, are independent, so are §;(7), 1 < j < i—1, and 67 (¢). Now
the same argument as used above for proving (23) yields (25). .

Theorem 7 states that the backlog and the delay for each session decay exponentially with
rate 6 as q and d increase. Stochastic processes with such property are called exponentially
bounded (E.B.) processes in [YaSi93a]. Furthermore, (25) says that for 0 < 8 < min,;<;<; a;,
the departure process for each session ¢ is an E.B.B. process. This yields a simple input-output
relation under the assumption that the arrival processes are independent. To obtain an input-
output relation that will be useful in the analysis of networks of GPS servers, we need to do
away with this independence assumption. Fortunately, the case where the arrival processes are
dependent can be resolved with the help of Holder’s inequality. For1 <1 < N, let {pj}lsjsg
be such that p; > 1and £}, + =1 (e.g. p; = i). Then

i-1

Elexp(6(3:(t) + Z 5(t)] < Elexp(pi88:(t))]*/™ ] (Elexp(p;%:68;(t)))/%.  (32)

i=1 j=1

Using this fact, it is easy to prove the following

Theorem 8 Suppose that { A;}1<i<n are N (pi, A, a;)-E.B.B processes sharing a GPS server
with assignment {¢;}1<i<n. Assume YL, p; < 1l and that 1,2,..., N is a feasible ordering
with respect to {$;}1<i<nv and {r; = p; + €i}1<i<n, where €; > 0 and Z?Ll g <1-— Ef;l pi.
For1 < i < N, let {p;}1<j<i be such that p; > 1 and T%_, pij = 1. Then at any time t, for
" anyq > 0,

Pr{Qi(t) 2 g} < APe™, (33)
and for any d > 0,

Pr{D;(t) > d} < A ¢~%id, (34)

moreover, for any fixed time interval [t,t| and any = > 0,
Pr{Si(t,t) > pi(t — 7) + 2} < AT %= (35)

where .
exp(0[6:(pif) + pi + ¥i U321 (65(ps1i6) + pi)])

(1 — e-rife) ;;‘1(1 — e~Pivife))

A:_rut' = (36)
and0 < 0 < min; <;<; a;j/p;.
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We see that without the independence assumption of the arrival processes, the prefactor A2 will
be generally larger. Moreover, the range of the decay rate 8 is small. Note that min, <;j<; a;/pj
is maximized by choosing p; such that a;/p; = a;/p; for 1 < j < i. The maximum value is
(ata+-+2)

In [YaSi93b], a result similar to (35) is also established. However, the E.B.B. decay parameters
for their output processes are obtained in a recursive manner such that they depend on the
E.B.B. characterization of the output processes of the previous sessions in a feasible ordering.
Furthermore, as their argument is based directly on the analysis of the output processes, they
cannot take advantage of the independence assumption of the input processes to derive better
bounds as we obtained in Theorem 7.

5 Feasible Partition and Rate Proportional Processor Shar-
ing

In the analysis of the last section, we observe that the backlog and delay bounds of the ith session
in a feasible ordering with respect to {r;}1<i<nx depend only on sessions 1,...,7 — 1 and not
on sessions 2 + 1,..., N. Therefore the position of a session in a feasible ordering affects the
bounds we obtain. Note that the feasible ordering is defined with respect to the parameters
{ri}1<i<nv that we chose. There are many different ways to choose {r;}1<i<n that satisfies (5).
Furthermore, even for a given {r;}1<i<w, there are possibly many different feasible orderings
associated with the sessions. It is natural to wonder whether there is something inherent in these
orderings, something uniquely determined by the system parameters {@;}1<i<~x and {p; }1<i<n.
Close scrutiny shows these orderings are essentially determined by the ratios, {p:/®:}1<i<n.
This leads to a partition of the sessions H = { H h<i<z, H1U---UHp = {1,2,..., N}, where
H, is defined recursively as follows:

Pt 1
1€ Hyif — (37
g ST e
andfork > 1,if H* := Hy U---U Hy # {1,2,..., N}, then Hy,, is defined such that
1
1 € Hepy lf Z pj). (38)

¢ z:ﬁH" ¢J jEH*

We call such a partition H the feasible partition induced by {#:}1<i<v and {pi}1<i<y. From
the definition, we see that for any i € Hpy1.

1
_ < Pi) (39)
Ljigms- 4’3 Z pi) Z,gm ¢J "~ 2

jEH*



In particular, a session is in H, if its long term upper rate, p;, is smaller than its guaranteed
backlog clearing rate, g;.

The feasible partition induces a partial ordering among the sessions. Intuitively, for a given set
of system parameters, this partial ordering captures the inherent “priority” among the sessions
so that the decay rate of the backlog of a session in the partition class Hj will be determined
only by the sessions in the partition classes H;, 1 < I < k, but not by the other sessions in Hj
orin H;, |l > k; moreover, the backlog of this session cannot decrease faster than the backlogs
of those sessions in the lower-numbered partition classes.

For 1 < k < L, let us lump together the sessions in Hj into a single new session, called the
aggregate session k. For 0 < 8 < min;en, ai, the associated arrival process for the aggregate
.~ session k is a (5;, €%+, §)-E.B.B. process with fr = Yicp, pi and 5%(0) = Tien, 6i(f). We
have an induced single server GPS system with L sessions and a GPS assignment {43,,}15,,51,
where ¢, = Yich, $i- By the definition of feasible partition, we see that with respect to
{Pr}1<k<n, there is a unique feasible ordering on these L aggregate sessions such that

/31 1 Pz Pk < Pr
= < . - 1 - ) 40
PR A A m .2%” NS s “0)

More interestingly, this unique feasible ordering is preserved in the decomposition of the
induced GPS system as stated in the following lemma.

Lemma 9 Forl < k < L, let 7y = fi, + & where & > 0. If T,

e < 1,thenl,2,...,Lis
also a feasible ordering with respect to {Fk}lsks L le,forl <k <L,

=z (11— 27 (41)

Proof: As# =p;+¢€,1 <! < L,thenforanyk,1 < k < L, we have

J’h k-1 7 -1 k—1

—(1 — T =
SE g ) z,m -S -3

l- =1

k-1
1— ) 42
z, A ,2"' L4 “2)

v

Hence, if we can prove that

-1

k
(L= h)—pe>) &, 43
Ez—uﬁz zz; l g l )

then (41) follows.
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Lete=1-— Z{;l pi, then € > 2{;1 €& > 2{‘21 € . We prove that the left hand side of (43) is
bigger than e. By the definition of the feasible partition (see (40)), forany I, k < { < L,
& g
=(1-)_ pf)- (44)
Tk b g

Summing both sides from & + 1 to L yields

pt>

T Zizk+1 P & =23
Z p> TEEE(1-3 A). (45)
=k+1 T E, iy g
Therefore,
- P
1- Zp,<2p,+ sz (46)
I=k+1 21 =k ¢l =1
Thus we have _
1 .
p1) — pr > €. (47)
Zz_.k ¢z E

n
Using the notion of feasible partition, we can derive better bounds than those obtained in the

previous section. For example, for sessions in H;, even without assuming that A,, ..., Ay are
independent, we have the following bounds.

Theorem 10 Let session i be a session in H,, then at any time &, for any q > 0,

Pr{Qi(t) 2 g} < Aje™ (48)
and for any d > 0,
Pr{D;(t) > d} < Aje s . (49)
where wipit
A = i : (50)

T ] — e—ailgi-pi)t

and 0 < ¢ < ln{Astl)

ai(gi—pi)’

Proof: For any session ¢ in H;, consider a sample path of the session 7 arrival process A;.
Take r; = g; = —,$'— For any t > 0, let 7 be the beginning of a session ¢ busy period that

r‘l i

contains ¢. Then S;(7,t) > gi(t — 7). As A;(7,t) < gi(t — 7) + &i(t), we have Q:(t) < &i(t).
Thus Pr{Q;(t) > q} < Pr{&i(t) > q} and Pr{D;(t) > d} < Pr{d(t) > gid}. The theorem
now follows from Lemma 5. .
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More generally, for sessions in the partition classes other than H;, better bounds can also be
obtained. The general result is stated below, the proof is slightly more complicated. In the
following, for any session ¢ in He, 1 < k < L, ¥; = 5~ ;_; 5
JeH,

Theorem 11 Suppose that { A;}1<i<n are N independent (p;, A;, o:)-E.B.B processes sharing
a GPS server with assignment {¢;}1<i<N. Assume that YN pi<landH = {Helicr<r is
the feasible partition with respect to {pi}1<i<n and {é:}1<i<n. Leti be any session Hy, where
1 < k < L. Then at any time t, for any ¢ > 0,

Pr{Qi(t) > ¢} < Afe™?, (51)

and for any d > 0, :
Pr{Di(t) > d} < Apte~f9, (52)

moreover, for any fixed time interval [r,t] and any z > 0,
Pr{Si(r,t) > pi(t — 7) + ¢} < ATe70 (53)

wh
vere exp(016:(8) + pi + i T je a1 (53(%:6) + p3)))

Aout __
AT =— (1 — e~Olgi—ri)/k)k ’ (54)

and 0 < § < min{oy, min; ¢ ga-1 a;}.

Proof: For a session 7 in Hy, 1 < k < L, we would like to find the tightest bound possible on
the session 7 backlog (and delay) distribution. From the result in the previous session, we see
that the position session % lies in a feasible ordering will affect the bound we derive. A feasible
ordering where session 7 has the lowest possible position is the most desirable.Let {1-,-}15,5 N
be a set of numbers such that zfi‘f__l r; < 1. Since the bounds on the session z backlog and delay
-only depend on the sessions ahead of ¢ and not on the sessions after ¢ in a feasible ordering
with respect to {r;}1<i<n, it is only essential to require that p; < r; for j < <. As long as
f’=l r; < 1, a feasible ordering with respect to {r;}1<i<n always exists. Furthermore, recall
that we can regard the sessions in a partition class as an aggregate session. Now consider the
GPS system consisting of the first k — 1 aggregate sessions and the rest of the sessions j € Hj,
I > k. We will construct a feasible ordering on these (mixed) sessions such that.session z of
class Hj, will be the kth session in a feasible ordering. For1 < j <1, lete; = r; — p;, and for

1<I<k—1letr = ¥jcq,mjand & = Y ep, €j. As long as
k-1
&+v:i Y a<g—pi (55)

=1

one can show, using the property of feasible partition, that there is a feasible ordering such that
the aggregate sessions 1, 2, ..., k—1 and session 7 are the first k sessions in the ordering. Hence
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we can appy Theorem 7 to session ¢ with respect to this ordering to derive bounds on backlog
and delay distribution for session ¢. For example, ¢; = 9;&; = -+ = Y€y = 828 satisfies
(55). Moreover, as Ef;ll f+r < Zf;ll P+ g —pi) =1— (Wil =1)p; <1, we
can choose 7, j € Hi,l > k and j # 4, such that 5! 7 + Yiem>eTi < 1. With respect to
this set of numbers, there is a feasible ordering such that the aggregate sessions 1,2,...,k — 1
and session ¢ are the first k sessions in the ordering. Hence the theorem follows. .

In the case that the arrival processess are not independent, using Hélder’s inequality and the
same argument as above, we have

Theorem 12 Suppose that { Ai}1<i<w are N (p;, A;, a;)-E.B.B processes sharing a GPS server
with assignment {¢:}r1<i<n. Assume that Z,-N=1 pi < land H = {Hi}i<r<t is the feasible
partition with respect to {p;}1<i<n and {¢:}1<i<n. Let i be any session Hy, where 1 < k < L
and let {pi}1<1<k be such thatpy > 1 and T | ;1; = 1. Then at any time t, for any q > 0,

Pr{Q:i(t) > ¢} < I.Xf"“ie_o", (56)

and for any d > 0, .
Pr{Di(t) > d} < Ag' =092, (57)

moreover, for any fixed time interval [1,t| and any > 0,
Pr{Si(r,t) 2 pi(t —7)+ 2} < Af“"e"a’ (58)

where

fowr _ XP(010:(ped) + pi + i LIS Tiem (93(pid) + p5)])
T [T5, (1 — e~Pélai=ri)/k)

and0 < 0 < min{a,-,minlgsk_l a; 1] € H{}

. (39)

Note that min{e;, miny<i<k-1 @; : j € H;} is maximized by choosing p; such that al; /ot =

ar/pr Where & = 3 ;e g, @j for 1 < 1 < k. The maximum value is (i + oo+ ﬁ + a%)‘l.

A special but important GPS assignment is the so-called Rate Proportional Processor Sharing
(RPPS) GPS assignment where ¢; = p;,1 <1 < N. Itis easy to show that the feasible partition
‘H comprises of only one partition class, H; = {1, ..., N}. Therefore Theorem 10 applies to
all sessions, yielding simple stochastic bounds. These bounds only depend on the source traffic
characterization of the session, not on those of other sessions. Hence, under the RPPS GPS
assignment, from a bounding standpoint, each session appears to behave *independently” even
though it may be correlated with other sessions.
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6 Statistical Analysis of GPS Networks

Consider a network consisting of M nodes labelled m = 1,..., M that each uses GPS. The
traffic source for session 7 is modeled as a (p;, A;, ;) E.B.B. process as before. At node m, the
service rate is ™ and the GPS assignment for a session i is ¢[*. The set of sessions present at
node m is denoted by I(m). For1 < ¢ < N, let A; be the random process describing the session
i traffic entering the network. The route traversed by session 4 is denoted by P(%) and the kth
node in P(i) by P(i, k). K; is the total number of nodes in P(i). For1 < k < K, denote
the session 3 arrival process at the kth node of its route by AS"), and the session : departure
by S§k). Note that we have A?) = A; and AE"“) = S§k), i.e., the session 1 arrival process at
node P(i, k + 1) is the session i departure process at node P(i, k). S gescribes the session
i traffic that leaves the network. Similarly, denote the session ¢ backlog (resp. delay) at node
P(i, k) at time ¢ by st)(t) (resp. ng)(t)). the total amount of session % traffic queued in the
network at time ¢ by Q7<¢(¢) and the session i end-to-end delay at time ¢ by DP*¢(t). A network
system (resp. session ) busy period is defined to be the maximal interval B ( resp. B;) such
that for every 7 € B (resp. T € B;), there is at least one server in the network that is in a
system (resp. session ) busy period at time 7.

We say a GPS network is stable if, for each session 4 in the network, limg,o Pr{Q7(t) >
q} = 0, or equivalently, limg_,oo Pr{D?*(t) > d} = 0. If at every node of the network, the
backlog (or the delay) process for each session at the node is an exponentially bounded (E.B.)
process, then clearly the network is stable. If we have an acyclic GPS network with E.B.B.
arrival processes, then by the input-output relation established in Section 4, the network can
be easily shown to be stable. However for a cyclic network, stability is generally much harder
to establish. In this section, we will show that under a broad class of GPS assignments a GPS
network with arbitrary topology is stable if 3;¢ y(m) pi < ™ for all nodes m in the network. This
class of GPS assignment is called the class of Consistent Relative Session Treatment (CRST)
networks. We will then look at a special case of CRST networks, the so-called class of Rate
Proportional Processor Sharing networks. Finally, we present a simple numerical example to
illustrate the bounds we derive for the RPPS GPS networks.

6.1 Stability of CRST GPS Networks

The class of the Consistent Relative Session Treatment (CRST) networks is defined as follows.
For each node m, m = 1,..., M, let {¢["}ic1(m) be the GPS assignment for the sessions at
node m and H™ = {H}1<i<L,, be the induced feasible partition of the sessions at node m.
We say this collection of GPS assignments {¢™ : ¢ € I(m),1 < m < M} for the network
is a Consistent Relative Session Treatment (CRST) GPS assignment if there is a partition
H = {Hi}r<<c of the N sessions in the network such that H is consistent with H™ at each
node m, i.e., forany 4,5 € I(m), if i € H; and j € Hj such that [ < k, theni € H}® and
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J € H[ such that I’ < k'. We call H the CRST partition of the sessions in the network.
Networks with CRST GPS assignment are called CRST GPS networks. It is worth pointing
out that CRST is a condition imposed on the global GPS assignments, not on the topology of
the network.

The stability of CRST GPS networks can be established by recursively applying the results
obtained for the single node case. Let H = { Hi}1<i<1 be the CRST partition of the N sessions
in the network. From the statistical analysis of a single GPS server, we see that for a session
i € Hi, at any node m along its route, the bounds on the distribution of session i backlog
Q7(t) and delay D(t), t > 0,1 < m < N depend only on the sessions at node m that are
in H,k < I, and not on the sessions at node m that are in Hy, k > I. The same statement
also holds for the characterization of the session ¢ output process at node m, S7*, i.e. the
decay coefficient AT*** and the decay factor o™ are functions of only those parameters
of the arrival E.B.B. processes AT for sessions j at node m where j € Hi,k < I. This
suggests a recursive procedure for computing backlog and delay bounds and characterizing the
output process for each session at any node along its route. For sessions in H;, the interested
performance metrics can be obtained independently along their routes by applying the input-
output relations and the bounds established for the single node case. For any k,2 < k < N,
once the output process characterization has been derived for each session in H;, I < k, atevery
node of its route, the stochastic bounds on backlog and delay distribution and the output process
characterization for sessions in H}, can then be derived at any node along their routes. Finally
the end-to-end performance metrics such as the stochastic bound on the end-to-end delay can
be computed by convolving the per-node bounds along the session routes. Therefore, we have

Theorem 13 Given that each session i in a CRST GPS network is a (p;, Ai, a;)-E.B.B. process,
then it is stable if 3 ;e 1(m) pi < ™™ at each node m where ™ is the service rate at node m.

Remark Our definition of CRST is slightly weaker than the one introduced by Parekh and
Gallager using the notion of “impede”. Under their definition, if at node m session z impedes
session j, i.e., %:‘; < g‘:—, but node m/, session j impedes session %, then this GPS assignment is
not CRST. However as long as session ¢ and session j belong to the same class of the feasible
partition at every node they share, this GPS assignment will still be CRST under our definition.
On the other hand, a CRST GPS assignment under their definition is clearly also a CRST GPS

assignment under our definition.

6.2 Rate Proportional Processor Sharing GPS Networks

A Rate Proportional Processor Sharing (RPPS) GPS network is a network where, at every nqde
m of the network and for every session ¢ € I(m), ¢T* = p;. As p;/¢T* = 1 for any session

i and at each node m, the CRST partition H consists of only one class H, encompassing
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all sessions. For RPPS networks, closed-form expressions exist for the backlog and delay
distribution bounds as will be proved below.

Let g™ denote the backlog clearing rate for session ¢ at node m, i.e.,

¢m
m m

=T
Yier(m) 97

where 7™ is the service rate at node m. Define g = minmep() gi"- Then session ¢ is

uaranteed a backlog clearing rate of g™ at every node along its route. Furthermore, if
g g g g ry g

1

Ticr(m) Pi < 7™, then the RPPS GPS assignment implies that gt > pi.

(60)

The following important observation is a restatement of Lemrna 3.2 in [Parekh92] which can
be shown to hold also in the case we are considering here.

Lemma 14 For every interval [r,t] that is contained in a single session i network busy period,
we have

SH(r,t) > gpet(t — 7). (61)
With the help of this lemma, we can prove the following interesting result.

Theorem 15 If every session i in a RPPS GPS network is a (pi, Ai, a;)-E.B.B. process, and at
every node m, Yjcrm) P; < T where T™ is the rate of the server at node m. Then at any time
t, forany q > 0,

Pr{Q7*(t) > g} < A7"e™ (62)
and for any d > 0,
Pr{D}(t) > d} < Afcte oo™ (63)
where , e
Apet = T (64)

T 1 — emailglt-pi)¢

and0<§<M.

ai{ghet —pi)

Proof: For 1 < ¢ < N, consider a sample path A; of A;. Define r; = p; + ¢; where

net

€ = gi* — pi. Foranyt > 0, let 7 be the first time before ¢ when there is no session 1 traffic
backlogged in the network. From (7) and Lemma 14, we have

QI (t) = Ai(r,t) — ST (7, 1)
< r(t—7)+&(t) - git(t— 1)
< (5;(t).
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As session ¢ is guaranteed a backlog clearing rate of g"“ hence

g?“ S g (63)
For 0 < 6 < o, applying Lemma 5, we have that for any ¢ > 0,
Pr{Qr(t) > q} < Pr{&i(t) > q} < AMte~%
and similarly for any d > 0, Pr{D?(t) > d} < Pr{8;(t) > gretd} < Apete=%iq, .

This theorem reveals that under the RPPS GPS assignment, the backlog and delay bounds
are independent of the route length and the topology of the network, a result analogous to
Parekh and Gallager’s deterministic result. It essentially reduces the analysis of a network of
queues to that of a single queue, more precisely, that of the bottleneck node (the node with the
minimum g;) for each session. Since the stochastic bounds come from the bound on §;(t), when
applying Theorem 15 to more specific arrival processes, we can often get around the E.B.B.
characterization and directly use results regarding J;(¢) to obtain tighter bounds. For example,
if arrivals are described by a Markov modulated arrival process, then results in [LNT94] can
be used to obtain tighter bounds than those given by Theorem 15. However, results like those
in [LNT94] are not always available for other types of traffic sources.

Last, we remark that Theorem 135 actually applies to any session i that is guaranteed a backlog
clearing rate of g™t > p; at all nodes along its route, regardless of what GPS assignment is
used.

6.3 A Numerical Example

In this section we present a simple numerical example to illustrate the results we obtained for
RPPS GPS networks. We consider a simple three-node tree structured network (Figure 2) as
used in [YaSi93]. The rate of the servers and the capacity of the links are all assumed to be
1. Suppose there are only 4 sessions in the network, two sessions at node 1 and two sessions
at node 2; all sessions congregate at node 3. The source traffic for each session is modeled
by a discrete time two-state on-off Markov process. For 1 < ¢ < 4, the transition probability
from the off-state to the on-state is p;, and from on-state to off-state is g;. The traffic rate in the
on-state is \; and in the off-state zero. The average traffic rate A; is -’%’_\4- The values for the
parameters of the four arrival processes are listed in Table 1. To obtain E.B.B. characterizations
for the arrival processes, we can choose any p;,i = 1,2,3,4 such that p; > A;and i, p; < 1.
Two sets of p;’s are shown in Table 2, the ;’s and A;’s are obtained using the results for discrete
time two-state on-off Markov processes in [LNT94].

Under the RPPS GPS assignment, ¢ = p; fori = 1,2,3,4 and form = 1,2,3. Using the
discrete version of the bound (18) and then applying Theorem 15, we have that for ¢ > 0,

ne Ai —-a )
Pr{Qi*(t) 2 ¢} < Py L (66)
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Figure 2: An Example Network.

[session [ pi [ @i | M| A |
1 03(07]05]0.15
2 0404|0402
3 03{03(03]0.15
4 04060502

Table 1: Parameters for the Arrival Processes

and ford > 0, A
Pr{D™(t) > d} < i

—aigid
= 1 — e—ailgi-ri) ¢ (67)
The bounds on the end-to-end delay distributioon for the four sessions using the two sets of
E.B.B. parameters are shown in Figure 3(a) and Figure 3(b), respectively. The bounds on-the

backlog distributions for the four sessions looks similar are not included here.

From Table 2 and Figure 3, we see that the smaller p; we choose for a session, the larger A;
is and the smaller «; is. This in turn leads to a slower decay rate of the delay bound. On the
other hand, the smaller p; for each session, the smaller the sum of p;’s. From the perspective
of call admission control, this means that the number of calls admitted into a system can be
increased. What p; to choose is closely related to what QoS requirement a session demands
and what call admission control mechanism is employed in the network, we will address these
issues in a later paper. It is worth pointing out here that in this context it is more appropriate to
use C. S. Chang’s Envelope Processes model as the source characterization. Although the two
are the same in essense, C. S. Chang’s model allows one to use the elegant notion of effective
badnwidth in addressing the issues of QoS requirement and call admission control.

This example also helps to illustrate another disadvantage of E.B.B. process model. From
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Set 1 Set 2
session Pi l A,‘ l a; Pi | A; [ ay
1 02 [1.0 [174[0.17] 1.0 ]0.729
2 0251092 | 1.76 [ 0.22 | 0.968 | 0.672
3 0.2 084 |2.13]0.17|0.929 | 0.775
4 025|110 |1.62(0.22]1.0 0.655

Table 2: Two Sets of E.B.B. Characterizations for the Arrival Processes

d d
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] I 1 1 I 1 1 1 I 1 1 1 1
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(a) Set 1 (b) Set 2

Figure 3: Bounds on the End-to-End Delay Distributions in Logscale.

Table 2, we see that a decrease of p; from Set 1 to Set 2 leads to drastic decrease in the value
of «;, thus the delay bounds in Figure 3(b) decay much slower than those of Figure 3(a) .
However, if one looks at the guaranteed bandwidths g;’s, for session 1 and session 3, both g,
and ga decrease from 0.22 to approximately 0.218, whereas both g, and g4 actually increase
from 0.28 to approximately 0.282 for session 2 and sesion 4. Under RPPS, this should imply
that the real end-to-end delays of sessions 1 and 3 should decay slightly slower and those of
sessions 2 and 4 should decay slightly faster. However, this fact is not reflected in Figure 3(b),
where the decay rates of the delay bound for all sessions become much smaller. The problem
lies in the E.B.B. model. As we choose p; close to the mean rate p; of a session, a; decreases
rapidly. This drastic decrease in a; offsets the slight increase in the guaranteed bandwith
sharing for sessions 2 and 4. When using the E.B.B. source characterization, since the decay
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Figure 4: Improved Bounds on the End-to-End Delay Distributions in Logscale.

rate of the delay bound is no smaller than «; , the decay rate thus obtained will be limited by the
value of ;. Fortunately, if we know the specific structure of the arrival processes, this problem
can, in general, be circumvented. By applying a better bound on §;(¢) (such a bound is usually
readily available) than the bound obtained from the E.B.B. characterization in Lemma 5 or in
Lemma 6, the theorems in the earlier sections, for instant, Theorem 15, can be easily modified
to produce tighter bounds. In this example, we can use the results in [LNT94] to directly bound
4;(t), yielding tighter bounds as shown in Figure 4.

Lastly, we note that since the two-state on-off Markov processes do not satisfy Cruz’s LBAP
model, no worst-case deterministic bounds can be derived by Parekh and Gallager’s method.

7 Conclusions and Future Work

In this paper we studied the statistical behavior of the generalized processor sharing (GPS)
scheduling discipline using exponentially bounded burstiness (E.B.B.) processes as source
session traffic models and derived upper bounds on the tail distributions of session backlog
and delay, both for a single GPS server in isolation and RPPS GPS networks with arbitrary
topology. We also established the stability of CRST GPS network with E.B.B. arrival processes.
Although our main focus is on GPS, the results can be easily extended to packetized version
of GPS —PGPS (cf., [PG92a, YaSi93b]). Clearly, simulation needs to be conducted to verify
how good the theoretical bounds we derived in this paper are.
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Our study places no restriction on the arrival process for each session other than that it has to be
an E.B.B process, which appears to include most processes. Although fine-tuning the bounds
we obtained is still possible, an unavoidable disadvantage associated with the use of a general
traffic model is that the bounds based on such a model will generally be loose. One may take
advantage of the specific structure of the arrival processes in question to derive better bounds.
For example, several papers (e.g., [LNT94, BD94]) have appeared that assume a more specific
traffic model and improve those results of [Chang93, YaSi93a] obtained for a general traffic
model in dealing with a general service discipline (in particular FCFS). These bounds can be
used directly to bound 4;(¢) instead of applying Lemma 6, yielding better prefactors for the
derived bounds on backlog and delay tail distributions.

Throughout the analysis, we have assumed that the E.B.B. characterizations of the arrival
processes are given. In practice, how to obtain these characterizations and how good the
characterizations are is a concern, especially given that the E.B.B. parameters chosen will
affect the tightness of the performance bounds. There are tradeoffs in the choices of p’s, a’s
and A’s. In general, the closer p to the average rate of the arrival rate, the smaller a will be
and the bigger A will be. It seems that the issue of source traffic characterization and its impact
on the performance bounds can be more adequately addressed in the context of C. S. Chang’s
envelope process model. From the viewpoint of provision of QOS guarantees under GPS
scheduling discipline, the issue of source traffic characterization is apparently closely related to
the theory of effective bandwidth [e.g., EM93, GAN91, KWC93] established mostly for FCFS
scheduling. Note that our analysis of GPS yields an upper bound on the backlog decay rate of
each session under GPS. To complete the picture, it will be interesting to provide a lower bound
on the backlog decay rate of each session, yielding an analogous theory of effective bandwidth
that will be useful for call admission control under GPS scheduling. We believe that the notion
of feasible partition will play a role in the determination of the individual session backlog decay
rates.

Another issue of importance in practice is how to choose the GPS assignment {¢;}1<i<n.
Recall that in the analysis we have assumed that the number of total sessions in the system,
N, is fixed. What happens if a new session wants to join the system. This question is of
particular importance from the aspect of call admission control. Clearly, dynamically adding,
deleting or updating ¢’s will incur considerable overhead in maintaining the system state and
computing performance bounds on-line for the purpose of call admission control. This problem
suggests that we might consider combining or integrating GPS with other scheduling policies.
In [CSZ92], Clark, et al. discusses the relative merits of GPS and FCFS scheduling disciplines.
They argued that GPS is a good scheduling discipline to provide isolation among sessions, but
can be too strict to allow sessions, especially sessions with similar characteristics, to maximally
exploit the multiplexing gains. The notion of feasible partition of sessions introduced in this
paper provides some ideas as how to combine GPS with other scheduling policies to alleviate
this problem. We observe that bounds for a session in a feasible partition class Hj only depend
on previous classes H;, I < k. If we use, say, FCFS, to schedule sessions within a class, then
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the bounds for the aggregate sessions can be used as the worst-case statistical bounds for each
session within a class, but sessions within a class can exploit the multiplexing gains due to
FCFS. One approach one can take is to categorize the traffic in a network into several traffic
classes such that traffic with identical or similar characteristics will be grouped into one class,
say, voice class, video classes with different resolutions. One reason one may want to do this
is that traffic with identical or similar characteristics will likely have identical or similar QOS
requirement and thus will be treated similarly by the network. So grouping them together could
make resource management such as bandwidth allocation simpler or more efficient. From the
analytical standpoint, the advantage of this approach is that traffic with similar characteristics
as reflected by the value of p;/¢; will probably fall into the same partition classes defined by
the feasible partition. This will greatly simplify the computation of performance bounds. Let
us look at an example where we have three traffic classes. For the first class, the sessions are
assigned “peak rate” p;, i.e., p;/¢: = 1; for the second class, the sessions are assigned around
75% of the “peak rate” p; , i.e., pi/¢: = 1/0.75 = 4/3; and for the third class, the sessions
are assigned around half of the “peak rate” p;, i.e., p;/¢; = 1/0.5 = 2 for 7 in class 3. The
GPS scheduling discipline is used to provide protection between the classes. For the sessions
within a class, FCFS or other scheduling disciplines can be used to exploit multiplexing gains.
When computing performance bounds for traffic classes 2 or 3, only the aggregate effect of
previous classes need to be taken into account. Moreover, the well-studied notion of effective
bandwidth can be applied directly to FCFS sessions within a class for call admission control.
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A Appendix

Proof of Lemma 1: (9) is equivalentto 3}, 7;(t) < 0. We prove this inequality by induction

on i. When ¢ = 1, let 7 be the beginning of session 1 busy period that contains ¢, then

@1(7) = 0, and () = —81(7) < 0. By the definition of GPS and the fact that r; < '57?17,
j=1 93

we have

Si(7,t) > ;f—l(t -7)>7(t—71). (68)
j=1 V5
Then from (8),
Mm(t) <m(r) + it —7) - Si(r,t) <0. (69)
Now we assume the lemma is true for 1,2,...,7 — 1, and show that it is also true for . First, if

7:(t) < 0, then by the induction hypothesis, the claim follows easily. The case where 7;(t) > 0
is a bit harder. Note that n;(£) > 0 implies that Q;(t) > é;(t) > 0. Let 7 be the beginning of a
session i busy period that contains ¢, thus @;(7) = 0, and n;(7) = —é;(7) < 0. From (8),

S,-(‘r, t) < T,'(t - 7‘) - ﬂg(t) < T,'(t - T). (70)
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Let z > 0 be such that
Si(r,t) =ri(t — 1) — .

As

<

ZTJ

r-: ¢J i=1

from (71), we have

Si(r,t) < )t —71) —=z.
Z_-va=s ¢J Jz—; !

Moreover, by the definition of GPS, for any 7,

Si(r,t) > S (7, t).

Thus
2_:5(” z_jz:) (7 8).

Using (73), we have

N : i-1

Y Si(rt) < (t-7)(1- Z?‘: - zZ

j=1 =1 _7=s

<(t-7)(1- §r,~) -z
i=1

On the other hand, since the system is in a system busy period,

i-1 N
Z Si(rt)=t—1— z S;(r,t).
j=1 j=t
From (76) .
i-1 i-1
Y Sint)>(t-7)) ri+=
i=1 Jj=1

Adding (71) to (78) yields

Z:l Si(r,t) > (t—7) g ;.

Now from (8), for1 < 5 <1,

n;(t) < ni(7) +7;(¢ — 7) = Sj(7,¢).
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Summing over j and using (79), we have
D) < 3 omi(r) = Zm +m:(r) <0 (81)
j=1 i=1

where the last inequality follows from the induction hypothesis and the fact that n;(r) < 0.
This concludes the proof for the lemma. .
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