
An Exploratory Study of Program
Metrics as Predictors of Reachability

Analysis Performance

Albert Timothy Chamillard

CMPSCI Technical Report 95-16
February 24, 1995

email: chamilla@cs.umass.edu
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

Abstract

This paper presents the results of an exploratory experiment investigating the use of program
metrics to predict reachability graph size, reachability graph generation time, and deadlock
check times for concurrent Ada programs. In general, reachability analysis is intractable, so it is
important to be able to predict whether or not this analysis technique is feasible given a specific
program to be analyzed. We briefly introduce the program representations used to perform the
deadlock reachability analysis and describe a set of metrics on those representations. We present
empirical results that quantify the value of each metric as a predictor of the reachability graph
size and the practicality of deadlock reachability analysis.

1 Introduction
Because concurrent programs are often used for safety-critical applications, developers of such
applications need cost-effective techniques they can use to acquire confidence in the reliability
of that software. Analysis of concurrent programs is difficult because in many cases the patterns
of communication among the various parts of the program are nondeterministic and the number
of possible communications is large. One class of techniques that can be used for analysis of
concurrent programs is static analysis, which uses information available at compile-time to
answer questions about properties of the program being analyzed. For example, static analysis
can help determine if it is ever possible for a given program to enter a deadlocked state.

The Laboratory for Advanced Software Engineering Research has constructed a set of tools
that support analysis of concurrent Ada programs. One such tool generates the reachability
graph for a program, and another tool checks for deadlock in the reachability graph.
Reachability analysis is known to be intractable in general [Tay83], so it is important to predict
when performing deadlock reachability analysis will be feasible and when alternate static
analysis techniques should be used instead. For instance, it would be helpful to have the ability
to inspect the program to be analyzed and predict how long the reachability graph generation and
deadlock checking will take. Toward this end, we have experimented with a variety of metrics
to quantify how well each metric predicts the feasibility of using the reachability graph
generation and deadlock checking tools for analysis of a given program.

The next section introduces the program representations we use for our analysis. Section 3
describes a set of metrics on those representations and the measurements we collect in the
experiment. Section 4 describes the programs analyzed for the experiment, and Section 5
discusses several constraints imposed on the experiment. Section 6 describes our approach and
presents our empirical results. Section 7 closes with some final remarks.

2 Program Representations
Because Ada is one of the few commonly used languages supporting concurrency, and because
our current tools are written for analysis of Ada programs, we analyze Ada programs in our
experiment. We briefly describe here the principal concurrency constructs in Ada and several
sources of nondeterminism in concurrent Ada programs. In Ada programs, potentially
concurrent activities occur in tasks or procedures; for simplicity, we call them tasks in this paper.
Ada tasks typically communicate with each other using a rendezvous. In a rendezvous, the
calling task makes an entry call on a specific entry in the called task; the calling task then
suspends execution until the called task terminates the rendezvous. The called task executes any
statements contained in the accept body for the entry (the entry in conjunction with the accept
body is called an accept), then terminates the rendezvous and continues execution.

1

Nondeterminism is introduced into an Ada program's execution in several ways. If several tasks
make an entry call on the same entry, the called task could rendezvous with any of the calling
tasks; we call this entry nondeterminism. Another source of nondeterminism in an Ada
program's execution is the select statement. Select statements have one or more alternatives;
when program execution reaches a select statement, the run-time system nondeterministically
selects a task for the rendezvous from the alternatives available in a task queue. We call this
select nondeterminism.
 In our analysis approach, we use a variety of representations of a concurrent program to
capture information about the program. We use a Task Interaction Graph (TIG) for each task to
abstract sequential regions of control flow into single nodes. The nodes in the TIG for a task are
connected by edges representing possible interactions (entry calls/accepts) between that task and
other tasks in the program. We combine the set of TIGs for all the tasks in a program into a
Petri net to model the system as a whole. Finally, we use the Petri net to generate a reachability
graph to represent an estimate of all states the program can enter when started in the initial
program state. Each of these representations is described briefly below.

Task Interaction Graphs
Long and Clarke [LC89] suggest using Task Interaction Graphs (TIGs) as a concise program
representation that retains interaction information. The TIG consists of a finite set of nodes,
N = {ni}, and a finite set of directed edges, E = {ei}. Each node ni represents a region of
sequential code, and each directed edge represents a task interaction (either the start or end of an
entry call or an accept). The set of nodes includes a single start node and a set of terminal nodes
for the TIG. There is an edge from ni to nj if and only if the task can potentially participate in
the task interaction represented by the edge, causing the task to exit the sequential region
represented by ni and enter the sequential region represented by nj. An example program is
shown in Figure 1; the TIG for the caller1 task is shown in Figure 2.

procedure data is

 task accepter is
 entry entry2;
 entry entry1;
 end accepter;
 task caller1;
 task caller2;

task body accepter is
begin
 accept entry2;
 accept entry1;
end accepter;

task body caller1 is
 BranchCond : boolean
begin
 if BranchCond then
 accepter.entry1;
 else
 accepter.entry2;
 end if;
end caller1;

task body caller2 is
begin
 accepter.entry2;
end caller2;

begin -- data
 null;
end data;

Figure 1. Example Program

5

1

Entry_Call (accepter.entry2)Entry_Call (accepter.entry1)

3

Figure 2. Example TIG

2

Petri Nets
Petri nets have been proposed as a natural and powerful model of information flow in a system
[Pet77]. A Petri net can be represented as a 5-tuple (P, T, I, O, M0). P is the set of places in the
Petri net; a place can hold zero or more tokens. If a place holds one or more tokens, the place is
said to be marked. T is the set of transitions in the Petri net; tokens are moved between places in
the net by the firing of transitions. A transition can only be fired if it is enabled; for a transition
to be enabled, each of the input places for the transition must contain at least one token. I is a
function mapping places in P to inputs of transitions in T. When a transition fires, a token is
removed from each of the places that are inputs to the transition, and a token is deposited in each
of the output places of the transition; O is a function mapping places in P to outputs of
transitions in T. M0 is a list of all the places in the net that are initially marked.

Petri net modeling appears to be a valuable tool for modeling concurrent software [SC88]; a
compact Petri net representation can be generated from the TIGs of a program [DCN94]. To
generate the Petri net, we build a place for each node in the set of TIGs of a program. We build
a transition for each possible interaction between tasks in the program, where the input places
correspond to the sources of the matching entry call and accept TIG edges, and the output places
correspond to the targets of the matching entry call and accept TIG edges. To form the initial
marking M0 of the Petri net, for each task in the program we put one token in the place that
corresponds to the start node of the TIG for that task. For an example Petri net, based on
program in Figure 1, see Figure 3. The places in the figure are labeled with the task name and
TIG node number from which they were created.

caller1.3

caller2.1

caller2.3

accepter.1

accepter.3

accepter.5

caller1.1

caller1.5

data.1

Figure 3. Petri Net

Reachability Graphs
In many cases, we would like our analysis to determine whether or not the concurrent program
being analyzed could potentially enter a state in which a specified property holds (deadlock, for
instance). A reachability graph enumerates all possible program states and thus can be used to
check the property at each state.

3

A reachability graph for a Petri net consists of a set of nodes, N = {ni}, and a set of arcs,
A = {ai}. Nodes in the reachability graph correspond to markings of the Petri net; the root node
of the reachability graph corresponds to the initial marking (M0) of the Petri net. An arc goes
from ni to nj if and only if the marking of the Petri net can change from ni to nj with the firing
of a single transition. Although in actuality several interactions, represented by fired transitions,
can take place concurrently, we can capture all possible execution sequences by firing a single
transition at a time; we use this approach, because the resulting graph is greatly simplified. We
note that only markings reachable from the initial marking by some sequential combination of
transition firings are included in the reachability graph. It is helpful to observe that a marking of
a Petri net simply represents the states of all the tasks being modeled by the Petri net; we
therefore consider nodes in the reachability graph as states the program can reach when started
from the initial program state. Figure 4 provides the reachability graph for the Petri net in
Figure 3. The nodes in the figure are labeled with the Petri net places that are marked in the
corresponding program state.

accepter.3, data.1
caller1.5, caller2.1 2 3

4

1 accepter.1, data.1
caller1.1, caller2.1

accepter.3, data.1
caller1.1, caller2.3

accepter.5, data.1
caller1.3, caller2.3

Figure 4. Reachability Graph

3 Metrics and Measurements
This section describes the metrics used as predictor variables and the measurements used as the
response variables in the experiment. Our goal is to determine how well each of the predictor
variables predicts the values of the response variables.

Metrics
We hypothesize that there are certain characteristics of programs that affect the analyzability of
those programs. A program metric is, literally, a measurement of some characteristic of the
program. The metrics described below are used to measure characteristics of the TIGs and the
Petri net used to represent the program being analyzed; we treat these metrics as predictor
variables in the experiment.

We include the number of tasks in the program (T) and the average number of nodes per TIG
(N) as predictor variables because the theoretical upper bound on the size of the reachability
graph is given by NT. We also consider NT as a predictor variable explicitly, and we include

4

the maximum number of nodes in a TIG as a predictor variable, since an outlier could
significantly affect the average number of nodes per TIG. Wampler has proposed the metric
NT/2 as a good predictor of reachability graph size, at least for some programs [Wam85]; we
include this metric in our experiment as well.

We suspect that the number of possible communications in a program affects the number of
reachable states for that program. We therefore also consider the average number of
communications per task and the maximum number of communications in a task as predictor
variables. To calculate the number of communications in a task, we add the number of accepts
in the task to the number of entry calls in the task. We refer to all the metrics above, with the
exception of the Wampler metric, as TIG metrics because they can be calculated from the TIGs
of a program.

In addition to the metrics above, we also include various characteristics of the Petri net as
predictor variables. We include the number of Petri net places because this corresponds to the
total number of sequential regions in the program (as opposed to the average or maximum
number of sequential regions in single tasks). We also include the number of Petri net
transitions as a predictor variable, because each transition represents a possible communication
in the program. In addition, we consider the average number of outputs per place in the Petri net
and the maximum number of outputs from a place in the Petri net, since these metrics may affect
the branching factor in the reachability graph, which could in turn affect reachability graph
generation time. We call the measurements of the Petri net characteristics described above Petri
net metrics. We refer to all the metrics discussed thus far, with the exception of the Wampler
metric, as the syntactic metrics.

One of the characteristics of concurrent Ada programs that makes them particularly difficult
to analyze is nondeterminism. None of the metrics above try to account for nondeterminism in
the program being analyzed. Damerla and Shatz [DS92] propose several metrics that we include
in our experiment; the metrics are intended to quantify the nondeterminism in Ada programs. !
is used to account for the nondeterminism in entries when several tasks can make entry calls on

those entries (entry nondeterminism). ! is given by ()Callsi
i

e

"
=
1

1
, where e is the number of

entries not contained in selects and Callsi is the number of calls on entry i. The one is subtracted
because an entry with only one caller is deterministic. $ is used to account for the
nondeterministic selection of rendezvous within select statements (select nondeterminism). $ is

given by ()Callsi
i

s

"
=
1

1
, where s is the number of selects and Callsi is the number of calls on

entries within select i. The one is subtracted because a select with only one call on an entry
within the select is deterministic. % is used to account for total nondeterminism (% ! $= +).

5

Levine and Taylor [LT93] propose a metric similar to % called Cnd to account for
nondeterminism; the difference is that Cnd includes entry nondeterminism for all entries (as
opposed to only those not in selects) and counts the number of select alternatives with one or
more callers when calculating select nondeterminism. Levine and Taylor also propose a metric
intended to capture the graph theoretic complexity of the program (Cgt); Cgt is given by E - N +
T + 1, where E is the number of entry calls and accepts in the program, N is the number of TIG
nodes in the program, and T is the number of tasks in the program. Another metric, Cif, is
proposed for capturing the communication structure or information flow for the tasks comprising

the program. Cif is given by ()()
ln

in edges out edgesi i
i

T T

" "
=
#

1
, where T is the number of tasks

in the program, in-edgesi is the sum of task entries and shared variables read in task i, and out-
edgesi is the sum of entry calls and shared variables written by task i. Cnd, Cif, and Cgt are also
included in our experiment. We refer to the metrics proposed by Wampler, Damerla and Shatz,
and Levine and Taylor as the literature metrics.

Measurements
We consider a variety of measurements as response variables in the experiment; these
measurements have been chosen as indicators of the feasibility of reachability analysis on the
program to be analyzed. The measurements can be broken into two categories: size
measurements and time measurements.

The size measurements include the number of nodes in the reachability graph and the number
of arcs in the reachability graph. Because we check for deadlock on each node in the
reachability graph and each possible program state is represented by a reachability graph node,
we include the number of reachability graph nodes as a response variable. We include the
number of reachability graph arcs as another basic measure of reachability graph size.

Certain time measurements may be better estimators of the feasibility of reachability analysis
than reachability graph size. Because the reachability graph must be generated before we
perform our deadlock analysis, we include the amount of time it takes to create the reachability
graph as a response variable. To determine if deadlock is possible in the program, we perform
deadlock analysis on the reachability graph; we therefore also include the time to check for
deadlock in the reachability graph as a response variable.

4 Programs Analyzed
We conduct our experiment on various sizes of three problems commonly used in the literature
for concurrency analysis: dining philosophers, the gas station problem, and readers/writers.

6

The dining philosophers problem consists of a certain number of philosophers sitting around a
table, with a single fork between a philosopher and the neighbor to their left and a single fork
between that philosopher and the neighbor to their right. Each philosopher thinks for a while,
then picks up both forks to eat, then puts the forks back down and thinks some more. Because
the forks between the philosophers are shared, it is not possible for all the philosophers to eat at
the same time. Our solution for the dining philosophers problem uses a task for each fork and a
task for each philosopher.

The gas station problem models a gas station. The problem includes a pump, an operator, and
a number of customers using the gas station. A customer who wishes to pump gas must first
prepay money to the operator, who then activates the pump. The customer then pumps the gas
and returns to the operator, who gives the customer change based on how much gas was
pumped. Our solution for the gas station problem uses a task for the pump, a task for the
operator, and a task for each customer.

The readers/writers problem includes a set of readers and a set of writers; conceptually, the
readers and writers are accessing the same document. If there are no readers or writers accessing
the document, a writer can access the document to write; only a single writer (and no readers)
can be accessing the document at any given time. If there are no writers accessing the
document, a reader can access the document to read it; multiple readers (and no writers) can be
accessing the document at any given time. Our solution for the readers/writers problem uses a
task for each reader, a task for each writer, and a single task to enforce the constraints on access
to the document.

5 Experimental Constraints
Before discussing the results of our experiment, we should note that our study imposes various
limitations on our experimental design and the generalizability of our results.

This experiment is clearly observational, since we do not have the capability to manipulate
the metrics used as predictor variables. Given the potentially subtle dependency relationships
between the metrics, it is not clear how we could hold certain metrics constant while varying
others. We therefore conduct an observational experiment rather than trying to manipulate the
metrics. The drawback, of course, is that there may be latent factors that affect both metrics and
measurements, which could lead us to infer predictive relationships that do not actually exist. If
we were performing a manipulation experiment, we could exert experimental control to solve
the latent factor problem; in an observation experiment, we can not solve this problem.

We also do not know if our empirical results are generalizable. The population of concurrent
Ada programs to which we have access is fairly limited in size, which is why we perform the
experiment on various instances of the academic problems described above. Unfortunately,

7

there is no evidence that these programs are representative of the population of "real" Ada
programs. This means that we are not able to make general inferences about the metrics as
predictors of feasibility, because our sampling from the population of programs is not random.
On the other hand, we can use the predictor/response variable relationships discovered here as a
point of comparison when we do gain access to other, more realistic, concurrent programs.

6 Empirical Results
Recall that our goal is to determine how well (or poorly) each of our metrics predicts the
performance of deadlock reachability analysis, both in terms of reachability graph size and the
times to generate the reachability graph and check for deadlock. We first generate the metric
and measurement data, using parameter estimation techniques to quantify our confidence in
certain measurements. We then use Pearson's Correlation Coefficient to examine relationships
within metric/measurement pairs. For selected metric/measurement pairs, we use randomization
tests to determine the probability of the given correlation if the metric and measurement were
actually independent. We also utilize multiple regression techniques to generate standardized
regression coefficients, which we then use to estimate the relative strengths of each metric as a
predictor of the measurement values. Finally, we develop several causal models using the &
heuristic described in [Coh94].

Parameter Estimation
Most of the metric and measurement values for the experiment are constant for a given program;
in other words, the values will be exactly the same every time they are calculated for that
program. For example, the number of tasks for our solution to the dining philosophers problem
with two philosophers is always four. The two exceptions to this constancy are the reachability
graph generation time and the deadlock check time. Each of these values can be affected by a
variety of factors, such as system load during the execution of the trials, so we must examine
these values closely to ensure we are using a reasonably accurate estimate of the times in our
data analysis.

The method for estimating our confidence in the reachability graph generation and deadlock
checking times is identical, so we explain in the context of reachability graph generation time.
To calculate reachability graph generation time, we generate the reachability graph 30 times and
take the mean, x , of the 30 execution times as the estimate of graph generation time. We use
the standard deviation, s, of the set of 30 execution times to calculate the estimated standard
error of the mean, which is given by ' x

s
N

= . We then calculate the confidence interval as

x x±1 96. *' . The 1.96 value is from a Z-distribution for confidence at the 0.05 level for a two-

tailed test. The sample is large enough to justify using the Z-distribution value for the

8

multiplier, and since we don't know if the sample mean is higher or lower than the population
mean of graph generation times, the two-tailed multiplier is required. Results of these
computations for reachability graph generation time can be found in Figure 5; using the same
method for deadlock check time yields the results in Figure 6. In these figures, gasW indicates
an instance of the gas station problem with W customers, philX indicates an instance of the
dining philosophers problem with X philosophers, and rwYZ indicates an instance of the
readers/writers problem with Y readers and Z writers.

mean standard dev standard error confidence interval

gas1 0.184 0.010 0.002 (0.182, 0.186)
gas2 2.016 0.015 0.003 (2.010, 2.022)
gas3 17.357 0.051 0.009 (17.339, 17.375)
gas4 119.643 0.177 0.032 (119.580, 119.706)
gas5 738.470 1.787 0.326 (737.831, 739.109)
phil2 0.245 0.014 0.003 (0.239, 0.251)
phil3 1.409 0.015 0.003 (1.403, 1.415)
phil4 8.368 0.033 0.006 (8.356, 8.380)
phil5 47.134 0.099 0.018 (47.099, 47.169)
phil6 256.410 1.987 0.363 (255.699, 257.122)
rw11 0.259 0.001 0.000 (0.259, 0.259)
rw22 6.248 0.034 0.006 (6.236, 6.260)
rw23 27.777 0.027 0.005 (27.767, 27.787)
rw32 25.740 0.025 0.005 (25.730, 25.750)
rw33 111.656 0.181 0.033 (111.591, 111.721)

Figure 5. Reachability Graph Generation Time Confidence Intervals

mean standard dev standard error confidence interval

gas1 0.338 0.001 0.000 (0.338, 0.338)
gas2 0.650 0.017 0.003 (0.644, 0.656)
gas3 1.447 0.026 0.005 (1.437, 1.457)
gas4 4.619 0.020 0.004 (4.611, 4.627)
gas5 108.397 1.413 0.258 (107.891, 108.903)
phil2 0.265 0.001 0.000 (0.264, 0.266)
phil3 0.461 0.011 0.002 (0.458, 0.464)
phil4 1.007 0.010 0.002 (1.004, 1.010)
phil5 3.233 0.016 0.003 (3.227, 3.239)
phil6 85.829 1.099 0.201 (85.436, 86.222)
rw11 0.327 0.002 0.000 (0.326, 0.328)
rw22 0.578 0.008 0.001 (0.575, 0.581)
rw23 1.112 0.019 0.004 (1.105, 1.119)
rw32 1.086 0.021 0.004 (1.079, 1.093)
rw33 2.992 0.029 0.005 (2.981, 3.003)

Figure 6. Deadlock Check Time Confidence Intervals

9

We see that the largest confidence interval, which represents the most uncertainty in our
estimate of execution time, for graph generation time is only approximately 4% of the mean.
For deadlock check time, the largest confidence interval is only approximately 2% of the mean.
We can therefore assume, for both of these measurements, that our estimates of the execution
times are very close to the actual mean execution time.

Pearson's Correlation Coefficient
Pearson's Correlation Coefficient provides an estimate of the linear relationship between two
variables x and y. The coefficient ranges from -1.0 to 1.0, with a coefficient magnitude close to
1.0 indicating a strong relationship and a magnitude close to 0.0 indicating no linear relationship.
We note that a low correlation only indicates that the variables are not linearly associated; they
could still be related in some non-linear way.

We calculate the correlation between each of our metrics and each measurement. If we
calculate a high correlation, we have at least some indication that the metric is a good predictor
of the measurement. These correlations are provided in Figure 7 below.

number of
reachability graph

nodes

number of
reachability graph

arcs

reachability graph
generation time

deadlock
check
time

number of tasks (T) 0.5795 0.6869 0.3575 0.5158
average TIG nodes per
task (N)

0.4301 0.2499 0.5326 0.3834

NT 0.7340 0.8349 0.4913 0.7820
maximum TIG nodes in
a task

0.5212 0.3328 0.6653 0.4492

average edges per task 0.4527 0.2731 0.5458 0.4064
maximum edges in a task 0.5241 0.3392 0.6726 0.4474
of Petri net places 0.8076 0.7324 0.7412 0.7236
of Petri net transitions 0.6276 0.5329 0.7297 0.5064
average Petri net place
outputs

0.0588 0.0715 0.1622 -0.0257

maximum Petri net place
outputs

0.1615 0.2189 0.2150 0.0596

Wampler 0.8600 0.9088 0.6568 0.8728
! 0.6886 0.6072 0.6008 0.6512
$ 0.0153 0.0585 0.1052 -0.0777
% 0.7903 0.7371 0.7718 0.6649
Cnd 0.7903 0.7371 0.7718 0.6649
Cgt -0.4997 -0.3082 -0.6292 -0.4405
Cif 0.7648 0.5750 0.9192 0.7245

Figure 7. Pearson's Correlation Coefficients

10

We infer from the table above that, for the syntactic metrics, the number of tasks (T), NT, and
the number of Petri net places and transitions may be the best predictors of the number of nodes
in the reachability graphs, because they have the strongest linear relationship with this
measurement. These metrics also have the highest correlations with the number of reachability
graph arcs. For the literature metrics, the Wampler metric, % (which is identical to Cnd for the
programs in this experiment), and Cif have the highest correlations with the size measurements.
The number of Petri net places and transitions have the strongest correlation with reachability
graph generation time, although the maximum number of edges in a task and the maximum
number of TIG nodes in a task seem to be linearly related to this time as well. For deadlock
check time, NT and the number of Petri net places appear to be the best predictors; T and the
number of Petri net transitions have a weaker linear relationship with this time. The Wampler
metric, Cif, and % are most highly correlated with the time measurements for the literature
metrics. In a later subsection, we will see how standardized regression coefficients can help us
estimate the relative strengths of these metrics as measurement predictors; first, however, we
examine the probability of calculating certain correlations under the null hypothesis that the
metric and measurement are independent.

Randomization Tests
We know that we can use randomization tests, in conjunction with correlation, to test the
hypothesis that two samples are dependent [Coh94]. We can therefore select a metric and a
measurement, perform a randomization test, and determine the probability of calculating the
given correlation under the null hypothesis that the metric and the measurement are independent.
If the probability is low (p < 0.05 is typically an acceptable level), we can reject the null
hypothesis with high confidence, i.e., we can state that there is a dependence between the metric
and the measurement with only a small probability that we are wrong. We note that
randomization tests do not provide results that are generalizable to populations, but we observed
in Section 5 that our results are probably not generalizable for other reasons, so limiting our
attention to the samples does not represent a severe limitation to us.

 We have performed randomization tests on a variety of metric/measurement pairs, where the
pairs have been selected to give a range from a very low correlation to a very high correlation
between the metric and the measurement in the pair. The results of these tests are provided in
Figure 8, where the p values in the table represent the probability that we reject the null
hypothesis incorrectly.

Most of the results in the table below are as we expected. The p values for the metric average
Petri net place outputs are high, indicating a low dependency between this metric and the
measurements; this can also be seen in the extremely low correlations for these

11

metric/measurement pairs. The results for the number of Petri net places metric are also
unsurprising; the p values indicate a strong dependency in the metric/measurement pairs, as do
the high correlation values. Similarly, the result for the number of tasks metric is as expected.
The correlations for the Wampler metrics are very unlikely to have occurred by chance
(particularly notable is the p value for # of reachability graph nodes), as are the correlations for %
and Cif.

metric measurement p value

T deadlock check time 0.051
NT # of reachability graph nodes 0.059
NT # of reachability graph arcs 0.071
NT reachability graph generation time 0.052
NT deadlock check time 0.084
of Petri net places # of reachability graph nodes 0.034
of Petri net places deadlock check time 0.001
of Petri net transitions deadlock check time 0.034
average Petri net place outputs # of reachability graph nodes 0.271
average Petri net place outputs # of reachability graph arcs 0.232
average Petri net place outputs reachability graph generation time 0.151
average Petri net place outputs deadlock check time 0.362
Wampler # of reachability graph nodes < 0.001
Wampler # of reachability graph arcs 0.003
Wampler deadlock check time 0.038
% # of reachability graph nodes 0.035
% deadlock check time 0.048
Cif reachability graph generation time 0.037

Figure 8. Randomization Test Results
There are certainly some surprising results in the table, however. The number of Petri net

transitions has only a 0.5064 correlation with deadlock check time, but we can reject the null
hypothesis of independence at better than the 0.05 level (p = 0.034). The results for the NT

metric are even more striking. The correlation between NT and the number of reachability
graph arcs and the deadlock check time are higher than for any other metric (except Wampler),
yet we cannot reject the null hypothesis of independence at the 0.05 level for these pairs. The
correlation between NT and the number of reachability graph nodes is also high, but the p value
does not let us reject the null hypothesis at the 0.05 level for this pair either. We are closest to
rejecting the null hypothesis for the NT- reachability graph generation time pair, but this pair has
the fourth lowest correlation for pairs considering the generation time.

Multiple Regression
Thus far, we have tried to consider correlations within metric/measurement pairs. While this
approach is statistically sound, it does not account for dependencies between the metrics in a

12

robust manner. Since many of the dependency relationships between our metrics are
unidentified or subtle, we would like to account for these dependencies in our analysis of
predictive power. Multiple regression techniques let us implicitly account for these
dependencies.

In multiple regression, we determine the relative effect of each predictor (metric) on the
response variable (measurement); the effect is reflected in the regression coefficient for each
metric. To make the regression coefficients comparable among the metrics, we first standardize
each metric variable, which in essence puts each variable on the same scale. We then perform
the multiple regression, which yields a set of standardized regression coefficients. The
standardized regression coefficients for our syntactic metrics and measurements are provided in
Figure 9; note that larger coefficients (positive or negative) indicate stronger predictive power.
Because of dependencies between our syntactic metrics and the literature metrics, we were
unable to include the latter in these multiple regressions.

number of
reachability graph

nodes

number of
reachability graph

arcs

reachability graph
generation time

deadlock
check
time

T 29.7821 15.6022 54.6693 60.9877
N 23.8965 29.3481 23.0003 12.1439
NT 1.2576 1.0427 1.6608 2.1662
maximum TIG
nodes in a task

38.1620 -12.5045 101.4456 136.2092

average edges per
task

-17.8429 -21.9048 -15.2004 -6.1416

maximum edges in
a task

-14.8690 19.3744 -54.1592 -79.8170

of Petri net places -41.9813 -22.6861 -77.0609 -85.4558
of Petri net
transitions

5.8388 6.3527 7.6067 5.4942

average Petri net
place outputs

-2.2517 -3.8478 -1.8145 -0.0834

maximum Petri net
place outputs

-6.8775 -3.8852 -11.7384 -12.3938

R2 0.9977 0.9947 0.9930 0.9899

Figure 9. Standardized Regression Coefficients (Syntactic Metrics)
The results above are somewhat counter-intuitive. Some of the metrics (such as number of

Petri net places) have high correlations and high regression coefficients, which is as we expect;
on the other hand, the NT metric has extremely high correlations with measurements but very
low regression coefficients, which is exactly the opposite of what we expect. This phenomenon
can be explained through further consideration of the correlation and the regression coefficients.
Correlation simply measures the linear relationship between two variates; it does not determine
how much of the effect is direct and how much is indirect. The regression coefficient, however,

13

reflects the amount of direct effect of one variate on the other. Therefore, a variate can have a
high correlation with another variate and a low regression coefficient if most of the correlation is
indirect through other variates.

We should also note that the R2 values below are extremely high. For each measurement, we
can use a set of simple syntactic metrics to form a predictive equation that accounts for 99% of
the variance in the measurement.

Because metric inter-dependencies would not let us include the metrics from the literature in
this multiple regression, we also performed multiple regressions of the four measurements on the
Wampler metric, %, Cgt, and Cif; the results can be found in Figure 10. We note that the R2

values are also very high for these regressions, though slightly lower than for the syntactic
metrics. This is interesting, because in general these metrics are intended to capture more subtle
program characteristics than the syntactic metrics, yet they provide slightly weaker predictive
power.

number of
reachability graph

nodes

number of
reachability graph

arcs

reachability graph
generation time

deadlock check
time

Wampler 0.5917 0.6798 0.3040 0.7253
% 0.1399 0.2532 0.0705 -0.1370
Cgt 0.1897 0.2848 0.2555 0.1992
Cif 0.5956 0.3693 0.9613 0.7080
R2 0.9801 0.9290 0.9770 0.9671

Figure 10. Standardized Regression Coefficients (Literature Metrics)

Causal Modeling
We can use the results of our multiple regression to build equations for the measurements
considered in the experiment, and these equations can account for a large part of the variance in
the given measurement. Recall that this was the goal of the experiment - to quantify the value of
each metric as a predictor of each of the measurements. The predictive power of each metric is
reflected in the regression coefficient in each measurement equation. The measurement equation
is in effect a causal model, though a very "shallow" one; all metrics are on the left, and the
measurement is on the right. To better our understanding of the interactions between the metrics
and their effect on the measurement, we can build a "deeper" causal model that more accurately
reflects the effects of each metric on other metrics and the measurement. In this subsection we
develop deeper causal models for deadlock check time based on the syntactic metrics and
deadlock check time based on the literature metrics.

There are two problems we must consider when we form a causal model: the latent factor
problem and the causal ordering problem. Because we have performed an observational

14

experiment, we can not exert experimental control to account for latent factors. Pragmatically,
however, we note that our multiple regressions above account for at worst 93% of the variance
in the measurement variates. We therefore assert that, if there are latent factors, including them
in our predictive equation will not effect our predictive power significantly (though doing so
could certainly cause significant changes in the regression coefficients). The causal ordering
problem is not very difficult in this experiment. We know that the TIGs for a program are used
to develop the Petri net, so the causal direction is from TIG metrics to Petri net metrics.
Similarly, the metrics from the literature are calculated from the set of TIGs for a program, so
the causal direction is from TIGs metrics to the literature metrics. The Petri net is used to
generate the reachability graph, so causal arrows lead from Petri net metrics to reachability
graph measurements. The reachability graph is used to check for deadlock, so any correlation
between reachability graph size measurements and deadlock check time are reflections of a
causal effect of reachability graph size on deadlock check time.

Because we already understand the causal ordering in our model, our main effort is expended
on quantifying the causal effects in the model to build a set of structural equations [Coh94] for
each of the models. We loosely follow Cohen's approach using the & statistic, which measures
the proportion of indirect effect of one variate on another, though we have made some
methodological changes. In Cohen's approach, all variables in the model are used at each step to
develop causal links. In contrast, if we are developing causal effects on the number of Petri net
places metric (for instance), we only include the TIG metrics in our analysis at this step; we
perform this modification to the approach because of our a priori knowledge of causal ordering
relationships. Our other modification concerns the selection of the variables to include in each
structural equation. In Cohen's approach, variables are included if their & score is less than a
given threshold and the regression coefficient for that variable is above a certain threshold. We,
however, include enough of the variables considered to give each developed structural equation
an R2 greater than 0.80. In other words, we concern ourselves more with the predictive power
of each structural equation than with the direct effects of each variable in the equation.

The results of our modeling efforts for the selected metrics and measurements are shown in
Figures 11 and 12. Note that a larger value (positive or negative) on a causal arrow indicates a
stronger causal effect. When we use the metrics from the literature in the model, we do not
include Petri net metrics, since the literature metrics are calculated directly from TIGs.

15

Deadlock
Check Time

T

max TIG
nodes

max
edges

N

rg
nodes

rg
arcs

Petri net
transitions

N
1.31

-0.59

0.31
0.68

0.46

0.57

0.79

0.72

0.13

-4.68

5.50

T

Figure 11. Causal Model for Syntactic Metrics

Deadlock
Check Time

T

max TIG
nodes

avg
edges

N

Gamma

Beta

Alpha

max
edges

Wampler

Cif

Cgt

0.71

0.20

-0.14

0.73
1

1

0.80

0.30

0.69

0.65

-0.98

Beta = 0.51 T + 15.59 N - 10.39 (max TIG nodes) - 14.93 (avg edges) + 9.95 (max edges)
Cif = -7.05 N + 17.06 (max TIG nodes) + 3.54 (avg edges) - 12.98 (max edges)

Figure 12. Causal Model for Literature Metrics

16

In the causal model for the syntactic metrics, it is interesting to note the direct and indirect
effects of NT on deadlock check time. The indirect effect through reachability graph size is as
we would expect from our multiple regression results, while the direct effect appears to be a
consequence of our deadlock checking algorithm. The strength of the causal arrow from the
number of reachability graph nodes to deadlock check time is unsurprising, since we check for
deadlock on each node. More surprising is the fact that the number of Petri net transitions is the
only Petri net metric included in the model. We would not expect this to be true, given the
relatively low standardized regression coefficients for this metric compared to the standardized
regression coefficients for the number of Petri net places; it is not clear why this occurs.

In the causal model for the literature metrics, we note that despite the strong effect of the
Wampler and Cif metrics, all four metrics must be included as direct effects on deadlock check
time to achieve R2 > 0.80. We also point out that the structural equations for $ and Cif are
particularly complicated. One possible explanation for this is that the TIG metrics included in
the experiment do not easily capture the characteristics measured by $ (select nondeterminism)
and Cif (information flow), so many of the TIG metrics must be included in the structural
equations to achieve a sufficiently large R2.

7 Conclusions
We have determined that certain sets of metrics, such as the syntactic and literature metrics
examined here, can provide good predictive models for reachability analysis performance, at
least for deadlock. We note that the metrics from the literature provide slightly weaker
predictive power than the purely syntactic metrics for the programs used in this experiment. We
have also developed several causal models for deadlock check time to better quantify the effects
of our metrics on the other metrics and measurements considered in the experiment.

We intend to continue this work by experimenting with some "real" programs from the
private sector and the military. Experimentation on academic problems can provide us with
preliminary causal models, but since we do not know how well these problems represent the
population of concurrent Ada programs, we can not immediately generalize our results. As we
gain access to more programs, we can test our causal hypotheses on these programs and tune our
causal models accordingly.

In this paper, we restrict our attention to using metrics to predict the feasibility of reachability
analysis for checking deadlock. Many other properties of concurrent programs are also
interesting, such as enforcement of mutual exclusion or freedom from critical races; these
properties could be considered in follow-up experiments. It would be interesting to determine
whether the type of property considered in the analysis has an effect on the multiple linear
regression results or the causal models. There are also a wide variety of other static analysis

17

techniques available for use on concurrent programs; it would be instructive to run similar
experiments on each of these techniques as well. We may find that the metrics provide different
predictive models for each technique, which could in turn lead to some heuristic guidance for
selection of the most effective tool for analysis of a given program.

Acknowledgements

Many thanks are due to Lori Clarke, whose diligent reviews led to significant improvements in
this paper.

References

[Coh94] Paul Cohen. Empirical Methods for Computer Science. To be published.

[DCN94] Matthew B. Dwyer, Lori A. Clarke, and Kari A. Nies. A compact petri net
representation for concurrent programs. Technical Report TR 94-46, University
of Massachusetts, Amherst, 1994.

[DS92] Srinivasarao Damerla and Sol M. Shatz. Software complexity and Ada
rendezvous: Metrics based on nondeterminism. Journal of Systems and Software,
17(2):119-127, February 1992.

[LC89] Douglas L. Long and Lori A. Clarke. Task interaction graphs for concurrency
analysis. In Proceedings of the 11th International Conference on Software
Engineering, pages 44-52, Pittsburgh PA, May 1989.

[LT93] David L. Levine and Richard N. Taylor. Metric-driven reengineering for static
concurrency analysis. In Proceedings of the 1993 International Symposium on
Software Testing and Analysis (ISSTA), pages 40-50, Cambridge MA, June 1993.

[Pet77] James L. Peterson. Petri nets. Computing Surveys, 9(3):223-252, September
1977.

[SC88] S.M. Shatz and W.K. Cheng. A petri net framework for automated static analysis
of Ada tasking behavior. The Journal of Systems and Software, 8(5):343-359,
December 1988.

[Tay83] Richard N. Taylor. Complexity of analyzing the synchronization structure of
concurrent programs. Acta Informatica, 19:57-84, 1983.

[Wam85] Gordon Kent Wampler. Static concurrency analysis of Ada programs. Master's
thesis, University of California, Irvine, 1985. As cited in [LT93].

18

