Decision Tree Induction

Based on Efficient Tree Restructuring
Paul E. Utgoff

Technical Report 95-18
March 17, 1995

Department of Computer Science
University of Massachusetts

Ambherst, MA 01003

Telephone: (413) 545-4843

Net: utgoff@cs.umass.edu



Decision Tree Induction Based on Efficient Tree Restructuring i

Contents
1 Introduction 1
2 Tree Revision 2
2.1 Representation . . . . . . ... 2
2.2 Information Maintained at Each Decision Node . . . . . ... .. ... ... 3
2.3 Incorporating a Training Instance . . . . . . . .. . ... ... oL 4
2.4 Recursive Tree Transposition . . . . . . . . . . . . . . ... ... .. ..... 5
2.4.1 The Base Cases . . . . . . . . . . o 5
2.4.2 The Recursive Case . . . . . . . . . .. 6
2.5 When to Apply Recursive Transposition . . . . ... .. ... ... ..... 6
3 Incremental Tree Induction 7
3.1 Algorithm ITT . . . . . . oo oo 8
3.2 Inconsistent Training Instances . . . . . . . . . .. ... ... ... ..., 9
3.3 Virtual Pruning . . . . . . . .00 o 9
3.4 Incremental Update Cost . . . . . . . . . . . . . . ... .. ... ... .... 10
3.5 Training Modes . . . . . . . Lo 14
3.5.1 Normal Mode . . . . . ... .. .. . 14
3.5.2  Error-Correction Mode . . . . . . . . .. ... Lo 15
3.5.3 Lazy Mode . . .. .. . . . . . . . . .. 16
4 Direct Metric Tree Induction 16
4.1 Algorithm DMTI . . . . .. ..o o 16
4.2 Direct Metrics . . . . . . . .o 17
4.2.1 Expected Number of Tests . . . . . . . ... ... ... ... ... .. 17
4.2.2 Number of Leaves . . . . . . . . . .. .. . 17

4.2.3  Minimum Description Length . . . . . ... .. ... ... ... 18



Decision Tree Induction Based on Efficient Tree Restructuring

4.2.4 Expected Classification Expense . . . . . . . . .. ... ... ... ..
4.2.5 Expected Misclassification Cost . . . . . . . . ... ... ... ....

4.3 DISCUSSION . . . . o o

5 Leave-One-Out Cross Validation

6 Software

7 Summary

i

18

18

18

19

20

20



Decision Tree Induction Based on Efficient Tree Restructuring 1

Abstract

The ability to restructure a decision tree efficiently enables a variety of approaches to
decision tree induction that would otherwise be prohibitively expensive. This report de-
scribes two such approaches, one being incremental tree induction, and the other being
non-incremental tree induction using a measure of tree quality instead of test quality. The
algorithm ITT for incremental tree induction includes several significant advances from its
predecessor ID5R, and the algorithm DMTI for employing a direct metric of tree quality is

entirely new.

1 Introduction

Decision tree induction offers a highly practical method for generalizing from instances
whose class membership is known. The most common approach to inducing a decision tree is
to partition the labelled instances recursively until a stopping criterion is met. The partition
is defined by way of selecting a test that has a manageable set of outcomes, creating a
branch for each possible outcome, passing each instance down the corresponding branch, and
treating each block of the partition as a subproblem, for which a subtree is built recursively.

A common stopping criterion for a block of instances is that they all be of the same class.

This non-incremental approach to inducing a decision tree is quite efficient because ex-
actly one tree is generated, without the need to generate and evaluate explicit alternatives.
Consider the process in terms of searching the space of all possible decision trees. When
one determines that a particular node shall be a decision node with a specified test, one
implicitly rejects all other trees that would differ in this regard. Similarly, when one de-
termines that a particular node shall be a leaf with a specified class label, one implicitly
rejects all other trees that would differ in this way. Only one tree is explicitly constructed,
and the entire tree construction process implements an efficient general-to-specific search.
This greedy tree construction process implements a function that maps a particular set of

instances to a particular tree.

There are alternative strategies for searching tree-space, two of which are presented here.
First, for incremental decision tree induction, one maps an existing tree and a new training
instance to a new tree. Second, for decision tree induction using a measure of tree quality,
hereafter called direct metric tree induction, one simply maps one tree to another. As ex-

plained below, each of these methods requires the ability to restructure an existing decision
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tree efficiently. The next section presents the tree revision mechanism, and the following two

sections present the two tree induction algorithms based on it.

2 Tree Revision

Both of the decision tree induction algorithms presented in this paper depend on the
ability to transform one decision tree into another. For simplicity, the discussion is limited
to inducing a tree for a consistent set of instances, but this limitation will be relaxed further
below. For any particular set of consistent instances, there exists a multitude of decision
trees that are each consistent with those instances. For example, if we were to place a test t;
at the root, and then build the tree recursively as before, we would obtain one specific tree.
However, if instead we were to place a test t5 at the root, and then build the tree recursively
as before, we would obtain a different specific tree. Each tree would be consistent with the
training instances, but we may prefer one to the other because of an a prior: bias about the
relative desirability of two consistent trees. We return to the issue of bias in tree selection in
Section 4. For now, we simply assume that sometimes we will have need to change the test
at a decision node, and that we would like to be able to effect such a change by revising the

existing tree, instead of building a new tree from the original training instances.

2.1 Representation

We assume that every possible test at a decision node has exactly two possible outcomes,
which means that the decision tree is always binary. There is no loss of generality in this
choice because for every non-binary tree, there are one or more binary trees that produce the
identical partition of the instance space. This means that symbolic variables with more than
two possible values are mapped automatically to an equivalent set of propositional variables.
For example, the non-binary test color € { red, green, blue } would be converted to the
three binary tests (color = red) € { true, false }, (color = green) € { true, false }, and (color
= blue) € { true, false }. For numeric variables, the conversion to a binary test is done in
the same manner as C4.5 (Quinlan, 1993), by finding a cutpoint and incorporating it into a

threshold test, e.g. (x < cutpoint) € { true, false }.

The adoption of only binary tests brings two principal benefits. The first is that there
can be no bias among tests that is due to the tests having a different number of possible

outcomes. This is important because many common methods for selecting a test are biased
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in this manner (White & Liu, 1994). Second, choosing a binary split at a decision node
is a conservative approach to partitioning, because a block of instances is divided into at
most two smaller blocks. This is beneficial because each block can be further subdivided, if

necessary, by slection of a test that is best for that block.

2.2 Information Maintained at Each Decision Node

To be able to change the test that is used at a decision node, hereafter called the installed
test, one needs to maintain at that node the information that provides the basis for evaluating
the quality of each possible test for that node. For each test that is based on a specific value
of a symbolic variable, e.g. (color = blue) € { true, false }, the frequency counts for each
outcome-class combination are kept and updated as necessary. For each test that is based on
a specific cutpoint of a numeric variable, it is too costly to keep a separate set of frequency
counts for each one. Instead, the list of values observed in the instances at that node is
maintained in sorted order by value, with each value tagged by the class of the instance in
which it was observed. For each pair of adjacent values of different classes (Fayyad & Irani,
1992), the midpoint of the two values defines a possible cutpoint. The legal cutpoints and
the merit of each one can be computed efficiently during a single pass over the sorted list of

tagged values.

For efficiency, every set of information items kept at a decision node is maintained as
an almost-balanced binary search tree (AVL). This organization provides O(logn) insert,
delete and lookup. Specifically, the set of variables is maintained at a decision node as an
attached AVL-tree of variables. For each variable (node) in this attached AVL-tree, the set
of observed values for that variable is maintained as its own attached AVL-tree. Similarly,
for each value (node) in that attached AVL-tree, the set of observed classes with frequency
counts, is kept as an attached AVL-tree. This tree of trees of trees is independent of the
semantics of the decision tree itself, and serves merely as an efficient scheme for tracking the
information that must be maintained at the decision node. Due to this organization, neither
a large number of variables, nor a large number of values, nor a large number of classes is
debilitating computationally. This is all the information that is needed to evaluate all of the

possible binary tests that are permitted at a decision node.
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Figure 1. Tree Transposition Operator (branch left on TRUE, right on FALSE)

2.3 Incorporating a Training Instance

To be able to restructure a tree, we need the ability to incorporate a training instance
at a node. As will be seen below, although this can occur during incremental training, it
can also occur when a subtree is reduced, which is accomplished by removing a superfluous
decision node and collapsing its two leaves into a single leaf. The need for reduction can

arise during the restructuring process, and is described below.

When an instance is to be incorporated into an empty tree, the tree is replaced by a
leaf node that indicates the class of the leaf, and the instance is attached to (saved at)
the leaf node. Whenever an instance is to be incorporated, the branches of the tree are
followed as far as possible according to the values in the instance, typically until a leaf is
reached. If the instance has the same class as the leaf, the instance is simply added to the
set of instances saved at the node. If the instance has a different class label from the leaf, the
algorithm attempts to turn the leaf into a decision node, picking the best attribute according
to the attribute-selection metric. The instances saved at the node (just converted from a leaf
node to a decision node) are then incorporated by sending each one down its proper branch
according to the new test. Whenever a value needed for a test is missing from an instance,
the instance is simply saved at the decision node, without passing it down either branch.
Thus, we assume that an instance can be ‘added’ to a node, and that it will work its way
as far down the tree as it can, possibly sprouting branches at leaves as it moves downward

through the tree.
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2.4 Recursive Tree Transposition

We assume that the impetus to change the installed test at a decision node comes from
the algorithm that makes use of the tree revision mechanism that we are describing. This
need to change the installed test at a decision node initiates a tree revision process that is
a composition of tree transpositions. Locally, one revises the tree as necessary to install the
desired test at a particular node. After that has been accomplished, one needs to revisit the
subtrees to ensure that each decision node has its own best test installed. This visiting of

the subtrees accomplishes a more global objective of producing the most desirable tree.

Changing the installed test at a decision node, and visiting the subtrees thereafter are
achieved by two recursive procedures. To cause a specific test to be installed at a particular
decision node, one invokes the recursive tree transposition procedure, which is described
here. Section 2.5 describes the second recursive procedure for deciding when to select and

install the best test at each node in the subtrees.

2.4.1 The Base Cases

Consider one of the base cases, as illustrated in Figure 1. If each subtree of the root,
whose test is to be changed, is a decision node whose installed test is already the one that
we want to install at the root, then one can transpose the tree as indicated. Notice that
the subtrees A, B, C', and D are simply reattached, and that they are neither inspected
nor visited for any purpose. The sets of instances on which each of A, B, C, and D are
based have not changed. Hence, the test information maintained at any of these decision
nodes has not changed. Similarly, the set of instances corresponding to the root has also
not changed (though the designation of the installed test has), which means that the test
information maintained at the root also remains unchanged. Only the sets of instances at the
two children of the root have changed. For example, the left subtree formerly corresponded
to the instances used to build subtrees A and B, but now the left subtree corresponds to the
instances used to build subtrees A and C. This raises the problem of how to maintain the

test information at each child of the root.

Fortunately, the problem has an inexpensive solution that does not require rebuilding
the information from the training instances. One simply recreates the test information by
merging the test information of the two grandchildren. For example, for the left subtree,

one would define the test information as the ‘sum’ of the information at nodes A and C.
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For a symbolic variable, one adds the corresponding frequency counts, and for a numeric
variable one merges the two sorted tagged lists of values. For each instance that may have
been attached to either of the two children of the root, the instance is simply removed and
reincorporated at the root node, as described above, so that it finds its way down to the

proper node.

The other base cases are all special cases of the above. If one of the subtrees of the
root is a leaf, instead of a decision node, transposition is accomplished somewhat differently.
For example, consider the case in which the right subtree is a leaf. Then transposition is
accomplished by discarding the root node, reattaching the left subtree in its place, discarding
the right subtree (the leaf), and reincorporating its instances at the root. For the base case
in which both subtree are leaves, one discards both subtrees, installs the desired test at the

root, and then reincorporates the instances from both leaves at the root.

All of these base cases revise the tree in such a way that the tree is kept in reduced
form. There are a few other base cases that arise during the transposition process when a
subtree may not exist because no instances had that outcome for the installed test, but these

represent temporary states that are handled in a straightforward manner.

2.4.2 The Recursive Case

The base cases presuppose that each subtree is a leaf or is a decision node whose test is the
one that is to be installed at the root. The only case that this excludes is one in which at least
one of the children is a decision node whose currently installed test differs from the one that
is to be installed at the root. In this case, each such subtree is first transposed recursively,

which will always produce one of the base cases, which is then handled as described above.

2.5 When to Apply Recursive Transposition

As described above, the recursive tree transposition operator provides the ability to
restructure a given tree into another that has the designated test installed at the root.
This is quite useful, but it is not enough by itself for producing the best tree because it
has only caused one decision node to have the desired test installed. During the recursive
transposition, it may be that the subtrees have been transposed as a by-product of bringing
the desired test to the root. The installed test of each decision node in the subtrees may be

there as the result of transposition rather than as the result of a deliberate choice. Again
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consider the transposed tree in Figure 1. Each of the two subtrees has test X installed, but
that is only because a transposition was performed from above, not because X was identified

as the best choice and installed intentionally.

To ensure that every decision node has the desired test installed, according to the at-
tribute selection metric, one needs to visit the subtrees recursively. At each decision node
that requires that a different test be installed, the algorithm transposes the tree to install
the best test at the node. It could become costly to check every decision node of the subtrees
after a transposition. Often, a subtree is not touched during a transposition. To this end,
the algorithm includes a marker in each decision node for whether the choice of the installed

test is stale.

The algorithm marks as stale any decision node whose test information has changed.
This is because changing the test information invalidates the basis on which the installed
test was selected. Whenever a desired test has been identified and installed (if different) one
removes its stale mark. To ensure that every decision node has the desired test installed,
one proceeds recursively in the following manner: at the root, identify the desired test and
install it via recursive transposition; for each subtree, if it is marked stale, then recursively

identify its desired test and install it.

3 Incremental Tree Induction

We have seen in Section 2 that one can transform one tree into another instead of building
a new tree from scratch. This section presents an incremental tree induction algorithm ITI

(incremental tree inducer) that makes extensive use of the tree transformation mechanism.

Incremental induction is desirable for a number of reasons. Revision of existing knowledge
presumably underlies many human learning processes, such as assimilation and generaliza-
tion. Secondly, knowledge revision is typically much less expensive than knowledge creation.
For example, upon receiving a new training instance, it is generally much less expensive to
revise a decision tree than it is to build a new tree from scratch, based on the now-augmented

set of accumulated training instances (Utgoff, 1989b).

Many non-incremental algorithms possess desirable properties, such as efficiency, high
classification accuracy, or intelligibility, making them highly useful tools for data analysis.

For someone in need of an inductive algorithm to embed in an agent or knowledge maintainer,
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a non-incremental algorithm is impractical because one cannot afford to run it repeatedly.
One wishes instead for both the desirable inductive properties of a proven non-incremental

algorithm and the low incremental cost of an incremental algorithm.

3.1 Algorithm ITI

The algorithm described here was motivated by several design goals:

1. The average incremental cost of updating the tree should be much lower than the
average cost of building a new decision tree from scratch. It is not necessary however
that the sum of the incremental costs be less because we care only about the cost of

being brought up to date at a particular point in time.

2. The update cost should be independent, to the extent possible, of the number of

training instances on which the tree is based.

3. The tree that is produced by the incremental algorithm should depend only on the set
of instances that has been incorporated into the tree, without regard to the sequence

in which those instances were presented.

4. The algorithm should not be biased toward selection of a test because it has a larger

set, of possible outcomes than that of another test.

Additional well-accepted design goals are that the algorithm should also: accept instances
described by any mix of symbolic and numeric variables (attributes), handle multiple classes,
handle inconsistent training instances, handle instances with missing values, and avoid fitting

noise in the instances.

The basic I'TT incremental decision tree induction algorithm is based on the tree revision
mechanism described above in Section 2, and thus can be stated simply. When given a
training instance that is to be incorporated into the tree, pass it down the proper branches
as far as possible. This includes updating the test information kept at each node through
which it passes (including marking each such node stale). It also includes the process of
incorporating an instance at a leaf, which may cause additional growth of the tree below
that leaf. After the instance has been incorporated, visit each stale node recursively, as

described above, ensuring that the desired test is installed at that node.
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As usual, a test is considered best if it has the most favorable value of the attribute-
selection metric. ITT uses the same gain-ratio metric that is used in C4.5. For the or-
der of the training instances to remain immaterial, a tie for the best test must be broken
deterministically.! With each new training instance, various frequency counts at each node
traversed by the instance will change. Because the attribute-selection metric is a function of
particular probabilities that are based on these frequency counts, the value of the attribute-
selection metric for each test will also change, which may in turn change the assessment of

which test is considered to be best at the node.

3.2 Inconsistent Training Instances

Two instances are inconsistent if they are described by the same variable values but have
different class labels. When inconsistent instances occur, they will be directed to the same
leaf. If one were to split every impure leaf, this would cause an infinite recursion. However,
since converting the leaf to a decision node would provide no information, and this is easily
detected by the gain-ratio metric, I'TI keeps the node as a leaf and simply adds the instance
to the set of instances retained at the leaf, making an impure leaf. This causes no trouble
for classification because the vote for the class name is a function of the class distribution
at the leaves. Typically, just one leaf is reached for classification, and the most frequently
observed class is assigned, but when classifying an instance that is missing a value that is
needed for a test, the weighted class distributions of the subtrees are combined in the same

manner as is done for C4.5.

3.3 Virtual Pruning

An important component of decision tree induction is to avoid overfitting the training
data, especially when the data are known to contain attribute or classification error (noise).
A variety of methods have come into existence, and the question is which of them is best
suited to the incremental induction problem. All of the approaches that maintain a separate
pruning set are oxymoronic for incremental induction. For I'TI, the most suitable is one based

on the minimum description length principle (Rissanen, 1978; Quinlan & Rivest, 1989).

'For ITI, a tie is broken by selecting the test based on the input variable whose symbolic name has a

lower hash table address. This comes about naturally from the in-order traversal of the AVL-tree of variable

names.
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The basic approach is to consider whether each subtree could be represented more com-
pactly by a leaf with a default class and a list of exceptions, where each exception is an index
into the list of instances and an indication of its non-default class label. For any subtree
that we would want to be pruned (replaced with a leaf), we mark its root decision node
as being pruned, but we do not discard anything. For incremental induction, we preserve
all information so that it is possible to change whether a subtree should or should not be
virtually pruned. To unprune it, we simply remove the mark that it is considered to be
pruned. For all practical purposes, such as classifying instances with the tree, or inspecting
the tree by printing it, a virtually pruned tree behaves and appears as though it had truly

been pruned.

The virtual pruning process is accomplished by a post-order traversal of the decision tree
that sets a marker in each decision node to indicate whether that decision node is to be
considered pruned to a leaf. The previous status of whether the node was marked as pruned
is immaterial. The procedure winds its way down to the leaves via the post-order traversal,
and sets each subtree as pruned (or not) based on the minumum description length (MDL).
For each leaf, the number of bits needed to encode the leaf is 1+log(c)+a(log(i) +log(c—1)),
where ¢ is the number of classes observed at the leaf, x is the number of instances at the
leaf that are not of the default class, and ¢ is the total number of instances at the leaf. This
number of bits is stored in the leaf node. For each decision node, the number of bits needed
to encode the subtree is 1 + log(t) 4+ [ + r, where ¢ is the number of possible tests at the
node, [ is the MDL of the left subtree (already set), and r is the MDL of the right subtree
(already set). To decide whether to mark a decision node as pruned, the MDL for the node
is computed as though it were a leaf. If the virtual leaf would require fewer bits to encode,
then the node is marked as pruned, and the MDL of the virtual leaf is saved at the node.

Otherwise, the node is marked as not pruned, and the MDL of the subtree is saved instead.

3.4 Incremental Update Cost

Consider the cost of moving from one tree to the next, as a result of incorporating a single
training instance. Hereafter, this cost of making such a single step is called the incremental

update cost.

The most important goal for an incremental method is that its average incremental cost

be less than the average cost of building a new tree from scratch. The incremental cost is the
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cost of incorporating a new instance and revising the tree to the extent necessary so that it
is the tree that corresponds to the set of training instances incorporated so far. In general,
the incremental cost is proportional to the number of nodes in the tree, because the cost
of revising the tree is largely the cost of all the transpositions. The size of a tree generally
grows to its approximate final size early in the training, with the rest of the training serving
to improve the selection of the test at each node. Of concern is whether the incremental

update cost continues to grow even after the size of the tree has more or less stabilized.

When only symbolic variables are involved, one can show analytically that the incre-
mental cost of tree revision is independent of the number of training instances seen (Utgoff,
1989b). This is because the information gleaned from an instance is kept as counting in-
formation. Seeing additional instances does not increase the amount of information that
must be maintained. It only changes the actual counters that are maintained at the node.
However, because ITI keeps the tree in reduced form, there is some expense that relates to

the occasional redistribution of instances near the leaves of the tree.

When numeric variables are included,the incremental cost of tree revision is not indepen-
dent of the number of training instances. For each numeric variable at each node, a sorted
list (AVL-tree) of the values observed in the instances is maintained. More training instances
means a greater cost to maintain each such list. The cost of insertions and deletions is pro-
portional to the log of the number of distinct values observed for the variable in the training
instances. The set of distinct values can be as large as the number of instances if all observed
values are unique. The question then is how often and how drastically cutpoints change in
practice, since this is where the greatest potential lies for requiring a large number of inser-
tions and deletions. Numerous runs on a variety of problems suggest that cutpoints do not
typically change very much. A worst-case analysis is hopelessly pessimistic, and empirical
measurements are inevitably limited to a small set of tasks. One can only reason that as
one sees more training instances, the various probabilities will tend to stabilize, which means
that the need to revise the tree will diminish, driving down the average incremental update

cost.

To illustrate that incremental update cost is nearly independent of training effort, the
results of running I'TI on a problem with only numeric variables is shown in Figure 2. The
graph shows no noticeable evidence of growth in the incremental cost after the tree size has

stabilized. This behavior is typical of all the runs on numerical data to date. The measure
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of expected number of tests that is shown in the graph corresponds closely to tree size. The
expected number of tests is the sum of the number of tests evaluated when classifying all
the training instances, divided by the number of training instances. This measure can be

computed inexpensively in a single traversal of the tree.

The graph also indicates a low incremental update cost at every step. The worst incre-
mental cost is apparently much lower than the cost of rebuilding the tree from scratch at
that point. This behavior of no discernible growth in the incremental cost has been observed
in all runs to date, except one, which had an unusual cause that was quickly remedied.
The audiology data from the UC Irvine Repository contains a variable that is the unique
identifier of each instance. As training proceeded, the value set for the ‘identifier’ variable
was growing with each instance, and to a large number of values, progressively slowing the

algorithm. Removal of this unusual variable eliminated the growth, as shown in Figure 3.

It is somewhat disturbing to see how the size of the tree, as measured by the expected
number of tests to classify an instance, varies so much during training. This indicates consid-
erable sensitivity of the attribute-selection metric to the underlying probabilities computed
from the various frequency counts. One observes this same phenomenon for the number of

nodes in the tree.

3.5 Training Modes

A variety of training modes are possible, three of which are described here. Upon pre-
sentation of a training instance, one can decide whether or not to incorporate that training
instance into the tree. Any policy for making this decision constitutes one element of a
training mode. When one does elect to incorporate a new training instance into the tree,
one can then decide whether or not to ensure immediately afterward that the best test is
installed at each decision node. Because the process of adding an instance to a tree can be
accomplished independently from revising the tree, it is possible to accept more than one

instance between each occurrence of revising the tree.

3.5.1 Normal Mode

We denote as ‘normal’ the mode in which each instance that is presented is incorporated
into the tree, and in which the tree is then immediately restructured as necessary so that

every decision node has its most desired test installed. This mode always produces the same
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tree that one would obtain with a non-incremental version.

3.5.2 Error-Correction Mode

A known alternative to incorporating every training instance into the tree is instead
to incorporate an instance only if the existing tree would misclassify it. This mode of
training is akin to the error correction procedures of statistical pattern recognition, but
it was also suggested in the context of decision tree induction by Schlimmer and Fisher
(1986). For a stream of training instances, one effectively discards instances for which the
tree is currently correct. However, for a fixed pool of instances, ITI cycles through the pool
repeatedly, removing an incorrectly classified instance from the pool and incorporating it into
the decision tree, until the tree does not misclassify any instance still remaining in the pool.
Although instances are examined one at a time, this training regimen departs somewhat

from the notion of a linear stream of training instances.

Training in error-correction mode with the pool regimen often results in a tree that is
based on fewer instances and that is built at lower cost. Such a tree is often smaller and
more accurate than a tree based on all the instances presented (Utgoff, 1989a), though the

reason for this phenomenon is still unknown.

When the instances are noise-free, training in error-correction mode leads to saving a set
of training instances that is sufficient to cause a consistent tree to be found. Other instances

are discarded upon receipt.

For a pool of instances, I'TI will always build a tree and halt. This is true even when
the instances are noisy, because ITI continues through the pool until every instance remain-
ing in the pool is classified correctly. When an instance in the pool is misclassified, it is
removed from the pool and added to the tree. Thus, even though the tree may not become
a perfect classifier on all the training instances that it has incorporated (when there is noise
or inconsistency or pruning is turned on), it does continue to select and remove currently
misclassified training instances from the pool until no misclassified instances remain in the
pool. This occurs either when the current tree classifies all training instances still in the

pool correctly or when the pool becomes empty (all instances incorporated in the tree).
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3.5.3 Lazy Mode

Most of the effort in ITI goes to ensuring, after each training instance, that the tree has
the best test installed at each decision node. However, when a batch of instances is received
at one time, it would be wasteful to restructure the tree after each one. Instead, one can
add each instance to the tree without revising the tree (beyond the simple operations that
occur when incorporating an instance). Then, after all the instances from the batch have
been incorporated, a single call to the procedure for ensuring that the best test is installed
at each node brings the tree to its proper form. Thus, I'TI can run purely incrementally,
purely nonincrementally, or anywhere in between. Since one does not generally know when
the tree will be needed, one strategy for improving efficiency would be to revise the tree only
if it is needed for some purpose, such as classification, and the root node has been marked

as stale.

4 Direct Metric Tree Induction

We now turn to the non-incremental DMTTI (direct metric tree inducer) algorithm, which
also makes use of the tree revision mechanism described above in Section 2. The ability to
revise a tree inexpensively makes it practical to install a particular test at a node, and then
measure directly the quality of the resulting tree. This provides an attribute-selection metric
that is a function of a tree (direct metric), instead of being a function of various frequency
counts tallied locally at the node (indirect metric). Without the ability to revise an existing

tree, it would usually be prohibitively expensive to take such an approach.

4.1 Algorithm DMTI

The DMTT algorithm is a version of the classical top-down approach, because one finds the
best test to install at the root, installs it, and then solves the subproblems recursively. There
are three important differences. First, one starts the process with a decision tree instead of
a set of instances. Second, a test is evaluated directly by installing it, including automatic
revision of the subtrees using the (indirect) gain-ratio metric, and then by evaluating the
direct metric on the resulting tree. Thus, for n permissible tests at a node, DMTI evaluates
n different trees. Third, it would typically be quite expensive to consider all possible tests
at a node, so the set of permissible tests is limited to the best test for each input variable

according to the indirect metric. For a symbolic variable, the best test is the best derived
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propositional variable, and for a numeric variable, the best test is the derived propositional
variable based on the best cutpoint. So, for DMTI, the set of permissible tests at a node is

limited in size to the number of input variables.

4.2 Direct Metrics

We are now able to decide much more directly what bias we desire in preferring one
tree to another. A direct metric can be viewed as an objective function, and the process
of visiting the n trees at a node can be viewed as a kind of local optimization. On what
basis shall we prefer one tree to another? With no additional information, there can be no
universally correct answer to this question, but in practice we have additional information,
and it is usually possible to make a good choice. For example, if one has a strong prior belief
that the target concept can be modelled best by a decision tree that is a simple function
of the input variables, then one would prefer a smaller consistent tree to a larger consistent
tree. Similarly, it is often the case that a designer of a set of training instances will try to
choose input variables that are as predictive of the class label as possible; so, a metric that
is biased toward simpler functions is often appropriate. Other prior knowledge can be used

to determine a corresponding bias that will be appropriate for a given tree induction task.

4.2.1 Expected Number of Tests

The direct metric expected-number-of-tests returns the number of tests that one would
expect to evaluate in order to classify an instance, assuming that testing instances are drawn
according to the same probability distribution as training instances. As mentioned in Section
2, the expected number of tests can be computed by counting the total number of tests
evaluated while classifying all the training instances, and dividing by the total number of
training instances. It is possible to calculate the value of this metric during a single traversal
of the tree, without actually classifying any instances. All the instances that have been
incorporated into the tree are attached to some node in the tree, and all node heights are

known during the traversal.

4.2.2 Number of Leaves

The direct metric leaf-count returns the number of leaf nodes in the tree. This count can
be computed during a single traversal of the tree. Though the number of leaves is related to

the number of tests, it is not directly related to the expected number of tests. For example,
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it is possible for a tree t; to have a higher leaf count and a lower expected number of tests

than another tree 5.

4.2.3 Minimum Description Length

The direct metric minimum-description-length returns the number of bits needed to en-
code the tree, using the encoding scheme described in Section 3.3. DMTI can be run with
virtual pruning turned on or off, independently of the direct metric that is being used. If
pruning has been enabled, then immediately after a tree is revised, the pruning procedure
is invoked to mark each decision node as virtually pruned or not. For example, one can try
to minimize the expected number of tests with pruning turned on. As another example, one

could attempt to minimize the MDL of the tree with pruning turned off.

4.2.4 Expected Classification Expense

The direct metric expected-classification-cost is identical to expected-number-of-tests ex-
cept that each test has a specified evaluation cost, instead of the implied uniform evaluation
cost. In some applications, such as diagnosis, some tests are much more expensive than
others, and the cost of producing the answer is an important factor (Tan & Schlimmer,

1990).

4.2.5 Expected Misclassification Cost

The direct metric expected-misclassification-cost measures the penalty that one would pay
when misclassifying an instance, assuming that testing instances are drawn according to the
same probability distribution as training instances. Often, tree induction algorithms embody
the assumption that all classification errors incur the same cost (Pazzani, Merz, Murphy,
Ali, Hume & Brunk, 1994). To be more comprehensive, one could include an explicit cost
matrix that specifies the cost of labelling an instance with class X when it should have been

class Y. It is possible to calculate the value of this metric in a single traversal of the tree.

4.3 Discussion

DMTTI often produces dramatic improvement over I'TI. Consider three examples in which
DMTTI used the expected-number-of-tests metric. For the classic 6-bit multiplexor, DMTI
finds the optimal tree whereas I'TI finds a much poorer tree because it is fooled by the indirect

metric. More specifically, on a ten-fold cross validation, I'TI produced a tree with an average
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of 4.04 expected tests (37.6 nodes, accuracy 88.57%), and DMTI produced a tree with an
average of 3.0 expected tests (15.0 nodes, accuracy 100.0%). For the monks-2 problem, which
has fixed training and testing sets, ITI produced a tree of 6.25 expected tests (135 nodes,
accuracy 75.46%), whereas DMTI produced a tree of 5.15 expected tests (71 nodes, 95.14%
accuracy). For the hepatitis problem, using a ten-fold cross validation, ITI produced a tree
with an average of 5.24 expected tests (38.0 nodes, accuracy 75.63%), and DMTI produced
a tree with an average of 1.61 expected tests (16.0 nodes, accuracy 83.75%).

It is important to remember that DMTTI is finding a tree according to a direct metric.
Although these examples indicate improved classification accuracy, there is no known cause-
and-effect relationship, and one cannot expect that this improvement will always occur.
However, with respect to the direct metric, one can count on DMTTI finding a tree that is no
worse than that found by ITIL. This is because the tree found by ITI is one of trees generated
by DMTI, so another tree will be picked only if it is not worse. One can reasonably expect

that DMTT will find a better tree, according to the direct metric, than ITL.

These results indicate that there is plenty of room for improvement in the standard
indirect attribute selection techniques. For example, if one expects that the indirect gain-
ratio metric will lead to small trees, then it is easy to see that still smaller trees are typically

overlooked.

DMTTI works poorly on problems in which there are many missing values. This is because
an instance is left attached to a decision node when the installed test at the node cannot be
evaluated for the instance. When minimizing the number of leaves or the expected number
of tests, picking a test that causes a large number of instances to ‘stop’ at the node has the
effect that fewer instances are passed down, and less tree structure is needed to separate the

instances.

5 Leave-One-Out Cross Validation

For some learning methods, it is possible to perform a leave-one-out cross validation
inexpensively because it is easy to modify the classifier incrementally. For example, one
can change an instace-based classifier simply by adding or subtracting an instance from
its instance base. This makes leave-one-out cross validation inexpensive because for each
instance in the base, one removes it from the base, classifies it, and then puts it back into

the base. The cross-validated accuracy is the percentage of classifications that were correct.



Decision Tree Induction Based on Efficient Tree Restructuring 20

With efficient tree revision, leave-one-out cross validation is practical for decision tree
classification (Kohavi, 1995). One first builds a tree from all the instances. Then for each
instance, one subtracts it from the tree, classifies it, and adds it to the tree. This requires
adding a primitive that subtracts an instances from the tree, which is straightforward; it is
the inverse of adding an instance. When an instance is subtracted or added, the algorithm
uses the indirect metric to identify the best test at each decision node. The cost of subtracting
an instance and adding it back is dramatically less than the cost of building the tree from

scratch.

6 Software

An implementation of the ITI and DMTTI algorithms is available via anonymous ftp
to ftp.cs.umass.edu on directory /pub/iti. The distribution includes the C source code
for the two algorithms and for several additional small programs for running experiments,
plotting performance graphs, and plotting decision trees. This latter program PST generates

postscript that draws a tree on as many pages as necessary for the specified font and pointsize.

Everything discussed in this report has been implemented except for the I'TI lazy mode,
the DMTT expected-classification-expense metric, and the DMTT expected-misclassification-
cost metric. Several useful operators have been implemented that have not been discussed

here, such as save-tree and restore-tree.

7 Summary

This report has presented a set of fundamental tree revision operators, and shown how
two decision tree induction algorithms can be built from them. The ITI algorithm performs
incremental decision tree induction on symbolic or numeric variables, and handles noise and
missing values. The algorithm also includes a virtual pruning mechanism that can operate

in conjunction with a tree induction algorithm.

The non-incremental DMTT algorithm uses an attribute selection metric that is a function
of a tree instead of a function of counting information kept at a node. This makes it possible
to choose from among a set of trees based on an explicit bias. It also lends itself to studies
of how well the indirect metrics do at identifying tests that lead to induction of the most

preferred trees.
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